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Abstract. We sharpen two results about the topology and geometry of quad-
rature domains. Specifically, we

(1) improve the upper bound on the connectivity of a quadrature domain
given in [LM16] by bounding the number of boundary double points; and

(2) refine a quadratic upper bound on the number of singular points on the

boundary of a quadrature domain given in [Gus88] to a linear one.
Our proofs use classical conformal dynamics and hyperbolic geometry argu-

ments, as opposed to the surgery and Hele-Shaw flow techniques of [LM16] and

algebro-geometric techniques of [Gus88]. We also introduce a new dynamical
method of constructing multiply connected quadrature domains.
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1. Introduction

Quadrature domains lie at the confluence of complex analysis, statistical physics,
fluid dynamics, and dynamical systems. These are domains in the Riemann sphere
that admit finite-node quadrature identities for integrable analytic functions. It
turns out that they are characterized by having a semi-global Schwarz reflection
map; i.e., by the property of having real-analytic boundary such that the local
Schwarz reflection map with respect to the boundary extends anti-meromorphically
to the interior.

1.1. Quadrature domains in analysis, mathematical physics, and confor-
mal dynamics. Quadrature domains were first considered by Davis in the context
of Schwarz functions [Dav74], and by Aharonov and Shapiro from the point of view
of quadrature identities [AS76]. Numerous applications of quadrature domains
were discovered in the following decades. They played an important role in vari-
ous complex-analytic problems such as quadrature identities [Dav74, AS76, Sak82,
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Gus83], extremal problems for conformal mapping [ASS99, LMM21, LMMN25],
Hele-Shaw flows [Ric72, EV92, GV06], moment problems [Sak78, GHMP00], dessin
d’enfants [ILRS23], etc. (see [EGKP05], [LLMM25, §1.1] and the references therein
for more connections). Quadrature domains also arise naturally in the study of
equilibrium measures in many statistical physics problems and in random matrix
theory [ABWZ02, Wie02, TBAZW05, EF05, HM13, LM16, NW24, BY25]. More
recently, the dynamics of Schwarz reflection maps associated with quadrature do-
mains was explored in details, and it led to many deep connections between rational
dynamics, actions of Kleinian reflection groups, and dynamics of algebraic corre-
spondences [LLMM21, LLMM23, LLMM25, LMMN25, LMM24, LM23].

1.2. Complexity of quadrature identity. A quadrature domain Ω admits a
quadrature function RΩ, which is a rational map with all of its poles in Ω, such
that the quadrature identity

ż

Ω

fdxdy “
1

2i

¿

BΩ

fpzqRΩpzqdz

is satisfied for all analytic functions f on Ω extending continuously to Ω (for Ω
unbounded, the functions f are also required to vanish at 8).

The degree dΩ of RΩ is called the order of the quadrature domain. Further,
the number of poles of RΩ (also called the nodes of Ωq is denoted as nΩ. These
numbers can be regarded as a measure of complexity of the quadrature identity
satisfied by Ω. In other words, the analytic complexity of Ω is encoded in dΩ, nΩ.

1.3. Real-algebraicity of Schwarz reflections and boundaries of quadra-
ture domains. As mentioned above, a quadrature domain Ω admits an anti-

meromorphic map σ : Ω Ñ pC that is identity on BΩ. Using a Schottky double
construction, Gustafsson proved that the Schwarz reflection σ is a real-algebraic
function [Gus83]. Specifically, there exists a symmetric compact Riemann surface
Σ (the ‘double’ of Ω), an anti-conformal involution η on Σ, and a meromorphic map

f : Σ Ñ pC such that σ admits a simple description in terms of f and η . Denoting
the degree of f by df , one easily obtains a linear relation between the numbers df
and dΩ (see Section 2.4 for details). As an upshot of this construction, it was also
demonstrated in [Gus83] that BΩ is a real-algebraic curve and hence has a finite
number of cusp and double point singularities.

1.4. Topological complexity of quadrature domains. In many of the analytic,
physical, and dynamical applications mentioned above, the topology and geometry
of quadrature domains play an important role. In a groundbreaking work, Lee and
Makarov showed that the topological complexity of a quadrature domain Ω can
be bounded by the complexity of its quadrature identity [LM16]. More precisely,
they proved that the integers dΩ, nΩ provide a sharp linear upper bound on the
connectivity of Ω. Here, the connectivity of Ω, denoted by connpΩq, is the number

of components of the droplet ΩA “ pCzΩ.
The main result of this paper improves the upper bounds furnished in [LM16].

We show that the same numbers give an upper bound for the sum of the connectivity
of Ω, the number of double points on BΩ, and certain multiplicity associated with
the singular points on BΩ.

We make a standing non-degeneracy assumption that BΩ neither contains an
isolated point nor contains any critical value of σ.
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Theorem A. Let Ω be a quadrature domain with df ě 3. We denote the set of
all double points (respectively, cusps) on BΩ by D (respectively, C). Then,

connpΩq ` #D `
ÿ

pPD

δp `
ÿ

pPC

δp ď mintdf ` nΩ ´ 2, 2df ´ 4u.

Moreover, if Ω has a node at 8, then

connpΩq ` #D `
ÿ

pPD

δp `
ÿ

pPC

δp ď df ` nΩ ´ 3.

Here, δp “ tn{4u if p is a cusp of type pn, 2q, and δp “ tn{2u if p is a double point
with order of contact n.

Theorem A bounds the topological and geometric complexity of a quadrature
domain Ω in terms of its analytic complexity. For quadrature domains with non-
singular boundary, Theorem A recovers the main results of [LM16].

1.5. Linear upper bound on the number of singular points. In [Gus88],
algebro-geometric considerations involving the Schottky double of a quadrature
domain were used to give an upper bound on the total number of (weighted) singular
points on the boundary. The upper bound given in [Gus88] is quadratic in the order
dΩ of the quadrature domain. Theorem A, combined with the Riemann-Hurwitz
formula, allows us to improve the bound to a linear one.

Theorem B. Let Ω be a quadrature domain with df ě 3. We denote the set of
all double points (respectively, cusps) on BΩ by D (respectively, C). Then,

#C ` 2#D ` 3

˜

ÿ

pPD

δp `
ÿ

pPC

δp

¸

ď mint3df ` 3nΩ ´ 6, 6df ´ 12u.

Moreover, if Ω has a node at 8, then

#C ` 2#D ` 3

˜

ÿ

pPD

δp `
ÿ

pPC

δp

¸

ď mint3df ` 3nΩ ´ 8, 4df ` 2nΩ ´ 10u.

1.6. Comments on the proof of Theorem A. While the main idea in the proof
of the upper bounds given in [LM16] is a combination of a quasiconformal surgery
argument and Hele-Shaw flow of algebraic droplets, our proof relies only on classical
holomorphic dynamics and planar hyperbolic geometry methods. However, both
proofs depend crucially on iteration of Schwarz reflection maps. We now highlight
the main differences in the proofs.

The non-singular case. In [LM16], the upper bounds on connectivity are first es-
tablished for quadrature domains Ω with non-singular boundary. The non-singularity
assumption allows one to replace the action of the Schwarz reflection σ over the
droplet with appropriate attracting dynamics modeled on rational maps. The
construction of this modified holomorphic dynamical system uses quasiconformal
surgery tools, which in general do not apply in the presence of singularities. The de-
sired upper bound is then deduced using a classical result of Fatou that guarantees
the existence of a critical point in each attracting basin.

Our proof, in the non-singular case, exploits the dynamics of σ over the droplet.
Instead of modifying the map σ near the droplet, we study its escaping dynam-
ics, and apply a modulus argument to locate sufficiently many critical points of
σ escaping to the droplet. In particular, our proof does not use quasiconformal
methods.
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The singular case. To handle quadrature domains with singular boundary, Lee
and Makarov resorted to the theory of Hele-Shaw flows on droplets in [LM16].
They showed that subjecting a singular droplet to backward Hele-Shaw flow (so
that the droplet ‘shrinks’ in the process) resolves the singularities without reducing
the connectivity of the quadrature domain. Thus, such a flow brings one back to the
setting of non-singular quadrature domains whence the upper bound established in
the non-singular case applies.

On the other hand, we employ the idea of studying the escaping dynamics of σ
to deal with singular quadrature domains as well. The singular situation requires
more care, and instead of reducing to the non-singular case, we carry out a detailed
analysis of the effect of cusps and double points on the dynamics of σ. Using
techniques from dynamics on hyperbolic Riemann surfaces, we find critical points
of σ escaping to singular droplets and critical values of the meromorphic function f
(see Section 1.3) on boundaries of droplets. A good understanding of the connection
between double points and the global dynamics of σ allows us to bound the number
of double points in Theorem A.

Orders of singular points. The local dynamics of σ near a cusp or a double point
on BΩ reflect the algebro-geometric quantities called orders of cusps and orders of
contact of double points. We carry out a local analysis of the dynamics of σ near
singular points, and show that a (possibly empty) collection of critical points of σ
converge to the singular points under iteration. This gives rise to the additional
terms on the left hand side of the inequalities appearing in Theorem A.

Consequences of a non-perturbative proof. Since we work directly with the
Schwarz reflection dynamics of the quadrature domain Ω (without performing qua-
siconformal modifications or Hele-Shaw perturbations), our proof gives precise in-
formation on the relation between the critical points of the meromorphic function
f and the components of the droplet ΩA. This also sheds light on the topologi-
cal/dynamical structure of the escaping set of σ corresponding to individual com-
ponents of the droplet.

It is worth pointing out that the Hele-Shaw flow arguments of [LM16] can plau-
sibly be applied to get a linear upper bound on the sum of the connectivity of Ω
and the number of double points on BΩ. But such an argument, being perturbative
in nature, will not directly yield an exact association between the critical points of
f and the components of the droplet.

1.7. Droplets and Coulomb gas ensembles. The complement of a quadrature
domain Ω arises as the support of the equilibrium measure of a ‘Coulomb gas en-
sembles’. According to [LM16, §2,3] (cf. [HM13]), the complement of a quadrature
domain is the support of an absolutely continuous measure that minimizes the
combined energy

IQrµs :“

ż

CˆC
ln |z ´ w|´1dµpzqdµpwq `

ż

C
Qdµ

over all compactly supported probability measures µ. Here, the first term in the
summand is the two-dimensional Coulomb energy due to the charge distribution µ
and the second term is the energy of interaction with the external field Q, which is
of the form

Qpzq “ |z|2 ´ Hpzq,

where H is harmonic with h :“ BH a rational function. Further, h is precisely the
quadrature function RΩ of Ω. Thus, the order of the quadrature domain Ω also
measures the complexity of the external field Q. In view of the above discussion,
Theorems A and B have the following physical interpretation: the topological and
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geometric complexities of the quadrature domain Ω are bounded by linear functions
of the complexity of the associated external field Q.

1.8. Topological configurations of extremal droplets. According to [LM14],
the upper bound of Theorem A is sharp. In a sequel to this paper, we will prove a
stronger version of this sharpness statement; namely, given any m ě 1 and n ě 0
satisfying m ` n “ 2df ´ 4, there exists a quadrature domain Ω of order dΩ “ df ,
connectivity m, and having exactly n boundary double points. There, we will
also investigate all possible topological configurations of such extremal quadrature
domains/droplets. We refer the reader to [LMM21], [LMMN25, §12] for a com-
plete description of possible topological configurations of a special class of extremal
singular droplets arising from Suffridge polynomials, and to [LM16, §2.4] for a clas-
sification of topological configurations of non-singular droplets.

In this paper, we will explicate the construction of all possible topological con-
figurations of extremal multiply connected quadrature domains for df “ 3, 4. We
will also outline an alternative construction of non-singular quadrature domains of
maximal connectivity 2df ´ 4. Our construction of multiply connected quadrature
domains is fundamentally different from the existing methods in the literature (cf.
[Bel04, CM04, LM14]), and is based on some recently developed surgery techniques
in conformal dynamics (cf. [LMMN25]).

1.9. Organization of the paper. The paper is organized as follows. In Section 2,
we recall several background results on quadrature domains and associated Schwarz
reflection maps. We recall the algebraic description of a Schwarz reflection map
given in terms of a meromorphic map (called the uniformizing meromorphic map
of a quadrature domain) and an anti-conformal involution defined on a symmetric
compact Riemann surface. We then describe the singular points on boundaries of
quadrature domains and critical points of the Schwarz reflection maps in terms
of the uniformizing meromorphic maps. We also recall the fundamental invariant
partition of the dynamical plane of a Schwarz reflection map into escaping and
non-escaping sets. Section 3 contains a basic account of the local dynamics of a
Schwarz reflection map near the singularities on the quadrature domain bound-
ary. This allows us to relate the singular points to certain critical points of the
Schwarz reflection map (equivalently, to certain critical points of the uniformizing
meromorphic map).

Section 4 is the technical heart of the paper. Here we prove a weaker version of
Theorem A by associating critical points of the Schwarz reflection map (equivalently,
of the uniformizing meromorphic map) to each complementary component of a
quadrature domain. The proof uses conformal dynamics and hyperbolic geometry
techniques, and requires separate analysis of the cases where the quadrature domain
has (i) non-singular boundary, (ii) singular boundary without double points, and
(iii) singular boundary with double points.

In Section 5, we complete the proofs of our main theorems by combining the
results of Sections 3 and 4 with the information of critical points of the uniformizing
meromorphic map associated with the nodes of the quadrature domain (prepared
in Section 2).

The final Section 6 shows, by means of worked out examples, that the upper
bound of Theorem A is sharp in an effective manner. This paves the way of future
investigation of topological shapes of extremal quadrature domains of arbitrary
order.
Notation.

‚ For a set X Ă pC, we denote the interior (respectively, exterior) of X by
IntX (respectively, ExtXq.
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‚ An open (respectively, closed) ball with center at x and radius r ą 0 will
be denoted by Bpx, rq (respectively, Bpx, rq).

2. Preliminaries

2.1. Quadrature domains and Schwarz reflection maps. Throughout this

section, we let Ω Ĺ pC be a domain such that 8 R BΩ and IntΩ “ Ω. We will
denote the complex conjugation map by ι.

Definition 2.1. A domain Ω is called a quadrature domain if there exists a con-

tinuous function σ : Ω Ñ pC satisfying the following two properties:

(1) σ “ id on BΩ.
(2) σ is anti-meromorphic on Ω.

The map σ is called the Schwarz reflection map of Ω. Its complex conjugate ι ˝ σ
is called the Schwarz function of Ω.

By [Sak91], except for a finite number of singular points, which are necessarily
cusps and double points, the boundary of a quadrature domain consists of finitely
many disjoint non-singular real-analytic curves [Sak91]. Thus, for a quadrature
domain Ω, the map σ is the anti-meromorphic extension of the Schwarz reflection
map with respect to BΩ (the reflection map fixes BΩ pointwise).

