Topology and geometry of quadrature domains via holomorphic dynamics

Sabya Mukherjee

Tata Institute of Fundamental Research

UB-UPC Dynamical Systems Seminar January 2025

Quadrature domains in statistical physics

• Consider N electrons placed in the complex plane at points $\{z_j\}_{j=1}^N$,

• Consider N electrons placed in the complex plane at points $\{z_j\}_{j=1}^N$, influenced by a strong external (magnetic/electrostatic) field with uniform density.

Consider N electrons placed in the complex plane at points {z_j}^N_{j=1}, influenced by a strong external (magnetic/electrostatic) field with uniform density. Let the potential of the external field be NQ : C → R ∪ {+∞}.

Consider N electrons placed in the complex plane at points {z_j}^N_{j=1}, influenced by a strong external (magnetic/electrostatic) field with uniform density. Let the potential of the external field be NQ : C → R ∪ {+∞}.

Consider N electrons placed in the complex plane at points {z_j}^N_{j=1}, influenced by a strong external (magnetic/electrostatic) field with uniform density. Let the potential of the external field be NQ : C → R ∪ {+∞}.

• The combined energy resulting from particle interaction and external potential is:

$$\mathcal{E}_Q(z_1, \cdots, z_N) = \sum_{i \neq j} \ln |z_i - z_j|^{-1} + N \sum_{j=1}^N Q(z_j).$$

• It is more likely to find configurations of electrons with low energy.

$$\frac{\exp(-\mathcal{E}_Q(z_1,\cdots,z_N))}{Z_N}dVol_{2N}\in\operatorname{Prob}(\mathbb{C}^N).$$

• It is more likely to find configurations of electrons with low energy. This leads to the following joint density of states

$$\frac{\exp(-\mathcal{E}_Q(z_1,\cdots,z_N))}{Z_N}dVol_{2N}\in\operatorname{Prob}(\mathbb{C}^N).$$

• We are interested in the limiting behavior of the point process as the number of electrons grows to infinity.

$$\frac{\exp(-\mathcal{E}_Q(z_1,\cdots,z_N))}{Z_N}dVol_{2N}\in\operatorname{Prob}(\mathbb{C}^N).$$

- We are interested in the limiting behavior of the point process as the number of electrons grows to infinity.
- In the limit, the electrons condensate on a compact set *T*, and they are distributed according to the normalized area measure of *T*. (Wiegmann, Zabrodin, Elbau, Felder, Hedenmalm, Makarov, et al.)

$$\frac{\exp(-\mathcal{E}_Q(z_1,\cdots,z_N))}{Z_N}dVol_{2N}\in\operatorname{Prob}(\mathbb{C}^N).$$

- We are interested in the limiting behavior of the point process as the number of electrons grows to infinity.
- In the limit, the electrons condensate on a compact set T, and they are distributed according to the normalized area measure of T. (Wiegmann, Zabrodin, Elbau, Felder, Hedenmalm, Makarov, et al.)
- In various physically interesting cases, the external potential Q satisfies some algebraic properties. The compact set T (on which electrons condensate) is then called an *algebraic droplet* of Q.

$$\frac{\exp(-\mathcal{E}_Q(z_1,\cdots,z_N))}{Z_N}dVol_{2N}\in\operatorname{Prob}(\mathbb{C}^N).$$

- We are interested in the limiting behavior of the point process as the number of electrons grows to infinity.
- In the limit, the electrons condensate on a compact set T, and they are distributed according to the normalized area measure of T. (Wiegmann, Zabrodin, Elbau, Felder, Hedenmalm, Makarov, et al.)
- In various physically interesting cases, the external potential Q satisfies some algebraic properties. The compact set T (on which electrons condensate) is then called an *algebraic droplet* of Q.
- In these situations, the complementary components of the droplet *T* admit global reflection maps. (Lee-Makarov)

- $\sigma = id \text{ on } \partial \Omega.$
- **2** σ is anti-meromorphic on Ω .

- $\sigma = id \text{ on } \partial \Omega.$
- **2** σ is anti-meromorphic on Ω .
 - The map σ is called the *Schwarz reflection map* of Ω .

