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1. Lecture 1: Modules over a PID, and applications

(The first 1.5 lectures were probably misguided; I recommend skipping them, and doing
this material later in the light of Baer’s criterion and the Krull-Schmidt theorem for a more
efficient approach.)

1.1. Background. For now we will consider only commutative associative rings with 1
unless mentioned otherwise (as we will for occasional digressions).

We will assume basic facts about Euclidean domains, principal ideal domains (PIDs),
Unique factorization domains (UFDs) and integral domains. Recall:

Euclidean domains Ă PIDs Ă UFDs Ă Integral domains.

These inclusions are all proper: Zr
1`

?
´19
2

s is a PID that is not a Euclidean domain, Zrxs

or Crx, ys is a UFD that is not a PID, and Zr
?

´5s is an integral domain that is not a
UFD. If a, b belong to a PID R, gcdpa, bq will denote a choice of a generator for the ideal
pa, bq.

1.2. Some theorems associated to PIDs. The main topic for today’s lecture concerns
the following theorem:

Theorem 1.1 (Structure theorem for f.g. modules over a PID). Let M be a f.g. (“ finitely
generated) module over a PID R. Then there exists a unique (non-strictly) decreasing
sequence of proper ideals pd1q Ą ¨ ¨ ¨ Ą pdnq such that:

(1) M –

n
à

i“1

R{pdiq.

For an R-module M , where R is any (commutative by convention) ring, let

Mtors “ tm P M | a ¨ m “ 0 for some non-zero-divisor a P Ru,

a submodule of M , called the torsion submodule of M . Note that in an integral domain,
‘non-zero-divisor’ is just nonzero. M is said to be a torsion module if M “ Mtors, and
torsion-free if Mtors “ 0. It is easy to see that Mtors is always a torsion module, and that
M{Mtors is torsion-free.

Remark 1.2. Before going ahead, some remarks and easy consequences of Theorem 1.1.
Assume the setting of the theorem, so in particular M is a f.g. module over the PID R,
and we have d1|d2| . . . |dn:

‚ While the di themselves are canonical (as stated in the theorem), the decomposition
(1) is highly noncanonical. e.g., M “ Z ‘ Z can be identified with Z ‘ Z either via
the identity map or via the self-isomorphism sending p1, 0q to p1, 0q and p0, 1q to
p1, 1q.
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‚ The theorem gives:

Mtors –
à

i:di‰0

R{pdiq, M{Mtors –
à

i:di“0

R{pdiq “
à

i:di“0

R.

In particular, M is torsion-free if and only if di “ 0 for all i, and is torsion if and
only if di ‰ 0 for all i.

‚ The theorem thus implies that any finitely generated torsion-free module over a
PID is free.

‚ The theorem fails for any integral domain that has a finitely generated non-principal
ideal I (in other words, when R is not a Bézout domain), such as Zr

?
´5s: for any

such I, and it is easy to see that I is free if and only if it is principal.
‚ The theorem doesn’t generalize in obvious ways to infinitely generated modules
over PIDs. For instance, the Z-module Q is torsion-free, and any two elements in
it are linearly dependent, yet it is not isomorphic to Z. A similar comment applies
to Q{Z.

1.3. Related results. The crucial input in the proof of the structure theorem for modules
over a PID (Theorem 1.1) will be the Smith normal form:

Theorem 1.3. Let R be a PID, and A P MmˆnpRq. Then DS P GLmpRq and T P GLnpRq

such that:

(2) S ¨ A ¨ T has a form like

¨

˚

˚

˚

˚

˚

˚

˚

˝

d1
. . .

dr
. . .

0
0

˛

‹

‹

‹

‹

‹

‹

‹

‚

,

where di|di`1 for all 1 ď i ď r. Here, the above matrix representation shows a situation
where n ą m, and should be analogously modified if m ď n: for some 0 ď r ď minpm,nq,
we have the top left r ˆ r diagonal block with entries d1, . . . , dr, and all remaining entries
are zero; by convention, an entry where nothing is written is taken to be 0.

Morever, r and the ideals pdiq Ă R are uniquely determined.

Remark 1.4. It can be proved without difficulty, but we will skip giving the details, that
for each i, di “ δipAq{δi´1pAq, where δjpAq stands for the gcd of all the j ˆ j minors
of A. This property is immediate for a matrix as in (2), so the point is to show that
the δjpAq is unchanged when A is right or left multiplied by an invertible matrix. While
one can see this using exterior algebra, one can also see this more elementarily, using
that right-multiplication (resp., left-multiplication) replaces columns (resp., rows) by their
linear combinations, and hence replaces ideals generated by minors with subideals; then use
invertibility. For more details, see Lemmas 1 and 2 of the post “Fitting ideals of modules”
in Matt Baker’s blog: https://mattbaker.blog/2022/11/21/fitting-ideals-of-modules/
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Theorem 1.5 (Restatement of the Smith normal form theorem). Let R be a PID, and
let M,N be finitely generated free R-modules. Let A : N Ñ M be an R-module homo-
morphism. Then there exist bases e1, . . . , en of N and f1, . . . , fm of M , and elements
d1|d2| . . . |dr of R for some 0 ď r ď minpm,nq, such that for 1 ď i ď n:

Aei “

#

di ¨ fi, if 1 ď i ď r, and

0, otherwise.

Proof. This is a straightforward translation of Theorem 1.3 using (the free module version
of) the dictionary between linear transformations and matrices: S and T play the role of
change of basis matrices. □

1.4. The structure theorem from the Smith normal form – I.

Remark 1.6. To deduce the existence assertion of structure theorem for modules over a
PID (Theorem 1.1) from the Smith normal form (Theorem 1.3), it suffices to prove the
following two statements:

(i) The existence assertion of Theorem 1.1 holds for finitely presented modules over a
PID (see Definition 1.7 below for ‘finitely presented’).

(ii) Over a PID, every finitely generated module is finitely presented.

Definition 1.7. An R-moduleM is said to be finitely presented if there exists a surjection
j : Rm ↠ M from a finitely generated free module Rm to M , such that ker j is finitely
generated.

Let us rephrase Definition 1.7 to cultivate familiarity with standard mathematical notation.
Recall that a chain of maps of R-modules

¨ ¨ ¨ Ñ A
f

Ñ B
g

Ñ C Ñ . . .

is said to be exact at B if ker g “ image f . An exact sequence of R-modules is a chain
of maps of R-modules that is exact at each module that is a source of some map in the
sequence and a target of another.

Remark 1.8. It follows that an R-moduleM is finitely presented if and only if there exists
an exact sequence

Rn
Ñ Rm

Ñ M Ñ 0.

Such a sequence is called a finite presentation of M . Here, note that the exactness at M is
equivalent to the surjectivity of Rm Ñ M , and the exactness at Rm implies that the kernel
of Rm Ñ M is generated by n elements.

Another way of saying this is that M is finitely presented if and only if it is isomorphic to
the cokernel of a homomorphism of finitely generated free R-modules.

