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GEOMETRICALLY FINITE AND INFINITE KLEINIAN GROUPS

MAHAN MJ

Abstract. This is a summary of the material for 3 lectures on geometrically
finite and infinite Kleinian groups delivered by the author at a conference held
at Tata Institute of Fundamental Research in April 2014.
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1. Lecture 1: Geometrically Finite Groups

1.1. Fuchsian Groups. A Kleinian group G is a discrete subgroups of PSL2(C) =

Mob(Ĉ) = Isom(H3). This gives us three closely intertwined perspectives on the
field:

(1) Studying discrete subgroups G of the group of Mobius transformations

Mob(Ĉ) emphasizes the Complex Analytical/Dynamic aspect.
(2) Studying discrete subgroupsG of PSL2(C) emphasizes the Lie group/matrix

group theoretic aspect.
(3) Studying discrete subgroups G of Isom(H3) emphasizes the Hyperbolic Ge-

ometry aspect.

We shall largely emphasize the third perspective. Since G is discrete, we can
pass to the quotient M3 = H3/G. Thus we are studying hyperbolic structures on
3-manifolds.
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2 MAHAN MJ

In order to obtain some examples, we first move one dimension down and look at
discrete subgroups G of the group of Mobius transformations Mob(∆) = Mob(H)
of the unit disk (which is conformally equivalent to the upper half plane). These
are called Fuchsian Groups, and were discovered by Poincare. The natural metric

of constant negative curvature on the upper half plane is given by ds2 = dx2
+dy2

y2 .

This is called the hyperbolic metric. The resulting space is denoted as H2.
The associated conformal structure is exactly the complex structure on H = {z ∈

C : Im(z) > 0}. It turns out that orientation preserving isometries ofH2 are exactly
the conformal automorphisms of H2. The boundary circle S1 compactifies ∆. This
has a geometric interpretation. It codes the ‘ideal’ boundary of H2, consisting of
asymptote classes of geodesics. The topology on S1 is induced by a metric which is
defined as the angle subtended at 0 ∈ ∆. The geodesics turn out to be semicircles
meeting the boundary S1 at right angles.

We now proceed to construct an example of a discrete subgroup of Isom(H2).
The genus two orientable surface can be described as a quotient space of an octagon
with edges labelled a1, b1, a

−1
1 , b−1

1 , a2, b2, a2−1, b−1
2 , where the boundary has the

identification induced by this labelling. In order to construct a metric of constant
negative curvature on it, we have to ensure that each point has a small neighbor-
hood isometric to a small ball in H2. To ensure this it is enough to do the above
identification on a regular hyperbolic octagon (all sides and all angles equal) such
that the sum of the interior angles is 2π. To ensure this, we have to make each
interior angle equal 2π

8
. The infinitesimal regular octagon at the tangent space to

the origin has interior angles equal to 3π
4
. Also the ideal regular octagon in H2 has

all interior angles zero. See figure below.

Hence by the Intermediate value Theorem, as we increase the size of the octagon
from an infinitesimal one to an ideal one, we shall hit interior angles all equal
to π

4
at some stage. The group G that results from side-pairing transformations

corresponds to a Fuchsian group, or equivalently, a discrete faithful representation
of the fundamental group of a genus 2 surface into Isom(H2). We let ρ denote the
associated representation.

1.2. Kleinian Groups. We now move back to H3. The hyperbolic metric is given

by ds2 = dx2
+dy2

+dz2

z2 on upper half space. Note that the metric blows up as
one approaches z = 0. Equivalently we could consider the ball model, where the
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boundary S2 = Ĉ consists of ideal end-points of geodesic rays as before. The metric

on Ĉ is given by the angle subtended at 0 ∈ H3.
Since Isom(H2) ⊂ Isom(H3), we can look upon the discrete group G we con-

structed above also as a discrete subgroup of Isom(H3).

