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Quadrature domains in statistical physics



Motivation from Physics: 2D Coulomb Gas Ensembles

Consider N electrons placed in the complex plane at points {zj}Nj=1,

influenced by a strong external (magnetic/electrostatic) field with
uniform density. Let the potential of the external field be
NQ : C→ R ∪ {+∞}.

The combined energy resulting from particle interaction and external
potential is:

EQ(z1, · · · , zN) =
∑
i 6=j

ln |zi − zj |−1 + N
N∑
j=1

Q(zj).



Motivation from Physics: 2D Coulomb Gas Ensembles

Consider N electrons placed in the complex plane at points {zj}Nj=1,
influenced by a strong external (magnetic/electrostatic) field with
uniform density.

Let the potential of the external field be
NQ : C→ R ∪ {+∞}.

The combined energy resulting from particle interaction and external
potential is:

EQ(z1, · · · , zN) =
∑
i 6=j

ln |zi − zj |−1 + N
N∑
j=1

Q(zj).



Motivation from Physics: 2D Coulomb Gas Ensembles

Consider N electrons placed in the complex plane at points {zj}Nj=1,
influenced by a strong external (magnetic/electrostatic) field with
uniform density. Let the potential of the external field be
NQ : C→ R ∪ {+∞}.

The combined energy resulting from particle interaction and external
potential is:

EQ(z1, · · · , zN) =
∑
i 6=j

ln |zi − zj |−1 + N
N∑
j=1

Q(zj).



Motivation from Physics: 2D Coulomb Gas Ensembles

Consider N electrons placed in the complex plane at points {zj}Nj=1,
influenced by a strong external (magnetic/electrostatic) field with
uniform density. Let the potential of the external field be
NQ : C→ R ∪ {+∞}.

The combined energy resulting from particle interaction and external
potential is:

EQ(z1, · · · , zN) =
∑
i 6=j

ln |zi − zj |−1 + N
N∑
j=1

Q(zj).



Motivation from Physics: 2D Coulomb Gas Ensembles

Consider N electrons placed in the complex plane at points {zj}Nj=1,
influenced by a strong external (magnetic/electrostatic) field with
uniform density. Let the potential of the external field be
NQ : C→ R ∪ {+∞}.

The combined energy resulting from particle interaction and external
potential is:

EQ(z1, · · · , zN) =
∑
i 6=j

ln |zi − zj |−1 + N
N∑
j=1

Q(zj).



Large N Behavior of 2D Coulomb Gas Ensembles

It is more likely to find configurations of electrons with low energy.

This leads to the following joint density of states

exp(−EQ(z1, · · · , zN))

ZN
dVol2N ∈ Prob(CN).

We are interested in the limiting behavior of the point process as the
number of electrons grows to infinity.

In the limit, the electrons condensate on a compact set T , and they
are distributed according to the normalized area measure of T .
(Wiegmann, Zabrodin, Elbau, Felder, Hedenmalm, Makarov, et al.)

In various physically interesting cases, the external potential Q
satisfies some algebraic properties. The compact set T (on which
electrons condensate) is then called an algebraic droplet of Q.
In these situations, the complementary components of the droplet T
admit global reflection maps. (Lee-Makarov)
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From Algebraic Droplets to Quadrature Domains

Definition (Quadrature Domains – Aharonov, Shapiro)

A domain Ω ( Ĉ (with ∞ /∈ ∂Ω and int(Ω) = Ω) is called a quadrature
domain if there exists a continuous function σ : Ω→ Ĉ satisfying the
following two properties:

1 σ = id on ∂Ω.
2 σ is anti-meromorphic on Ω.

The map σ is called the Schwarz reflection map of Ω.

Thus, the study of algebraic droplets is related to the study of
quadrature domains.