Lemma 1.9. Assume the existence of the Smith normal form. Then the existence assertion
of the structure theorem, Theorem 1.1, is satisifed whenever M is finitely presented.
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Proof. Let Rn A
Ñ Rm Ñ M Ñ 0 be a finite presentation of M . Theorem 1.5 allows us to

assume without loss of generality that A has the form of the right-hand side of (2). It is
then immediate that

M – cokerpAq – R{pd1q ‘ ¨ ¨ ¨ ‘ R{pdrq ‘ Rm´r
– R{pd1q ‘ ¨ ¨ ¨ ‘ R{pdmq,

where dr`1 “ ¨ ¨ ¨ “ dm “ 0. □

1.5. The structure theorem from the Smith normal form – II. To conclude the
existence assertion in the structure theorem from the Smith normal form, it suffices to
show that finitely generated modules over a PID are also finitely presented: we will see
that this is true more generally over Noetherian rings:

Definition 1.10. A (commutative by convention) ring R is said to be Noetherian if any
increasing chain of ideals

I1 Ă I2 Ă . . .

stabilizes, i.e., Ir “ Ir`1 “ . . . for some large enough r. This is also phrased as saying that
R satisfies the ascending chain condition on ideals. More generally, for noncommutative
R, we can talk of left-Noetherian rings (resp., right-Noetherian rings) as those that satisfy
the ascending chain condition on left-ideals (resp., right-ideals).

Definition 1.11. An R-moduleM is Noetherian if the collection of its submodules satisfies
the ascending chain condition.

Exercise 1.12. (i) R is a Noetherian ring if and only if every ideal I Ă R is finitely
generated. The R-module M is Noetherian if and only if every submodule of M is
finitely generated.

(ii) R is Noetherian as a ring if and only if it is Noetherian as a module over itself.
(iii) Any PID is a Noetherian ring.

Lemma 1.13. Let R be a Noetherian ring. Then every f.g. R-module M is Noetherian
(as an R-module).

Proof. If M is generated by a single element, then M – R{I (as an R-module) for some
ideal I Ă R, and we are done because there is an inclusion-preserving bijection between the
submodules ofM , and the set of ideals of R containing I: these latter satisfy the ascending
chain condition.

The general case is by induction on the number of generators. Let M have n generators
x1, . . . , xn, and assume the lemma to be true for modules with at most n ´ 1 generators.
Set M 1 :“ Rx1 Ă M , and let M2 “ M{M 1. Write j :M Ñ M2 for the obvious map. Then
M 1 and M2 are respectively generated by 1 and n´ 1 elements, and are hence Noetherian.

Now let M1 Ă ¨ ¨ ¨ Ă Mn Ă . . . be a chain of submodules of M . Then

M1 X M 1
Ă M2 X M 1

Ă . . . and jpM1q Ă jpM2q Ă . . .
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are respectively ascending chains of submodules of M 1 and M2. Since M 1 and M2 are
Noetherian, there exists r " 0 such that

Mr X M 1
“ M 1

r`1 X M 1
“ . . . and jpMrq “ jpMr`1q “ . . .

It is enough to show that the inclusion Mr Ă Mr`1 is an equality: the same argument will
imply that Mr`1 “ Mr`2 “ . . . . Thus, let m P Mr`1zMr; it suffices to show that m P Mr.

Since jpmq P jpMr`1q “ jpMrq, there exists n P Mr such that jpmq “ jpnq. Thus,
m ´ n P ker j “ M 1, so that

m ´ n P Mr`1 X M 1
“ Mr X M 1,

so that m P n ` pMr X M 1q Ă Mr ` pMr X M 1q “ Mr, as desired. □

Corollary 1.14. Let R be a Noetherian ring. Then every finitely generated R-module M
is finitely presented.

Proof. If M has m generators, giving us a surjection A : Rm ↠ M , then since Rm is
Noetherian by Lemma 1.13, kerA Ă Rm is finitely generated (see Exercise 1.12). Therefore,
M is finitely presented. □

Lemma 1.15. Assume the existence assertion of the Smith normal form (Theorem 1.3).
Then the existence assertion of the structure theorem (Theorem 1.1) holds.

Proof. Given Corollary 1.14 and the observation that any is Noetherian (Exercise 1.12),
this follows from Lemma 1.9. □

1.6. The theorem of elementary divisors.

Corollary 1.16 (The theorem of elementary divisors). Let R be a PID. If M is a finitely
generated free R-module and N Ă M a submodule, then there exists bases f1, . . . , fm for
M and e1, . . . , en for N , where n ď m, and nonzero elements d1| . . . |dn of R, such that
ei “ di ¨ fi for 1 ď i ď n.

Proof, assuming Theorem 1.3. By Lemma 1.13, N is finitely generated, in addition to being
torsion-free.

Since we are assuming Theorem 1.3, Lemma 1.15 implies that the existence assertion of
the structure theorem (Theorem 1.1) holds, so as in Remark 1.2 it follows that N is free
as well. This allows us to apply Theorem 1.5 (which is a corollary of Theorem 1.3) to the
inclusion morphism A : M ãÑ N . We are then done, on observing that the ‘r’ given by
that theorem equals n by the injectivity of A. □

Remark 1.17. In particular, Corollary 1.16 tells us that for a PID R, each submodule of
a free R-module of rank m is free of some rank n ď m. Thus, for instance, taking R “ Z,
each subgroup of Z2 is trivial, or an infinite cyclic group Z ¨ a for some a P Z2, or a free
rank two group Za ‘ Zb Ă Z2 for some linearly independent (nonzero) elements a, b P Z2.
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1.7. The existence of Smith normal form. The main argument we give will follow a
proof given in Matt Baker’s blog. But before that, we give an idea of a proof in the 2 ˆ 2
case, this time following the wikipedia.

Slogan: The idea of the proof is that, as in Remark 1.4, ‘d1’ should be a gcd of all the
entries of A. Because we are working with a PID, we will be able to make manipulations
replacing an entry with the gcd of that entry and another. Then somehow induct.

Consider

ˆ

a b
c d

˙

P M2pRq, where R is a PID. We will sucessively multiply this matrix on

the left and the right by elements of GL2pRq, so that we finally get a matrix ‘in the Smith
normal form’. If this matrix is the zero matrix there is nothing to do, so assume it isn’t.

Case 1: a “ c “ 0. We have σ, τ P R such that bσ`dτ “ β :“ gcdpb, dq. Let b1 “ b{β, d1 “

d{β P R. Then
ˆ

σ τ
´d1 b1

˙

¨

ˆ

a b
c d

˙

“

ˆ

0 β
0 ´d1b ` b1d

˙

,

where we note that

ˆ

σ τ
´d1 b1

˙

has determinant σb1 ` τd1 “ 1 and hence belongs to

SL2pRq Ă GL2pRq. By adding pd1b ´ b1dq{β times the first row to the second – an
operation that is implemented by left-multiplication by

ˆ

1
pd1b ´ b1dq{β 1

˙

P M2pRq

– we get

ˆ

0 β
0 0

˙

. Interchanging the columns – which is right-multiplication by

ˆ

1
1

˙

–

we get to the desired Smith normal form

ˆ

β 0
0 0

˙

. This finishes Case 1, where a “ c “ 0.

Case 2. a ‰ 0 or c ‰ 0. For this general case, we will implicitly use the following ideas
illustrated in Case 1: the ‘row operations’ of interchanging rows and adding a multiple of
a row to another can be implemented by left-multiplication by an element of GL2pRq, and
analogous column operations by right-multiplication by elements of GL2pRq.