Definition 2.2 (Quadrature functions). Let Ω Ĺ pC be a domain with 8 R BΩ
and IntΩ “ Ω. Functions in HpΩq X CpΩq are called test functions for Ω (if Ω is
unbounded, we further require test functions to vanish at 8). A rational map RΩ

is called a quadrature function of Ω if all poles of RΩ are inside Ω (with RΩp8q “ 0
if Ω is bounded), and the identity

(2.1)

ż

Ω

fdA “
1

2i

¿

BΩ

fpzqRΩpzqdz

holds for every test function f for Ω.

For a bounded domain Ω, Relation (2.1) can be rewritten as

(2.2)

ż

Ω

fdxdy “

n
ÿ

r“1

mr´1
ÿ

s“0

crsf
psqpzrq,

where the points z1, ¨ ¨ ¨ , zn P Ω are the poles of RΩ; m1, ¨ ¨ ¨ ,mn are the orders
of these poles; and crs , r P t1, ¨ ¨ ¨ , nu, s P t0, ¨ ¨ ¨ ,mr ´ 1u are complex numbers.
Relations of the form (2.2) are called quadrature identities.

The following theorem is classical, and a proof can be found in [AS76, Lemma 2.3],
[LM16, Lemma 3.1].

Theorem 2.3 (Characterization of quadrature domains). The following are equiv-
alent.

(1) Ω is a quadrature domain; i.e. it admits a Schwarz reflection map.
(2) Ω admits a quadrature function RΩ.
(3) The Cauchy transform pχΩ of the characteristic function χΩ (of Ω) is ratio-

nal outside Ω.

We call dΩ :“ degpRΩq the order of the quadrature domain Ω. The poles of RΩ

are called nodes of Ω. The number of distinct nodes of Ω is denoted by nΩ.
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2.2. Algebraicity and mapping degrees of Schwarz reflections. Let Ω be a
quadrature domain of connectivity k; i.e.,

connpΩq :“
`

# connected components of ΩA
˘

“ k,

where ΩA :“ pCzΩ. Denote the Schwarz reflection map of Ω by σ.
The following result, which is implicitly proved in [Gus83] (cf. [LM16, Lemma 4.1]),

gives an algebraic description of Schwarz reflections. We supply a proof for com-
pleteness.

Proposition 2.4. There exist

(1) a (symmetric) compact Riemann surface Σ of genus k ´ 1,
(2) an antiholomorphic involution η : Σ Ñ Σ whose fixed-point set P is a

disjoint union of k simple, closed, non-singular real-analytic curves, and

(3) a meromorphic function f : Σ Ñ pC,
such that

(i) ΣzP has two connected components W˘,
(ii) f : W` Ñ Ω is a conformal isomorphism, and
(iii) σ ” f ˝ η ˝ pf |

W` q´1 on Ω.

Proof. Given a quadrature domain Ω of connectivity k, by the Koebe uniformization
theorem, there exist a circle domain D of the same connectivity (i.e., a domain D Ă

pC whose boundary consists of k disjoint round circles) and a conformal isomorphism
φ : D Ñ Ω. Since BΩ is real-analytic, the map φ extends to a continuous surjection
φ : D Ñ Ω. Further, φ : BD Ñ BΩ semi-conjugates Id|BD to σ|BΩ.

Figure 1. Illustrated is the construction of the Riemann surface double Σ of the
quadrature domain Ω and the meromorphic map f (cf. Proposition 2.4).

We now construct a compact Riemann surface Σ of genus k ´ 1 by ‘doubling’ D;
i.e., Σ is obtained by welding a copy of D carrying the usual complex structure with
another copy of D carrying the opposite complex structure along the boundary BD,
where the identification is given by the identity map Id : BD Ñ BD (see [AS60,
Chapter II, §3] for a detailed account of the Riemann surface double construction).
The welding construction gives topological embeddings ξ˘ : D ãÑ Σ such that

(1) ξ` is conformal on D, while ξ´ is anti-conformal on D;
(2) ξ`pDq X ξ´pDq “ H;
(3) ξ`pBDq “ ξ´pBDq is a disjoint union of k non-singular, real-analytic, closed

curves;
(4) ξ`pwq “ ξ´pwq, for w P BD; and
(5) Σ “ ξ`pD Y BDq Y ξ´pDq.
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We set W˘ :“ ξ˘pDq and P :“ ξ˘pBDq “ BW˘. Clearly, the map

η : Σ Ñ Σ, η :“

#

ξ´ ˝ ξ´1
` , on W`,

ξ` ˝ ξ´1
´ , on W´,

is an anti-conformal involution whose fixed point set is P .
We now define a meromorphic map

f : Σ Ñ pC

f :“

#

φ ˝ ξ´1
` , on W`,

σ ˝ φ ˝ ξ´1
´ “ σ ˝ φ ˝ pξ´1

` ˝ ηq “ σ ˝
`

f |
W`

˘

˝ η, on W´.

Evidently, f : W` Ñ Ω is a conformal isomorphism, and σ ” f ˝ η ˝ pf |
W` q´1

on Ω. □

We will refer to the meromorphic function f associated with a quadrature domain
Ω (constructed in Proposition 2.4) the uniformizing meromorphic map of Ω. The

degree df of the meromorphic function f : Σ Ñ pC is related to the mapping degrees
of the Schwarz reflection map σ.

Proposition 2.5.

df :“ deg
´

f : Σ Ñ pC
¯

“ deg
`

σ : σ´1pIntΩAq Ñ IntΩA
˘

“ 1 ` deg
`

σ : σ´1pΩq Ñ Ω
˘

.

Moreover,

df “

#

dΩ if Ω is bounded,

1 ` dΩ if Ω is unbounded.

Proof. The first part follows from the relation σ|Ω ” f ˝ η ˝ pf |W` q´1 and the fact
that f maps W` injectively onto Ω (see Proposition 2.4).

By [LM16, Lemma 3.1], the Schwarz reflection σ and the quadrature function
RΩ have the same poles. Thus, 8 has dΩ preimages under σ counted with multi-
plicity. By our standing assumption, 8 R BΩ. Hence, Ω is bounded (respectively,
unbounded) if 8 P ΩA (respectively, 8 P Ω). It now follows from the above facts
and the first part of the proposition that

df “ deg
`

σ : σ´1pIntΩAq Ñ IntΩA
˘

“ dΩ if Ω is bounded

and

df ´ 1 “ deg
`

σ : σ´1pΩq Ñ Ω
˘

“ dΩ if Ω is unbounded.

□

2.3. Relation between singularities of quadrature domains and uniformiz-
ing meromorphic maps. A point p P BΩ is called regular if there is a disc
Bp,ε :“ tz P C : |z ´ p| ă εu such that Ω X Bp,ε is a Jordan domain and BΩ X Bp,ε

is a simple non-singular real-analytic arc. A point p P BΩ is called singular if it is
not a regular point (cf. [LMM21, §2.2]).

By [Sak91] (cf. [Gus83]), any singular point on the boundary of a quadrature
domain Ω is a cusp or a double point. In fact, these singularities can be read from
the uniformizing meromorphic map f associated with Ω.

We will use the notation of Proposition 2.4. Let K be a component of ΩA and
PK be the component of P that is mapped onto BK by f . Further, let β P BK be
a singular point of BK.
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Case I: Cusps. Suppose that β is not a cut-point of BK. Then, there exists a
unique point w P Pk with fpwq “ β. The facts that PK is a non-singular real-
analytic curve, f is analytic, and β is a singular point of BK, together imply that
w is a critical point of f . Further, the conformality of f on W` implies that w is
a simple critical point of f . Thus, the point β is a cusp singularity of BK and the
curve BK points towards Ω at β. In particular, each cusp on BΩ is a critical value
of f with an associated critical point on P .

Case II: Double points. Now let β P BK be a cut-point of BK. Then, there are
distinct points w1, ¨ ¨ ¨ , wr P PK , r ě 2, such that fpwiq “ β, i P t1, ¨ ¨ ¨ , ru. Since
f : W` Ñ Ω is a conformal isomorphism and PK is a non-singular curve, it follows
that r “ 2 and neither w1, nor w2, is a critical point of f . Thus, the pieces of
PK near w1, w2 are mapped conformally by f , and hence for ε ą 0 small enough,
BK X Bβ,ε is the union of two non-singular real-analytic arcs meeting tangentially
at β. Hence, β is a double point singularity of BK.

2.4. Critical points of Schwarz reflections and uniformizing meromorphic
maps. We denote the critical points of f and σ by critpfq and critpσq, respectively.
The following elementary fact will play a fundamental role in the proof of our main
results. We recall the notation k “ connpΩq.

Proposition 2.6. We have

#m critpfq “ 2df ` 2k ´ 4,

where #m means counted with multiplicity. In particular, σ has at most 2df `2k´4
critical points in Ω, counted with multiplicity.

Proof. Recall that Σ has genus k ´ 1, and f : Σ Ñ pC has degree df . The result is
a simple consequence of the Riemann-Hurwitz formula. □

By the description of σ given in Proposition 2.4, we have that

critpσq “ fpηpcritpfq X W´qq.

Further, the critical values of σ are also critical values of f .
As mentioned in Section 2.3, a critical point of f on P creates a cusp on BΩ.

Hence, points of critpfq X P do not give rise to critical points of the Schwarz
reflection σ. Consequently, a cusp of BΩ is a critical value of f , but in general not
a critical value of σ. In fact, a cusp β P BΩ is a critical value of σ if and only if
there exists a critical point of f in f´1pβq X W´; i.e., when there are at least two
distinct critical points of f in the fiber f´1pβq: one in P and another in W´.

2.4.1. Critical points in the pole set. Let us record the connection between critical
points of f (respectively, σ) and the poles of f (respectively, σ) for future reference.

We first consider the case of an unbounded quadrature domain Ω. As 8 P Ω

and σ : σ´1pΩq
df ´1:1

ÝÝÝÝÑ Ω is a branched covering, we have that σ has df ´ 1 many
poles (counted with multiplicity). Consider the set Pσ consisting of the poles of σ.
If σ has a pole ω of order mω ą 1, then it is a critical point of σ of multiplicity
pmω ´ 1q. So the total number of critical points of σ (counted with multiplicity) in
the pole set Pσ is equal to

ÿ

ωPPσ

pmω ´ 1q “ pdf ´ 1q ´ |Pσ| “ pdf ´ 1q ´ nΩ.

Hence, in the unbounded case, the number of critical points of f (counted with
multiplicity) in f´1p8q “ ηppf |W` q´1pPσqq is also equal to df ´ nΩ ´ 1.

Now suppose that Ω is a bounded quadrature domain. In this case, 8 P IntΩA

and σ : σ´1pIntΩAq
df :1

ÝÝÝÑ IntΩA is a branched covering, so σ has df many poles
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(counted with multiplicity). As before, let Pσ be the pole set of σ. Since |Pσ| “ nΩ,
it follows that the total number of critical points of σ (counted with multiplicity)
in the pole set Pσ is df ´ nΩ. Hence, in the bounded case, the number of critical
points of f (counted with multiplicity) in f´1p8q “ ηppf |W` q´1pPσqq is also equal
to df ´ nΩ.

2.5. Dynamics of Schwarz reflections. For a quadrature domain Ω, we denote
the set of singular points (cusps and double points) on BΩ by S, and set

T pσq :“ pCzΩ, and T 0pσq :“ T pσqzS.

We call the set T pσq the droplet of σ, and the set T 0pσq (obtained by removing the
singular points from the droplet boundary) the desingularized droplet/fundamental
tile of σ. We remark that T 0pσq is neither open, nor closed.

The escaping/tiling set of σ is

T8pσq :“
8
ď

n“0

σ´npT 0pσqq.

It is the set of all points that eventually land in the fundamental tile T 0pσq. Con-
nected components of σ´npT 0pσqq are called tiles of rank n. When T 0pσq is dis-
connected, the tiling set admits a further partition based on which component of
T 0pσq a point escapes to:

T8pσq “
ğ

components K0

of T0
pσq

yT8
K0

pσq, yT8
K0

pσq :“
8
ď

n“0

σ´npK0q.

We will denote the component of yT8
K0

pσq containing K0 by T8
K0

pσq.

The non-escaping set of σ is defined as K pσq :“ pCzT8pσq. The escaping and

non-escaping sets provide a σ-invariant partition of pC.

Proposition 2.7. The tiling set T8pσq is open and the non-escaping set K pσq is
compact.

Proof. The proof of [LMM24, Proposition 2.3] applies verbatim to the current set-
ting. □

3. Dynamics near cusps and double points

In this section, we will expound the local dynamics of a Schwarz reflection map

σ : Ω Ñ pC near the set S consisting of the singular points of BΩ.

3.1. Cusp dynamics and critical points. Let p be a cusp of BΩ of type pn, 2q,
for some odd integer n ě 3; i.e., there is a local diffeomorphic change of coordinates
that brings BΩ (near p) to the cuspidal curve y2 “ xn (near 0). By [LMM24,
Proposition A.3], we have the following asymptotic development of σ˝2 near p:

(3.1) σ˝2pzq “ z ` c ¨ pz ´ pqn{2 ` op|z ´ p|n{2q,

where c ‰ 0 (for a suitable choice of the branch of square root). By [LMM24,
Proposition A.3], σ˝2 has n ´ 2 invariant directions in Ω, and these directions are
attracting and repelling in an alternating manner. Standard arguments from the
local fixed point theory of holomorphic parabolic germs now show that there exist
n´ 2 ‘attracting and repelling petals’ of σ˝2 at p, one for each attracting/repelling
direction. We collect some basic properties of attracting/repelling petals below.
For the proofs of analogous statements in the classical setting of parabolic germs,
we refer the reader to [Mil06, §10]. For the analysis of local dynamics of a Schwarz
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reflection map at a cusp (i.e., the local fixed theory of a tangent-to-identity Puiseux
series), see [LLMM23, §4.2.1], [LLMM21, Theorem 5.4], [LMM24, Appendix A].

Attracting petals. For each attracting direction v⃗ at p, there is an open set P con-
taining the attracting direction v⃗ (called an attracting petal associated with v⃗) such
that p P BP, the map σ˝2 is injective on P, σ˝2pPq Ă P, and the σ˝2-orbits of all
points in P converge to p asymptotic to v⃗. Further, P contains a wedge of angle
arbitrarily close to 2π{pn ´ 2q based at p such that a change of coordinate of the
form

(3.2) z ÞÑ
c1

pz ´ pq
n´2
2

(for suitable c1 ‰ 0 and a choice of a branch of square root) carries P to an
approximate right half-plane and conjugates σ˝2|P to a map of the form ζ ÞÑ

ζ ` 1 ` Op1{ζq near 8. Thus, the proof of the existence of Fatou coordinates
for parabolic germs can be applied mutatis mutandis to the current situation to
prove the existence of a conformal map on P that conjugates σ˝2 to the translation
ζ ÞÑ ζ ` 1 on a right half-plane (cf. [Mil06, Theorem 10.9]). With this conformal
conjugacy at our disposal, we can apply the arguments of [Mil06, Theorem 10.15] to
conclude that every attracting direction at p corresponds to an immediate attracting
basin (the set of points that converge to p asymptotic to this attracting direction
under iterates of σ˝2 having p on its boundary), and such an immediate attracting
basin contains a critical point of σ˝2. Clearly, such an immediate attracting basin
of σ˝2 is either fixed by σ or it forms a 2´cycle under σ. It follows that every cycle
(under σ) of immediate attracting basins at p contains a critical point of σ.

