Topology and geometry of quadrature domains via holomorphic dynamics

Sabya Mukherjee

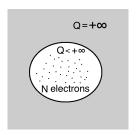
Tata Institute of Fundamental Research

Bielefeld-Melbourne-Seoul Random Matrix Theory Seminar November 2025 Quadrature domains in statistical physics

Motivation from physics: 2D Coulomb gas ensembles

• Consider N electrons placed in the complex plane at points $\{z_j\}_{j=1}^N$, influenced by a strong external (magnetic/electrostatic) field with uniform density.

Let the potential of the external field be $NQ : \mathbb{C} \to \mathbb{R} \cup \{+\infty\}$.



• The combined energy resulting from particle interaction and external potential is:

$$\mathcal{E}_{Q}(z_{1}, \cdots, z_{N}) = \sum_{i \neq i} \ln |z_{i} - z_{j}|^{-1} + N \sum_{i=1}^{N} Q(z_{i}).$$

Large N behavior of 2D Coulomb gas ensembles

It is more likely to find configurations of electrons with low energy.
 This leads to the following joint density of states

$$\frac{\exp(-\mathcal{E}_Q(z_1,\cdots,z_N))}{Z_N}dVol_{2N}\in\operatorname{Prob}(\mathbb{C}^N).$$

- We are interested in the limiting behavior of the point process as the number of electrons grows to infinity.
- In the limit, the electrons condensate on a compact set \mathcal{T} , and they are distributed according to the normalized area measure of \mathcal{T} . (Wiegmann, Zabrodin, Elbau, Felder, Hedenmalm, Makarov, et al.)

Random normal matrix ensemble

 \bullet For a potential Q, consider the probability measure

$$e^{-N \operatorname{trace} Q(M)} dM/Z_N$$

on the set of $N \times N$ complex normal matrices with spectrum in some compact set.

• (Elbau–Felder, Hedenmalm–Makarov) The corresponding eigenvalues $\{\lambda_j\}\in\mathbb{C}^N$ are distributed according to the probability measure

$$e^{-\mathcal{E}_Q(\lambda_1,\cdots,\lambda_N)}dA(\lambda_1)\cdots dA(\lambda_N)/Z_N$$

- In the large N limit, the eigenvalues are distributed according to the normalized area measure of a compact set T.
- In many physically interesting cases, the potential Q satisfies some algebraic properties. The set T (on which eigenvalues/electrons condensate) is then called an algebraic droplet of Q.

From algebraic droplets to quadrature domains

- Algebraic potential: $Q(z) = |z|^2 \Re(H(z))$, where ∂H is a rational function.
- In this situation, the complementary components of the droplet T admit global reflection maps. (Lee-Makarov)

Definition (Quadrature Domains - Aharonov, Shapiro)

A domain $\Omega \subsetneq \hat{\mathbb{C}}$ (with $\infty \notin \partial \Omega$ and $\operatorname{int}(\overline{\Omega}) = \Omega$) is called a *quadrature* domain if there exists a continuous function $\sigma : \overline{\Omega} \to \hat{\mathbb{C}}$ satisfying the following two properties:

- ${f 2}$ σ is anti-meromorphic on Ω .
 - The map σ is called the *Schwarz reflection map* of Ω .

Quadrature domains

Definition (Quadrature Domains - Aharonov, Shapiro)

A domain $\Omega \subsetneq \hat{\mathbb{C}}$ (with $\infty \notin \partial \Omega$ and $\operatorname{int}(\overline{\Omega}) = \Omega$) is called a *quadrature* domain if there exists a continuous function $\sigma : \overline{\Omega} \to \hat{\mathbb{C}}$ satisfying the following two properties:

- \circ is anti-meromorphic on Ω .
 - The map σ is called the *Schwarz reflection map* of Ω .
 - Thus, the study of algebraic droplets is related to the study of quadrature domains.
 - Lee and Makarov used iteration of Schwarz reflection maps to study the topology of quadrature domains.