Thus, we exchange rows if necessary to assume that a ‰ 0. First, let us see how to
perform operations to ensure a|b. If not, let β “ gcdpa, cq, aσ ` cτ “ β for some σ, τ P R,
a1 “ a{β P R and c1 “ c{β P R. Then we have

ˆ

σ τ
´c1 a1

˙

¨

ˆ

a b
c d

˙

“

ˆ

β ˚

´c1a ` a1c ˚,

˙

where as before the left-most matrix lies in SL2pRq Ă GL2pRq, and ‘˚’ refers to an entry
from R whose precise value we are unconcerned about.

Thus, we can add the product of the first row with pc1a ´ a1cq{β P R to the second (a

GL2pRq-left-multiplication), to get to the form

ˆ

β ˚

0 ˚

˙

. A similar argument involving
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right-multiplication reduces us to a diagonal matrix. Now let us re-use the letters a and d,
to write the resulting matrix as

ˆ

a
d

˙

.

The problem is that a may not divide d, so the above method may not be in smith normal

form. However, we may add the second column to the first, to get

ˆ

a
d d

˙

and repeat the

argument to ‘eliminate the lower left entry’ seen above, to replace a with gcdpa, dq and
then the now-possibly-nonzero lower left and top right entries back to 0. We again get a
diagonal matrix. This messes with the value of d, which however can be obtained up to
associates because the determinant is preserved up to an element of Rˆ (because we are
only multiplying by elements of GL2pRq) 1: a is replaced by pa, dq, so d has to be replaced
by ad{pa, dq, which clearly is a multiple of pa, dq. Thus, now the matrix is in the desired
Smith normal form. (This step is more complicated for larger matrices since we have lesser
control on the other diagonal entries, but one inducts on the number of prime factors of
the top-left entry).

Now we give a proof of existence in the general case, shifting to following Matt Baker’s
blog.

Proof of existence of Smith normal form, general case. For r P R, let lprq equal the num-
ber of prime factors of r, with lp0q being 8.

Say that A,A1 P MmˆnpRq are equivalent if A “ BA1C for some B P GLmpRq, C P GLnpRq.
We wish to choose an element of the equivalence class of a given matrix A P MmˆnpRq so
as to be as in the right-hand side of (2).

Without loss of generality, we assume A “ raijs to be chosen so that lpa11q ď lpa1
11q

whenever A1 “ ra1
ijs is equivalent to A. Since, for all 1 ď i ď m and 1 ď j ď n A1 can be

replaced by an equivalent A2 “ ra2
ijs with a2

11 “ a1
ij (by permuting the i-th and the 1-st

rows, and the j-th and the 1-st columns), we conclude that lpa11q ď lpa1
ijq for all i, j; in

particular, lpa11q ď lpaijq for all i, j.

Idea. One hopes that this will force a11 to be the gcd of the matrix entries.

Claim. a11|a1j for all j.
Suppose this is not true for some j. To get a contradiction, we may replace A by the
matrix obtained by swapping the 2-nd and the j-th columns of A, which satisifes the same
condition on a11 and is equivalent to A; thus, we may assume that a11 ∤ a12. We let
β “ gcdpa11, a12q, choose σ, τ P R such that a11σ ` a12τ “ β, and let ā11 “ a11{β, ā12 “

1In fact, up to ˘1: we have only multiplied by elements in either SL2pRq or have determinant ´1, such
as antidiagp1, 1q
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a12{β P R. Then consider the following matrix, which is equivalent to A:

A1 :“ A ¨

¨

˝

σ ´ā12
τ ā11

In´2

˛

‚P MnpRq.

Then A1 is equivalent to A (the right-most matrix above has determinant 1 and hence
belongs to SLnpRq Ă GLnpRq), but has top-left entry a11σ ` a12τ “ β. Since a11 ∤ a12,
lpβq ă lpa11q, and since A1 is equivalent to A, this contradicts the choice of a11. This proves
the claim that a11|a1j for all j.

Similarly, a11|ai1 for all 1 ď i ď m. Now we may do row and column operations involving
subtracting a multiple of the first row or column from another row or column, and assume
that A takes the form

A “

ˆ

a11 01ˆn´1

0m´1ˆ1 B,

˙

,

where B is an pm´1q ˆ pn´1q-matrix Here, if m “ 1 or n “ 1, the form of the matrix will
be slightly different, in that it will have only a11 and 01ˆn´1 or a11 and 0m´1ˆ1, in which
cases we are already in the Smith normal form. Set d1 :“ a11. By the induction hypothesis
(if m or n is greater than 1), we may replace B by an element of GLm´1pRqBGLn´1pRq,
to assume that A is in the Smith normal form, with a top-left diagonal pr ´ 1q ˆ pr ´ 1q

block diagpd2, . . . , drq for some r, and all other entries 0.

Now it suffices to show that d1|d2. To see this, note A is similar to a matrix of the following
form (for simplicity, I am showing only the case where n ą m):

¨

˚

˚

˚

˚

˚

˚

˚

˝

d1 d2
d2

. . .
dr

. . .
0

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

But this matrix is similar to A and satisfies the same property of minimizing lpa11q “ lpd1q:
thus, the ‘Claim’ in the proof above shows that d1|d2, as desired. Thus, A is now in the
Smith normal form □

Remark 1.18. The approach above, taken from Matt Baker’s blog, is more efficient than
the one given in the wikipedia page on the Smith normal form, but it does not seem ‘con-
structive’ (since one starts with minimizing lpa11q). At least with the wikipedia approach,
if one works with a Euclidean domain, one can work with just elementary row and column

operations without involving matrices like

ˆ

σ τ
´d1 b1

˙

.
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2. Lecture 2 — More on the structure theorem, applications, and
categories and functors

2.1. Uniqueness in the structure theorem. Now we will discuss a proof of the unique-
ness in the structure theorem for modules over a PID [Warning: this is very inefficient].
In other words, R is a PID, we have

M –

n
à

i“1

R{pdiq “

n1
à

i“1

R{pd1
iq,

with pd1q Ą pd2q Ą . . . and pd1
1q Ą pd1

2q Ą . . . .

We need to show that n “ n1, and that pdiq “ pd1
iq for all i.

Reduction to the case where M “ Mtor.

Note that

R#ti|di“0u
“

n
à

i“1
di“0

R{pdiq “ M{Mtors “

n1
à

i“1
d1
i“0

R{pd1
iq “ R#ti|d1

i“0u.

Let us show that the above equality implies #ti | di “ 0u “ #ti | d1
i “ 0u. Since R is an

integral domain, which by definition requires 1 ‰ 0, this follows from the lemma below:

Lemma 2.1. For this lemma allow R to be an arbitrary commutative ring that is not the
zero ring. If Rn1 – Rn2 as R-modules for some nonnegative integers n1, n2, then n1 “ n2.

Proof. Since R is not the zero ring, it has a maximal ideal m, and the quotient k :“ R{m
is a field. Since Rn1 – Rn2 we have

Rn1

mRn1
–

Rn2

mRn2
.

Note that

Rni{mRni “ pR ‘ ¨ ¨ ¨ ‘ Rq{pmR ‘ ¨ ¨ ¨ ‘ mRq “ pR{mRq ‘ ¨ ¨ ¨ ‘ pR{mRq “ kni ,

so we have kn1 – kn2 as R-modules, and hence as vector spaces over R{m “ k. Comparing
dimensions, we get n1 “ n2. □

Since this proves that #ti | di “ 0u “ #ti | d1
i “ 0u, it is now enough to match up the

nonzero pdiq with the nonzero pd1
iq. For this, noting that

Mtors “

n
à

i“1
di‰0

R{pdiq “

n1
à

i“1
d1
i‰0

R{pd1
iq,

we may now replace M with Mtors, to assume that

M “ Mtors “

r
à

i“1

R{pdiq “

r1
à

i“1

R{pd1
iq,
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where we now write r and r1 for n and n1, just to be consistent with the previous lecture’s
notation. We have d1| . . . |dr and d

1
1| . . . |d

1
r1 .