O

In the above picture two things need to be observed.
1) the orbit G.o accumulates on the equatorial circle. This is called the limit set
ΛG.
2) The complement of ΛG consists of two round open discs. On each of these disks,
G acts freely (i.e. without fixed points) properly discontinuously, by conformal
automorphisms. Hence quotient is two copies of the ‘same’ Riemann surface (i.e.

a one dimensional complex analytic manifold). The complement Ĉ \ ΛG = ΩG is
called the domain of discontinuity of G.

We proceed with slightly more formal definitions identifying Ĉ with the sphere
S2.

Definition 1.1. If x ∈ H3 is any point, and G is a discrete group of isometries,
the limit set ΛG ⊂ S2 is defined to be the set of accumulation points of the orbit
G.x of x.

The domain of discontinuity for a discrete group G is defined to be ΩG = S2\ΛG.

Proposition 1.2. [Thu80][Proposition 8.1.2] If G is not elementary, then every
non-empty closed subset of S2 invariant by G contains the limit set ΛG.

Suppose that G is abstractly isomorphic to the fundamental group of a finite area
hyperbolic surface Sh, and ρ : π1(S

h) → PSL2(C) be a representation with image
G. Suppose further that ρ is strictly type-preserving, i.e. g ∈ π1(S

h) represents
an element in a peripheral (cusp) subgroup if and only ρ(g) is parabolic. In this
situation we shall refer to G as a surface Kleinian group. A recurring theme in the
context of finitely generated, infinite covolume Kleinian groups is that the general
theory can be reduced to the study of surface Kleinian groups. Equivalently, we
study the representation space Rep(π1(S

h), PSL2(C).

Regarding G as a subgroup of Mob(Ĉ), the dynamics of the action of G on Ĉ)
emerges. The limit set ΛG of G is defined to be the set of accumulation points of

the orbit G.o in Ĉ for some (any) o ∈ H
3. The limit set is the locus of chaotic
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dynamics of the action of G on C. The complement Ĉ \ ΛG = ΩG is called the
domain of discontinuity of G.

On the other hand regarding G as a subgroup of Isom(H3), we obtain a quotient
hyperbolic 3-manifold M = H3/G with fundamental group G.

A major problem in the theory of Kleinian groups is to understand the rela-
tionship between the dynamic and the hyperbolic geometric descriptions
of G.

The Ahlfors-Bers simultaneous Uniformization Theorem states that
given any two conformal structures τ1, τ2 on a surface, there is a discrete sub-

group G of Mob(Ĉ) whose limit set is topologically a circle, and whose domain of
discontinuity quotients to the two Riemann surfaces τ1, τ2. See figure below.

T_1

T_2

The limit set is a quasiconformal map of the round circle. These (quasi Fuchsian)
groups can be thought of as deformations of Fuchsian groups (Lie group theoreti-
cally) or quasiconformal deformations (analytically). Ahlfors and Bers proved that
these are precisely all quasiconvex surface Kleinian groups.

The convex hull CHG of ΛG is the smallest closed convex subset of H3 invariant
under G. It can be constructed by joining all pairs of points on limit set by bi-
infinite geodesics and iterating this construction. The quotient of CHG by G, which
is homeomorphic to Sh × [0, 1], is called the Convex core CC(M) of M = H3/G.

The ‘thickness’ of CC(M) for a quasi Fuchsian surface Kleinian group, measured
by the distance between Sh × {0} and Sh × {1} is a geometric measure of the
complexity of the quasi Fuchsian group G.

2. Lecture 2: Laminations

The main technical tools required to deal with the notions of convex hulls and
bending introduced In Lecture 1 are laminations and pleated surfaces. I followed
Thurston’s (unpublished) notes [Thu80] on the subject.

Definition 2.1. A geodesic lamination on a hyperbolic surface is a foliation of a
closed subset with geodesics.

Geodesic laminations arise naturally in a number of contexts in the study of
hyperbolic 2- and 3- manifolds.
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(1) as stable and unstable laminations corresponding to a pseudo-anosov dif-
feomorphism of a hyperbolic surface.

(2) as the pleating locus of a component of the convex core boundary ∂CC(M)
of a hyperolic 3-manifold M .

(3) as the ending lamination corresponding to a geometrically infinite end of a
hyperolic 3-manifold.

