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Quadrature domains in statistical physics
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Motivation from Physics: 2D Coulomb Gas Ensembles

@ Consider N electrons placed in the complex plane at points {zj}j 1
influenced by a strong external (magnetic/electrostatic) field with
uniform density. Let the potential of the external field be

NQ : C — RU {+o0}.

@ The combined energy resulting from particle interaction and external
potential is:

Eq(z, - Z|n|z,—zj| 1—|—NZQZJ
i#j
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Large N Behavior of 2D Coulomb Gas Ensembles

@ It is more likely to find configurations of electrons with low energy.
This leads to the following joint density of states

exp(—E&q(z1, - -

228)) Yol € Prob(CV).
Zy

@ We are interested in the limiting behavior of the point process as the
number of electrons grows to infinity.

@ In the limit, the electrons condensate on a compact set T, and they
are distributed according to the normalized area measure of T.
(Wiegmann, Zabrodin, Elbau, Felder, Hedenmalm, Makarov, et al.)

@ In various physically interesting cases, the external potential @
satisfies some algebraic properties. The compact set T (on which
electrons condensate) is then called an algebraic droplet of Q.

@ In these situations, the complementary components of the droplet T
admit global reflection maps. (Lee-Makarov)
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From Algebraic Droplets to Quadrature Domains

Definition (Quadrature Domains — Aharonov, Shapiro)

A domain Q € C (with oo ¢ 9Q and int(Q) = Q) is called a quadrature
domain if there exists a continuous function o : Q — C satisfying the
following two properties:

@ o =1id on 992.

@ o is anti-meromorphic on Q.

@ The map o is called the Schwarz reflection map of Q.

@ Thus, the study of algebraic droplets is related to the study of
quadrature domains.

@ Lee and Makarov used iteration of Schwarz reflection maps to study
the topology of quadrature domains.
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Quadrature Identities

o A domain Q C C (with oo ¢ 8Q and int(Q) = Q) is a quadrature
domain <—
There exists a rational map Rq with all poles inside Q such that

/ngdA - 2‘1/ng o(2)Ra(2)dz (=Y cd™(ai))

for all ¢ € H(2) N C() (if oo € €, one also requires ¢(o0) = 0).
e By definition, dg = order(Q) := deg(Rq).

@ The rational map Rq and the Schwarz reflection map o have the same
(finite) set of poles.
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Simply Connected Quadrature Domains

o A simply connected domain Q C € with oo ¢ 9Q and int(Q) = Q is a
quadrature domain iffnd only if the Riemann map ¢ : D — Q extends
as a rational map of C.

@ The rational map ¢ semi-conjugates the reflection map 1/z of D to
the Schwarz reflection map o of Q.



Quadrature domains and Schottky double

o Q = Quadrature domain of connectivity k with Schwarz reflection
map o (i.e., k = # connected components of Q¢ =C\ Q).

Theorem (Gustafsson, Acta Appl. Math., 1983)

There exist a genus k — 1 compact Riemann surface ¥, an anti-conformal
involution v of ¥, and a meromorphic map f : ¥ — C such that

© Fix(v) is a disjoint union of k circles;

Q@ Y\ Fix(¢) =t UX_, where ¥* are connected;
© f:xX — Q is a conformal isomorphism; and
Qo=foro(fly-) L.
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Algebraic properties

@ o is an algebraic function; and

deg (0:071Q) = Q) =dr — 1,
deg (0 : o~ (Int Q°) — Int Q) = df,

where df := deg (f L= @)

@ dr = do or 1+ do, depending on whether Q is bounded or
unbounded.

@ The boundary 0 is a real-algebraic curve whose singularities are
cusps or double points.



Topology/geometry of quadrature domains
via dynamics
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Controlling topology/geometry of quadrature domains

@ Goal: Get upper bounds on the connectivity and the number of
singular points of Q in terms of dy.

Theorem (Gustafsson, J. Analyse Math., 1988)

Conn(Q) 4+ # Cusps + 2 - # Double points < d?.

@ Proof idea: genus-degree formula for algebraic curves + Bézout's theorem.

Theorem (Lee—Makarov, J. Amer. Math. Soc., 2016)

Conn(Q) < 2dr — 4.

@ Proof idea:

@ Use PDE (Hele-Shaw flow) to reduce to the non-singular case.