Claim. pdrq “ pd1
r1q.

Proof. Note that the annihilator of M , namely AnnRpMq :“ ta P R | aM “ 0u, equals
pdrq as well as pd1

r1q. This proves the claim.

Case 1. pdrq “ pd1
r1q “ ppqk for a prime p P R (and k ą 0, since M “ Mtors).

In this case, for each i, since di|dr, we can write pdiq “ ppkiq, and similarly d1
i “ ppk

1
iq (so

k1 ď k2 ď ¨ ¨ ¨ ď kr “ k and k1
1 ď k1

2 ď ¨ ¨ ¨ ď k1
r1 “ k). Thus, we are given

(3) M –

r
à

i“1

R{ppkiq –

r1
à

i“1

R{ppk
1
iq.

We need to show that r “ r1 and that ki “ k1
i for each i.

For a P R, let M ras “ tm P M | am “ 0u, an R-submodule of M . For nonnegative
integers c, we have M rpcs Ă M rpc`1s, and we will extract information from (3) through its
consequence of the form:

(4)
M rpc`1s

M rpcs
“

r
à

i“1

R{ppkiqrpc`1s

R{ppkiqrpcs
“

r1
à

i“1

R{ppk
1
iqrpc`1s

R{ppk
1
iqrpcs

.

Note that for any nonnegative integer c, pR{ppkiqqrpcs equals the R-module ppki´cq{ppkiq if
ki ě c, and R{ppkiq if ki ď c. Thus, pR{ppkiqqrpc`1s{pR{pkiqrpcs is the 0-module if ki ď c,
and is isomorphic to ppki´c´1q{ppki´cq, which is a one-dimensional vector space over R{ppq

generated by the image of pki´c´1, otherwise (i.e., if ki ą c). Thus, the second and third
expressions in (6) are vector spaces over R{ppq, and equating their dimensions gives:

#ti | ki ą cu “ #ti | k1
i ą cu.

Since this is true for all nonnegative c, we get for all c ě 1:

#ti | ki “ cu “ #ti | k1
i “ cu,

so that, the di being precisely the pki and similarly with the d1
i, we get r “ r1 and di “ d1

i

for all i.

Case 2. dr “ d1
r1 is general, so up to taking associates, dr “ d1

r1 “
śt

j“1 p
krj
j “

śt
j“1 p

k1
r1j

j .

Thus, for 1 ď i ď r, since di|dr, we can write di “
śt

j“1 p
kij
j (up to taking associates).

Similarly, for 1 ď i ď r1, we write d1
i “

śt
j“1 p

k1
ij

j1 . But this time, we need to allow some of
the kij and the k1

ij to be 0.

Thus, by the Chinese remainder theorem (reviewed in Remark 2.2 below), we have

(5)
r

à

i“1

t
à

j“1

R{pp
kij
j q “

r
à

i“1

R{pdiq “ M “

r1
à

i“1

R{pd1
iq “

r1
à

i“1

t
à

j“1

R{pp
k1
ij

j q.
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It turns out that we can separate the contributions from the different primes pj: for this,
if p and q are different primes in R, we claim that for any l ě 0, multiplication by p is an
automorphism of R{pqlq. Indeed, this is because αp ` βql “ 1 for some α, β P R, so that
multiplication by α serves as an inverse to multiplication by p in R{pqlq. Therefore, for

j ‰ l, R{ppkill q does not have any nonzero pj-power torsion, and similarly with the R{pp
k1
il
l q,

so the argument from Case 1 gives, for each fixed 1 ď j ď t:

(6)
M rpc`1

j s

M rpcjs
“

r
à

i“1

R{pp
kij
j qrpc`1

j s

R{pp
kij
j qrpcjs

“

r1
à

i“1

R{pp
k1
ij

j qrpc`1
j s

R{pp
k1
ij

j qrpcjs
.

The argument from Case 1 then gives that for each j, the set of nonzero kij’s is the same
as the set of nonzero k1

ij’s. A little bit more of care is still needed, since some kij’s and
k1
ij’s may be zero. But since d1 is not a unit and is hence divisible by pj for some j, r is

the largest possible number of the nonzero kij’s as j varies from 1 to t. A similar assertion
applies to r1. Thus, we conclude that r “ r1. From this, it follows that for each j, kij “ k1

ij

for 1 ď i ď r: this is because the multisets tkij | 1 ď i ď ru and tk1
ij | 1 ď i ď r1u have the

same number of elements r “ r1, and the same collections of nonzero elements as observed
above, and they both (non-strictly) increase with i. This implies that

di “

t
ź

j“1

p
kij
j “

t
ź

j“1

p
k1
ij

j “ d1
i.

(recall that we had changed them up to associates to get particular prime factorizations;
if we hadn’t, we could only say pdiq “ pd1

iq). This finishes the proof of the uniqueness
assertion.

Remark 2.2. We review the Chinese reminder theorem used in the above proof : if
I1, . . . , Ir Ă R are ideals that are pairwise comaximal, i.e., Ii ` Ij “ R whenever i ‰ j, the
map R Ñ

śr
i“1R{Ii is surjective and quotients to an isomorphism of rings,

R{pI1 X ¨ ¨ ¨ X Irq Ñ

r
ź

i“1

R{Ii.

We have a similar result involving R-modules, except that in the case of modules it is more
natural to write

Àr
i“1 in place of

śr
i“1.

Remark 2.3. Now we make comments on the above proof of uniqueness.

(i) Primary decomposition. For a P R, write M ras for tm P M | am “ 0u, and M ra8s

for tm P M | ajM “ 0 for some ju; these are submodules of M . As above, we
write pdrq “ AnnRpMq, and let p1, . . . , pt be the primes that divide dr.
As an easy exercise (e.g., follow the ‘gcd’ argument above) see that we have

(7) M “

t
à

j“1

M rp8
j s “

à

p prime in R

M rp8
s
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(namely, M rp8s is zero unless p “ pj for some j).
Moreover, the argument of Case 2 gives:

M rp8
j s “

r
à

i“1

R{pp
kij
j q.

This was essentially what allowed us to reduce to ‘Case 1’, by separating out the
primes p1, . . . , pt: namely, eachM rp8

j s is canonically determined, the decomposition
of M in terms of the R{pdiq and the R{pd1

iq gave us analogous decompositions of

M rp8
j s involving the largest powers p

kij
j and p

k1
ij

j of pj that divide the di and the d1
i,

and these could be matched up using Case 1.
There is a generalization of (7) to finitely generated modules over arbitrary Noe-

therian rings, called the primary decomposition. However, the precise formulation
of this general decomposition is a bit subtler, and not as nice as in (7): getting such
a nice decomposition as in (7) does need R to be a PID. You might learn this in
your second semester algebra course.