Classical perspective: quadrature identity

• A domain $\Omega \subsetneq \widehat{\mathbb{C}}$ (with $\infty \notin \partial \Omega$ and $\operatorname{int}(\overline{\Omega}) = \Omega$) is a quadrature domain \iff

There exists a rational map R_{Ω} with all poles inside Ω such that

$$\int_{\Omega} \phi dA = \frac{1}{2i} \oint_{\partial \Omega} \phi(z) R_{\Omega}(z) dz \quad \left(= \sum c_k \phi^{(n_k)}(a_k) \right)$$

for all $\phi \in H(\Omega) \cap C(\overline{\Omega})$ (if $\infty \in \Omega$, one also requires $\phi(\infty) = 0$).

- By definition, $\operatorname{order}(\Omega) := \deg(R_{\Omega})$.
- The rational map R_{Ω} and the Schwarz reflection map σ have the same (finite) set of poles.

Algebraic properties, and complexity

Simply connected quadrature domains

• A simply connected domain $\Omega \subsetneq \widehat{\mathbb{C}}$ with $\infty \notin \partial \Omega$ and $\operatorname{int}(\overline{\Omega}) = \Omega$ is a quadrature domain if and only if the Riemann map $\phi : \mathbb{D} \to \Omega$ extends as a rational map of $\widehat{\mathbb{C}}$.

$$\overline{\mathbb{D}} \xrightarrow{\varphi} \overline{\Omega}$$

$$\downarrow 1/\overline{z} \qquad \qquad \downarrow \sigma$$

$$\hat{\mathbb{C}} \setminus \mathbb{D} \xrightarrow{\varphi} \hat{\mathbb{C}}$$

• The rational map ϕ semi-conjugates the reflection map $1/\overline{z}$ of $\mathbb D$ to the Schwarz reflection map σ of Ω .

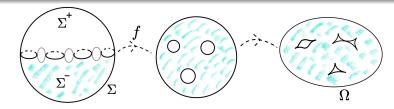
Quadrature domains and Schottky double

• $\Omega = \text{Quadrature domain of connectivity } k \text{ with Schwarz reflection}$ map σ (i.e., k = # connected components of $\Omega^c = \widehat{\mathbb{C}} \setminus \Omega$).

Theorem (Gustafsson, Acta Appl. Math., 1983)

There exist a genus k-1 compact Riemann surface Σ , an anti-conformal involution ι of Σ , and a meromorphic map $f:\Sigma\to\widehat{\mathbb{C}}$ such that

- Fix(ι) is a disjoint union of k circles;
- **2** $\Sigma \setminus \operatorname{Fix}(\iota) = \Sigma^+ \sqcup \Sigma_-$, where Σ^{\pm} are connected;
- **3** $f: \Sigma^- \to \Omega$ is a conformal isomorphism; and



Complexity of quadrature domains

 \bullet σ is an algebraic function; and

$$deg(\sigma)$$
 (complexity of Schwarz reflection)

$$pprox ext{ order}(\Omega) := \deg(R_{\Omega}) ext{ (complexity of quadrature identity)}$$
 $pprox ext{ deg}(\partial H) ext{ (complexity of external field)}$

$$pprox d_f := \deg \left(f : \Sigma o \widehat{\mathbb{C}} \right) \quad ext{(algebraic complexity)}.$$

- \bullet The boundary $\partial\Omega$ is a real-algebraic curve whose singularities are cusps or double points.
- Can the topology + geometry of a quadrature domain Ω be controlled by d_f ?

Topology/geometry of quadrature domains via dynamics

Controlling topology/geometry of quadrature domains

• Goal: Get upper bounds on the connectivity and the number of singular points of Ω in terms of d_f .