@ Obtain the desired bound by studying antiholomorphic dynamics of
Schwarz reflection maps.
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Key step of Lee—Makarov proof

@ Look at the degree dr — 1 branched covering o : O'_I(Q) — Q:ie.,
forget the action of o over Q°.

oN
= Black

9o 1(Q)
= Red

o Extend it to a degree df — 1 branched covering & of C with an
attracting fixed point in each component of Q€.

@ Promote ¢ to a holomorphic (rational) map via quasiconformal
surgery; smoothness of 92 is essential for this step.

@ Use the fact that such a map has at most 2(df — 1) —2 =2dr — 4
attracting fixed points.
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Improving previously known bounds

@ Revised goal: Get linear upper bounds (in df) on the connectivity and
the number of singular points of Q.

Theorem (Rashmita—M)

© Conn(Q2) + # Double points < 2df — 4.
@ # Cusps + 2 - # Double points < 6dr — 12.

© The easy part: Cusps are (simple) critical points of f. Apply the
Riemann-Hurwitz formula to the branched covering f : ¥ — C to
deduce the second part.

@ The harder part: Use the dynamics of the Schwarz reflection o to
assign a critical point of f to each component of Q¢ and each double
point on 0.
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The key lemma

Let T be a component of Q¢ with m double points. Then, at least (m + 3)

critical values of f lie in U o I(T).
j=20

Proof of main theorem assuming the lemma:
e Let k = Conn(2), and Ty, -+, Tx be the components of Q¢ with
my, -+, my double points.
@ By the previous lemma, this requires
S % (34 m;) = 3k + # Double points
critical points of f.
@ By Riemann-Hurwitz, f has
2df — (2 —2(k — 1)) = 2ds + 2k — 4
critical points.
@ Hence, 3k + # Double points < 2dr + 2k — 4; i.e.,
k + # Double points < 2dr — 4.
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Comments on the proof of the key lemma

@ While the Lee—Makarov proof ‘forgets’ the action of o over Q°, we
analyze the set of points escaping to £2¢ to prove the key lemma.

@ Qur proof relies only on classical holomorphic dynamics techniques; no
quasiconformal surgery or Hele-Shaw flow involved.

@ Sample case I: m = 0,9T is smooth. Dynamics of o + Analytic
geometry of | J;5q07/(T) (specifically, moduli of annuli argument).

@ Sample case Il: m = 0,0T has 2 cusps. Dynamics of o on
szo o J(T) + Local parabolic dynamics at cusps + Classical
Denjoy-Wolff theorem on dynamics of holomorphic maps on the disk.
@ Sample case Ill: m=1 and OT has 2 cusps. Dynamics of o on
Ujso o ~J(T) + Local parabolic dynamics at double points +
Denjoy-Wolff theorem.
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The deltoid reflection map

e For the cubic potential Q(z) = |z|?> — Re(z3), the deltoid appears as a
“maximal” algebraic droplet.

@ The complement of the deltoid has a Riemann map ¢(z) = z + ﬁ
so it is a quadrature domain.

¢

//-\N

@ The corresponding Schwarz reflection map is unicritical, and has a
super-attracting fixed point at co.
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Theorem (Deltoid Reflection as a mating)

1) The dynamical plane of the Schwarz reflection o of the deltoid can be
partitioned as
C=T>Uurl UA(c),

where T is the tiling set, A(cc) is the basin of infinity, and T is their
common boundary (which we call the limit set). Moreover, I is a locally
connected Jordan curve.

2) o is the unique conformal mating of the reflection map p and the
anti-polynomial z +— z? : D — D.
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Generality: dynamical partition of Schwarz dynamical plane

o T7%:=Q°\ Singular points.
e The tiling set T>(o) of o is defined as the set of points in Q that

o0
eventually escape to T9; i.e. T®(0) = U o k(TO).
k=0

o The non-escaping set K(c) of o is the complement C\ T°°(0).









A general combination theorem

Theorem (Luo—Lyubich-M)

Let f be a generic degree d anti-polynomial with connected Julia set.
Then, there exists a Schwarz reflection map, unique up to Mébius
conjugacy, that is a conformal mating between f and the Nielsen map of an
ideal (d + 1)—gon reflection group.




Thank youl