- $\sigma = \mathrm{id} \text{ on } \partial \Omega.$
- **2** σ is anti-meromorphic on Ω .
 - The map σ is called the *Schwarz reflection map* of Ω .
 - Thus, the study of algebraic droplets is related to the study of quadrature domains.

- $\sigma = id \text{ on } \partial \Omega.$
- **2** σ is anti-meromorphic on Ω .
 - The map σ is called the *Schwarz reflection map* of Ω .
 - Thus, the study of algebraic droplets is related to the study of quadrature domains.
 - Lee and Makarov used iteration of Schwarz reflection maps to study the topology of quadrature domains.

• A domain $\Omega \subsetneq \widehat{\mathbb{C}}$ (with $\infty \notin \partial \Omega$ and $\operatorname{int}(\overline{\Omega}) = \Omega$) is a quadrature domain \iff

There exists a rational map R_{Ω} with all poles inside Ω such that

$$\int_{\Omega} \phi dA = \frac{1}{2i} \oint_{\partial \Omega} \phi(z) R_{\Omega}(z) dz \quad \left(= \sum c_k \phi^{(n_k)}(a_k) \right)$$

for all $\phi \in H(\Omega) \cap C(\overline{\Omega})$ (if $\infty \in \Omega$, one also requires $\phi(\infty) = 0$).

• A domain $\Omega \subsetneq \widehat{\mathbb{C}}$ (with $\infty \notin \partial \Omega$ and $\operatorname{int}(\overline{\Omega}) = \Omega$) is a quadrature domain \iff

There exists a rational map R_{Ω} with all poles inside Ω such that

$$\int_{\Omega} \phi dA = \frac{1}{2i} \oint_{\partial \Omega} \phi(z) R_{\Omega}(z) dz \quad \left(= \sum c_k \phi^{(n_k)}(a_k) \right)$$

for all $\phi \in H(\Omega) \cap C(\overline{\Omega})$ (if $\infty \in \Omega$, one also requires $\phi(\infty) = 0$).

• By definition, $d_{\Omega} \equiv \operatorname{order}(\Omega) := \operatorname{deg}(R_{\Omega}).$

• A domain $\Omega \subsetneq \widehat{\mathbb{C}}$ (with $\infty \notin \partial \Omega$ and $\operatorname{int}(\overline{\Omega}) = \Omega$) is a quadrature domain \iff

There exists a rational map R_{Ω} with all poles inside Ω such that

$$\int_{\Omega} \phi dA = \frac{1}{2i} \oint_{\partial \Omega} \phi(z) R_{\Omega}(z) dz \quad \left(= \sum c_k \phi^{(n_k)}(a_k) \right)$$

for all $\phi \in H(\Omega) \cap C(\overline{\Omega})$ (if $\infty \in \Omega$, one also requires $\phi(\infty) = 0$).

- By definition, $d_{\Omega} \equiv \operatorname{order}(\Omega) := \operatorname{deg}(R_{\Omega}).$
- The rational map R_{Ω} and the Schwarz reflection map σ have the same (finite) set of poles.

Algebraic properties of quadrature domains

Simply Connected Quadrature Domains

• A simply connected domain $\Omega \subsetneq \widehat{\mathbb{C}}$ with $\infty \notin \partial \Omega$ and $\operatorname{int}(\overline{\Omega}) = \Omega$ is a quadrature domain if and only if the Riemann map $\phi : \mathbb{D} \to \Omega$ extends as a rational map of $\widehat{\mathbb{C}}$.

Simply Connected Quadrature Domains

• A simply connected domain $\Omega \subsetneq \widehat{\mathbb{C}}$ with $\infty \notin \partial \Omega$ and $\operatorname{int}(\overline{\Omega}) = \Omega$ is a quadrature domain if and only if the Riemann map $\phi : \mathbb{D} \to \Omega$ extends as a rational map of $\widehat{\mathbb{C}}$.

Simply Connected Quadrature Domains

• A simply connected domain $\Omega \subsetneq \widehat{\mathbb{C}}$ with $\infty \notin \partial \Omega$ and $\operatorname{int}(\overline{\Omega}) = \Omega$ is a quadrature domain if and only if the Riemann map $\phi : \mathbb{D} \to \Omega$ extends as a rational map of $\widehat{\mathbb{C}}$.

