Complex anaysis - Problem Set 4

Notation:

- D stands for an open, connected subset of \mathbb{C} , and H(D) is the space of all holomorphic functions defined on D.
- $\bullet \ \mathbb{D} := \{ z \in \mathbb{C} : |z| < 1 \}.$
- $f^{\circ n} := f \circ f \circ \cdots \circ f$ (n times) is the n-th iterate of f.
- (1) Prove or disprove: Let $f \in C(\overline{\mathbb{D}}) \cap H(\mathbb{D})$. Suppose that for a constant $0 < \delta < 1/10$, $f(e^{i\theta}) = 1 + 2i$ for all $-\delta \pi < \theta < \delta \pi$. Then $f \equiv 1 + 2i$ on $\overline{\mathbb{D}}$.
- (2) Show that normality is a local property. More precisely, if $\{f_{\alpha}\}\subset H(D)$ be such that every point $z\in D$ has a neighborhood U_z such that the collection $\{f_{\alpha}|_{U_z}\}$ of restricted maps is a normal family, show (by a diagonal argument) that the family $\{f_{\alpha}\}$ itself is normal.
- (3) (a) Let $\{f_n\}$ be a sequence of rational functions that converges normally to f on the Riemann sphere $\widehat{\mathbb{C}}$. Show that f_n has the same degree as f for n large.
 - (b) Show that the rational functions $\{\frac{z^3}{z+\varepsilon}: 0<\varepsilon<1\}$ form a normal family of meromorphic functions on $\widehat{\mathbb{C}}\setminus\{0\}$, but they do not form a normal family of meromorphic functions on \mathbb{C} .
- (4) Let $R: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ be a rational map of degree at least two. The Fatou set of R, denoted by $\mathcal{F}(R)$, is the largest open subset of $\widehat{\mathbb{C}}$ on which the iterates $\{R^{\circ n}\}$ form a normal family (equivalently, $\mathcal{F}(R)$ consists of all points $z_0 \in \widehat{\mathbb{C}}$ that have an open neighborhood U_{z_0} such that the restrictions of the iterates of R to U_{z_0} form a normal family. The Julia set of R, denoted by $\mathcal{J}(R)$, is the complement of $\mathcal{F}(R)$ in $\widehat{\mathbb{C}}$. A fixed point z_0 of R is said to be repelling if $|f'(z_0)| > 1$. Prove the following assertions.
 - (a) $R(\mathcal{F}(R)) = R^{-1}(\mathcal{F}(R)) = \mathcal{F}(R)$, and $R(\mathcal{J}(R)) = R^{-1}(\mathcal{J}(R)) = \mathcal{J}(R)$.
 - (b) $\mathcal{J}(R^{\circ k}) = \mathcal{J}(R)$, for all $k \in \mathbb{N}$.
 - (c) Each repelling fixed point R belongs to $\mathcal{J}(R)$.
 - (d) $\mathcal{J}(R) \neq \emptyset$.
 - (e) If R is a monic polynomial (of degree at least two), then $\mathcal{J}(R) = \partial \mathcal{B}_{\infty}(R)$ (see Problem Set 2 for the definition of the basin of infinity $\mathcal{B}_{\infty}(R)$ of a polynomial).
- (5) (a) If a holomorphic map $f: \mathbb{D} \to \mathbb{D}$ fixes the origin and is not a rotation, prove that the successive images $f^{\circ n}(z)$ converge to zero for all $z \in \mathbb{D}$.
 - (b) Prove that this convergence is uniform on compact subsets of \mathbb{D} . (The example $f(z) = z^2$ shows that convergence need not be uniform on all of \mathbb{D} .)
- (6) (a) Show that the group $\operatorname{Aut}(\widehat{\mathbb{C}})$ is generated by the subgroup of affine transformations $z \mapsto az + b$ together with the inversion $z \mapsto -1/z$.
 - (b) Given four distinct points $z_j \in \widehat{\mathbb{C}}$, show that the *cross-ratio*

$$\chi(z_1, z_2 z_3, z_4) := \frac{(z_3 - z_1)(z_4 - z_2)}{(z_2 - z_1)(z_4 - z_3)} \in \mathbb{C} \setminus \{0, 1\}$$

is the image of z_4 under the unique Möbius map that carries z_1, z_2, z_3 to $1, 0, \infty$ respectively. Conclude that it is invariant under Möbius transformations.

- (7) Let $R(z) = \frac{z^d+1}{z^d}$, for some $d \geq 2, d \in \mathbb{N}$. Show that there exists no Möbius map M such that $M \circ R \circ M^{-1}$ is a polynomial.
- (8) Show that there exists no bijective holomorphic map from the punctured disk $\mathbb{D} \setminus \{0\}$ onto the annulus $\{z: 1 < |z| < 2\}$.
- (9) Does there exist $\in H(\mathbb{D})$ such that $(f(z))^3 = z$ for all $z \in \mathbb{D}$?