Lee and Makarov used iteration of Schwarz reflection maps to study
the topology of quadrature domains.
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Quadrature Identities

A domain Ω ( Ĉ (with ∞ /∈ ∂Ω and int(Ω) = Ω) is a quadrature
domain ⇐⇒
There exists a rational map RΩ with all poles inside Ω such that∫

Ω
φdA =

1
2i

∮
∂Ω
φ(z)RΩ(z)dz

(
=
∑

ckφ
(nk )(ak)

)
for all φ ∈ H(Ω) ∩ C (Ω) (if ∞ ∈ Ω, one also requires φ(∞) = 0).

By definition, dΩ ≡ order(Ω) := deg(RΩ).

The rational map RΩ and the Schwarz reflection map σ have the same
(finite) set of poles.
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Algebraic properties of quadrature domains



Simply Connected Quadrature Domains

A simply connected domain Ω ( Ĉ with ∞ /∈ ∂Ω and int(Ω) = Ω is a
quadrature domain if and only if the Riemann map φ : D→ Ω extends
as a rational map of Ĉ.

The rational map φ semi-conjugates the reflection map 1/z of D to
the Schwarz reflection map σ of Ω.
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A simply connected domain Ω ( Ĉ with ∞ /∈ ∂Ω and int(Ω) = Ω is a
quadrature domain if and only if the Riemann map φ : D→ Ω extends
as a rational map of Ĉ.
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Quadrature domains and Schottky double

Ω = Quadrature domain of connectivity k with Schwarz reflection
map σ (i.e., k = # connected components of Ωc = Ĉ \ Ω).

Theorem (Gustafsson, Acta Appl. Math., 1983)
There exist a genus k − 1 compact Riemann surface Σ, an anti-conformal
involution ι of Σ, and a meromorphic map f : Σ→ Ĉ such that

1 Fix(ι) is a disjoint union of k circles;
2 Σ \ Fix(ι) = Σ+ t Σ−, where Σ± are connected;
3 f : Σ− → Ω is a conformal isomorphism; and
4 σ ≡ f ◦ ι ◦ (f |Σ−)−1.



Algebraic properties

σ is an algebraic function; and

deg
(
σ : σ−1(Ω)→ Ω

)
= df − 1,

deg
(
σ : σ−1(Int Ωc)→ Int Ωc

)
= df ,

where df := deg
(
f : Σ→ Ĉ

)
.

df = dΩ or 1 + dΩ, depending on whether Ω is bounded or
unbounded.

The boundary ∂Ω is a real-algebraic curve whose singularities are
cusps or double points.
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Topology/geometry of quadrature domains
via dynamics



Controlling topology/geometry of quadrature domains

Goal: Get upper bounds on the connectivity and the number of
singular points of Ω in terms of df .

Theorem (Gustafsson, J. Analyse Math., 1988)

Conn(Ω) + # Cusps + 2 ·# Double points ≤ d2
f .

Proof idea: genus-degree formula for algebraic curves + Bézout’s theorem.

Theorem (Lee–Makarov, J. Amer. Math. Soc., 2016)

Conn(Ω) ≤ 2df − 4.

Proof idea:

1 Use PDE (Hele-Shaw flow) to reduce to the non-singular case.
2 Obtain the desired bound by studying antiholomorphic dynamics of

Schwarz reflection maps.
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Key step of Lee–Makarov proof

Look at the degree df − 1 branched covering σ : σ−1(Ω)→ Ω; i.e.,
forget the action of σ over Ωc .

Extend it to a degree df − 1 branched covering σ̃ of Ĉ with an
attracting fixed point in each component of Ωc .
Promote σ̃ to a holomorphic (rational) map via quasiconformal
surgery; smoothness of ∂Ω is essential for this step.
Use the fact that such a map has at most 2(df − 1)− 2 = 2df − 4
attracting fixed points.
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attracting fixed point in each component of Ωc .
Promote σ̃ to a holomorphic (rational) map via quasiconformal
surgery; smoothness of ∂Ω is essential for this step.

Use the fact that such a map has at most 2(df − 1)− 2 = 2df − 4
attracting fixed points.



Key step of Lee–Makarov proof

Look at the degree df − 1 branched covering σ : σ−1(Ω)→ Ω; i.e.,
forget the action of σ over Ωc .