Repelling petals. Similarly, for each repelling direction v⃗ at p, there is an open set P
containing the repelling direction v⃗ (called a repelling petal associated with v⃗) such
that p P BP, a branch g of σ´2 is well-defined on P, gpPq Ă P, and the g-orbits
of all points in P converge to p asymptotic to v⃗. The repelling petal also contains
a wedge of angle arbitrarily close to 2π{pn ´ 2q based at p such that a change of
coordinate of the form (3.2) carries P to an approximate left half-plane conjugating
σ˝2|gpPq to a map of the form ζ ÞÑ ζ ` 1 ` Op1{ζq near 8.

The union of the attracting and repelling petals cover the domain of definition
of σ˝2 near p.

Lemma 3.1. Let U Ă T8pσq be an open set such that there exists an inverse
branch g of σ˝2 on U with gpUq Ă U and p P BgpUq. Then, there exists z P U such

that U Q g˝kpzq
kÑ8

ÝÝÝÑ p.

Proof. As gpUq is an open set having p on its boundary and such that σ˝2 is
defined on gpUq, it must intersect at least one petal P. The fact that T8pσq is
totally invariant under σ implies that gpUq Ă T8pσq. Let N :“ U X P . If P is an
attracting petal, then points in N would converge non-trivially to p under iterates
of σ˝2. However, this is not possible as σ˝2-iterates of points in U Ă T8pσq land
in T 0pσq in finite time. Thus, P is a repelling petal for σ˝2. Since g is an inverse
branch of σ˝2, it now follows from the properties of repelling petals mentioned

above that for z P N , the orbit tg˝kpzqu
kÑ8

ÝÝÝÑ p. The g-invariance of U implies
that g˝kpzq P U , for all k P N. □

Critical orbits associated with attracting petals.

Lemma 3.2. Set δp “ tn{4u. Then, there are δp distinct critical orbits of σ that
converge non-trivially to p. In particular, these critical orbits lie in IntK pσq.
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Proof. Recall that each σ´cycle of immediate attracting basins at p contains a
critical point of σ. Thus, it suffices to show that there are δp cycles (under σ)
of attracting directions at p. By a local conformal change of coordinates, we may
assume that p “ 0, the cusp points towards the positive real axis, and that c P Rzt0u

in Equation (3.1). This ensures that the positive real axis is an invariant direction
under σ, and the second iterate σ˝2 has n ´ 3 non-real invariant directions (at the
origin), each of which forms a 2´cycle under σ (see [LMM24, Proposition A.4]).
We consider the following two cases.

Case I: n “ 4j ` 3, for some j ě 0. In this case, by [LMM24, Proposition A.5],
the positive real axis is a repelling direction for σ. There are 4j non-real invariant
directions for σ˝2, and they form 2j many 2´cycles under σ. Since the attracting
and repelling directions are arranged in an alternating manner, precisely j “ tn{4u

of these 2´cycles correspond to attracting directions.

Case II: n “ 4j ` 1, for some j ě 1. According to [LMM24, Proposition A.5],
the positive real axis is an attracting direction for σ in this case. There are 4j ´ 2
non-real invariant directions for σ˝2, and they form 2j ´ 1 many 2´cycles under σ.
Since the attracting and repelling directions are arranged in an alternating manner,
it is easily seen that j ´ 1 of these 2´cycles correspond to attracting directions.
Thus, in this case, there exists a total of 1` pj ´1q “ j “ tn{4u cycles of attracting
directions at the origin.

By the preceding analysis, we have the desired number of distinct critical orbits of
σ converging non-trivially to p in each case. Finally, it is evident that the σ´cycles
of immediate basins containing these δp critical orbits are disjoint and are contained
in IntK pσq. □

3.2. Double point dynamics and critical points. Let p be a double point on
BΩ; i.e., p is the point of touching (more precisely, tangential intersection) of two
local non-singular pieces γ˘ of BΩ. Suppose further that the curve germs γ˘ have
a contact of order n ě 1 at p. Note that since γ˘ do not cross each other at p, the
order of contact is necessarily odd.

A convenient change of coordinates. To study the dynamical of σ near p, we may
assume, possibly after performing a local conformal change of coordinates, that γ´

is contained in the real line, and γ` is a non-singular real-analytic curve contained
in the (closure of the) upper half-plane and touching the real line at the origin.
This change of coordinates conjugates the map σ, restricted to a neighborhood of
p, to the piecewise anti-conformal map near the origin that acts as the complex
conjugation map ι in the lower half-plane, and as the classical Schwarz reflection
map ι` in γ` above the curve γ` (see Figure 2).

Order of contact, and Taylor series expansion. Let us denote the (signed) curvature
of γ` at a point z0 P γ` by κpz0q, and its r-th derivative (with respect to arc-length)
by κprqpz0q, with the convention that κp0q “ κ. The assumption that γ` and γ´

have a contact of order n “ 2l ` 1 at p, for some non-negative integer l, implies
that if n ě 3, then

κp0q “ ¨ ¨ ¨ “ κpn´2qp0q “ 0;

and if n “ 1, then κp0q ‰ 0. (Note that the order of contact is preserved by a
conformal change of coordinates.)

For any point z0 P γ`, the Taylor series expansion of ι` is given by

ι`pz0 ` εq “ z0 ` ε `
ÿ

rě2

brpz0q ¨ εr, ε « 0,
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where brpz0q is a polynomial function of κpz0q, ¨ ¨ ¨ , κpr´2qpz0q with a trivial constant
term (see [Dav74, §7] for details). In particular, we have that if n ě 3, then

b2p0q “ ¨ ¨ ¨ “ bnp0q “ 0, bn`1p0q ‰ 0;

and if n “ 1, then b2p0q ‰ 0. Thus, the Taylor series expansion of ι` at the origin
is given by

(3.3) ι`pεq “ ε ` bn`1p0q ¨ εn`1 ` Opεn`2q, ε « 0.

Attracting and repelling petals for the second iterate σ˝2. We refer the reader to
Figure 2 for an illustration of the following discussion. Note that the curve ιpγ`q

lies below the real line, while the curve ι`pγ´q lies above γ`. Near the origin, the
second iterate of σ takes the form

σ˝2 ”

#

ι ˝ ι`, above ι`pγ´q,

ι` ˝ ι, below ιpγ`q.

By Equation (3.3), we have pι ˝ ι`q pεq “ ε ` c ¨ εn`1 ` Opεn`2q for ε « 0, where
c ‰ 0. Thus, ι ˝ ι` is a parabolic germ of multiplicity n ` 1 fixing the origin (cf.
[Mil06, 10]). Clearly, the same is true for ι`˝ι. Further, ι is a topological conjugacy
between ι ˝ ι` and ι` ˝ ι.

Figure 2. The non-singular real-analytic curves γ˘ Ă BΩ touch tangentially
to form a double point at the origin. The gray shaded region is contained in
ΩA. The second iterate σ˝2 is defined in the green shaded region near the origin.
The parabolic germs ι ˝ ι`, ι` ˝ ι that define σ˝2 near the origin (where ι, ι`

are Schwarz reflections in the curves γ´, γ`, respectively) have the positive and
negative imaginary axes (marked as v⃗, ιpv⃗q) as invariant directions.

Let v⃗ be an attracting (respectively, repelling) direction for ι ˝ ι` lying above
ι`pγ´q (cf. [Mil06, §10]). The fact that ι conjugates ι ˝ ι` to ι` ˝ ι implies that
ιpv⃗q is an attracting (respectively, repelling) direction for ι` ˝ ι lying below ιpγ`q.
By the description of the map σ˝2 given above, both v⃗ and ιpv⃗q are attracting
(respectively, repelling) directions for σ˝2. The σ˝2´invariant directions v⃗, ιpv⃗q

form a 2´cycle under the antiholomorphic map σ. Similarly, if P is an attracting
(respectively, repelling) petal of ι ˝ ι` associated with v⃗, then ιpPq is an attracting
(respectively, repelling) petal of ι` ˝ ι associated with ιpv⃗q. Further, P and ιpPq

are also attracting (respectively, repelling) petals for σ˝2. The union of all these
attracting and repelling petals of σ˝2 cover the domain of definition of σ˝2 near 0.
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Thanks to the above local dynamical description of σ˝2, the proof of Proposi-
tion 3.3 applies verbatim to yield the following analogous result for double points.

Lemma 3.3. Let U Ă T8pσq be an open set such that there exists an inverse
branch g of σ˝2 on U with gpUq Ă U and p P BgpUq. Then, there exists z P U such

that U Q g˝kpzq
kÑ8

ÝÝÝÑ p.

Critical orbits associated with attracting petals.

Lemma 3.4. Set δp “ tn{2u. Then, there are δp distinct critical orbits of σ that
converge non-trivially to p. In particular, these critical orbits lie in IntK pσq.

Proof. Since n “ 2l ` 1 is odd, the germ ι ˝ ι` has n invariant directions above
ι`pγ´q, and the germ ι` ˝ ι has n invariant directions below ιpγ`q. Further, the
positive and negative imaginary axes iR` and iR´ are invariant directions for σ˝2

We will use this information to count the number of 2-cycle of attracting directions
of σ. We consider the following two cases.

Case I: n “ 4j ` 1, for some j ě 0. In this case, if iR` is an attracting direction
for σ˝2, then so is iR´, and there are

4j

2
` 1 “ 2j ` 1

attracting directions for σ˝2 above as well as below the real axis, hence

2j ` 1 “ tn{2u ` 1

many 2-cycles (under σ) corresponding to them. On the other hand, if iR` is a
repelling direction for σ˝2, then so is iR´, and there are

4j

2
“ 2j

attracting directions for σ˝2 above as well as below the real axis, and hence

2j “ tn{2u

many 2-cycles (under σ) corresponding to them.

Case II: n “ 4j`3, for some j ě 0. In this case, if iR` is an attracting direction
for σ˝2, then there are

4j

2
` 1 “ 2j ` 1

attracting directions for σ˝2 above as well as below the real axis, and hence

2j ` 1 “ tn{2u

many 2-cycles (under σ) corresponding to them. On the other hand, if iR` is a
repelling direction for σ˝2, then there are

4j

2
“ 2j ` 2

attracting directions for σ˝2 above as well as below the real axis, and hence

2j ` 2 “ tn{2u ` 1

many 2-cycles (under σ) corresponding to them.

In all cases, we have at least tn{2u many 2-cycles of attracting directions for σ.
By the proof of [Mil06, Theorem 10.15], each such 2-cycle of attracting directions
has an associated 2-cycle of attracting petals containing a critical value of σ. This
yields the desired number of distinct critical orbits of σ converging non-trivially
to p, and it is evident that the σ´cycles of immediate basins containing these δp
critical orbits are disjoint and are contained in IntK pσq. □
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4. Bound on connectivity and double points

In this section, we will prove the following weaker version of Theorem A.

Theorem 4.1.

connpΩq ` #D ď 2df ´ 4.

4.1. From individual contributions to global upper bound. The crucial idea
in the proof of Theorem 4.1 is to associate critical points with each component of
ΩA, as stated in the following key proposition. Given a component K of ΩA, we
denote the connected components of its ‘desingularization’ KzS by K0

0 , ¨ ¨ ¨ ,Kn
0 .

Proposition 4.2. Every component K of ΩA accounts for at least p#DK ` 3q

critical points of f , where #DK is the number of double points on BK. More
precisely, there are at least p#DK `3q critical points of f (counted with multiplicity)

in f´1pBK X Sq \

n
ğ

j“0

f´1pT8

Kj
0

pσqq.

Most of this section will be devoted to the proof of Proposition 4.2. Let us first
observe that Theorem 4.1 is an easy consequence of this lemma.

Proof of Theorem 4.1. We recall the notation k “ connpΩq. By Proposition 2.6
and Proposition 4.2,

ÿ

components K

of ΩA

p#DK ` 3q ď 2df ` 2k ´ 4

ùñ #D ` 3k ď 2df ` 2k ´ 4

ùñ #D ` k ď 2df ´ 4.

This completes the proof. □

4.2. Associating critical points with each component of ΩA. The proof of
Proposition 4.2 will be divided into various cases. For clarity of exposition, we
record these cases as separate statements. The background on local dynamics of
Schwarz reflections near cusps and double points from Section 3 will be extensively
used in the following proofs.

4.2.1. The non-singular case.

Lemma 4.3. Let K be a component of ΩA such that BK is non-singular. Then,
there are at least 3 critical points of f (counted with multiplicity) in f´1pT8

K pσqq.

Remark 1. We note that Lemma 4.3 and Theorem 4.1 prove the desired upper
bound 2df ´ 4 on ConnpΩq in the case when BΩ is a non-singular real-analytic
curve. This gives an alternative proof of the same result first established in [LM16,
§4] using quasiconformal surgery techniques.

Proof. Since BK is non-singular, there exists a relative neighborhood NεpKq XΩ of
BK (in Ω) such that for each z P NεpKq X Ω, we have that σpzq P K (cf. [LM16,
§4]). Let A0 be the component of σ´1pKq containing this relative neighborhood
NεpKq X Ω. By construction, BK Ă BA0 Ă A0 (see Figure 3).

Step I: At least two critical points of f over K. We claim that A0 is
not simply connected. To see this, we assume otherwise and note that under this
assumption, A0 would be a topological disk. As the boundary BK is contained in

BA0, we must have that A0 “ pCz IntK “ Ω and hence σ´1pΩq “ H. This is a
contradiction to the hypothesis that deg

`

σ : σ´1pΩq Ñ Ω
˘

“ df ´ 1 ě 2.
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Figure 3. Depicted is the component K of ΩA and the neighboring component
A0 of σ´1pKq.

Since A0 is not simply connected and K is a closed Jordan disk, it follows that
σ : IntA0 Ñ IntK is a branched covering that is not a conformal isomorphism, and
hence dA0 :“ deg pσ : IntA0 Ñ IntKq ě 2. By the Riemann-Hurwitz formula,

(4.1) #m critpσ|IntA0q “ dA0 ¨ χpIntKq ´ χpIntA0q ě 2 ´ χpIntA0q ě 2,

as χpIntKq “ 1 and χpIntA0q ď 0 (here and elsewhere, #m stands for the number
of critical points counted with multiplicity). Thus, σ has at least two critical points
in IntA0. This provides us with at least two critical points of f in f´1pIntKq.

