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Quadrature domains in statistical physics



Motivation from physics: 2D Coulomb gas ensembles

Consider N electrons placed in the complex plane at points {zj}Nj=1,
influenced by a strong external (magnetic/electrostatic) field with
uniform density.
Let the potential of the external field be NQ : C→ R ∪ {+∞}.

The combined energy resulting from particle interaction and external
potential is:

EQ(z1, · · · , zN) =
∑
i 6=j

ln |zi − zj |−1 + N
N∑
j=1

Q(zj).



Large N behavior of 2D Coulomb gas ensembles

It is more likely to find configurations of electrons with low energy.
This leads to the following joint density of states

exp(−EQ(z1, · · · , zN))

ZN
dVol2N ∈ Prob(CN).

We are interested in the limiting behavior of the point process as the
number of electrons grows to infinity.

In the limit, the electrons condensate on a compact set T , and they
are distributed according to the normalized area measure of T .
(Wiegmann, Zabrodin, Elbau, Felder, Hedenmalm, Makarov, et al.)



Random normal matrix ensemble

For a potential Q, consider the probability measure

e−N trace Q(M)dM/ZN

on the set of N × N complex normal matrices with spectrum in some
compact set.

(Elbau–Felder, Hedenmalm–Makarov) The corresponding eigenvalues
{λj} ∈ CN are distributed according to the probability measure

e−EQ(λ1,··· ,λN)dA(λ1) · · · dA(λN)/ZN

In the large N limit, the eigenvalues are distributed according to the
normalized area measure of a compact set T .

In many physically interesting cases, the potential Q satisfies some
algebraic properties. The set T (on which eigenvalues/electrons
condensate) is then called an algebraic droplet of Q.



From algebraic droplets to quadrature domains

Algebraic potential: Q(z) = |z |2 −<(H(z)), where ∂H is a rational
function.

In this situation, the complementary components of the droplet T
admit global reflection maps. (Lee-Makarov)

Definition (Quadrature Domains – Aharonov, Shapiro)

A domain Ω ( Ĉ (with ∞ /∈ ∂Ω and int(Ω) = Ω) is called a quadrature
domain if there exists a continuous function σ : Ω→ Ĉ satisfying the
following two properties:

1 σ = id on ∂Ω.
2 σ is anti-meromorphic on Ω.

The map σ is called the Schwarz reflection map of Ω.



Quadrature domains

Definition (Quadrature Domains – Aharonov, Shapiro)

A domain Ω ( Ĉ (with ∞ /∈ ∂Ω and int(Ω) = Ω) is called a quadrature
domain if there exists a continuous function σ : Ω→ Ĉ satisfying the
following two properties:

1 σ = id on ∂Ω.
2 σ is anti-meromorphic on Ω.

The map σ is called the Schwarz reflection map of Ω.

Thus, the study of algebraic droplets is related to the study of
quadrature domains.

Lee and Makarov used iteration of Schwarz reflection maps to study
the topology of quadrature domains.



Classical perspective: quadrature identity

A domain Ω ( Ĉ (with ∞ /∈ ∂Ω and int(Ω) = Ω) is a quadrature
domain ⇐⇒
There exists a rational map RΩ with all poles inside Ω such that∫

Ω
φdA =

1
2i

∮
∂Ω
φ(z)RΩ(z)dz

(
=
∑

ckφ
(nk )(ak)

)
for all φ ∈ H(Ω) ∩ C (Ω) (if ∞ ∈ Ω, one also requires φ(∞) = 0).

By definition, order(Ω) := deg(RΩ).

The rational map RΩ and the Schwarz reflection map σ have the same
(finite) set of poles.



Algebraic properties, and complexity



Simply connected quadrature domains

A simply connected domain Ω ( Ĉ with ∞ /∈ ∂Ω and int(Ω) = Ω is a
quadrature domain if and only if the Riemann map φ : D→ Ω extends
as a rational map of Ĉ.

The rational map φ semi-conjugates the reflection map 1/z of D to
the Schwarz reflection map σ of Ω.



Quadrature domains and Schottky double

Ω = Quadrature domain of connectivity k with Schwarz reflection
map σ (i.e., k = # connected components of Ωc = Ĉ \ Ω).

Theorem (Gustafsson, Acta Appl. Math., 1983)
There exist a genus k − 1 compact Riemann surface Σ, an anti-conformal
involution ι of Σ, and a meromorphic map f : Σ→ Ĉ such that

1 Fix(ι) is a disjoint union of k circles;
2 Σ \ Fix(ι) = Σ+ t Σ−, where Σ± are connected;
3 f : Σ− → Ω is a conformal isomorphism; and
4 σ ≡ f ◦ ι ◦ (f |Σ−)−1.



Complexity of quadrature domains

σ is an algebraic function; and

deg(σ) (complexity of Schwarz reflection)

≈ order(Ω) := deg(RΩ) (complexity of quadrature identity)

≈ deg(∂H) (complexity of external field)

≈ df := deg
(
f : Σ→ Ĉ

)
(algebraic complexity).