• The rational map ϕ semi-conjugates the reflection map $1/\overline{z}$ of \mathbb{D} to the Schwarz reflection map σ of Ω .

Quadrature domains and Schottky double

 Ω = Quadrature domain of connectivity k with Schwarz reflection map σ (i.e., k = # connected components of Ω^c = Ĉ \ Ω).

Theorem (Gustafsson, Acta Appl. Math., 1983)

There exist a genus k - 1 compact Riemann surface Σ , an anti-conformal involution ι of Σ , and a meromorphic map $f : \Sigma \to \widehat{\mathbb{C}}$ such that

2
$$\Sigma \setminus \operatorname{Fix}(\iota) = \Sigma^+ \sqcup \Sigma_-$$
, where Σ^\pm are connected;

③
$$f: \Sigma^-
ightarrow \Omega$$
 is a conformal isomorphism; and

 $\ \bullet \ \ \sigma \equiv f \circ \iota \circ (f|_{\Sigma^{-}})^{-1}.$

 $\bullet \ \sigma$ is an algebraic function; and

$$\deg \left(\sigma : \sigma^{-1}(\Omega) \to \Omega \right) = d_f - 1, \\ \deg \left(\sigma : \sigma^{-1}(\operatorname{Int} \, \Omega^c) \to \operatorname{Int} \, \Omega^c \right) = d_f,$$

where
$$d_f := \deg \left(f : \Sigma \to \widehat{\mathbb{C}} \right)$$
.

 $\bullet~\sigma$ is an algebraic function; and

$$\deg \left(\sigma : \sigma^{-1}(\Omega) \to \Omega \right) = d_f - 1, \\ \deg \left(\sigma : \sigma^{-1}(\operatorname{Int} \, \Omega^c) \to \operatorname{Int} \, \Omega^c \right) = d_f,$$

where
$$d_f := \deg \left(f : \Sigma \to \widehat{\mathbb{C}} \right).$$

• $d_f = d_{\Omega}$ or $1 + d_{\Omega}$, depending on whether Ω is bounded or unbounded.

 $\bullet~\sigma$ is an algebraic function; and

$$\deg \left(\sigma : \sigma^{-1}(\Omega) \to \Omega \right) = d_f - 1, \\ \deg \left(\sigma : \sigma^{-1}(\operatorname{Int} \, \Omega^c) \to \operatorname{Int} \, \Omega^c \right) = d_f,$$

where
$$d_f := \deg \left(f : \Sigma \to \widehat{\mathbb{C}} \right).$$

- $d_f = d_{\Omega}$ or $1 + d_{\Omega}$, depending on whether Ω is bounded or unbounded.
- The boundary $\partial \Omega$ is a real-algebraic curve whose singularities are cusps or double points.

Topology/geometry of quadrature domains via dynamics

• Goal: Get upper bounds on the connectivity and the number of singular points of Ω in terms of *d*_f.

• Goal: Get upper bounds on the connectivity and the number of singular points of Ω in terms of d_f .

Theorem (Gustafsson, J. Analyse Math., 1988)

 $\operatorname{Conn}(\Omega) + \# \operatorname{Cusps} + 2 \cdot \# \text{ Double points} \le d_f^2.$

• Goal: Get upper bounds on the connectivity and the number of singular points of Ω in terms of d_f .

Theorem (Gustafsson, J. Analyse Math., 1988)

 $\operatorname{Conn}(\Omega) + \# \operatorname{Cusps} + 2 \cdot \# \text{ Double points} \leq d_f^2.$

• Proof idea: genus-degree formula for algebraic curves + Bézout's theorem.

• Goal: Get upper bounds on the connectivity and the number of singular points of Ω in terms of d_f .

Theorem (Gustafsson, J. Analyse Math., 1988)

 $\operatorname{Conn}(\Omega) + \# \operatorname{Cusps} + 2 \cdot \# \operatorname{Double points} \leq d_f^2$.

• Proof idea: genus-degree formula for algebraic curves + Bézout's theorem.

Theorem (Lee–Makarov, J. Amer. Math. Soc., 2016)

 $\operatorname{Conn}(\Omega) \leq 2d_f - 4.$

• Goal: Get upper bounds on the connectivity and the number of singular points of Ω in terms of d_f .