Step II: Construction of annular rank n tiles and successive homeo-
morphisms. By way of contradiction, let us assume that there is no further critical
point of f in f´1pT8

K pσqq; i.e, there is no further critical point of σ in T8
K pσq.

If A0 is not an annulus, then χpIntA0q ď ´1 and it follows from Equation (4.1)
that #m critpσ|IntA0q ě 3; i.e., we are done. So, we consider the case that A0 is an
annulus. Again, if dA0 ě 3, then #m critpσ|A0q ě 3 and are done. So, we only need

to consider the case dA0 “ 2. Under this assumption, σ : A0
2:1

ÝÝÑ K is a branched

covering map and hence σ : BA0
2:1

ÝÝÑ BK is an unbranched covering of degree two
(see Figure 4).

Let A1 be the component of σ´1pA0q containing the outer boundary of A0; i.e.,
BA0zBK Ď BA1. Since A0 is an annulus, it follows from the Riemann-Hurwitz
formula that A1 is not simply connected. If A1 is not an annulus, then

(4.2) #m critpσ|IntA1
q “ dA1

¨ χpIntA0q ´ χpIntA1q “ ´χpIntA1q ě 1.

This would give a critical value of σ, and hence of f , in IntA0 and we are done.
So, we consider A1 to be an annulus. We will argue that in this case, σ : A1 Ñ A0

is an isomorphism. Indeed, the boundary of the annulus A0 has two (non-singular)
components: BK and BA0zBK, and σ is the identity on BK, so σ : BK Ñ BK

has degree 1. As σ : BA0
2:1

ÝÝÑ BK is a covering of degree two, the map σ must
carry BA0zBK homeomorphically onto BK. Further, as σ : IntA1 Ñ IntA0 is an
annulus-to-annulus covering of degree dA1 , the degree of σ restricted to each of the
components of BA1 is also dA1

. It follows that dA1
“ 1 (see Figure 4).

Let A2 be the component of σ´1pA1q containing the outer boundary of A1; i.e.,
BA1zBA0 Ď BA2. As before, the absence of critical points of σ in A2 forces A2 to
be an annulus with non-singular boundary components. This fact, in turn, implies
that the annulus-to-annulus covering σ : A2 Ñ A1 is an isomorphism (see Figure 4).
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Proceeding thus, we obtain a sequence of isomorphisms tσ : An Ñ An´1uně1 as
depicted in Figure 4.

Figure 4. The annular tiles of various ranks and their mapping degrees under
the Schwarz reflection map σ are shown.

Step III: A modulus estimate and negligibility of the non-escaping set.
Let A8 :“

Ť

ně0
An. Then,

IntA8 “

8
ď

n“1

˜

Int
n

ď

i“0

Ai

¸

;

i.e., IntA8 is a nested union of open topological annuli, and hence an open topo-
logical annulus itself. As σ : An Ñ An´1 is an isomorphism, we have that
modpAnq “ modpA0q, n ě 1 (where, modpBq stands for the modulus of an an-
nulus B). By [BH92, Proposition 5.4],

modpA8q ě
ÿ

n

modpAnq “
ÿ

n

modpA0q.

Hence, IntA8 is an annulus of infinite modulus and by [BH92, Proposition 5.5], the

boundary component of IntA8 different from BK is a singleton. Hence, pCzT8
K pσq “

pCz pA8 Y Kq “ tpu, for some p P pC.
It follows from the above discussion that K is the desingularized droplet, and

that the tiling set T8pσq is equal to K Y A8. Hence, the non-escaping set K pσq

is the singleton tpu.

Step IV: Contradicting the degree of σ. As the tiling set and non-escaping
set are both completely invariant under σ, we have σ´1ppq “ tpu.

Finally, as deg
`

σ : σ´1pΩq Ñ Ω
˘

ě 2, we conclude that σ maps p to itself with
local degree at least two, and hence p P critpσq. In fact, p is a super-attracting
fixed point of σ and hence has a basin of attraction Aσppq, which is an open subset
of K pσq (cf. [Mil06, §9]). This is not possible, as K pσq “ tpu, and we obtain a
contradiction. This completes the proof of the lemma. □

Recall that the quadrature function RΩ and the Schwarz reflection σ have the
same poles of the same multiplicity (by [LM16, Lemma 3.1]). The number of such
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distinct poles is given by nΩ. We record a conditional improvement of Lemma 4.3
that will be useul in the next section.

Corollary 4.4. Assume that one of the two following conditions holds true.

(1) Ω is unbounded, K is a non-singular component of ΩA, and 8 P yT8
K pσq.

(2) Ω is bounded, K is a non-singular component of ΩA, and 8 P IntK.

Then, at least maxtdf ´ nΩ ` 1, 3u critical points of f (counted with multiplicity)

lie in f´1pyT8
K pσqq.

The proof of part p2q the corollary will use the following elementary topological
result.

Lemma 4.5. Let D1 and D2 be two domains in pC, such that, D2 is simply con-
nected and D1 is not simply connected. Then, any branched covering R : D1 Ñ D2

has at least two distinct critical values in D2.

Proof. Let d be the degree of R. By the Riemann-Hurwitz formula,

(4.3) #m critpfq “ dχpD2q ´ χpD1q “ d ´ χpD1q ě d,

(counted with multiplicity), as χpD2q “ 1 and χpD1q ď 0.
Assume that R has a unique critical value in D2, say ω. Then, every critical

point of R maps to ω. Let critpfq “ tc1, ¨ ¨ ¨ , cru, and mi be the multiplicity of the
critical point ci. By Inequality 4.3, we have

řr
i“1 mi ě d.

We denote the valency (i.e., the local degree) of R at a point z P D1 by vpzq.
Note that vpciq “ mi ` 1. Then,

(4.4)
ÿ

zPR´1ω

vpzq “ d ùñ d ě

r
ÿ

i“1

vpciq ùñ d ě

r
ÿ

i“1

mi ` r ě d ` r

(cf. [Bea91, §2.5]). This implies that r “ 0, which is impossible by Inequality 4.3.
Hence, R must have at least two distinct critical values in D2. □

Proof of Corollary 4.4 (Part (1)). By Step I in the proof of Lemma 4.3, we have
at least two critical points of f in f´1pIntKq, say c1 and c2, which are not poles
of f as fpc1q, fpc2q P K but 8 R K. By Section 2.4.1 and our assumption, there
are pdf ´ nΩ ´ 1q critical points of f (counted with multiplicity) in f´1p8q Ă

f´1pyT8
K pσqq. Counting them along with c1 and c2, we get at least

pdf ´ nΩ ´ 1q ` 2 “ df ´ nΩ ` 1

critical points of f in f´1pyT8
K pσqq. □

Proof of Corollary 4.4(Part (2)). Note that IntK is simply connected, and by Step I
of the proof of Lemma 4.3, the interior of the neighboring component A0 of σ´1pKq

is not simply connected. By Lemma 4.5, the restriction of the Schwarz reflection
map σ|IntA0

has a critical value in IntK distinct from 8, and hence a critical point
in IntA0, say c, which is not a pole. Counting ηppf |W` q´1pcqq with the pdf ´ nΩq

critical points of f in f´1p8q Ă f´1pIntKq Ă f´1pyT8
K pσqq gives us the desired

pdf ´ nΩ ` 1q critical points. □

4.2.2. The case of no double points. Recall from Section 2.3 that every cusp on BΩ
is a critical value of f . Hence, if BK has no double points and at least 3 cusps, then
it trivially satisfies the conclusion of Proposition 4.2. In what follows, we consider
the cases where BK has no double points and one/two cusp(s). Observe that since
BK contains no double points, the desingularization KzS is connected; i.e., KzS
consists of a single component K0.
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Lemma 4.6 (The case of two cusps). Let K be a component of ΩA such that BK
has no double points and exactly two cusps. Then, there are at least 3 critical points
of f (counted with multiplicity) in f´1pBK X Sq \ f´1pT8

K0
pσqq.

Proof. In this case, f has two distinct critical values given by the cusps on BK, and
our goal is to associate another critical point of f with K, by locating a critical
point of σ escaping to K.

Step I: The desingularized droplet. Let p1 and p2 be the two cusps on
BK. We have the algebraic droplet K and consider the desingularized droplet
K0 :“ Kztp1, p2u. Then, BK0ztp1, p2u is a non-singular curve consisting of two
components, say γ` and γ´ (see Figure 5).

As in Lemma 4.3, we assume by way of contradiction that there is no critical
point of f in f´1pT8

K0
pσqq; i.e, there is no critical value of f (or equivalently of σ)

in T8
K0

pσq.

Step II: Construction of simply connected rank n tiles and successive
homeomorphisms. Let K`

1 and K´
1 be the components of σ´1pK0q adjacent to

γ` and γ´ respectively; i.e., γ˘ Ă BK˘
1 . At this point, we do not know that K`

1 ‰

K´
1 , but this will be established shortly. By Proposition 2.5, σ : σ´1pIntΩAq Ñ ΩA

is a branched covering. Let d`
1 and d´

1 be the degrees of σ : K`
1 Ñ K0 and

σ : K´
1 Ñ K0 respectively.

By our hypothesis, K`
1 Y K´

1 does not contain any critical point of σ. Then
σ : K˘

1 Ñ K0 are unbranched covering maps. As K0 is simply connected, it follows
that σ : K˘

1 Ñ K0 are homeomorphisms. Hence, d˘
1 “ 1 and K˘

1 are simply
connected. In particular, σ : BK˘

1 Ñ BK0 are also homeomorphisms. If K`
1 “ K´

1 ,
then the above observations, combined with the fact that σ|BK0 is the identity map,

imply that BK0 “ BK˘
1 . But this would force the equality K0 YK˘

1 “ pCztp1, p2u to
hold true, and hence degpσ : σ´1pΩq Ñ Ωq “ 0, which contradicts our hypothesis.
Hence, K`

1 and K´
1 are disjoint simply connected sets such that BK˘

1 are non-
singular away from p1, p2.

Observe that σ|K`
1 \K´

1
is an anti-conformal reflection across BK. Hence, there

are components K`
2 and K´

2 of σ´1pK`
1 \ K´

1 q Ă σ´2pK0q, adjacent to K`
1 and

K´
1 respectively, such that σ maps K`

2 onto K´
1 and K´

2 onto K`
1 , say with degrees

d`
2 and d´

2 respectively (see Figure 5).
Once again, our hypothesis implies that K`

2 \ K´
2 does not contain any critical

point of σ, so by the previous argument, d˘
2 “ 1 and K˘

2 are simply connected.
Further, BK˘

2 are non-singular away from p1, p2.
Proceeding thus, we obtain a pair of sequences of simply connected sets tK`

n uně1

and tK´
n uně1, such that,

σ : K`
n Ñ K´

n´1 and σ : K´
n Ñ K`

n´1

are homeomorphisms, K˘
n are adjacent to K˘

n´1, and BK˘
n ztp1, p2u are non-singular

for all n ě 1 (see Figure 5).

Step III: The simply connected, forward-invariant tiling component
T8
K0

pσq. Let K` :“
Ť

ně1
K`

n and K´ :“
Ť

ně1
K´

n . Then

T8
K0

pσq “ K0 Y K` Y K´,

and it is an invariant component of the tiling set T8pσq containing K0. Observe
that

σ˝2 : K`
n Ñ K`

n´2, and σ˝2 : K´
n Ñ K´

n´2
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Figure 5. Illustrated is the dynamics of the Schwarz reflection σ on the simply
connected tiling component T8

K0
pσq, which has the brown curve as its boundary.

The gray region is the rank 0 tile K0 having two cusps on its boundary. The part
of T8

K0
pσq above (respectively, below) K0 is the set K` (respectively, K´).

are homeomorphisms for all n ě 2 (where we use the convention K`
0 “ K´

0 “ K0).
Hence,

σ˝2 : X` :“ Int
ď

ně2

K`
n ÝÑ Y ` :“

`

K0zγ´
˘

ğ ď

ně1

K`
n

is a biholomorphism. Further, we have that X` Ĺ Y `.

Step IV: A contraction mapping. Consider the biholomorphism

g :“ σ´2 : Y ` Ñ X`.

As X`, Y ` are hyperbolic Riemann surfaces, it follows by the Schwarz–Pick The-
orem that g is an isometry with respect to the hyperbolic metrics on X` and Y `.
Hence,

(4.5) dY ` pz, wq “ dX` pgpzq, gpwqq @ z, w P Y `.

On the other hand, since X` Ĺ Y `, it again follows by the Schwarz–Pick Theorem
that the inclusion map pX`, dX` q ãÑ pY `, dY ` q is a strict contraction; i.e.,

(4.6) dX` pz, wq ą dY ` pz, wq @ z ‰ w P X`.

From Equations (4.5) and (4.6), we have

dY ` pgpzq, gpwqq ă dY ` pz, wq @ z ‰ w P Y `.

Hence, g : pY `, dY ` q Ñ pY `, dY ` q is a strict contraction.

Step V: Dynamics at pi, i P t1, 2u. Now, we investigate the dynamics of g,
or equivalently σ˝2, at the cusp points p1 and p2. We will refer to Section 3 for
the same. Clearly, the set Y ` satisfies all the conditions of Lemma 3.1 for both
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Figure 6. The dynamics of the branch g of σ´2 near the cusps p1, p2 is shown.
The blue directions are repelling for σ˝2 and hence attracting for g. The domains
enclosed by the green curves are the corresponding attracting petals for g. Some
g´orbits converging to pi through these petals are shown in gray.

cusps p1, p2. Hence, there exist zi P Y ` such that g˝npziq
nÑ8

ÝÝÝÑ pi, i P t1, 2u. (See
Figure 6.)

Step VI: Contradicting hyperbolic contraction. To complete the proof

of the lemma, recall that there exist zi P Y ` with g˝npziq
nÑ8

ÝÝÝÑ pi P BY `, i P

t1, 2u. Let dY ` pz1, z2q “ δ ą 0. Since g is a hyperbolic contraction, it follows that

dY ` pg˝npz1q, g˝npz2qq ď δ, for all n ě 0. The fact that g˝npz1q
nÑ8

ÝÝÝÑ p1 P BY `

implies that the closed hyperbolic balls BY ` pg˝npz1q, δq also converge to the cusp p1
(as the Euclidean diameter of BY ` pg˝npz1q, δq goes to 0, cf. [Mil06, Theorem 3.4]).

Thus, we must have that g˝npz2q
nÑ8

ÝÝÝÑ p1 as well, which contradicts the fact
that p1 ‰ p2. □

Corollary 4.7. Let K be a component of ΩA such that BK has no double points
and at least two cusps.