Theorem (Gustafsson, J. Analyse Math., 1988)

$$\operatorname{Conn}(\Omega) + \# \operatorname{Cusps} + 2 \cdot \# \operatorname{Double points} \leq d_f^2$$
.

ullet Proof idea: genus-degree formula for algebraic curves + Bézout's theorem.

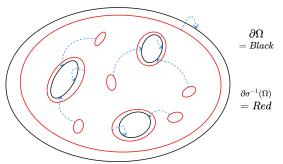
Theorem (Lee–Makarov, J. Amer. Math. Soc., 2016)

$$\operatorname{Conn}(\Omega) \leq 2d_f - 4$$
.

- Proof idea:
 - Use PDE (Hele-Shaw flow) to reduce to the non-singular case.
 - Obtain the desired bound by studying antiholomorphic dynamics of Schwarz reflection maps.

Key step of Lee-Makarov proof

• Look at the degree $\approx d_f$ branched covering $\sigma : \sigma^{-1}(\Omega) \to \Omega$; i.e., forget the action of σ over Ω^c .



- Extend it to a topological branched covering $\widetilde{\sigma}$ of $\widehat{\mathbb{C}}$ with an attracting fixed point in each component of Ω^c .
- Promote $\widetilde{\sigma}$ to a holomorphic (rational) map using quasiconformal methods; smoothness of $\partial\Omega$ is essential for this step.
- A degree $\approx d_f$ rational map has at most $O(d_f)$ attracting fixed points.

Improving previously known bounds

• Revised goal: Get linear upper bounds (in d_f) on the connectivity and the number of singular points of Ω .

Theorem (Rashmita-M)

- **1** Conn(Ω) + # Double points ≤ $2d_f 4$.
- 2 # Cusps + 2 · # Double points $\leq 6d_f 12$.
 - The easy part: Cusps come from (simple) critical points of f. Apply Riemann-Hurwitz formula to the branched covering $f: \Sigma \to \widehat{\mathbb{C}}$ to deduce control cusps.
 - The harder part: Use the dynamics of the Schwarz reflection σ to assign a critical point of f to each component of Ω^c and each double point on $\partial\Omega$.

Key lemma

Lemma

Let T be a component of Ω^c with m double points. Then, at least (m+3) critical values of f lie in $\bigcup_{j>0} \sigma^{-j}(T)$.

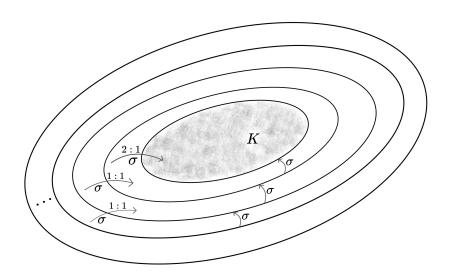
Proof of main theorem assuming the lemma:

- Let $k = \text{Conn}(\Omega)$, and T_1, \dots, T_k be the components of Ω^c with m_1, \dots, m_k double points.
- By the previous lemma, this requires $\sum_{i=1}^k (3+m_i) = 3k + \# \text{ Double points}$ critical points of f.
- By Riemann-Hurwitz, f has $(2d_f + 2k 4)$ critical points.
- Hence, 3k + # Double points $\leq 2d_f + 2k 4$, $\implies k + \#$ Double points $\leq 2d_f 4$.

Comments on the proof of the key lemma

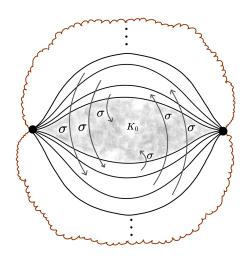
- While the Lee–Makarov proof 'forgets' the action of σ over Ω^c , we analyze the set of points escaping to Ω^c to prove the key lemma.
- Our proof relies only on classical holomorphic dynamics techniques; no quasiconformal surgery or Hele-Shaw flow involved.
- The bound on connectivity and double points is sharp.