(ii) Indecomposable modules and the Krull-Schmidt theorem. Here is what is probably

a ‘philosophical reason’ why we had to work with the R{pp
kij
j q, and not directly

with the R{pdiq. An indecomposable module over a ring R is a module that cannot
be written as a direct sum of two proper submodules. 2 According to the Krull-
Schmidt theorem, any “finite length” R-module is a direct sum of indecomposable
modules, and the isomorphism classes of these indecomposable constituent modules
are uniquely determined up to a permutation. Over a PID R, it is an easy exercise
to show that the only finitely generated indecomposable R-modules are R and
the R{ppkq, p a nonzero prime and k a positive integer. Thus, the Krull-schmidt
theorem can be used to replace part of the proof of the uniqueness assertion in the
structure theorem. On the other hand, the R{pdiq are not indecomposable, so there
does not seem to be a naive direct way to extract a uniqueness assertion without
factorizing the pdiq.

(iii) Fitting ideals. Nevertheless, there is another, less naive, approach to show the
uniqueness assertion, which does not involve factoring into primes. This involves
the notion of Fitting ideals, studied by Hans Fitting. We will give a crude outline
here following a blog post of Matt Baker. For each k ě 0, define the k-th fitting

ideal FitkpMq as follows: choose a presentation Rn A
Ñ Rm Ñ 0 of M , and let

FitkpMq be the ideal generated by the pm ´ kq ˆ pm ´ kq-minors of A. Fitting’s

lemma says that this is independent of the presentation Rn A
Ñ Rm Ñ 0, i.e., is

intrinsic to M , justifying the notation FitkpMq (without needing to keep track of
the presentation in the notation). Since the minors of A determine the di, one can
use Fitting’s lemma to give a proof of the uniqueness assertion in the structure

2Note that a simple (or “irreducible”) module, namely one that does not have a proper nonzero sub-
module, is indecomposable, but an indecomposable module may not be simple.
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theorem, without using primary decomposition. For more details including a proof
of Fitting’s lemma, see Matt Baker’s post on fitting ideals.

(iv) Another proof of existence. For another proof of the existence assertion in the
structure theorem, see Serge Lang’s ‘Algebra’.

(v) Only the pdiq are canonical. ‘The copies’ of the R{pdiq in M are not canonical. For
instance, when R “ Z, M :“ Z{p2q ‘ Z{p4q can be decomposed into Z{p2q ‘ Z{p4q

in two ways: first in the obvious way, as well as in a second, less obvious, way, in
which one sends p1̄, 0q to p1̄, 0q and p0, 1̄q to p1̄, 1̄q. In the former decomposition
of M , the copy of Z{p4q is generated by p0, 1̄q, and in the latter by p1̄, 1̄q, showing
that it is not canonically determined.

2.2. Application to linear algebra. Let V be a vector space over a field k, and let
T P EndkpV q, where EndkpV q is the ring of k-linear endomorphisms of V . We will discuss
some ‘canonical forms’ given by the structure theorem for modules over a PID, which are
nice matrix forms of T . We will change notation a bit: now, we will write fi for what we
wrote a di before.

Since T : V Ñ V commutes with scalar multiplication (i.e., T P EndkpV q), V can be
thought of as a krxs-module where x acts by T : concretely, to define a krxs-module struc-
ture on T , it is enough to define a homomorphism krxs Ñ EndZpV q, which we can define
to be given by the scalar multiplication on k, and so as to send x to T (this is okay, since
x is a free variable and T commutes with scalar multiplication). This realizes V as a
krxs-module. Since V is finite dimensional while krxs is infinite dimensional over k, it is
immediate that V is torsion as a krxs-module.

Thus, if f1|f2| . . . |fr are associated by the structure theorem for modules over a PID to
the krxs-module V , we get an isomorphism of krxs-modules:

(8) V –

r
à

i“1

krxs{pfiq.

Moreover, this time the fi can be specified uniquely, by requiring them to be monic.

Remark 2.4. Concretely, (8) means: there exists a k-vector space isomorphism from V
to

Àr
i“1 krxs{pfiq, such that the transport of T : V Ñ V under this isomorphism is the

k-vector space map
Àr

i“1 krxs{pfiq Ñ
Àr

i“1 krxs{pfiq given by multiplication by x. Thus,
to compute the matrix of T with respect to some basis, it suffices to compute the matrix
of multiplication by x with respect to the corresponding basis of

Àr
i“1 krxs{pfiq.

Example 2.5. (i) Let 0 ‰ fpxq “ xn ` a1x
n´1 ` ¨ ¨ ¨ ` an P krxs, and consider the

k-vector space krxs{pfq. A basis of this vector space is given by 1, x, . . . , xn´1, and
with respect to this basis, the matrix of the linear map krxs{pfq Ñ krxs{pfq given
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by multiplication by x is:

(9)

¨

˚

˚

˚

˚

˝

0 ´an
1 0 ´an´1

. . . . . .
...

...
0 ´a2
1 ´a1

˛

‹

‹

‹

‹

‚

.

(ii) Let krxs{pfq be as above, but assume that fpxq “ px ´ αqn. This time, a basis for
krxs{pfpxqq can be given as 1, x ´ α, . . . , px ´ αqn´1. With respect to this basis,
multiplication by x has matrix

(10)

¨

˚

˚

˚

˚

˝

α
1 α

. . . . . .
α
1 α

˛

‹

‹

‹

‹

‚

.

Corollary 2.6 (Rational canonical form). Let k be a field and n a natural number. Then
any matrix in Mnpkq can be GLnpkq-conjguated to a matrix in block diagonal form, where
each block is as in (9).

Proof. Follows from Remark 2.4 and the discussion preceding it, together with Example
2.5((i)). □

Corollary 2.7 (Jordan canonical form). Let k be an algebraically closed field, and n a
natural number. Then any matrix in Mnpkq can be GLnpkq-conjguated to a matrix in block
diagonal form, where each block is as in (10).

Proof. Follows from Remark 2.4 and the discussion preceding it, together with the fact
that each fi can be factored as a product

ś

px´ αijq
nij since k is algebraically closed, the

Chinese remainder theorem to separate the αij for a given i, and Example 2.5((ii)). □

Remark 2.8. Consider an isomorphism V Ñ
Àr

i“1 krxs{pfiq as in Remark 2.4, transport-
ing T P EndkpV q to multiplication by x. It is immediate then that the minimal polynomial
of T is fr. Further, it is easy to see that the characteristic polynomial of multplication by x
on krxs{pfiq is fi (expand the relevant determinant from the top and proceed inductively),
so the characteristic polynomial of T is f1f2 . . . fr.

2.3. The Cayley-Hamilton theorem.

Theorem 2.9 (Cayley-Hamilton). Let R be a (commutative by convention) ring, and A P

MnpRq. If ppxq “ detpxIn ´ Aq is the characteristic polynomial of A, then ppAq P MnpRq

equals 0.

Proof. We can view Rn as a module over Rrxs, with x acting via A.
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Given an S-module M , there is an obvious structure of an MnpSq-module on Mn :“
Àn

i“1M , written for convenience as column vectors, according to the usual matrix multi-
plication: raijs ¨ tpm1, . . . ,mnq “ p

ř

a1jmj, . . . ,
ř

anjmjq. Thus, we get the structure of
an S :“ MnpRrxsq-module on Mn “ pRnqn, where M :“ Rn.