Extend it to a degree df − 1 branched covering σ̃ of Ĉ with an
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Improving previously known bounds

Revised goal: Get linear upper bounds (in df ) on the connectivity and
the number of singular points of Ω.

Theorem (Rashmita–M)
1 Conn(Ω) + # Double points ≤ 2df − 4.

2 # Cusps + 2 ·# Double points ≤ 6df − 12.

The easy part: Cusps are (simple) critical points of f . Apply the
Riemann-Hurwitz formula to the branched covering f : Σ→ Ĉ to
deduce the second part.

The harder part: Use the dynamics of the Schwarz reflection σ to
assign a critical point of f to each component of Ωc and each double
point on ∂Ω.
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The key lemma

Lemma
Let T be a component of Ωc with m double points. Then, at least (m + 3)

critical values of f lie in
⋃
j≥0

σ−j(T ).

Proof of main theorem assuming the lemma:
Let k = Conn(Ω), and T1, · · · ,Tk be the components of Ωc with
m1, · · · ,mk double points.

By the previous lemma, this requires∑k
i=1(3 + mi ) = 3k + # Double points

critical points of f .

By Riemann-Hurwitz, f has
2df − (2− 2(k − 1)) = 2df + 2k − 4

critical points.

Hence, 3k + # Double points ≤ 2df + 2k − 4; i.e.,
k + # Double points ≤ 2df − 4.
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Comments on the proof of the key lemma

While the Lee–Makarov proof ‘forgets’ the action of σ over Ωc , we
analyze the set of points escaping to Ωc to prove the key lemma.

Our proof relies only on classical holomorphic dynamics techniques; no
quasiconformal surgery or Hele-Shaw flow involved.

Sample case I: m = 0, ∂T is smooth. Dynamics of σ + Analytic
geometry of

⋃
j≥0 σ

−j(T ) (specifically, moduli of annuli argument).

Sample case II: m = 0, ∂T has 2 cusps. Dynamics of σ on⋃
j≥0 σ

−j(T ) + Local parabolic dynamics at cusps + Classical
Denjoy-Wolff theorem on dynamics of holomorphic maps on the disk.

Sample case III: m=1 and ∂T has 2 cusps. Dynamics of σ on⋃
j≥0 σ

−j(T ) + Local parabolic dynamics at double points +
Denjoy-Wolff theorem.
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Mating phenomena



The deltoid reflection map

For the cubic potential Q(z) = |z |2 −Re(z3), the deltoid appears as a
“maximal” algebraic droplet.

The complement of the deltoid has a Riemann map φ(z) = z + 1
2z2 ,

so it is a quadrature domain.

The corresponding Schwarz reflection map is unicritical, and has a
super-attracting fixed point at ∞.
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Deltoid Reflection as a mating

z2



Theorem (Deltoid Reflection as a mating)
1) The dynamical plane of the Schwarz reflection σ of the deltoid can be
partitioned as

Ĉ = T∞ t Γ t A(∞),

where T∞ is the tiling set, A(∞) is the basin of infinity, and Γ is their
common boundary (which we call the limit set). Moreover, Γ is a locally
connected Jordan curve.

2) σ is the unique conformal mating of the reflection map ρ and the
anti-polynomial z 7→ z2 : D→ D.
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Generality: dynamical partition of Schwarz dynamical plane

T 0 := Ωc \ Singular points.

The tiling set T∞(σ) of σ is defined as the set of points in Ω that

eventually escape to T 0; i.e. T∞(σ) =
∞⋃
k=0

σ−k(T 0).

The non-escaping set K (σ) of σ is the complement Ĉ \ T∞(σ).
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z2 − 1



z3



A general combination theorem

Theorem (Luo–Lyubich–M)
Let f be a generic degree d anti-polynomial with connected Julia set.
Then, there exists a Schwarz reflection map, unique up to Möbius
conjugacy, that is a conformal mating between f and the Nielsen map of an
ideal (d + 1)−gon reflection group.



Thank you!