(1) If Ω is unbounded and 8 P yT8
K0

pσq, then at least maxtdf ´nΩ`1, 3u critical

points of f (counted with multiplicity) lie in f´1pBK X Sq \ f´1p yT8
K0

pσqq.
(2) If Ω is bounded and 8 P IntK, then at least maxtdf ´ nΩ ` 2, 3u critical

points of f (counted with multiplicity) lie in f´1pBK X Sq \ f´1p yT8
K0

pσqq.

Proof of Part p1q. The meromorphic map f has at least two distinct critical values
given by the cusps on BK and hence two associated critical points, say c1 and c2,
which are not poles of f as fpc1q “ p1, fpc2q “ p2 P BK but 8 P ExtK. Similarly
as in Corollary 4.4, the critical points c1, c2 along with the pdf ´ nΩ ´ 1q critical

points of f in f´1p8q Ă f´1p yT8
K0

pσqq (cf. Section 2.4.1) yield pdf ´nΩ ` 1q critical

points of f (counted with multiplicity) in f´1pBK X Sq \ f´1p yT8
K0

pσqq. □

Proof of Part p2q. Once again, the two cusps p1, p2 P BK give rise to two distinct
critical points c1, c2 of f with fpciq “ pi, i P t1, 2u. Further, c1, c2 are not poles of
f as fpc1q “ p1, fpc2q “ p2 P BK but 8 P IntK. Hence, counting c1 and c2 with

the pdf ´ nΩq critical points of f in f´1p8q Ă f´1pIntKq Ă f´1p yT8
K0

pσqq give us
the desired pdf ´ nΩ ` 2q critical points. □
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Lemma 4.8 (The case of one cusp). Let K be a component of ΩA such that BK
has no double points and exactly one cusp. Then, there are at least 3 critical points
of f (counted with multiplicity) in f´1pBK X Sq \ f´1pT8

K0
pσqq.

Proof. In this case, f has a critical value given by the cusp on BK, and our goal is
to associate two more critical points of f with K.

Step I: The desingularized droplet contains a critical value of f . Let p
be the cusp on BK. We have the algebraic dropletK and consider the desingularized
droplet K0 :“ Kztpu. Let γ :“ BK0ztpu. Then, γ is a non-singular real-analytic
curve (see Figure 7).

Let K1 be the component of σ´1pK0q adjacent to K0. Since df ě 3, we have

that K0 Y K1 Ĺ pCztpu. By Proposition 2.5, σ : σ´1pIntΩAq Ñ ΩA is a branched
covering. Let d1 be the degree of σ : IntK1 Ñ IntK0. As every point on γ has
at least two pre-images under σ; one on BK1zBK0 and another on itself, it follows
that σ : BK1 Ñ BK0 is a covering map of degree at least two and hence d1 ě 2. By
the Riemann-Hurwitz formula, we have:

#m critpσ|IntK1q “ d1 ¨ χpIntK0q ´ χpIntK1q “ d1 ´ χpIntK1q ě 2 ´ 1 “ 1.

So, there is at least one critical point of σ in IntK1, and hence at least one critical
point of f , in f´1pIntK0q.

Step II: Simple connectedness of K1 and the degree of σ on K1. We
assume by way of contradiction that there is no critical point of f , other than the
one already accounted for, in f´1pT8

K0
pσqq; or equivalently, σ has a unique, simple

critical point in IntK1 and no further critical point in in T8
K0

pσq.
If K1 is not simply connected or if d1 ě 3, then there are at least two critical

points of σ in K1, which contradicts our hypothesis. Thus, K1 is simply connected

and d1 “ 2. Therefore, σ : IntK1
2:1

ÝÝÑ IntK0 is a degree two branched covering.
Further, BK1ztpu is non-singular.

Step III: Construction of simply connected rank n tiles and successive
homeomorphisms. Let K2 be the component of σ´1pK1q adjacent to K1 and d2
be the degree of σ : IntK2 Ñ IntK1. Once again, the Riemann-Hurwitz formula
gives:

#m critpσ|IntK2
q “ d2 ¨ χpIntK1q ´ χpIntK2q “ d2 ´ χpIntK2q.

Since K2 does not contain any critical point of σ, we must have d2 “ χpK2q “ 1

(note that d2 ě 1 and χpIntK2q ď 1). So, K2 is simply connected, σ : IntK2
1:1

ÝÝÑ

IntK1 is a conformal isomorphism, and BK2ztpu is non-singular.
Proceeding thus, we obtain a sequence of simply connected domains tIntKnuně1

and a sequence of homeomorphisms tσ : Kn`1 Ñ Knuně1 (see Figure 7).

Step IV: The simply connected, forward-invariant tiling component
T8
K0

pσq and a contraction mapping. Evidently,

T8
K0

pσq “
ď

ně0

Kn

is a simply connected, forward invariant component of the tiling set T8pσq. Observe
that σ˝2 : Kn`2 Ñ Kn is an isomorphism for all n ě 1. We define

U :“ T8
K0

pσqzK0 Y K1 Y K2 “ Int
ď

ně3

Kn,

and

V :“ T8
K0

pσqzK “ Int
ď

ně1

Kn Ľ U.
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Figure 7. Illustrated is the dynamics of the Schwarz reflection σ on the simply
connected tiling component T8

K0
pσq, whose boundary is drawn in brown. The

gray region is the rank 0 tile K0 that has a unique cusp on its boundary. The
white region is the domain V , which maps into itself under a branch g of σ´2.

Evidently, σ˝2 : U Ñ V is a biholomorphism. Let g :“ σ´2 : V Ñ U Ĺ V . As
in the proof of Lemma 4.6, the map g is a strict contraction with respect to the
hyperbolic metric on V .

Step V: The conformal type of T8
K0

pσq.

Claim: T8
K0

pσq Ĺ pCzp and hence T8
K0

pσq is a hyperbolic surface. In partic-
ular, BT8

K0
pσqztpu ‰ H.

Proof of Claim. Suppose that T8
K0

pσq “ pCztpu. Then T8
K0

pσq is the entire tiling

set T8pσq of σ, and in particular, ΩA “ K. It follows that Ω “ T8pσqzK “ V

and σ´1pΩq “ T8pσqzK0 Y K1 “ Int
Ť

ně2
Kn. Hence, σ : σ´1pΩq

1:1
ÝÝÑ Ω is a

biholomorphism and df “ 2, which contradicts our hypothesis. Thus, T8
K0

pσq Ĺ

pCzp, and consequently, T8
K0

pσq is conformally equivalent to D. □

Step VI: p is a cut-point of BV .

Claim: BV ztpu is disconnected.

Proof of Claim. By construction, γ “ BK0ztpu is separated from BT8
K0

pσqztpu by
IntK1.

Using this fact, we will show that BV “ BT8
K0

pσq Y BK0. From basic topological
arguments, it follows that BV Ď BT8

K0
pσq Y BK0. So, we only need to prove the

reverse containment BT8
K0

pσq Y BK0 Ď BV . Any neighborhood Npzq of a point
zp‰ pq P BK0 contains points of IntK0 Ă ExtV as well as points of IntK1 Ă V ,
and p P BV , so BK0 Ď BV . Any neighborhood Npwq of a point w P BT8

K0
pσq

contains points of ExtT8
K0

pσq Ă ExtV as well as points of IntKnpĂ V q for some
n P N; so BT8

K0
pσq Ď BV . Hence, we have BT8

K0
pσq Y BK0 Ď BV .

Further, p P BT8
K0

pσq X BK0. Once again, the separation of γ from BT8
K0

pσqztpu

implies that p is a cut point of BV “ BT8
K0

pσq Y BK0. □
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Step VII: Dynamics at p. For ε ą 0 sufficiently small, the domain Bpp, εq X

V has at least two components (as p is a cut-point of BV ). Let U1, U2 be the
components of Bpp, εq X V intersecting K1. Then Uj Ă T8

K0
pσq, Uj is forward-

invariant under g (this follows from the local dynamics of σ˝2 near cusps), and
p P BgpUjq, j P t1, 2u. By Lemma 3.1, there exist xk P Uk, such that tg˝npxkquně0

converges to p through Uk, k P t1, 2u (see Figure 8).

Step VIII: Dynamics on the disk and contradicting hyperbolic con-
traction. Observe that V pĹ T8

K0
pσqq is an increasing union of simply connected

domains and hence is a simply connected hyperbolic surface.
Now, consider a simple loop Γ in K1 based at q P IntK1, such that Γ passes

through p and Γztpu Ď IntK1 (see Figure 8). Let φ : D Ñ V be a Riemann
uniformizing map, normalized to map 0 to q. As Γ passes through p, it intersects
both U1 and U2. Let Γk be the segment of Γ from q to p passing through Uk,
k P t1, 2u. By [BF14, Theorem 4.18], φ´1 ˝ Γk lands at some point τk P BD.

We claim that τ1 ‰ τ2. To this end, note that Γ1 and Γ2 are not homotopic in
V ; for if Γ1 „V Γ2, then Γ “ Γ1 Y Γ2 would bound a Jordan domain in V , which
contradicts the fact that p is a cut-point of BV (see Step VI). Hence, Γ1 and Γ2 do
not lie in same access of V to p, and hence by [BF14, Theorem 4.18], τ1 ‰ τ2.

Figure 8. Pictured is the loop Γ “ Γ1 Y Γ2 Ă K1 passing through the cusp p
and an interior point q of K1. Under the conformal map φ : D Ñ V (where V is
the white region), the loop Γ lifts to two distinct accesses to BD. Some g´orbits
(where g is a branch of σ´2 preserving V ) converging to p are shown in gray. Under
the uniformization φ, these orbits give rise to orbits of rg “ φ´1 ˝ g ˝ φ : D Ñ D
that converge to two distinct points on BD.

pD, dDq pD, dDq

pV, dV q pV, dV q

rg

φ φ

g

Finally, consider the holomorphic self-map rg :“ φ´1 ˝ g ˝ φ : D Ñ D and two

distinct points yk :“ φ´1pxkq, k P t1, 2u. Since g˝npxkq
nÑ8

ÝÝÝÑ p through Uk, it now

follows that rg˝npykq
nÑ8

ÝÝÝÑ τk, k P t1, 2u. As in Step VI of Lemma 4.6, this is a
contradiction to hyperbolic contraction of rg. □
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Corollary 4.9. Let K be as in Lemma 4.8, and assume that one of the two fol-
lowing conditions holds true.

(1) Ω is unbounded and 8 P yT8
K0

pσq.
(2) Ω is bounded and 8 P IntK.

Then, at least maxtdf ´ nΩ ` 1, 3u critical points of f (counted with multiplicity)

lie in f´1pBK X Sq \ f´1p yT8
K0

pσqq.

Proof of p1q. The map f has a critical value given by the cusp on BK and hence
an associated critical point, say c1, which is not a pole of f as fpc1q “ p P BK but
8 P ExtK. By Step I of the proof of Lemma 4.8, we obtain a critical point of σ
in IntK1, and this provides us with a critical point c2 of f in f´1pIntKq. Clearly,
c2 is not a pole of f as fpc2q P IntK but 8 P ExtK. Hence, the points c1, c2, and
the pdf ´ nΩ ´ 1q critical points of f , counted with multiplicity (see Section 2.4.1),

in f´1p8q Ă f´1p yT8
K0

pσqq account for the pdf ´ nΩ ` 1q critical points of f in

f´1pBK X Sq \ f´1pyT8
K pσqq. □

Proof of p2q. Once again, the cusp p P BK provides a critical point c1 of f , which
is not a pole of f as fpc1q “ p P BK but 8 P IntK. Hence, counting c1 with the

pdf ´ nΩq critical points of f in f´1p8q Ă f´1pIntKq Ă f´1p yT8
K0

pσqq give us the
desired pdf ´ nΩ ` 1q critical points. □

4.2.3. The case of double points. We begin with a preparatory graph-theoretic re-
sult.

Lemma 4.10. Let T be a tree. Let n :“ # edges of T and ni :“ # vertices of T
of valence i, where i P t1, 2u. Then,

(4.7) 2n1 ` n2 ě n ` 3.

Further, the bound is sharp and is attained by the chain tree.

Proof. We will use induction to prove the lemma.
First, note that the statement is true for n “ 1, for in that case, n1 “ 2 and

n2 “ 0 and hence
2n1 ` n2 “ 4 “ n ` 3.

Now, suppose that the statement is true for any tree with n “ α. We will show
that the Inequality (4.7) holds for n “ α ` 1. Let T be a tree with α ` 1 edges.
Clearly, we have n1 ě 2. Consider a vertex v0 of valence 1 and let pv be the vertex

of T adjacent to v0. Let xT be the tree obtained by pruning the edge rpv, v0s from

T . Then, xT is a tree with α many edges. Denote by pni :“ # vertices of xT of
valence i. By induction hypothesis,

(4.8) 2pn1 ` pn2 ě α ` 3.

Further, val
xT

ppvq “ valT ppvq ´ 1. We now consider the following cases.

Case I: valT ppvq “ 2. In this case, pn1 “ n1, pn2 “ n2 ´ 1. From Inequality (4.8),
we have

2n1 ` n2 ´ 1 ě α ` 3 ùñ 2n1 ` n2 ě pα ` 1q ` 3.

Case II: valT ppvq “ 3. In this case, pn1 “ n1´1, pn2 “ n2`1. From Inequality (4.8),
we have

2pn1 ´ 1q ` n2 ` 1 ě α ` 3 ùñ 2n1 ` n2 ě pα ` 1q ` 3.

Case III: valT ppvq ą 3. In this case, pn1 “ n1 ´ 1, pn2 “ n2. Inequality (4.8) now
gives

2pn1 ´ 1q ` n2 ě α ` 3 ùñ 2n1 ` n2 ě α ` 5 ą pα ` 1q ` 3.

In all cases, Inequality (4.7) is true for n “ α ` 1 and we have proven the lemma.
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It is easy to see that the bound is attained by chain tree as in this case, n1 “ 2,
n2 “ n ´ 1; and hence, 2n1 ` n2 “ 4 ` pn ´ 1q “ n ` 3. □

Let K be a component of ΩA. We will associate a tree with K whose vertices
correspond to the components of IntK. The graph-theoretic lemma proved above
will later be applied to this tree.

Lemma 4.11. There is a tree T pKq associated with K such that the following are
satisfied.

(1) There exists a planar embedding of T pKq which has a unique vertex in
each component of IntK and no other vertex. Further, the said planar
embedding lives in K.

(2) K deformation retracts to the above planar embedding of T pKq.

Proof. Since BΩ is a real-algebraic curve, it has at most finitely many double points
(cf. [Gus88]). Let α be the number of double points on BK.

Note that since K is a complementary component of an open connected set in
pC, it is a full and compact. Further, each double point of BK is a cut-point of K of
valence two; i.e., the removal of a double point disconnects K into two components
(see Figure 9). Hence, IntK has α ` 1 components, each of which is a topological
disk.