It is now easy to check that for this action:
¨

˝

x
. . .

x

˛

‚¨

¨

˝

e1
...
en

˛

‚“

¨

˝

x ¨ e1
...

x ¨ en

˛

‚“

¨

˝

řn
i“1 ai1ei

¨ ¨ ¨
řn
i“1 ainei

˛

‚“
tA ¨

¨

˝

e1
...
en

˛

‚,

or equivalently:
pxIn ´

tAq ¨
t
pe1 . . . enq “

t
p0 . . . 0q.

Multiplying by the adjugate matrix of xIn ´ tA, and using that A and tA have the same
characteristic polynomials pA “ p tA, we get

¨

˝

pApxq

. . .
pApxq

˛

‚¨

¨

˝

e1
. . .
en

˛

‚“

¨

˝

0
...
0

˛

‚.

Thus, pApxq ¨ ei “ 0 for each i, i.e., pApAq ¨ ei “ 0 for each i, so that pApAq annihilates each
ei, and hence the whole of Rn. In other words, pApAq “ 0. □

Here are steps for an alternate proof, from Arvind’s notes:

(i) The assertion is immediate when T is a diagonal matrix, and hence when T is a
diagonalizable matrix.

(ii) When k “ C, diagonalizable matrices are dense in the space Mnpkq of all matrices,

say in the usual topology on MnpCq – Cn2
. Thus, the result holds when k “ C.

(iii) Zrxij|1 ď i, j ď ns embeds into C (use that C has infinite transcendence degree
over Q), using which it is easy to see that the result holds for Zrxij|1 ď i, j ď ns.

(iv) Any element of MnpRq is the image of an element of MnpZrxijs|1 ď i, j ď nq, so we
are done.

2.4. Categories.

Not quite a definition 2.10. A category C consists of:

‚ A ‘collection’ Ob C whose members are called the objects of C; and
‚ For each X, Y in Ob C, a collection MorCpX, Y q “ MorpX, Y q whose members are
called morphisms in C from X to Y , which we might in some cases denote by
HompX, Y q; and

‚ For each X, Y, Z in Ob C, a map

MorpY, Zq ˆ MorpX, Y q Ñ MorpX,Zq,

referred to as a ‘law of composition’, denoted pg, fq ÞÑ g ˝ f ,

subject to the following properties:
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‚ MorpX, Y q and MorpX 1, Y 1q are disjoint unless X “ X 1 and Y “ Y 1, in which case
they are equal;

‚ Identity morphisms: For all X P Ob C, D idX P MorpX,Xq such that for all Y P

Ob C, f P MorpX, Y q and g P MorpY,Xq, we have f ˝ idX “ f and idX ˝g “ g.
‚ Associativity of composition. If f P MorpX, Y q, g P MorpY, Zq and h P MorpZ,W q

we have
ph ˝ gq ˝ f “ h ˝ pg ˝ fq

inside MorpX,W q.

Remark 2.11. (i) This is not quite a definition because we have not defined what a
‘collection’ means. It may not be a set: for instance, we will consider categories
whose objects are sets, so its ‘collection’ of objects is the collection of sets, which
cannot be a set by Russell’s paradox. In this course, we will not worry about such
set-theoretic issues, though occasionally we might make remarks about such. In-
stead, we will just use our usual set-theoretic intuition to think of these ‘collections’.

(ii) There are categories C where Ob C forms a set, as does the collection of all its
morphisms (between varying objects): those are called small categories.

(iii) It is much more common to find categories C where, for eachX, Y P Ob C, MorpX, Y q

is a set. These are called ‘locally small’. We will almost always only consider locally
small categories in this course.

(iv) We just said ‘D idX ’, not ‘we are given idX ’: this is because idX is uniquely deter-
mined: if id1

X is another candidate, id1
X “ idX ˝ id1

X “ idX .

While talking about morphisms, we will adapt various terminology related to functions
without further comment: e.g., We might talk of a morphism f from X to Y and write
f : X Ñ Y instead of saying f P MorpX, Y q, idX will be referred to as the identity
morphism from X to X, and for any f P MorpX, Y q we will refer to X as the source or the
domain of f and Y as the codomain or the target of f . We might even refer to f : X Ñ Y
as a ‘map’ from X to Y . The elements of MorpX,Xq will be referred to as endomorphisms
of X.

Example 2.12. (i) The category Set: Ob Sets is the collection of sets, MorpX, Y q

is the set of functions X Ñ Y , and where composition is the usual composition
of functions. We will refer to this category as the ‘category of sets and functions
(between sets)’, since the composition is understood, or even as just ‘the category
of sets’, when both morphisms and their composition rules are understood. In
what follows, we will usually omit describing the composition, and sometimes the
morphisms too, but in each case what we omit will be understood from the context.

(ii) Grp, the category of groups and group homomorphisms.
(iii) The category whose objects are the groups, and where MorpG,Hq is the set of

equivalence classes of maps G Ñ H, where f1 „ f2 if there exists h P H such that
f1 “ Inth ˝ f2, where Inth “ conjugation by h. Composition is induced by the
obvious one: check that it is well-defined.

(iv) AbGrp, abelian groups and group homomorphisms.
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(v) Top, topological spaces and continuous maps.
(vi) HTop, Topological spaces and homotopy classes of continuous maps between them:

the well-definedness of composition involves checking, e.g., that if f1, f2 : X Ñ Y
are homotopic to each other and g1, g2 : Y Ñ Z are homotopic to each other, then
g1 ˝ f1, g2 ˝ f2 : X Ñ Z are homotopic to each other.

(vii) Man, manifolds and smooth maps.
(viii) Ring, rings and ring homomorphisms.
(ix) For a commutative ring R, recall that a commutative R-algebra is a commutative

ring S together with a ring homomorphism ι : R Ñ S. Then we have the category
of commutative R-algebras: its objects are commutative R-algebras, and the mor-
phisms between two objects pS1, ι1q and pS2, ι2q are ring homomorpisms f : S1 Ñ S2

fitting into a commutative diagram

S1
f // S2

R

ι1

``

ι2

>> .

(x) R-Mod (resp., Mod-R) for a not necessarily commutative ring R, the category of
left R-modules (resp., right R-modules) and R-module homomorphisms. Note that
Z-Mod can be identified with AbGrp.

(xi) V eck :“ k-Mod, when k is a field, so this is the category of vector spaces over k
and k-linear transformations.

(xii) BanR (resp., BanC), Banach spaces over R (resp., C) and bounded linear maps.
(xiii) Given a group G, the category of G-sets, i.e., sets X together with an action of G,

where MorpX, Y q is the set of maps X Ñ Y respecting the G-actions.
(xiv) The category of pairs pG,Xq whereG is a group acting on a setX; MorppG,Xq, pH,Y qq

consists of all pairs consisting of a homomorphism G Ñ H and a function X Ñ Y
with the obvious compatibility: if the former maps g to h and the latter x to y, the
latter also maps g ¨ x to h ¨ y.

(xv) Pairs pV, T q consisting of a vector space V over a given field k, and a k-linear
transformation T : V Ñ V , with

MorppV, T q, pW,Uqq “ tf : V Ñ W | f ˝ T “ U ˝ fu.

(xvi) Open subsets of Cn and holomorphic maps between them.
(xvii) Given a ring R and a group G, the category whose objects are R-modules equipped

with a G-action by R-module automorphisms, and whose morphisms are morphisms
of R-modules that respect the G-action. If R “ k is a field, this is by definition the
category RepkG of representations of G on k-vector spaces.

