Complex analysis - Problem Set 5

Notation:

- D stands for an open, connected subset of \mathbb{C} , and H(D) is the space of all holomorphic functions defined on D.
- $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}.$
- $f^{\circ n} := f \circ f \circ \cdots \circ f$ (*n* times) is the *n*-th iterate of *f*.
- (1) (a) Let D be the domain in the Riemann sphere $\widehat{\mathbb{C}}$ exterior to the circles |z-1| = 1 and |z+1| = 1. Find a conformal isomorphism of D onto the strip $S + \{z \in \mathbb{C} : 0 < \text{Im}(z) < 2\}$.
 - (b) Find a conformal map from $\{z \in \mathbb{C} : |z| < 1, \text{Im}(z) > 0\}$ (a semi-disk) onto the unit disk \mathbb{D} .
- (2) If g maps the quadrant $\{z \in \mathbb{C} : \operatorname{Re}(z) > 0, \operatorname{Im}(z) > 0\}$ conformally onto \mathbb{D} with g(1) = 1, g(i) = -1, and g(0) = -i, find |g'(1+i)|.
- (3) If $f: \mathbb{D} \to \mathbb{D}$ is holomorphic and $f(0) = f(\frac{1}{2}) = 0$, show that

$$|f(z)| \le \left| z \cdot \frac{2z - 1}{2 - z} \right|$$

for all $z \in \mathbb{D}$.

- (4) (a) Let $D = \mathbb{C} \setminus \{a_1, \dots, a_m\}$ be the complex plane with *m* punctures. Show that any conformal self-map of *D* is a Möbius map that permutes the punctures.
 - (b) Compute the group of conformal automorphisms of $\mathbb{C}\setminus\{0\}$, $\mathbb{C}\setminus\{0,1\}$, and $\mathbb{D}\setminus\{0,1/3\}$.
- (5) (a) A conformal map $g: D \to \mathbb{D}$ induces a hyperbolic metric ρ_D on D (called the *Poincaré metric*) as the pullback of the hyperbolic metric on \mathbb{D} . Show that it is given by the formula

$$d\rho_D(z) = \frac{2|g'(z)|}{1 - |g(z)|^2} dz,$$

and that ρ_D is independent of the conformal isomorphism g.

(b) Show that the hyperbolic metric of the upper half-plane \mathbb{H} is given by

$$d\rho_{\mathbb{H}}(z) = \frac{|dz|}{y},$$

and the hyperbolic metric on the horizontal strip $S = \{z \in \mathbb{C} : -\pi/2 < \text{Im}(z) < \pi/2\}$ is given by

$$d\rho_S(z) = \frac{|dz|}{\cos y}.$$

- (6) The universal covering surface for the punctured disk $\mathbb{D} \setminus \{0\}$ can be identified with the left half-plane $\{w = u + iv; u < 0\}$ under the exponential map $w \mapsto z = e^w$.
 - (a) Show that the Poincaré metric $\frac{|dw|}{|u|}$ on the left-half plane descends to the Poincaré metric $\frac{|dz|}{|r \ln r|}$ on the punctured disk, where r = |z|.
 - (b) Conclude that the circle $\{|z| = r\}$ has Poincaré length $2\pi/|\ln r|$, which tends to zero as $r \to 0$, although this circle has infinite Poincaré distance from the boundary point at the origin.

- (7) Let $B(z) = \frac{3z^2+1}{z^2+3}$. Show that $\{B^{\circ n}(z)\} \longrightarrow 1$ as $n \to \infty$ for all $z \in \mathbb{D}$.
- (8) Let $f : \mathbb{H}_R = \{z \in \mathbb{C} : \operatorname{Re}(z) > 0\} \to \mathbb{C}$ be holomorphic such that $f(\mathbb{H}_R) \subset B(f(a), r)$, for some $a \in \mathbb{H}_R$ and r > 0. Prove that

$$\frac{|f(z) - f(a)|}{|z - a|} \le \frac{r}{|z + \overline{a}|} \text{ for all } z \in \mathbb{H}_R \setminus \{a\}, \text{ and } |f'(a)| \le \frac{r}{2\operatorname{Re}(a)}.$$