The non-singular case



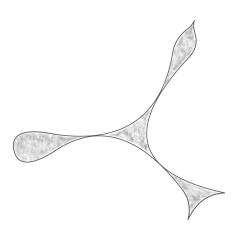
 \bullet Dynamics of σ + moduli of annuli argument.

The case of two cusps



• Dynamics of σ + contraction of hyperbolic metric + parabolic dynamics at cusps.

The case of double points

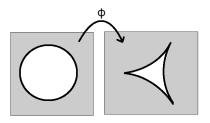


• Dynamics of σ + hyperbolic contraction + parabolic dynamics at cusps + (easy) graph theory.

Mating phenomena

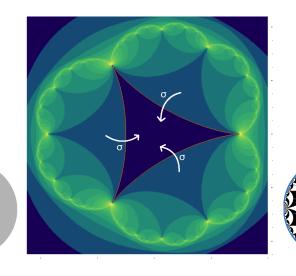
The deltoid reflection map

- For the cubic potential $Q(z)=|z|^2-{\rm Re}(z^3)$, the deltoid appears as a "maximal" algebraic droplet.
- The complement of the deltoid has a Riemann map $\phi(z) = z + \frac{1}{2z^2}$, so it is a quadrature domain.



• The corresponding Schwarz reflection map is unicritical, and has a super-attracting fixed point at ∞ .

Deltoid Reflection as a mating

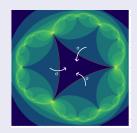


Theorem (Deltoid Reflection as a mating)

1) The dynamical plane of the Schwarz reflection σ of the deltoid can be partitioned as

$$\hat{\mathbb{C}} = T^{\infty} \sqcup \Gamma \sqcup A(\infty),$$

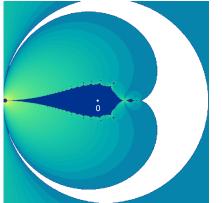
where T^{∞} is the tiling set, $A(\infty)$ is the basin of infinity, and Γ is their common boundary (which we call the limit set). Moreover, Γ is a locally connected Jordan curve.

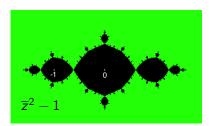


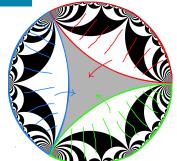
2) σ is the unique conformal mating of the reflection map ρ and the anti-polynomial $z \mapsto \overline{z}^2 : \overline{\mathbb{D}} \to \overline{\mathbb{D}}$.

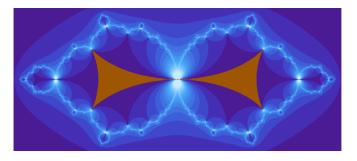
Generality: dynamical partition of Schwarz dynamical plane

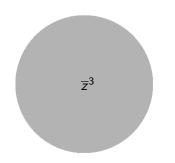
- $T^0 := \Omega^c \setminus \text{Singular points}$.
- The tiling set $T^{\infty}(\sigma)$ of σ is defined as the set of points in $\overline{\Omega}$ that eventually escape to T^0 ; i.e. $T^{\infty}(\sigma) = \bigcup_{k=0}^{\infty} \sigma^{-k}(T^0)$.
- The non-escaping set $K(\sigma)$ of σ is the complement $\hat{\mathbb{C}} \setminus T^{\infty}(\sigma)$.

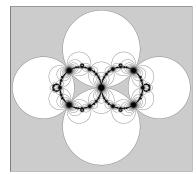












A general combination theorem

Theorem (Luo-Lyubich-M)

Let f be a 'generic' degree d anti-polynomial with connected Julia set. Then, there exists a Schwarz reflection map, unique up to Möbius conjugacy, that is a conformal mating between f and the Nielsen map of an ideal (d+1)-gon reflection group.

- Requires new surgery/uniformization techniques.
- The same surgery machinery yields sharpness of our upper bounds.

Thank you!