Theorem (Gustafsson, J. Analyse Math., 1988)

 $\operatorname{Conn}(\Omega) + \# \operatorname{Cusps} + 2 \cdot \# \operatorname{Double points} \leq d_f^2$.

• Proof idea: genus-degree formula for algebraic curves + Bézout's theorem.

Theorem (Lee–Makarov, J. Amer. Math. Soc., 2016)

 $\operatorname{Conn}(\Omega) \leq 2d_f - 4.$

Proof idea:

Use PDE (Hele-Shaw flow) to reduce to the non-singular case.

• Goal: Get upper bounds on the connectivity and the number of singular points of Ω in terms of d_f .

Theorem (Gustafsson, J. Analyse Math., 1988)

 $\operatorname{Conn}(\Omega) + \# \operatorname{Cusps} + 2 \cdot \# \operatorname{Double points} \leq d_f^2$.

• Proof idea: genus-degree formula for algebraic curves + Bézout's theorem.

Theorem (Lee–Makarov, J. Amer. Math. Soc., 2016)

 $\operatorname{Conn}(\Omega) \leq 2d_f - 4.$

• Proof idea:

- Use PDE (Hele-Shaw flow) to reduce to the non-singular case.
- Obtain the desired bound by studying antiholomorphic dynamics of Schwarz reflection maps.

• Look at the degree $d_f - 1$ branched covering $\sigma : \sigma^{-1}(\Omega) \to \Omega$; i.e., forget the action of σ over Ω^c .

• Look at the degree $d_f - 1$ branched covering $\sigma : \sigma^{-1}(\Omega) \to \Omega$; i.e., forget the action of σ over Ω^c .

• Extend it to a degree $d_f - 1$ branched covering $\tilde{\sigma}$ of $\widehat{\mathbb{C}}$ with an attracting fixed point in each component of Ω^c .

• Look at the degree $d_f - 1$ branched covering $\sigma : \sigma^{-1}(\Omega) \to \Omega$; i.e., forget the action of σ over Ω^c .

- Extend it to a degree $d_f 1$ branched covering $\tilde{\sigma}$ of $\widehat{\mathbb{C}}$ with an attracting fixed point in each component of Ω^c .
- Promote $\tilde{\sigma}$ to a holomorphic (rational) map via quasiconformal surgery; smoothness of $\partial \Omega$ is essential for this step.

• Look at the degree $d_f - 1$ branched covering $\sigma : \sigma^{-1}(\Omega) \to \Omega$; i.e., forget the action of σ over Ω^c .

- Extend it to a degree $d_f 1$ branched covering $\tilde{\sigma}$ of $\widehat{\mathbb{C}}$ with an attracting fixed point in each component of Ω^c .
- Promote $\tilde{\sigma}$ to a holomorphic (rational) map via quasiconformal surgery; smoothness of $\partial \Omega$ is essential for this step.
- Use the fact that such a map has at most $2(d_f 1) 2 = 2d_f 4$ attracting fixed points.

• Revised goal: Get linear upper bounds (in d_f) on the connectivity and the number of singular points of Ω .

• Revised goal: Get linear upper bounds (in d_f) on the connectivity and the number of singular points of Ω .

Theorem (Rashmita–M)

• Conn(Ω) + # Double points $\leq 2d_f - 4$.

• Revised goal: Get linear upper bounds (in d_f) on the connectivity and the number of singular points of Ω .

Theorem (Rashmita–M)

- Conn(Ω) + # Double points $\leq 2d_f 4$.
- 2 # Cusps + $2 \cdot #$ Double points $\leq 6d_f 12$.

• Revised goal: Get linear upper bounds (in d_f) on the connectivity and the number of singular points of Ω .

Theorem (Rashmita–M)

- Conn(Ω) + # Double points $\leq 2d_f 4$.
- 2 # Cusps + $2 \cdot \#$ Double points $\leq 6d_f 12$.
 - The easy part: Cusps are (simple) critical points of f. Apply the Riemann-Hurwitz formula to the branched covering $f: \Sigma \to \widehat{\mathbb{C}}$ to deduce the second part.

• Revised goal: Get linear upper bounds (in d_f) on the connectivity and the number of singular points of Ω .

