Topology and geometry of quadrature domains via

holomorphic dynamics

Sabya Mukherjee
Tata Institute of Fundamental Research

Bielefeld-Melbourne-Seoul
Random Matrix Theory Seminar
November 2025



Quadrature domains in statistical physics



Motivation from physics: 2D Coulomb gas ensembles

@ Consider N electrons placed in the complex plane at points {zj}j 1
influenced by a strong external (magnetic/electrostatic) field with

uniform density.
Let the potential of the external field be NQ : C — R U {+o0}.

@ The combined energy resulting from particle interaction and external
potential is:
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Large N behavior of 2D Coulomb gas ensembles

@ It is more likely to find configurations of electrons with low energy.
This leads to the following joint density of states

exp(—&q(z1, - ,zn))

dVohy € Prob(CV).
Zy

@ We are interested in the limiting behavior of the point process as the
number of electrons grows to infinity.

@ In the limit, the electrons condensate on a compact set T, and they
are distributed according to the normalized area measure of T.
(Wiegmann, Zabrodin, Elbau, Felder, Hedenmalm, Makarov, et al.)



Random normal matrix ensemble

@ For a potential Q, consider the probability measure
7N trace Q(M dM/ZN

on the set of N x N complex normal matrices with spectrum in some
compact set.

o (Elbau—Felder, Hedenmalm—Makarov) The corresponding eigenvalues
{\;} € CN are distributed according to the probability measure

e—Eaha, ’/\N)dA()\l) - dA(AN)/Zn

@ In the large N limit, the eigenvalues are distributed according to the
normalized area measure of a compact set T.

@ In many physically interesting cases, the potential Q satisfies some
algebraic properties. The set T (on which eigenvalues/electrons
condensate) is then called an algebraic droplet of Q.



From algebraic droplets to quadrature domains

e Algebraic potential: Q(z) = |z|?> — R(H(z)), where OH is a rational
function.

@ In this situation, the complementary components of the droplet T
admit global reflection maps. (Lee-Makarov)

Definition (Quadrature Domains — Aharonov, Shapiro)
A domain Q € C (with oo ¢ 9Q and int(Q) = Q) is called a quadrature
domain if there exists a continuous function o : Q — C satisfying the
following two properties:

@ o =id on 09.

@ o is anti-meromorphic on Q. )

@ The map o is called the Schwarz reflection map of Q.



Quadrature domains

Definition (Quadrature Domains — Aharonov, Shapiro)

A domain Q € C (with oo ¢ 9Q and int(Q) = Q) is called a quadrature
domain if there exists a continuous function o : Q — C satisfying the
following two properties:

@ o =id on 09
@ o is anti-meromorphic on Q.

@ The map o is called the Schwarz reflection map of Q.

@ Thus, the study of algebraic droplets is related to the study of
quadrature domains.

@ Lee and Makarov used iteration of Schwarz reflection maps to study
the topology of quadrature domains.



Classical perspective: quadrature identity

o A domain Q C C (with oo ¢ 8Q and int(Q) = Q) is a quadrature
domain —
There exists a rational map Rq with all poles inside Q such that

_ 1 _ (me)
[eda=5§ s@Ra2)dz (= 30 a0 ™(a)
for all ¢ € H(2) N C(Q) (if co € Q, one also requires ¢(co) = 0).
e By definition, order(Q2) := deg(Rq).

@ The rational map Rq and the Schwarz reflection map o have the same
(finite) set of poles.



Algebraic properties, and complexity



Simply connected quadrature domains

o A simply connected domain Q C € with oo ¢ 9Q and int(Q) = Q is a
quadrature domain iffnd only if the Riemann map ¢ : D — Q extends
as a rational map of C.

@ The rational map ¢ semi-conjugates the reflection map 1/z of D to
the Schwarz reflection map o of Q.



Quadrature domains and Schottky double

o Q = Quadrature domain of connectivity k with Schwarz reflection
map o (i.e., k = # connected components of Q¢ =C\ Q).

Theorem (Gustafsson, Acta Appl. Math., 1983)

There exist a genus k — 1 compact Riemann surface ¥, an anti-conformal
involution v of ¥, and a meromorphic map f : ¥ — C such that

© Fix(v) is a disjoint union of k circles;

Q@ Y\ Fix(¢) =t UX_, where ¥* are connected;
© f:xX — Q is a conformal isomorphism; and
Qo=foro(fly-) L.




Complexity of quadrature domains

@ o is an algebraic function; and

deg(o) (complexity of Schwarz reflection)

~ order(Q) := deg(Rq) (complexity of quadrature identity)
~ deg(0H) (complexity of external field)

~ df :=deg <f DI @) (algebraic complexity).

@ The boundary 09 is a real-algebraic curve whose singularities are
cusps or double points.

@ Can the topology + geometry of a quadrature domain Q be controlled
by d¢?



Topology/geometry of quadrature domains
via dynamics



Controlling topology/geometry of quadrature domains

@ Goal: Get upper bounds on the connectivity and the number of
singular points of Q in terms of dy.

Theorem (Gustafsson, J. Analyse Math., 1988)

Conn(Q) 4+ # Cusps + 2 - # Double points < d?.

@ Proof idea: genus-degree formula for algebraic curves + Bézout's theorem.

Theorem (Lee—Makarov, J. Amer. Math. Soc., 2016)

Conn(Q) < 2dr — 4.

@ Proof idea:

© Use PDE (Hele-Shaw flow) to reduce to the non-singular case.

@ Obtain the desired bound by studying antiholomorphic dynamics of
Schwarz reflection maps.



Key step of Lee—Makarov proof

o Look at the degree =~ d branched covering o : 071(Q) — Q; i.e.,
forget the action of o over Q°.

0N
= Black
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@ Extend it to a topological branched covering o of C with an attracting
fixed point in each component of Q°.

@ Promote & to a holomorphic (rational) map using quasiconformal
methods; smoothness of 91 is essential for this step.

@ A degree ~ dy rational map has at most O(dr) attracting fixed points.



Improving previously known bounds

@ Revised goal: Get linear upper bounds (in df) on the connectivity and
the number of singular points of Q.

Theorem (Rashmita—M)

© Conn(Q2) + # Double points < 2df — 4.
@ # Cusps + 2 - # Double points < 6dr — 12.

@ The easy part: Cusps come from (simple) critical points of . Apply
Riemann-Hurwitz formula to the branched covering f : ¥ — C to
deduce control cusps.

@ The harder part: Use the dynamics of the Schwarz reflection o to
assign a critical point of f to each component of Q¢ and each double
point on 0f2.



Let T be a component of Q¢ with m double points. Then, at least (m + 3)
critical values of f lie in U oI(T).
Jj=0

Proof of main theorem assuming the lemma:
o Let k = Conn(Q2), and Ty,---, Tx be the components of Q¢ with
my, -+, my double points.

@ By the previous lemma, this requires
Zf‘zl(3 + m;) = 3k + # Double points
critical points of f.
e By Riemann-Hurwitz, f has (2df + 2k — 4) critical points.

@ Hence, 3k + # Double points < 2df + 2k — 4,
= k + # Double points < 2df — 4.



Comments on the proof of the key lemma

@ While the Lee—Makarov proof ‘forgets’ the action of o over Q°, we
analyze the set of points escaping to £2¢ to prove the key lemma.

@ Our proof relies only on classical holomorphic dynamics techniques; no
quasiconformal surgery or Hele-Shaw flow involved.

@ The bound on connectivity and double points is sharp.



The non-singular case

@ Dynamics of o + moduli of annuli argument.



The case of two cusps

@ Dynamics of o + contraction of hyperbolic metric + parabolic
dynamics at cusps.



The case of double points

@ Dynamics of o + hyperbolic contraction + parabolic dynamics at
cusps + (easy) graph theory.



Mating phenomena



The deltoid reflection map

e For the cubic potential Q(z) = |z|?> — Re(z3), the deltoid appears as a
“maximal” algebraic droplet.

@ The complement of the deltoid has a Riemann map ¢(z) = z + ﬁ
so it is a quadrature domain.

¢
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@ The corresponding Schwarz reflection map is unicritical, and has a
super-attracting fixed point at co.



Deltoid Reflection as a mating




Theorem (Deltoid Reflection as a mating)

1) The dynamical plane of the Schwarz reflection o of the deltoid can be
partitioned as
C=T>Uurl UA(c),

where T is the tiling set, A(cc) is the basin of infinity, and T is their
common boundary (which we call the limit set). Moreover, I is a locally
connected Jordan curve.

2) o is the unique conformal mating of the reflection map p and the
anti-polynomial z — z? : D — D.




Generality: dynamical partition of Schwarz dynamical plane

o T7%:=Q°\ Singular points.
e The tiling set T>(c) of o is defined as the set of points in Q that

o0
eventually escape to T9; i.e. T®(0) = U o k(TO).
k=0

o The non-escaping set K(c) of o is the complement C\ T°°(0).









A general combination theorem

Theorem (Luo—Lyubich—M)

Let f be a ‘generic’ degree d anti-polynomial with connected Julia set.
Then, there exists a Schwarz reflection map, unique up to Mébius
conjugacy, that is a conformal mating between f and the Nielsen map of an
ideal (d + 1)—gon reflection group.

@ Requires new surgery/uniformization techniques.

@ The same surgery machinery yields sharpness of our upper bounds.
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