We shall in this section discuss briefly how each of these examples arise.

2.1. Stable and Unstable laminations. We consider the torus T 2 equipped
with a diffeomorphism φ, whose action on homology is given by a 2 × 2 matrix

with irrational eigenvalues, e.g. 3+
√
5

2
, 3−

√
5

2
. Then the eigendirections give rise to

two sets of foliations by dense copies of R: the stable and unstable foliation. Such
a diffeomorphism is called Anosov. Anosov diffeomorphisms of the torus may be
characterized in terms of their action on π1(T ) as not having periodic conjugacy
classes.

Now consider the stable (or unstable) foliation (minus a point ∗) on S = (T 2 \
{∗}). Equip S with a complete hyperbolic structure of finite volume and straighten
every leaf of the foliation to a complete geodesic. The resulting union of leaves is
called the stable (or unstable) lamination of the diffeomorphism φ on the hyperbolic
surface S.

One of the fundamental pieces of Thurston’s work [FLP79] shows that the exis-
tence of such a stable and unstable lamination generalizes to all hyperbolic surfaces.
A diffeomorphism φ of a hyperbolic surface S preserving punctures (or boundary
components according to taste) is called pseudo Anosov if the action of φ∗ on
π1(S) has no periodic conjugacy classes. Thurston proved the existence of a unique
stable and unstable lamination without any closed leaves for any pseudo Anosov
diffeomorphism φ acting on a hyperbolic surface S.

2.2. Pleating locus. We quote a picturesque passage from [Thu80]:

Consider a closed curve σ in Euclidean space, and its convex hull
H(σ). The boundary of a convex body always has non-negative
Gaussian curvature. On the other hand, each point p in ∂H(σ) \ σ
lies in the interior of some line segment or triangle with vertices on
σ. Thus, there is some line segment on ∂H(σ) through p, so that
∂H(σ) has non-positive curvature at p. It follows that ∂H(σ)\σ has
zero curvature, i.e., it is developable. If you are not familiar with
this idea, you can see it by bending a curve out of a piece of stiff
wire (like a coathanger). Now roll the wire around on a big piece of
paper, tracing out a curve where the wire touches. Sometimes, the
wire may touch at three or more points; this gives alternate ways
to roll, and you should carefully follow all of them. Cut out the
region in the plane bounded by this curve (piecing if necessary).
By taping the paper together, you can envelope the wire in a nice
paper model of its convex hull. The physical process of unrolling a
developable surface onto the plane is the origin of the notion of the
developing map.

The same physical notion applies in hyperbolic three-space. If
K is any closed set on S2 (the sphere at infinity), then H(K) is
convex, yet each point on ∂H(K) lies on a line segment in ∂H(K).



6 MAHAN MJ

Thus, ∂H(K) can be developed to a hyperbolic plane. (In terms
of Riemannian geometry, ∂H(K) has extrinsic curvature 0, so its
intrinsic curvature is the ambient sectional curvature, -1. Note
however that ∂H(K) is not usually differentiable). Thus ∂H(K)
has the natural structure of a complete hyperbolic surface.

This forces ∂H(K) equipped with its intrinsic metric to be a hyperbolic surface.
However, there are complete geodesics along which it is bent (but not crumpled).

Thus each boundary component S, and hence its universal cover S̃, carries a metric

that is intrinsically hyperbolic. However, in H3, the universal cover S̃ is bent along
a geodesic lamination. S is an example of a pleated surface:

Definition 2.2. [Thu80][Definition 8.8.1] A pleated surface in a hyperbolic three-
manifold N is a complete hyperbolic surface S of finite area, together with an iso-
metric map f : S → N such that every x ∈ S is in the interior of some straight line
segment which is mapped by f to a straight line segment. Also, f must take every
cusp of S to a cusp of N

The pleating locus of the pleated surface f : S → M is the set γ ⊂ S consisting of
those points in the pleated surface which are in the interior of unique line segments
mapped to line segments.