Theorem (Rashmita–M)

- Conn(Ω) + # Double points $\leq 2d_f 4$.
- 2 # Cusps + $2 \cdot \#$ Double points $\leq 6d_f 12$.
 - The easy part: Cusps are (simple) critical points of f. Apply the Riemann-Hurwitz formula to the branched covering $f: \Sigma \to \widehat{\mathbb{C}}$ to deduce the second part.
 - The harder part: Use the dynamics of the Schwarz reflection σ to assign a critical point of f to each component of Ω^c and each double point on $\partial\Omega$.

Let T be a component of Ω^c with m double points. Then, at least (m+3) critical values of f lie in $\bigcup_{j\geq 0} \sigma^{-j}(T)$.

Let T be a component of Ω^c with m double points. Then, at least (m+3) critical values of f lie in $\bigcup_{j\geq 0} \sigma^{-j}(T)$.

Proof of main theorem assuming the lemma:

• Let $k = \text{Conn}(\Omega)$, and T_1, \dots, T_k be the components of Ω^c with m_1, \dots, m_k double points.

Let T be a component of Ω^c with m double points. Then, at least (m+3) critical values of f lie in $\bigcup_{j\geq 0} \sigma^{-j}(T)$.

Proof of main theorem assuming the lemma:

- Let $k = \text{Conn}(\Omega)$, and T_1, \dots, T_k be the components of Ω^c with m_1, \dots, m_k double points.
- By the previous lemma, this requires $\sum_{i=1}^{k} (3 + m_i) = 3k + \#$ Double points critical points of f.

Let T be a component of Ω^c with m double points. Then, at least (m+3) critical values of f lie in $\bigcup_{j\geq 0} \sigma^{-j}(T)$.

Proof of main theorem assuming the lemma:

- Let $k = \text{Conn}(\Omega)$, and T_1, \dots, T_k be the components of Ω^c with m_1, \dots, m_k double points.
- By the previous lemma, this requires $\sum_{i=1}^{k} (3 + m_i) = 3k + \#$ Double points critical points of f.
- By Riemann-Hurwitz, f has $2d_f - (2 - 2(k - 1)) = 2d_f + 2k - 4$ critical points.

Let T be a component of Ω^c with m double points. Then, at least (m+3) critical values of f lie in $\bigcup_{j\geq 0} \sigma^{-j}(T)$.

Proof of main theorem assuming the lemma:

- Let $k = \text{Conn}(\Omega)$, and T_1, \dots, T_k be the components of Ω^c with m_1, \dots, m_k double points.
- By the previous lemma, this requires $\sum_{i=1}^{k} (3 + m_i) = 3k + \#$ Double points critical points of f.
- By Riemann-Hurwitz, f has $2d_f - (2 - 2(k - 1)) = 2d_f + 2k - 4$ critical points.

• Hence, 3k + # Double points $\leq 2d_f + 2k - 4$; i.e., k + # Double points $\leq 2d_f - 4$.

 While the Lee–Makarov proof 'forgets' the action of σ over Ω^c, we analyze the set of points escaping to Ω^c to prove the key lemma.

- While the Lee-Makarov proof 'forgets' the action of σ over Ω^c, we analyze the set of points escaping to Ω^c to prove the key lemma.
- Our proof relies only on classical holomorphic dynamics techniques; no quasiconformal surgery or Hele-Shaw flow involved.

- While the Lee–Makarov proof 'forgets' the action of σ over Ω^c, we analyze the set of points escaping to Ω^c to prove the key lemma.
- Our proof relies only on classical holomorphic dynamics techniques; no quasiconformal surgery or Hele-Shaw flow involved.
- Sample case I: m = 0, ∂T is smooth. Dynamics of σ + Analytic geometry of U_{j≥0} σ^{-j}(T) (specifically, moduli of annuli argument).

- While the Lee–Makarov proof 'forgets' the action of σ over Ω^c, we analyze the set of points escaping to Ω^c to prove the key lemma.
- Our proof relies only on classical holomorphic dynamics techniques; no quasiconformal surgery or Hele-Shaw flow involved.
- Sample case I: $m = 0, \partial T$ is smooth. Dynamics of σ + Analytic geometry of $\bigcup_{j\geq 0} \sigma^{-j}(T)$ (specifically, moduli of annuli argument).