Example 2.13. If G is a group, define ˚G to be the category such that Ob ˚G “ t˚u is a
singleton set, Morp˚, ˚q “ G, and composition of morphisms is multiplication in G.

Definition 2.14. (i) In a category C, f P MorpX, Y q is said to be an isomorphism
from X to Y if there exists g P MorpY,Xq such that g ˝ f “ idX and f ˝ g “ idY . If
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such an f exists we say that X and Y are isomorphic. Isomorphisms X Ñ X will
be referred to as automorphisms of X, and the collection of these will be denoted
by AutpXq.

(ii) A subcategory C 1 of C is a category C 1 such that Ob C 1 Ă Ob C, such that for all
X, Y P Ob C 1 Ă Ob C, we have MorC1pX, Y q Ă MorCpX, Y q, and such that the
identity morphisms idX as well as the compositions in C 1 are compatible with those
in C.

(iii) If C is a category, then Cop is the category such that Ob Cop “ Ob C, and such that

for all X, Y P Ob C, MorCoppX, Y q “ MorCpY,Xq, where g ˝ f : X
f

Ñ Y
g

Ñ Z in Cop

is Z
g

Ñ Y
f

Ñ X in C.
(iv) C is said to be a groupoid if every morphism in C is an isomorphism.

Example 2.15. In Grp an isomorphism is an isomorphism of groups, in Ring an isomor-
phism of rings, in R-Mod an R-module isomorphism, in Top a homeomorphism, in HTop
a homotopy equivalence, and in Man a diffeomorphism.

Example 2.16. (i) ˚G is clearly a groupoid.
(ii) The category whose objects are all the vector spaces over a field k, but where

MorpV,W q is simply the set of isomorphisms V Ñ W , is also a category, and is a
groupoid. Similarly with groups, rings or any other category.

(iii) If X is a topological space, we can define the category C with Ob C “ X, and where
for x, y P X “ Ob C, Morpx, yq “ the homotopy classes of paths from x to y, i.e.,
continuous maps f : r0, 1s Ñ X with fp0q “ x and fp1q “ y. Define g ˝ f by

pg ˝ fqpxq “

#

fp2xq, if x P r0, 1{2s, and

gp2x ´ 1q, if x P r1{2, 1s

(check that it is well-defined and continuous). This is a groupoid (check), called
the fundamental groupoid of X: the inverse of f : r0, 1s Ñ X is the reverse path,
g : r0, 1s Ñ X such that gptq “ fp1 ´ tq for 0 ď t ď 1.

2.5. Functors. If I understand it right, categories were originally designed to understand
(what turned out to be) functors:

Definition 2.17. Let C,D be categories. A functor F : C ù D consists of the following
data:

(i) For each A P Ob C, an object F pAq P ObD; and very importantly also
(ii) For all f : X Ñ Y in C, a morphism F pfq : F pXq Ñ F pY q in D, subject to the

properties F pidXq “ idF pXq and F pf ˝ gq “ F pfq ˝ F pgq.

Let us emphasize that a functor should be defined both at the level of objects and at the
level of morphisms, though sometimes one may specify it just at the level of objects when
its definition at the level of morphisms is understood.

A functor Cop ù D is also referred to sometimes as a contravariant functor from C to D.
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Note that functors between categories can be composed.

Example 2.18. (i) We have ‘forgetful functors’ Forget : Grp ù Set, Forget : R-
Mod ù AbGrp, Forget : R-Mod ù Set, Forget : RepkG ù V ectk. For
instance, Forget : Grp ù Set assigns to each group its underlying set, and assigns
to each group homomorphism G Ñ H the same map viewed as a map of sets.

(ii) π0 : Top ù Set, assigns to each topological space its set of connected components
π0pXq, and to each continuous map f : X Ñ Y of topological spaces the induced
map π0pfq : π0pXq Ñ π0pY q of connected components: it is well-defined since the
image of a connected component of X under the continuous map f is connected
and hence contained in a connected component of Y .

(iii) However, we don’t have a functor π1 : Top ù Grp: π1 is not assigned to a topolog-
ical space X, but to a pointed topological space or a based topological space pX, xq,
where X is a topological space and x P X is a point. There is a category of pointed

topological spaces, say ĄTop, where MorppX, xq, pY, yqq is the set of continuous maps
f : X Ñ Y such that fpxq “ y. Such a map f uniquely determines a group ho-
momorphism π1pfq : π1pX, xq Ñ π1pY, yq. This respects composition and identity
morphisms, so assigning to π1pX, xq to pX, xq and π1pfq : π1pX, xq Ñ π1pY, yq to

f : pX, xq Ñ pY, yq, defines a functor π1 : ĄTop Ñ Grp.
One way to describe this is the following: ifX is a topological space, then without

the choice of a base-point we can define π1 up to an isomorphism but not up to a
unique isomorphism. This issue makes it non-functorial at the level of the category
Top, because a functor is defined at the level of morphisms as well, not just objects.

(iv) A functor F : ˚G ù Set is simply a set with an action of G: X :“ F p˚q is a set,
for all g P G “ Morp˚, ˚q, F gives F pgq P MorSetpF p˚q, F p˚qq “ tMaps X Ñ Xu,
and the rules F pgq ˝ F phq “ F pg ˝ hq and F pid˚q “ idF p˚q translate to F pghq “

F pgqF phq and that F pid˚q is the identity map X Ñ X. Thus, g ÞÑ F pgq is a group
homomorphism G Ñ BijpX,Xq, which is the same as giving an action of G on X:
g ¨ x “ F pgqpxq.

(v) By the same reasoning, a functor F : ˚G ù V eck is simply a representation of G
on a k-vector space. More generally, a functor F : ˚G Ñ C can be thought of as an
object of C with an action of G.

(vi) Any group homomorphism G Ñ H induces a functor ˚G ù ˚H .

Lemma 2.19. Let F : C ù D be a functor. If X, Y P Ob C are isomorphic, then so are
F pXq, F pY q P ObD.

Proof. If f : X Ñ Y and g : Y Ñ X are such that g ˝ f “ idX and f ˝ g “ idY , then
F pfq : F pXq Ñ F pY q and F pgq : F pY q Ñ F pXq are such that F pgq˝F pfq : F pXq Ñ F pXq

equals F pg ˝ fq “ F pidXq “ idF pXq, and similarly F pfq ˝ F pgq “ idF pY q. This shows that
F pfq : F pXq Ñ F pY q is an isomorphism with inverse F pgq : F pY q Ñ F pXq. □

A consequence of the above lemma: Let X and Y be homeomorphic path connected topo-
logical spaces, with f : X Ñ Y a homeomorphism. Then for any x P X, letting y :“ fpxq,
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pX, xq and pY, yq are isomorphic in the category ĄTop of pointed topological spaces. Thus,
by the above lemma, π1pX, xq – π1pY, yq. In other words, we can show two path connected
topological spaces to be non-homeomorphic, if we show that their fundamental groups are
not isomorphic: e.g.: R2zt0u and R2.

In your topology course, you will see functors:

Hi : Top ù AbGrp, H i : Topop ù AbGrp,

for each integer i ě 0. This can be sometimes be used to show that two given topological
spaces are not homeomorphic. For instance, for each n ě 1, we have:

HipS
n
q –

#

Z, if i “ 0 or n, and

0, otherwise.