Consider a vertex in each component of IntK and draw an edge connecting the
vertices corresponding to any pair of components whose boundaries intersect at
a double point as in Figure 9. Evidently, this defines a graph T pKq with α ` 1
vertices. Fullness of K implies that the graph T pKq has α edges; i.e., it is a tree.
The desired properties of T pKq are easily verified. □

Figure 9. Depicted is the tree T pKq associated with a component K of ΩA.

Lemma 4.12. Let K be a component of ΩA such that BK has double points. Then,
there are at least 3`α critical points of f (counted with multiplicity) in f´1pBK X

Sq \

α
ğ

j“0

f´1pT8

Kj
0

pσqq, where α :“ |DK |, and K0
0 , ¨ ¨ ¨ ,Kα

0 are the components of

the desingularization KzS.
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Figure 10. Depicted is the dynamics of σ on the component K0
0 (respectively,

K5
0 ) of KzS, corresponding to the vertex v0 (respectively, v5) of valence 1 (re-

spectively, 2) of the graph T pKq in Figure 9.

Proof. Due to the graph-theoretic Lemma 4.10, it is enough to consider the com-
ponents of the desingularization KzS corresponding to valence 1 and 2 vertices
of T pKq to prove the above lemma. In particular, proving the following claims
would provide the required lower bound on the number of critical points associated
with K.
Claim I: Let Ki

0 be a component of KzS such that the vertex of T pKq in IntKi
0

has valence 2. Then, there is at least 1 critical point of f in f´1pT8
Ki

0
pσqq.

Claim II: Let Kj
0 be a component of KzS such that the vertex of T pKq in IntKj

0

has valence 1. Then, there are at least 2 critical points of f in f´1pT8

Kj
0

pσqq.

Proof of Claim I. Recall that T8
Ki

0
pσq is the component of T8pσq containing Ki

0.

As in the case of exactly two cusps (Lemma 4.6, Step I), we assume that there is no
critical point of f in f´1pT8

Ki
0
pσqq; i.e, there is no critical value of f (or equivalently

of σ) in T8
Ki

0
pσq. Then, Steps II–IV of Lemma 4.6 apply verbatim to the present

setting to give a self-map g, which is an inverse branch of σ˝2, on a simply connected
subset of T8

Ki
0
pσq such that g is a hyperbolic contraction (see Figure 10 (right)). To

apply the arguments of Step V of Lemma 4.6, we invoke Lemma 3.3, which gives us
two distinct g-orbits converging to the two distinct double points on the boundary
BKi

0 (in Figure 10, (right) the relevant component is K5
0 and the double points on

BK5
0 are p5, p6). This contradicts the hyperbolic contraction of g as explained in

Step VI of Lemma 4.6. □

Proof of Claim II. The proof follows the scheme of the case of exactly one cusp (see
Lemma 4.8). As in Steps I-II of that lemma, we have at least one critical value of
σ, and hence of f , in IntK0, and assume that there is no other critical point of f
in f´1pT8

Kj
0

pσqq. We now consider the dynamics of σ on the component T8

Kj
0

pσq of

the tiling set (see Figure 10 (left)), and note that the Steps III–VIII of Lemma 4.8
can be applied to the situation at hand with exactly one modification: we need to
appeal to Lemma 3.3 (instead of Lemma 3.1) in Step VII. This provides us with
a contraction mapping on the hyperbolic disk with two orbits converging to two
distinct points on BD. This is a contradiction, which proves the claim. □

□
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Corollary 4.13. Let K be as in Lemma 4.12, and assume that one of the two
following conditions holds true.

(1) Ω is unbounded and 8 P

α
ğ

j“0

yT8

Kj
0

pσq.

(2) Ω is bounded and 8 P

α
ğ

j“0

IntKj
0 .

Then, at least maxtα ` df ´ nΩ ` 1, α ` 3u critical points of f (counted with mul-

tiplicity) lie in f´1pBK X Sq \

α
ğ

j“0

f´1p yT8

Kj
0

pσqq.

Proof of Part p1q. LetKi
0 be the component of the desingularizationKzS such that

8 P yT8
Ki

0
pσq and vi be the vertex of the tree T pKq corresponding to IntKi

0 (see

Lemma 4.11). We consider the following sub-cases.
Case 1: vi has valence at least 3. Referring to the proof of Lemma 4.12, as the
component Ki

0 corresponds to a vertex of valence at least 3 in the tree T pKq, the
meromorphic map f has at least 3`α critical points (counted with multiplicity) in

f´1pBKXSq\

α
ğ

j“0
j‰i

f´1pT8

Kj
0

pσqq. None of these critical points are poles of f ; indeed,

as 8 P yT8
Ki

0
pσq, the poles of f lie in f´1

´

yT8
Ki

0
pσq

¯

. Counting them along with the

pdf ´nΩ´1q critical points of f in f´1p8q (cf. Section 2.4.1) yield pα`df ´nΩ`2q

critical points of f (counted with multiplicity) in f´1pBK X Sq \

α
ğ

j“0

f´1p yT8

Kj
0

pσqq.

Case 2: vi has valence 2. Similarly as in Case 1, we refer to the proof of
Lemma 4.12. As the component Ki

0 corresponds to a vertex of valence 2 in the
tree T pKq, the map f has at least p3 ` αq ´ 1 “ α ` 2 critical points (counted

with multiplicity) in f´1pBK XSq \

α
ğ

j“0
j‰i

f´1pT8

Kj
0

pσqq, none of which are poles of f .

Counting them with the pdf ´nΩ´1q critical points of f in f´1p8q Ă f´1
´

yT8
Ki

0
pσq

¯

yield pα`df ´nΩ ` 1q critical points of f (counted with multiplicity) in f´1pBK X

Sq \

α
ğ

j“0

f´1p yT8

Kj
0

pσqq.

Case 3: vi has valence 1. Again, we refer to the proof of Lemma 4.12. As the
component Ki

0 corresponds to a vertex of valence 1 in the tree T pKq, the map
f has at least p3 ` αq ´ 2 “ α ` 1 critical points (counted with multiplicity) in

f´1pBK X Sq \

α
ğ

j“0
j‰i

f´1pT8

Kj
0

pσqq, none of which are poles of f . By Claim II in the

proof of Lemma 4.12, we obtain a critical point of σ in IntKi
1, which provides us with

a critical point c of f in f´1pIntKi
0q. Clearly, c is not a pole of f as fpcq P IntKi

0

but 8 P ExtKi
0. Counting the critical points obtained so far with the pdf ´nΩ ´1q

critical points of f in f´1p8q Ă f´1
´

yT8
Ki

0
pσq

¯

yield pα`df ´nΩ `1q critical points

of f (counted with multiplicity) in f´1pBK X Sq \

α
ğ

j“0

f´1p yT8

Kj
0

pσqq. □
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Proof of Part p2q. LetKi
0 be the component of the desingularizationKzS such that

8 P IntKi
0, and let vi be the vertex of the tree T pKq corresponding to Ki

0. As in
the Part (1), we consider the following sub-cases.
Case 1: vi has valence at least 3. Arguing as in the unbounded case (using
the proof of Lemma 4.12), we can find at least 3 ` α critical points of f (counted

with multiplicity) in f´1pBK X Sq \

α
ğ

j“0
j‰i

f´1pT8

Kj
0

pσqq and pdf ´ nΩq critical points

of f in f´1p8q Ă f´1
´

yT8
Ki

0
pσq

¯

(cf. Section 2.4.1). This yields pα ` df ´ nΩ ` 3q

critical points of f (counted with multiplicity) in f´1pBK X Sq \

α
ğ

j“0

f´1p yT8

Kj
0

pσqq.

Case 2: vi has valence at least 2. Similarly as in Case 1 (referring to the
proof of Lemma 4.12), the map f has at least α ` 2 critical points (counted with

multiplicity) in f´1pBK X Sq \

α
ğ

j“0
j‰i

f´1pT8

Kj
0

pσqq, and pdf ´ nΩq critical points of f

in f´1p8q Ă f´1
´

yT8
Ki

0
pσq

¯

. Thus, we obtain pα ` df ´ nΩ ` 2q critical points of f

(counted with multiplicity) in f´1pBK X Sq \

α
ğ

j“0

f´1p yT8

Kj
0

pσqq.

Case 3: vi has valence at least 1. As in the third case of Part (1) of this
corollary, the map f has at least α ` 1 critical points (counted with multiplicity)

in f´1pBK X Sq \

α
ğ

j“0
j‰i

f´1pT8

Kj
0

pσqq, and pdf ´ nΩq critical points of f in f´1p8q Ă

f´1
´

yT8
Ki

0
pσq

¯

. This gives the desired number of critical points; i.e., pα`df ´nΩ`1q

(counted with multiplicity), in f´1pBK X Sq \

α
ğ

j“0

f´1p yT8

Kj
0

pσqq. □

4.2.4. Proof of Proposition 4.2. Let K be a component of ΩA.
If K is non-singular, then BK X S “ H, and hence #DK “ 0 and KzS “ K. In

this case, the existence of the desired critical points of f follows from Lemma 4.3.
If BK has cusps, but no double points, then #DK “ 0 and K0 :“ KzS is

connected. As mentioned in Section 4.2.2, if there are at least three cusps on BK,
then the conclusion of Proposition 4.2 is trivially satisfied for the component K.
On the other hand, if K at most two cusps, then Lemmas 4.6 and 4.8 provide us
with the required critical points of f .

Finally, if BK has at least one double point, then the result follows from Lemma 4.12.

5. Proofs of the main theorems

5.1. Bounding connectivity and double points. In this subsection, we will
prove Theorem A as an improvement of Theorem 4.1, by taking node data and
orders of singular points into account. Our goal here is to obtain the following
inequality.

(5.1) connpΩq ` #D `
ÿ

pPD

δp `
ÿ

pPC

δp ď mintdf ` nΩ ´ 2, 2df ´ 4u.
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We will further improve the above upper bound in the case that Ω has a node at
8 as follows:

(5.2) connpΩq ` #D `
ÿ

pPD

δp `
ÿ

pPC

δp ď df ` nΩ ´ 3.

Recall that,

δp “

#

tn{4u, if p is a cusp of type pn, 2q,

tn{2u, is p a double point with contact order n,

in the above inequality.
Observe that

df ` nΩ ´ 2 ď 2df ´ 4 ðñ nΩ ď df ´ 2.

In light of this observation, we will assume that nΩ ď df ´ 2 in the proof of
Theorem A. Before proceeding with the proof, we introduce the following sets of
critical points of f .

critCpfq – tc P critpfq | fpcq is a cusp on BΩu.

critSpfq –

tc P critpfq | tσ˝npfpcqqun is an infinite sequence, and lim
nÑ8

σ˝npfpcqq P Su,

which is the set of all critical points of f whose corresponding critical values converge
non-trivially to a point in S under iterates of σ.

critT pfq – tc P critpfq | fpcq P T8pσqu.

critP pfq – tc P critpfq | fpcq “ 8u.

In what follows, the notation #mcrit‚pfq will stand for the number of critical points
of f in crit‚pfq, counted with multiplicity. The next lemma establishes certain
relations among the above types of critical points.

Lemma 5.1. The sets critSpfq, critT pfq, and critCpfq are pairwise disjoint, and
critP pfq X critCpfq “ H. Further, we have the following assertions.

(1) If 8 P K pσq, then the sets critP pfq and critT pfq are disjoint. Further, if
nΩ ď df ´ 2, then

#m pcritP pfq Y critSpfqq ě pdf ´ nΩ ´ 2q `

˜

ÿ

pPD

δp `
ÿ

pPC

δp

¸

.

Additionally, if Ω has a node at 8, then critP pfqXcritSpfq “ H, and hence

#m pcritP pfq Y critSpfqq ě pdf ´ nΩ ´ 1q `

˜

ÿ

pPD

δp `
ÿ

pPC

δp

¸

.

(2) If 8 P T8pσq, then the sets critSpfq and critP pfq are disjoint.

Proof. The first statement follows from the observations that fpcritSpfqq Ă IntK pσq,
fpcritT pfqq Ă T8pσq, fpcritCpfqq Ă BT8pσqXBΩ, and that the latter sets are mutu-
ally disjoint. The second statement is a consequence of the fact that fpcritP pfqq “

t8u, and 8 R BΩ.
(1) As fpcritP pfqq “ t8u Ă K pσq, fpcritT pfqq Ă T8pσq, and the latter sets are

disjoint, it follows that critP pfq X critT pfq “ H.
Let us now assume that nΩ ď df ´ 2. By Section 2.4.1, the set critP pfq contains

at least pdf ´ nΩ ´ 1q critical points of f , counted with multiplicity. By definition,
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these pdf ´ nΩ ´ 1q critical points of f are mapped to 8 under f . On the other

hand, by Lemmas 3.2 and 3.4, the set critSpfq contains ∆ :“
´

ř

pPD δp `
ř

pPC δp

¯

many distinct critical points and their f´images lie in distinct attracting petals.
Hence, at most one of these ∆ critical points in critSpfq can lie in critP pfq. Hence,
we get at least

pdf ´ nΩ ´ 1q ` p∆ ´ 1q “ pdf ´ nΩ ´ 2q ` ∆

critical points in the union critP pfq Y critSpfq, counted with multiplicity.
Additionally, suppose that Ω has a node at 8. By way of contradiction, let

c P critP pfq X critSpfq. Then, σpfpcqq “ σp8q “ 8, since the poles of RΩ are also
poles of σ (cf. [LM16, Lemma 3.1]). On the other hand, as c P critSpfq, the orbit
tσ˝np8qun must be infinite, which is a contradiction. Hence, critP pfq X critSpfq “

H. The desired lower bound on #m pcritP pfq Y critSpfqq now follows as in the
previous paragraph (using Section 2.4.1 and Lemmas 3.2, 3.4).

(2) Since fpcritSpfqq Ă K pσq and fpcritP pfqq “ t8u Ă T8pσq, we conclude
that critSpfq X critP pfq “ H. □

Proof of Theorem A. We consider the cases of bounded and unbounded Ω sepa-
rately. Let us set

∆ :“

˜

ÿ

pPD

δp `
ÿ

pPC

δp

¸

.

Unbounded case. We consider the following sub-cases.

Case U1: 8 P K pσq. The critical points of f obtained in Proposition 4.2 lie in the
set critT pfq \ critCpfq. Recall from Section 2.4.1 that #mcritP pfq “ df ´ nΩ ´ 1.
Therefore, by Proposition 4.2 and Lemma 5.1,

#m pcritT pfq Y critCpfq Y critP pfq Y critSpfqq “

#mcritT pfq ` #mcritCpfq ` #m pcritP pfq Y critSpfqq

ě
ÿ

components K

of ΩA

p#DK ` 3q ` pdf ´ nΩ ´ 2q ` ∆.