- While the Lee–Makarov proof 'forgets' the action of σ over Ω^c, we analyze the set of points escaping to Ω^c to prove the key lemma.
- Our proof relies only on classical holomorphic dynamics techniques; no quasiconformal surgery or Hele-Shaw flow involved.
- Sample case I: $m = 0, \partial T$ is smooth. Dynamics of σ + Analytic geometry of $\bigcup_{j\geq 0} \sigma^{-j}(T)$ (specifically, moduli of annuli argument).

Mating phenomena

The deltoid reflection map

• For the cubic potential $Q(z) = |z|^2 - \text{Re}(z^3)$, the deltoid appears as a "maximal" algebraic droplet.

The deltoid reflection map

- For the cubic potential $Q(z) = |z|^2 \text{Re}(z^3)$, the deltoid appears as a "maximal" algebraic droplet.
- The complement of the deltoid has a Riemann map $\phi(z) = z + \frac{1}{2z^2}$, so it is a quadrature domain.

The deltoid reflection map

- For the cubic potential $Q(z) = |z|^2 \operatorname{Re}(z^3)$, the deltoid appears as a "maximal" algebraic droplet.
- The complement of the deltoid has a Riemann map $\phi(z) = z + \frac{1}{2z^2}$, so it is a quadrature domain.

• The corresponding Schwarz reflection map is unicritical, and has a super-attracting fixed point at ∞ .

Deltoid Reflection as a mating

Theorem (Deltoid Reflection as a mating)

1) The dynamical plane of the Schwarz reflection σ of the deltoid can be partitioned as

 $\hat{\mathbb{C}} = T^{\infty} \sqcup \Gamma \sqcup A(\infty),$

where T^{∞} is the tiling set, $A(\infty)$ is the basin of infinity, and Γ is their common boundary (which we call the limit set). Moreover, Γ is a locally connected Jordan curve.

Theorem (Deltoid Reflection as a mating)

1) The dynamical plane of the Schwarz reflection σ of the deltoid can be partitioned as

$$\hat{\mathbb{C}} = T^{\infty} \sqcup \Gamma \sqcup A(\infty),$$

where T^{∞} is the tiling set, $A(\infty)$ is the basin of infinity, and Γ is their common boundary (which we call the limit set). Moreover, Γ is a locally connected Jordan curve.

Theorem (Deltoid Reflection as a mating)

1) The dynamical plane of the Schwarz reflection σ of the deltoid can be partitioned as

$$\hat{\mathbb{C}} = T^{\infty} \sqcup \Gamma \sqcup A(\infty),$$

where T^{∞} is the tiling set, $A(\infty)$ is the basin of infinity, and Γ is their common boundary (which we call the limit set). Moreover, Γ is a locally connected Jordan curve.

2) σ is the unique conformal mating of the reflection map ρ and the anti-polynomial $z \mapsto \overline{z}^2 : \overline{\mathbb{D}} \to \overline{\mathbb{D}}$.

Generality: dynamical partition of Schwarz dynamical plane

Generality: dynamical partition of Schwarz dynamical plane

• $T^0 := \Omega^c \setminus$ Singular points.

- $T^0 := \Omega^c \setminus$ Singular points.
- The tiling set $T^{\infty}(\sigma)$ of σ is defined as the set of points in $\overline{\Omega}$ that eventually escape to T^{0} ; i.e. $T^{\infty}(\sigma) = \bigcup_{k=0}^{\infty} \sigma^{-k}(T^{0})$.

- $T^0 := \Omega^c \setminus$ Singular points.
- The tiling set $T^{\infty}(\sigma)$ of σ is defined as the set of points in $\overline{\Omega}$ that eventually escape to T^{0} ; i.e. $T^{\infty}(\sigma) = \bigcup_{k=0}^{\infty} \sigma^{-k}(T^{0})$.
- The non-escaping set $K(\sigma)$ of σ is the complement $\hat{\mathbb{C}} \setminus T^{\infty}(\sigma)$.

Theorem (Luo–Lyubich–M)

Let f be a generic degree d anti-polynomial with connected Julia set. Then, there exists a Schwarz reflection map, unique up to Möbius conjugacy, that is a conformal mating between f and the Nielsen map of an ideal (d + 1)-gon reflection group.

Thank you!