Thus, if m ‰ n and m,n ě 1, then by Lemma 2.19 we have that Sm and Sn are not
homeomorphic to each other, since HnpSmq “ 0 fl Z – HnpSmq.

2.6. Full, faithful and essentially surjective functors.

Definition 2.20. A functor F : C ù D is said to be

(i) faithful (resp., full; resp., fully faithful), if for allX, Y P Ob C, the mapMorpX, Y q Ñ

MorpF pXq, F pY qq given by f ÞÑ F pfq is injective (resp., surjective; resp., bijective).
(ii) essentially surjective, if for all A P ObD, there exists X P Ob C such that F pXq is

isomorphic to A in the category D (we are not requiring that A itself is of the form
F pXq, it just needs to be isomorphic to something of that form).

(iii) an equivalence of categories, if it is fully faithful and essentially surjective.

Example 2.21. (i) Forget : Grp ù Sets and Forget : R-Mod ù AbGrp ù Set
and Forget : Top ù Set are all faithful, but none of them is full. The obvious
‘inclusion functor’ AbGrp ù Grp is fully faithful.

(ii) If G Ñ H is a group homomorphism, the functor ˚G ù ˚H discussed in Example
2.18(vi) is faithful (resp., full; resp., fully faithful) if and only if G Ñ H is injective
(resp., surjective; resp., bijective).

(iii) Consider the category V ecfdk of finite dimensional k-vector spaces and k-linear trans-
formations, and its full subcategory C consisting of vector spaces of the form kn for
some n P Zě0: this means that the members of Ob C are simply the k-vector spaces
of the form kn, and that MorCpX, Y q “ MorV ecfdk

pX, Y q for all X, Y P Ob C. Then,
by definition, the inclusion functor C ù V ecfdk is fully faithful. Since every finite
dimensional k-vector space is isomorphic to some kn, it is also essentially surjective,
and hence is an equivalence of categories. Note that C is small, while V ecfdk is not.

(iv) V ecfdk is equivalent to pV ecfdk qop, by the functor that takes V in ObV ecfdk to its dual
V _ :“ HomkpV, kq, and each linear map T : V Ñ W to the transpose (or “pull-back
under T”) map tT : W_ Ñ V _, thought of as an element of Mor

pV ecfdk qop
pV _,W_q.
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(v) Later, we will hopefully see that for any natural number n ě 1, V ecfdk is equivalent
to “Mnpkq-Modf.g.”, by a functor that, at the level of objects, takes V to “V bk k

n”.

Fully faithful functors satisfy the following stronger (“if and only if”) version of Lemma
2.19:

Lemma 2.22. Let F : C ù D be a fully faithful functor. Then two objects X, Y P Ob C
are isomorphic if and only if F pXq, F pY q P ObD are.

Proof. Easy exercise. This property of F is referred to as F being conservative. □

2.7. Natural transformations.

Definition 2.23. (i) Let F,G : C ù D be functors. A natural transformation ϕ from
F to G is a collection of morphisms in D indexed by Ob C,

ϕ “ pϕX : F pXq Ñ GpXqqXPOb C

(i.e., each ϕX lies in MorDpF pXq, GpXqq), respecting morphisms in the sense that
for all f : X Ñ Y in C, the following diagram commutes:

F pXq

F pfq

��

ϕX // GpXq

Gpfq

��
F pY q

ϕY // GpY q

.

(ii) We say that ϕ as above is a natural isomorphism if it has an inverse natural trans-
formation, i.e., a natural transformation ψ from G to F such that for all X P Ob C,

ψX ˝ ϕX : F pXq
ϕX
Ñ GpXq

ψX
Ñ F pXq and ϕX ˝ ψX : GpXq

ψX
Ñ F pXq

ϕX
Ñ GpXq

are identity morphisms, namely idF pXq and idGpXq. In other words, the composite
natural transformations ϕ ˝ ψ and ψ ˝ ϕ are the identity functor D Ñ D.

(iii) Given categories C and D, we have a category FunpC,Dq, whose objects are the
functors from C to D, and where the morphisms between two functors F and G are
the natural transformations ϕ from F to G (composition is understood to be the
composition of natural transformations).

Example 2.24. Recall Examples 2.18 (iv) and (v): expanding on the reasoning there, it
follows that the category Funp˚G, Setq is the category of sets with a G-action (Example
2.12(xiii)), and the category Funp˚G, V eckq is RepkG.

Remark 2.25. One can show that the functor F : C ù D is an equivalence of categories
if and only if there exists a functor G : D ù C such that G˝F is naturally isomorphic (in
the category FunpC, Cq) to the identity functor C ù C, and such that F ˝ G is naturally
isomorphic to the identity functor of D ù D. For more details, see Arvind’s notes; this
result uses a form of axiom of choice that applies to classes which may not be sets.
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Note that G˝F and F ˝G are not required to be identity functors at all: that would make
the definition too restrictive to be useful; there is a notion of ‘isomorphism of categories’,
which is not nearly as useful as equivalence of categories.
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3. Lecture 3 — Yoneda lemma, more on categories and functors

3.1. Preliminary comments. Remember that we ignore set-theoretic difficulties.

Correction: For C to be a small category, not only do we require that Ob C is a set, but
also that for all X, Y P Ob C, MorCpX, Y q is a set. Varying this over X, Y belonging to the
set Ob CˆOb C, the collection of all morphisms in C also forms a set. (Last time, I carelessly
copied the definition from a source which was already assuming that its categories were
locally small, so for that source the condition that the objects formed a set was enough.)

Today: by ‘category’, we will mean a ‘locally small category’: each MorCpX, Y q is a set.

Recall that given two categories C and D, we have a category FunpC,Dq whose objects are
functors F : C Ñ D, and whose morphisms are natural transformations. Isomorphisms in
this category are called ‘natural isomorphisms’, and are what we refer to when we say ‘is
naturally isomorphic to’.

Notation 3.1. Henceforth, if F,G : C ù D are functors, we will write NatpF,Gq for the
collection of natural transformation from F to G.

Warning: For ease of communication, I may occasionally refer to certain objects ‘universal
objects’; that is not standard terminology and should not be used in formal mathematical
writing.

3.2. The Yoneda embeddings. Very informal motivation. From a category theoretic
perspective, rather than looking into structures that constitute an object (e.g., addition
and scalar multiplication in a vector space), one tries to glean information about objects
on the basis of their morphisms to or from other objects. An analogy I remember hearing
from Professor Nitin Nitsure is: we can’t look inside anyone’s head, but we can get some
information about what they are thinking based on what they talk with other people!

Thus, to get information about X P Ob C we might use:

Definition 3.2. Let X P Ob C, where C is a (locally small by convention) category.

(i) By hX :“ MorCpX,´q, we denote the functor C ù Set defined as follows:
‚ At the level of objects: For Y P Ob C, hXpY q “ MorCpX, Y q (a set since C is
locally small).

‚ At the level of morphisms: If f : Y Ñ Z is a morphism in C, then

hXpfq : hXpY q “ MorCpX, Y q
pY ÑZq˝´

Ñ MorCpX,Zq “ hXpZq

is given by post-composition in C with Y Ñ Z.
(ii) Analogously, we have the functor hX :“ MorCp´, Xq, a functor Cop ù Set: for

Y P Ob C and f : Y Ñ Z in Cop, i.e., