Dynamical systems - Problem Set 5

(1) Closing Lemma.

Let $f: X \to X$ be an open, continuous, distance expanding map on a compact metric space. Prove that for any $\varepsilon > 0$, there exists $\delta > 0$ such that any periodic δ -pseudo-orbit $\{x_k\}_{k\in\mathbb{N}}$ of period q (i.e., $x_{i+q} = x_i$, for all i) can be ε -shadowed by a periodic orbit of the same period.

- (2) Let $f : \mathbb{R} \to \mathbb{R}$ be the function $f(x) = x^2$. Show that HD(f(K)) = HD(K) for any $K \subset \mathbb{R}$.
- (3) Let K be the set consisting of the numbers between 0 and 1 whose decimal expansions do not contain the digit 5. Show that $HD(K) = \log 9/\log 10$.
- (4) Let $A, B \subset \mathbb{R}^n$. Prove that $HD(A \times B) \ge HD(A) + HD(B)$.
- (5) Prove that when X is any subset of \mathbb{R}^n , and K is the middle-thirds Cantor set, then $HD(X \times K) = HD(X) + HD(K).$