Proposition 2.3. [Thu80][Proposition 8.8.2] The pleating locus γ is a geodesic
lamination on S. The map f is totally geodesic in the complement of γ.

2.3. Ending Laminations. The notion of an ending lamination comes up in the
context of a geometrically infinite group. We shall deal with these groups in greater
detail in Lecture 3. Thurston introduces the notion of a geometrically tame end E
of a manifold M . An end E of a hyperbolic manifold M is geometrically tame (and
geometrically infinite) if there exists a sequence of pleated surfaces exiting E.

For such an end E, choose a sequence of simple closed curves {σn} exiting E.
Let S = ∂E be the bounding surface of E. Then the limit of such a sequence
(in a suitable sense; the reader will not be much mistaken if (s)he thinks of the
Hausdorff limit on the bounding surface S of E) is a lamination λ. It turns out
that λ is independent of the sequence {σn}.

3. Lecture 3: Geometrically Infinite Groups

3.1. Degenerate Groups. The most intractable examples of surface Kleinian
groups are obtained as limits of quasi Fuchsian groups. In fact, it has been re-
cently established by Minsky et al. [Min10] [BCM12] that the set of all surface
Kleinian groups (or equivalently all discrete faithful representations of a surface
group in PSL2(C)) are given by quasiFuchsian groups and their limits. This is
known as the Bers density conjecture.

To construct limits of quasi Fuchsian groups, one allows the thickness of the
convex core CC(M) to tend to infinity. There are two possibilities:
a) Let only τ1 degenerate. i.e. I → [0,∞) (simply degenerate case)
b) Let both τ1, τ2 degenerate, i.e. I → (−∞,∞) (doubly degenerate case)

Thurston’s Double Limit Theorem [Thu86] says that these limits exist.
A fundamental question in relating the geometric and dynamic aspects of
Kleinian groups is the following.
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Question 3.1. (Thurston) How does the limit set behave for the limiting manifold?

In the doubly degenerate case the limit set is all of Ĉ.
In the next section we outline our approach and solution to this problem.

3.2. Extensions of Maps to Ideal Boundaries. Starting with [Mit98b], [Mit98a]
and [Mit97a], we investigated the following question:

Question 3.2. Let G be a hyperbolic group in the sense of Gromov acting freely
and properly discontinuously by isometries on a hyperbolic metric space X. Does
the inclusion of the Cayley graph i : ΓG → X extend continuously to the (Gromov)
compactifications?

A positive answer to Question 3.2 gives us a precise handle on Question 3.1. In
this generality the question first appears in [Mit97b] (see also the Geometric Group
Theory Problem List [Bes04]). As of date no counterexample is known.

However, special cases of Question 3.2 have been raised earlier in the context of
Kleinian groups.
•1 In Section 6 of [CT85] (now published as [CT07]), Cannon and Thurston propose
the following.

Conjecture 3.3. Suppose a surface group π1(S) acts freely and properly discontin-

uously on H
3 by isometries. Then the inclusion ĩ : S̃h → H

3 extends continuously
to the boundary

The authors of [CT85] point out that for a simply degenerate group, this is
equivalent to asking if the limit set is locally connected.

•2 In [McM01], McMullen makes the following more general conjecture:

Conjecture 3.4. For any hyperbolic 3-manifold N with finitely generated funda-
mental group, there exists a continuous, π1(N)-equivariant map

F : ∂π1(N) → Λ ⊂ S2
∞

where the boundary ∂π1(N) is constructed by scaling the metric on the Cayley
graph of π1(N) by the conformal factor of d(e, x)−2, then taking the metric com-
pletion. (cf. Floyd [Flo80])

In [Mj14a] and [Mj10b] we provide a complete positive answer to both Conjec-
tures 3.3 and 3.4.

As a consequence we also establish in [Mj14a] the following Theorem which
proves a long-standing conjecture in the theory of Kleinian groups [Abi76] [CT85].

Theorem 3.5. Connected limit sets of finitely generated Kleinian groups is locally
connected.

In the next subsection, after describing the history of these problems, we shall
give more details about the structure of limit sets and their relation to the geometry
of surface Kleinian groups.
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3.3. History and Solution of the Problem. In [Abi76], Abikoff (1976) claimed
to prove that limit sets of simply degenerate surface Kleinian groups were never
locally connected. Thurston and Kerckhoff found a flaw in his proof in about 1980.

The first major result that started this entire programwas Cannon and Thurston’s
result [CT85] for hyperbolic 3-manifolds fibering over the circle with fiber a closed
surface group.

Let M be a closed hyperbolic 3-manifold fibering over the circle with fiber F . Let

F̃ and M̃ denote the universal covers of F and M respectively. Then F̃ and M̃ are
quasi-isometric to H2 and H3 respectively. Now let D2 = H2∪S1∞ and D3 = H3∪S2∞
denote the standard compactifications. In [CT85] Cannon and Thurston show that

the usual inclusion of F̃ into M̃ extends to a continuous map from D2 to D3. This
was extended to Kleinian surface groups of bounded geometry without parabolics
by Minsky [Min94].

An alternate approach (purely in terms of coarse geometry ignoring all local
information) was given by the author in [Mit98b] generalizing the results of both
Cannon-Thurston and Minsky. We proved the Cannon-Thurston result for hyper-
bolic 3-manifolds of bounded geometry without parabolics and with freely inde-
composable fundamental group. A different approach based on Minsky’s work was
given by Klarreich [Kla99].

Bowditch [Bow07] [Bow02] proved the Cannon-Thurston result for punctured
surface Kleinian groups of bounded geometry. In [Mj09] we gave an alternate
proof of Bowditch’s results and simultaneously generalized the results of Cannon-
Thurston, Minsky, Bowditch, and those of [Mit98b] to all 3 manifolds of bounded
geometry whose cores are incompressible away from cusps. The proof has the ad-
vantage that it reduces to a proof for manifolds without parabolics when the 3
manifold in question has freely indecomposable fundamental group and no acciden-
tal parabolics.

In the expository paper [Mj10a] we give our proof of the results of Cannon
and Thurston [CT85], Minsky [Min94], and Bowditch [Bow07] using the ideas of
[Mit98b] and [Mj09].

In [Min99] Minsky established a bi-Lipschitz model for all punctured torus
Kleinian groups. McMullen [McM01] proved the Cannon-Thurston result for punc-
tured torus groups, using Minsky’s model for these groups [Min99].

In [Mj11] we identified a large-scale coarse geometric structure involved in the
Minsky model for punctured torus groups (and called it i-bounded geometry).
i-bounded geometry can roughly be regarded as that geometry of ends where the
boundary tori of Margulis tubes have uniformly bounded diameter. We gave a proof
for models of i-bounded geometry. In combination with the methods of [Mj09] this
was enough to bring under the same umbrella all known results on Cannon-Thurston
maps for 3 manifolds whose cores are incompressible away from cusps.

In [Mj05] we further generalized possible geometries allowing us to push our
techniques through to establish the Cannon-Thurston property.

In the mean time, in the proof of the celebrated Ending Lamination Conjec-
ture, Minsky [Min10] and Brock-Canary-Minsky [BCM12] established a bi-Lipschitz
model for all surface Kleinian groups.

In [Mj14a], we used the Minsky model of [Min10] to prove that all hyperbolic
3-manifolds homotopy equivalent to a surface satisfy the conditions imposed in the
geometries dealt with in [Mj05]. This establishes the Cannon-Thurston property
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for all surface Kleinian groups and proves Conjecture 3.3. It follows that surface
Kleinian groups have locally connected limit sets. Combining this result with a
reduction Theorem of Anderson and Maskit [AM96], we prove that connected limit
sets of finitely generated Kleinian groups are locally connected (Theorem 3.5). Fi-
nally in [Mj10b] we extend the techniques of [Mj14a] to cover handlebody groups
and prove Conjecture 3.4.

We then gave explicit descriptions of the boundary identifications of [Mj14a] in
terms of ending laminations in [Mj14b]. This finally yields a rather complete and
satisfactory solution to Question 3.1.
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