Thanks to Proposition 2.6 and the above inequality, we conclude that
ÿ

components K

of ΩA

p#DK ` 3q ` pdf ´ nΩ ´ 2q ` ∆ ď 2df ` 2k ´ 4

ùñ p#D ` 3kq ` pdf ´ nΩ ´ 2q ` ∆ ď 2df ` 2k ´ 4

ùñ #D ` k ` ∆ ď df ` nΩ ´ 2,

where k “ connpΩq.
Note that if Ω has a node at 8, then Lemma 5.1 implies that

#m pcritT pfq Y critCpfq Y critP pfq Y critSpfqq “

#mcritT pfq ` #mcritCpfq ` #m pcritP pfq Y critSpfqq

ě
ÿ

components K

of ΩA

p#DK ` 3q ` pdf ´ nΩ ´ 1q ` ∆.

So,
ÿ

components K

of ΩA

p#DK ` 3q ` pdf ´ nΩ ´ 1q ` ∆ ď 2df ` 2k ´ 4

ùñ #D ` k ` ∆ ď df ` nΩ ´ 3,

as required.
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Case U2: 8 P T8pσq. In this case, there exist n ě 1 and a component K0 of
T 0pσq such that σ˝np8q P K0. Note that K0 is contained in some component K
of ΩA.

Case U2a: BK has no double points. Under this assumption, we have thatK “

K0. We refer to case p1q of Corollaries 4.4, 4.7 and 4.9 for this subcase. The critical
points of f obtained in these corollaries lie in the set critT pfq Y critP pfq Y critCpfq,
and we have

#mcritT pfq Y critP pfq Y critCpfq

ěmaxtdf ´ nΩ ` 1, 3u `
ÿ

components K1of ΩA

K1
‰K

p#DK1 ` 3q.

Note that by Lemma 5.1, the set critSpfq is disjoint from critT pfq Y critP pfq Y

critCpfq. Combining the above facts with Lemmas 3.2 and 3.4, we see that

#m pcritT pfq Y critCpfq Y critP pfq Y critSpfqq “

#m pcritT pfq Y critCpfq Y critP pfqq ` #mcritSpfq

ěmaxtdf ´ nΩ ` 1, 3u `
ÿ

components K1of ΩA

K1
‰K

p#DK1 ` 3q ` ∆.

So, pdf ´ nΩ ` 1q ` p#D ` 3pk ´ 1qq ` ∆ ď 2df ` 2k ´ 4,

ùñ #D ` k ` ∆ ď df ` nΩ ´ 2.

(In the above computation, we used the hypothesis that nΩ ď df ´ 2.)

Case U2b: BK has α ą 0 many double points. In this case, we have that
K0 Ĺ K. We refer to case p1q of Corollary 4.13 for this subcase. The critical points
of f obtained in this corollary lie in the set critT pfq Y critP pfq Y critCpfq. As in
the previous case, this observation, in combination with Lemmas 3.2, 3.4, and 5.1,
yield the following inequality:

#m pcritT pfq Y critCpfq Y critP pfq Y critSpfqq

ěmaxtα ` df ´ nΩ ` 1, α ` 3u `
ÿ

components K1of ΩA

K1
‰K

p#DK1 ` 3q ` ∆,

ùñ pα ` df ´ nΩ ` 1q ` pp#D ´ αq ` 3pk ´ 1qq ` ∆ ď 2df ` 2k ´ 4,

ùñ #D ` k ` ∆ ď df ` nΩ ´ 2.

(Once again, we used in the above computation the hypothesis that nΩ ď df ´ 2.)

Bounded case. Let K be a component of ΩA such that 8 P IntK. The proof
in this case is similar to Case U2 when Ω is unbounded, combining case (2) of
Corollaries 4.4, 4.7, 4.9 and 4.13 with Lemmas 3.2, 3.4, and 5.1. □

5.2. Bounding the number of weighted singularities. We will now establish
the upper bound on the number of singular points stated in Theorem B.

Proof of Theorem B. By the discussion in Section 2.3, we know that #C “ #critCpfq.
Also recall that #mcritP pfq ě df ´ nΩ ´ 1 (see Section 2.4.1), and #critSpfq ě ∆

by Lemmas 3.2 and 3.4, where ∆ “

´

ř

pPD δp `
ř

pPC δp

¯

.

By Lemmas 3.2, 3.4, and 5.1,

#m pcritCpfq Y critP pfq Y critSpfqq “ #critCpfq ` #m pcritP pfq Y critSpfqq

ě

#

#C ` pdf ´ nΩ ´ 2q ` ∆ if nΩ ď df ´ 2,

#C ` ∆ if nΩ ą df ´ 2.
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Finally, by Proposition 2.6,

#C ` M ` ∆ ď 2df ` 2k ´ 4,

where M –

#

df ´ nΩ ´ 2 if nΩ ď df ´ 2,

0 if nΩ ą df ´ 2,

ùñ #C ` ∆ ď m1,(5.3)

where m1 –

#

df ` nΩ ` 2k ´ 2 if nΩ ď df ´ 2,

2df ` 2k ´ 4 if nΩ ą df ´ 2,

and k “ connpΩq.
By Theorem A,

k ` #D ` ∆ ď mintdf ` nΩ ´ 2, 2df ´ 4u

ùñ k ď m2 ´ #D ´ ∆,(5.4)

where m2 –

#

df ` nΩ ´ 2 if nΩ ď df ´ 2,

2df ´ 4 if nΩ ą df ´ 2.

Putting Inequalities (5.3) and (5.4) together, we get

#C ` ∆ ď m,

where m –

#

df ` nΩ ` 2 ¨ pm2 ´ #D ´ ∆q ´ 2 if nΩ ď df ´ 2,

2df ` 2 ¨ pm2 ´ #D ´ ∆q ´ 4 if nΩ ą df ´ 2,

“

#

3df ` 3nΩ ´ 2#D ´ 2∆ ´ 6 if nΩ ď df ´ 2,

6df ´ 2#D ´ 2∆ ´ 12 if nΩ ą df ´ 2,

ùñ #C ` 2 ¨ #D ` 3∆ ď mint3df ` 3nΩ ´ 6, 6df ´ 12u.

When 8 is a node, Inequality 5.4 can be promoted to

k ď df ` nΩ ´ #D ´ ∆ ´ 3

(see Section 5.1).
Plugging this into Inequality (5.3), we get

#C ` 2 ¨ #D ` 3∆ ď mint3df ` 3nΩ ´ 8, 4df ` 2nΩ ´ 10u.

This completes the proof of the theorem. □

6. Constructing quadrature domains with prescribed connectivity
and double points: Special cases

In this final section, we will establish sharpness of the upper bound given by
Theorem 4.1 in low degrees; i.e., for df P t3, 4u, by constructing special examples
of quadrature domains with prescribed connectivity and number of double points.
Specifically, we will produce Schwarz reflection dynamical systems using surgery
and uniformization techniques from conformal dynamics, and this will give rise to
the desired quadrature domains.

We will also show how the above dynamical ideas can be used to give alternative
constructions of non-singular quadrature domains Ω of maximal connectivity; i.e.,
connpΩq “ 2df ´ 4, for arbitrary df ě 3 (cf. [LM14, Theorem A, Theorem B]).

We make the following remarks.

‚ The methods for constructing multiply connected quadrature domains available
in the literature either use Riemann surface theory [Bel04, CM04] or Hele-Shaw
flow tools [LM14], which are substantially different from the dynamical tech-
niques introduced in this section.
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‚ As the boundary of a quadrature domain is real-algebraic, the constructions il-
lustrated below give a recipe to manufacture real-algebraic curves with controlled
topology; we refer the reader to [Vir84, Vir90] for constructions of such curves
from an algebro-geometric point of view.

6.1. The ingredients. We start with the description of some piecewise analytic
circle coverings that will be used in the construction of multiply connected quad-
rature domains.

6.1.1. An expanding/hyperbolic circle map. Consider the maps

qfffpzq “ z `
1

2z2
, and fffpzq “ z `

1

4z2
.

Note that fffpzq “ 1
3?2

qfffp
3
?
2zq. By [LLMM21, Proposition B.1], the map qfff is injective

on D˚, where D˚ :“ pCzD, and hence fff also enjoys the same property. Let ΩΩΩ :“
fffpD˚q. By construction, ΩΩΩ is an unbounded Jordan quadrature domain with the

associated Schwarz reflection map σσσ|ΩΩΩ ” fff ˝ κ ˝
`

fff |D˚

˘´1
, where κpzq “ 1{z.

Note that critpfffq “ t0, 1{
3
?
2, ω{

3
?
2, ω2{

3
?
2u, where ω is a primitive third root

of unity. A direct computation shows that for each non-zero critical point c of fff ,
we have that fff´1pfffpcqq Ă D. Hence, for c P critpfffqzt0u, the corresponding critical
value fffpcq lies in IntΩΩΩA; while fp0q “ 8 P ΩΩΩ.

We record the following properties of the map σσσ (cf. [LM23, §4.1]).
‚ Since no critical point of fff lies in S1, it follows that BΩΩΩ is a non-singular real-
analytic Jordan curve, and hence σσσ´1pΩΩΩq is compactly contained in ΩΩΩ. This is
depicted in Figure 11 (right); where the central light green Jordan domain is
IntΩΩΩA, and the adjacent blue annular region is σσσ´1pIntΩΩΩAq.

‚ The map σσσ has a super-attracting fixed point at 8. The other three critical
points of σσσ are mapped under σσσ to IntΩΩΩA (cf. Section 2.4).

‚ The branched covering σσσ : σσσ´1pΩΩΩq Ñ ΩΩΩ has degree two and a unique, simple
critical point. Thus, by the Riemann-Hurwitz formula, the domain σσσ´1pΩΩΩq is
simply connected. In fact, the Jordan curve BΩΩΩ does not contain any critical
value of σσσ, and hence σσσ is locally injective on Bσσσ´1pΩΩΩq. This implies that σσσ´1pΩΩΩq

is also a Jordan domain.
We conclude that σσσ : σσσ´1pΩΩΩq Ñ ΩΩΩ is an anti-polynomial-like map of degree two

(cf. [DH85, Chapter I], [IM21, §5]). The filled Julia set of this anti-polynomial-
like map is precisely the non-escaping set K pσσσq of the Schwarz reflection map
(shown in gray in Figure 11 (right)). Since σσσ has a fixed critical point, it fol-
lows by the straightening theorem for anti-polynomial-like maps that σσσ|K pσσσq is

topologically conjugate (conformally on the interior) to z2|D.
‚ As ΩΩΩ,σσσ´1pΩΩΩq are Jordan domains with σσσ´1pΩΩΩq compactly contained in ΩΩΩ, we

have that ΩΩΩzσσσ´1pΩΩΩq is an annulus (the blue annulus adjacent to ΩΩΩA in Figure 11
(right)) that maps as a degree three branched cover onto IntΩΩΩA under σσσ. Al-
ternatively, one can use the facts that IntΩΩΩA is simply connected and that the
degree three branched covering σσσ : σσσ´1pIntΩΩΩAq Ñ IntΩΩΩA has precisely three
critical points to deduce that σσσ´1pIntΩΩΩAq is an annulus.

We now look at the external map of the above anti-polynomial-like map (cf.
[DH85, Chapter I, §2]). Specifically, let ΦΦΦ : D Ñ T8pσσσq be a conformal isomor-
phism. The topological conjugacy between σσσ|K pσσσq and z2|D implies that BK pσσσq “

BT8pσσσq is a Jordan curve, and hence ΦΦΦ extends continuously to a homeomorphism

between D and T8pσσσq. Set U :“ ΦΦΦ´1pΩΩΩ X T8pσσσqq, and

E : U Ñ D, E :“ ΦΦΦ´1 ˝ σσσ ˝ΦΦΦ.
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Figure 11. Right: Illustrated is the dynamical plane of σσσ with the non-escaping
set K pσσσq in gray and the escaping set T8pσσσq in green/blue. Left: The domain
of definition V “ U Y κpUq Y S1 of the map E is shaded in green. The restriction
of E on S1 is an orientation-reversing, expanding, real-analytic double covering of
itself, while E is the identity map on BV.

Note that BU “ S1 \ΦΦΦ´1pBΩΩΩq. The restriction of the map E to S1 is an orientation-
reversing double covering, while E acts as the identity map on ΦΦΦ´1pBΩΩΩq. Using the

Schwarz reflection principle, we extend E to a continuous map E : V Ñ pC such that
E is antiholomorphic on V, where V “ U Y κpUq Y S1 is an annulus. It follows that
E : S1 Ñ S1 is a real-analytic, expanding, orientation-reversing double covering.
Further,

(1) E acts as the identity map on BV “ ΦΦΦ´1pBΩΩΩq \ κpΦΦΦ´1pBΩΩΩqq,
(2) E : ΦΦΦ´1pσσσ´1pIntΩΩΩAqq Ñ ΦΦΦ´1pIntΩΩΩAq and E : κpΦΦΦ´1pσσσ´1pIntΩΩΩAqqq Ñ κpΦΦΦ´1pIntΩΩΩAqq

are degree 3 branched coverings, and
(3) BV consists of a pair of non-singular, real-analytic Jordan curves (this follows

from the construction of V and the fact that BΩΩΩ is non-singular)

6.1.2. Two expansive/parabolic circle maps. The dynamics of Schwarz reflections in
quadrature domains is closely related to certain piecewise analytic maps associated
with reflection groups acting on the hyperbolic plane (cf. [LM23]). We will now
recall two such maps that will facilitate the construction of quadrature domains
with controlled topology.

The Nielsen map. Let Cj be the hyperbolic geodesic in D connecting exp p
2iπpj´1q

3 q

and exp p
2iπj
3 q, for j P t1, 2, 3u. The geodesics C1, C2, C3 bound an ideal triangle

Π Ă D, where Π is closed in the topology of D. We denote the components of
DzΠ by D1, D2, D3, where Cj Ă BDj , for j P t1, 2, 3u. We denote the anti-Möbius
reflection in Cj by ρj , and note that ρj is an anti-conformal automorphism (of order
2) of D. The anti-Möbius maps ρ1, ρ2, and ρ3 generate a discrete subgroup of the
group of conformal and anti-conformal automorphisms of D. This group is called
the ideal triangle reflection group. The Nielsen map of the ideal triangle reflection
group is defined as

N : Dz IntΠ Ñ D, z ÞÑ ρjpzq, if z P Dj .

(See Figure 12 (left).) The following properties of N will be useful in the applica-
tions.

‚ The map N fixes BΠ pointwise.
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‚ The restriction N |S1 is an orientation-reversing, piecewise analytic, C1, degree
two expansive covering map. In particular, N |S1 is topologically conjugate
to z2|S1 .