The boundary ∂Ω is a real-algebraic curve whose singularities are
cusps or double points.

Can the topology + geometry of a quadrature domain Ω be controlled
by df ?



Topology/geometry of quadrature domains
via dynamics



Controlling topology/geometry of quadrature domains

Goal: Get upper bounds on the connectivity and the number of
singular points of Ω in terms of df .

Theorem (Gustafsson, J. Analyse Math., 1988)

Conn(Ω) + # Cusps + 2 ·# Double points ≤ d2
f .

Proof idea: genus-degree formula for algebraic curves + Bézout’s theorem.

Theorem (Lee–Makarov, J. Amer. Math. Soc., 2016)

Conn(Ω) ≤ 2df − 4.

Proof idea:

1 Use PDE (Hele-Shaw flow) to reduce to the non-singular case.
2 Obtain the desired bound by studying antiholomorphic dynamics of

Schwarz reflection maps.



Key step of Lee–Makarov proof

Look at the degree ≈ df branched covering σ : σ−1(Ω)→ Ω; i.e.,
forget the action of σ over Ωc .

Extend it to a topological branched covering σ̃ of Ĉ with an attracting
fixed point in each component of Ωc .
Promote σ̃ to a holomorphic (rational) map using quasiconformal
methods; smoothness of ∂Ω is essential for this step.
A degree ≈ df rational map has at most O(df ) attracting fixed points.



Improving previously known bounds

Revised goal: Get linear upper bounds (in df ) on the connectivity and
the number of singular points of Ω.

Theorem (Rashmita–M)
1 Conn(Ω) + # Double points ≤ 2df − 4.

2 # Cusps + 2 ·# Double points ≤ 6df − 12.

The easy part: Cusps come from (simple) critical points of f . Apply
Riemann-Hurwitz formula to the branched covering f : Σ→ Ĉ to
deduce control cusps.

The harder part: Use the dynamics of the Schwarz reflection σ to
assign a critical point of f to each component of Ωc and each double
point on ∂Ω.



Key lemma

Lemma
Let T be a component of Ωc with m double points. Then, at least (m + 3)

critical values of f lie in
⋃
j≥0

σ−j(T ).

Proof of main theorem assuming the lemma:
Let k = Conn(Ω), and T1, · · · ,Tk be the components of Ωc with
m1, · · · ,mk double points.

By the previous lemma, this requires∑k
i=1(3 + mi ) = 3k + # Double points

critical points of f .

By Riemann-Hurwitz, f has (2df + 2k − 4) critical points.

Hence, 3k + # Double points ≤ 2df + 2k − 4,
=⇒ k + # Double points ≤ 2df − 4.



Comments on the proof of the key lemma

While the Lee–Makarov proof ‘forgets’ the action of σ over Ωc , we
analyze the set of points escaping to Ωc to prove the key lemma.

Our proof relies only on classical holomorphic dynamics techniques; no
quasiconformal surgery or Hele-Shaw flow involved.

The bound on connectivity and double points is sharp.



The non-singular case

Dynamics of σ + moduli of annuli argument.



The case of two cusps

Dynamics of σ + contraction of hyperbolic metric + parabolic
dynamics at cusps.



The case of double points

Dynamics of σ + hyperbolic contraction + parabolic dynamics at
cusps + (easy) graph theory.



Mating phenomena



The deltoid reflection map

For the cubic potential Q(z) = |z |2 −Re(z3), the deltoid appears as a
“maximal” algebraic droplet.
The complement of the deltoid has a Riemann map φ(z) = z + 1

2z2 ,
so it is a quadrature domain.

The corresponding Schwarz reflection map is unicritical, and has a
super-attracting fixed point at ∞.



Deltoid Reflection as a mating

z2



Theorem (Deltoid Reflection as a mating)
1) The dynamical plane of the Schwarz reflection σ of the deltoid can be
partitioned as

Ĉ = T∞ t Γ t A(∞),

where T∞ is the tiling set, A(∞) is the basin of infinity, and Γ is their
common boundary (which we call the limit set). Moreover, Γ is a locally
connected Jordan curve.

2) σ is the unique conformal mating of the reflection map ρ and the
anti-polynomial z 7→ z2 : D→ D.



Generality: dynamical partition of Schwarz dynamical plane

T 0 := Ωc \ Singular points.

The tiling set T∞(σ) of σ is defined as the set of points in Ω that

eventually escape to T 0; i.e. T∞(σ) =
∞⋃
k=0

σ−k(T 0).

The non-escaping set K (σ) of σ is the complement Ĉ \ T∞(σ).



z2 − 1



z3



A general combination theorem

Theorem (Luo–Lyubich–M)
Let f be a ‘generic’ degree d anti-polynomial with connected Julia set.
Then, there exists a Schwarz reflection map, unique up to Möbius
conjugacy, that is a conformal mating between f and the Nielsen map of an
ideal (d + 1)−gon reflection group.

Requires new surgery/uniformization techniques.

The same surgery machinery yields sharpness of our upper bounds.



Thank you!