‚ N : N´1pIntΠq Ñ IntΠ is a 3 : 1 covering map.

We refer the reader to [LLMM23, §2], [LM23, §3.1] for more details on Nielsen
maps.

Figure 12. Left: The Nielsen map N is defined outside the interior of the cen-
tral black triangle Π as reflections in the sides of Π. This map commutes with
rotation by 2π{3. Right: The anti-Farey map, which is a factor of N under the
3´rotational symmetry, is defined outside the interior of the ‘monogon’ H.

The anti-Farey map. The map N commutes with the rotation Mωpzq “ ωz,
where ω “ exp p2πi{3q. Hence, N : Dz IntΠ Ñ D descends to a factor map

pN :
`

Dz IntΠ
˘

{xMωy ÝÑ D{xMωy

via the natural projection from D to the bordered quotient orbifold D{xMωy. As
z ÞÑ z3 induces a conformal isomorphism ζ : D{xMωy Ñ D, one obtains a map

F :“ ζ ˝ pN ˝ ζ´1 : Dz IntH Ñ D,

where H :“ ζ pΠ{xMωyq. We record some important properties of F (See Fig-
ure 12 (right)).

‚ The map F fixes BH pointwise.
‚ The restriction F |S1 is an orientation-reversing, piecewise analytic, C1, degree
two expansive covering map, which is topologically conjugate to z2|S1 .

‚ F : F´1pIntHq Ñ IntH is a 3 : 1 branched covering map, fully branched over
the origin.

We refer the reader to [LMM24, §3.1] for a detailed accounts of anti-Farey maps.

6.2. Effectiveness of Theorem 4.1: the df “ 3 case. For df “ 3, Theorem 4.1
reduces to connpΩq `#D ď 2. We will now illustrate how to construct quadrature
domains with df “ 3 having

‚ connectivity 2 and no double point, and
‚ connectivity 1 and one double point.
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6.2.1. Connectivity 2, no double points. Recall the continuous map E : V Ñ pC
(which is antiholomorphic on V) from Section 6.1.1. By Property (1), V is a quad-
rature domain of connectivity 2. By Property (2), the map E : E´1pIntVAq Ñ IntVA

is a branched covering of degree 3. Hence, the uniformizing meromorphic map f
of V has degree 3; i.e., df “ 3 (see Proposition 2.5). Finally, Property (3) implies
that BV has no double points.

6.2.2. Connectivity 1, unique double point. Let us consider the orientation-reversing,
piecewise analytic, C1, degree two expansive covering maps N and F . According
to [LMMN25, Theorem 5.2], these two maps can be conformally mated. Indeed, it
follows from [LMMN25, Example 4.3] and [LMM24, Lemma 3.2] that the maps N
and F satisfy the conditions of conformal mateability (respectively) as required in
[LMMN25, Theorem 5.2]. We can mate these maps using a circle homeomorphism
that conjugates N to F and maps the fixed point 1 of N to the fixed point 1 of F .

We denote the conformal mating of N : Dz IntΠ Ñ D and F : Dz IntH Ñ D by

σ : Ω Ñ pC. By definition of conformal matings, there exist a σ´invariant Jordan
curve J, and two conformal maps Ψ` : D Ñ D` and Ψ´ : D˚ Ñ D´ (where

D˘ are the components of pCzJ) such that Ψ` conjugates N : Dz IntΠ Ñ D to

σ : Ω X D` Ñ D`, and Ψ´ ˝ κ conjugates F : Dz IntH Ñ D to σ : Ω X D´ Ñ D´

(where κpzq “ 1{z). The domain of definition Ω of the conformal mating σ, the
Jordan curve J, and the Jordan domains D˘ are depicted in Figure 13.

Figure 13. The region shaded in gray, enclosed by the red curve, is the domain
of definition of the conformal mating σ of N and F .

We note the following properties of the conformal mating.

(a) The set Ω is a simply connected domain and BΩ has a unique double point.
This follows from the facts that BΠ is a triangle in D intersecting S1 only in its
three vertices (the third roots of unity), BH is a Jordan curve in D intersecting
S1 only at 1, and the point 1 P BΠ is identified with the point 1 P BH in the
mating process (see Figure 13).

(b) The map σ : Ω Ñ pC is a continuous map that is antiholomorphic on Ω.
(c) σ acts as the identity map on BΩ, and hence Ω is a quadrature domain of

connectivity one with a unique double point on its boundary.
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(d) As N : N´1pIntΠq Ñ IntΠ and F : F´1pIntHq Ñ IntH are degree 3 branched
coverings, it follows that σ : σ´1pIntΩAq Ñ IntΩA is also a degree 3 branched
covering. By Proposition 2.5, the uniformizing meromorphic map associated
with Ω has degree 3.

Thus, Ω is an example of a quadrature domain with the desired properties. An
explicit formula for the uniformizing meromorphic map of this quadrature domain
can be found in [LM14, §2.1]. We also refer the reader to [LMM21, §7] for a different
(limiting) construction of this quadrature domain.

6.3. Effectiveness of Theorem 4.1: the df “ 4 case. We will now furnish
quadrature domains Ω with df “ 4 such that ΩA has m connected components
and BΩ has n double points, where m ` n “ 4, m ě 1. The key idea is to start
with a specific antiholomorphic rational map, and suitably replace its action on the
invariant Fatou components with the actions of the partially defined maps E ,N ,F
of the disk.

6.3.1. The Apollonian anti-rational map. Consider the antiholomorphic rational
map (anti-rational map for short)

RRRpzq “
3z2

2z3 ` 1
.

The map RRR is critically fixed; i.e., it fixes all of its four simple critical points. In
other words, each critical point of RRR is a superattracting fixed point, and hence
RRR is a hyperbolic anti-rational map (cf. [Mil06, §19]). The dynamics of the map
RRR was considered in [LLMM23, §8], where it was shown that the Julia set of RRR is
homeormorphic to the classical Apollonian gasket in a dynamical natural way (cf.
[LLM22], [LM23, §5.2]).

Figure 14. The Julia set of the critically fixed cubic anti-rational map RRR is
shown. The black dots represent the critical points. The Fatou components
containing the critical points touch each other pairwise.

According to [LLMM23, §8], the four super-attracting immediate basins of RRR
(i.e., the invariant Fatou components of RRR containing the four critical points) are
Jordan domains that touch each other pairwise at the six repelling fixed points ofRRR
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(see Figure 14). We enumerate these invariant Fatou components as W1, ¨ ¨ ¨ ,W4.
For definiteness, let us refer to the blue, green, red, and white components as
W1,W2,W3,W4, respectively. We denote (the homeomorphic extensions of) the
Riemann uniformizations of the components Wj by Ψj : D Ñ Wj , such that Ψj

sends the origin to the (fixed) critical point in Wj , j P t1, ¨ ¨ ¨ , 4u. After possibly
precomposing Ψj with a rotation, we may assume that it conjugates z2|D to RRR|Wj

,

for j P t1, ¨ ¨ ¨ , 4u.

Figure 15. The domains outside the black curves are the domains of definition
of the ‘topological Schwarz reflection maps’ constructed in Section 6.3.2.

6.3.2. Constructing topological Schwarz reflection maps via surgery. We will now
manufacture partially defined continuous maps on the sphere by replacing the action
of RRR on Y4

j“1Wj with those of E ,N , or F appropriately. The resulting maps will
serve as topological models of the desired Schwarz reflection maps.

To this end, let Mj P tE ,N ,Fu, for j P t1, ¨ ¨ ¨ , 4u. There exist homeomorphisms
θj : S1 Ñ S1 conjugating z2|S1 to Mj |S1 .

‚ If Mj “ E , then the conjugacy θj is quasisymmetric; indeed, two real-analytic,
expanding endomorphisms of the circle of the same degree and orientation are
quasisymmetrically conjugate (cf. [McM88, Proposition 6.3], [dMvS93, Exer-
cise 2.3]). In this case, we extend θj continuously to a homeomorphism of D that
is quasiconformal on D.
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‚ If Mj “ N , then by [LMMN25, Theorem 4.14] the conjugacy θj between z2 and

Mj can be extended continuously to a homeomorphism of D that is a David
homeomorphism on D.

‚ Finally, if Mj “ F , then by [LMM24, Lemma 3.2] the conjugacy θj between z2

and Mj can be extended continuously to a homeomorphism of D that is a David
homeomorphism on D.
We define a partially defined continuous map rσ : pC 99K pC as

rσ ”

$

’

&

’

%

RRR on pCz

4
ď

j“1

Wj ,

Ψj ˝ θ´1
j ˝ Mj ˝ θj ˝ Ψ´1

j on Ψj

`

θ´1
j pDompMjq X Dq

˘

, j P t1, ¨ ¨ ¨ , 4u.

(Here DompMjq stands for the domain of definition of the map Mj .) Displayed in
Figure 15 are four instances of this construction, which we now explicate.

(1) (Top left of Figure 15) Here, Mj “ E , for j P t1, ¨ ¨ ¨ , 4u. The domain of
definition Domprσq of rσ is the complement of four Jordan domains with pair-

wise disjoint closures. In particular, rΩ :“ IntDomprσq is connected, it has 4
complementary components, and its boundary has no cut-point.

(2) (Top right of Figure 15) Here, Mj “ E , for j P t1, 2u, and Mj “ N , for
j P t3, 4u. The domain of definition Domprσq is the complement of four disjoint
Jordan domains, two of which touch at a unique point, while the other two

have disjoint closures. In particular, rΩ is connected, it has 3 complementary
components, and its boundary has a unique cut-point.

(3) (Bottom left of Figure 15) In this case, Mj “ F , for j P t1, 2u, and Mj “ N ,
for j P t3, 4u. Here, Domprσq is the complement of four disjoint Jordan domains,
such that the first pair (respectively, the second pair) touches at a unique point.

Further. rΩ is connected, it has 2 complementary components, and its boundary
has exactly 2 cut-points.

(4) (Bottom right of Figure 15) As in the previous case, we have Mj “ F , for
j P t1, 2u, and Mj “ N , for j P t3, 4u. However, the conformal maps Ψj

have been normalized in such a way that the point 1 P BH is welded at the

unique point of intersection of BWj X BW4, for j P t1, 2u. Consequently, rΩ is
connected, simply connected (i.e., it has a unique complementary component),
and its boundary has 3 cut-points.

We note that in all the above cases, rσ fixes the boundary BrΩ of its domain of
definition pointwise.

6.3.3. Uniformizing topological Schwarz reflections. We pull back the standard com-
plex structure on D under the map θj ˝ Ψ´1

j to define an almost complex structure

on Wj , j P t1, ¨ ¨ ¨ , 4u. Since Mj preserves the standard complex structure on D
(while reversing the orientation), the map rσ preserves the almost complex struc-
ture on Y4

j“1Wj (while reversing the orientation). We extend this almost complex
structure to the entire Fatou set of RRR by pulling it back under rσ (recall that rσ
is antiholomorphic outside Y4

j“1Wj). Since the Julia set of a hyperbolic rational
map has zero area, this defines a rσ´invariant almost complex structure on the
sphere (more precisely, rσ preserves the measurable ellipse field, but reverses the
orientation).

As RRR is hyperbolic, the proof of [LMMN25, Lemma 7.1] applies verbatim to

the current situation to show that the Beltrami coefficient on pC defined by the
above almost complex structure is a David coefficient (see [AIM09, Chapter 20],
[LMMN25, §2] for background on David Beltrami coefficients and David homeo-

morphisms). We denote by G the David homeomorphism of pC that pulls back the
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standard complex structure to the above almost complex structure. Once again,
the proof of [LMMN25, Lemma 7.1] implies that

σ :“ G ˝ rσ ˝ G´1 : Ω Ñ pC

is a continuous map that is antiholomorphic on Ω, where Ω :“ GprΩq. By construc-
tion, σ fixes BΩ pointwise, and hence it is the Schwarz reflection map associated
with the quadrature domain Ω. It now follows that the four different construc-
tions described at the end of Section 6.3.2 give rise to quadrature domains Ω of
connectivity m ě 1 with n double points on BΩ such that m ` n “ 4.

It remains to argue that the uniformizing meromorphic map f of Ω has degree
df “ 4. By Proposition 2.5, the integer df is equal to the number of σ´preimages
of a point q P GpW1q X IntΩA, counted with multiplicity. Note that RRR´1pW1q “

W1 \ W 1
1, where W1 maps to itself with degree 2, and W 1

1 is a prefixed Fatou
component ofRRR that maps toW1 univalently. Since the map rσ agrees withRRR outside
Y4

j“1Wj , it follows that σ
´1pqqzGpW1q consists of a unique point q1 P GpW 1

1q, and

q1 maps to q with local degree 1. On the other hand, by the mapping properties of
E and F , the point q has three preimages (counted with multiplicity) under σ in
GpW1q. Thus, the map σ : σ´1pIntΩAq Ñ IntΩA has degree 4, and hence df “ 4.

6.4. Non-singular quadrature domains of maximal connectivity 2df ´ 4.
Consider a triangulation of the sphere having s ě 3 vertices and 2s´4 faces. Such a
triangulation can be constructed, for instance, by starting with a single triangle and
subdividing the faces into further triangles until one ends up with s vertices. The
1-skeleton of this triangulation is a connected, simple, 2-connected plane graph.

By [LLM22, Theorem 1.1], there exists a critically fixed anti-rational map R
of degree s ´ 1 such that the planar dual of the Tischler graph T pRq of R is
isomorphic to the 1-skeleton of the above triangulation (as plane graphs). The
Tischler graph of R is the union of (the closures of) all fixed internal rays in the
invariant Fatou components; in particular, the number of vertices of T pRq is equal
to the number of distinct critical points of R (cf. [LLM22, §4.1]). The fact that
the chosen triangulation has 2s´4 faces implies that T pRq has 2s´4 vertices; i.e.,
the anti-rational map R has 2s ´ 4 distinct critical points each of which is fixed
by R. By [Mil06, Theorem 9.3], the Fatou components of R containing the critical
points are simply connected, and the restriction of R to each of these invariant
Fatou components is conformally conjugate to z2|D.

Recall the orientation-reversing double covering E of the circle. Using the argu-
ments of Sections 6.3.2 and 6.3.3, we can now replace the action of R on each of
its invariant Fatou components with that of the map E . This produces a Schwarz
reflection map σ defined on a non-singular quadrature domain Ω of connectivity
2s´4; indeed, each component of ΩA corresponds to an invariant Fatou component
of R. Finally, the arguments of the last paragraph of Section 6.3.3 show that in this
case, each point in IntΩA has s preimages under σ, counted with multiplicity. It
follows that the degree of the uniformizing meromorphic map f of the quadrature
domain Ω is equal to s; i.e., s “ df . Thus, Ω is the desired non-singular quadrature
domain of connectivity 2df ´ 4.
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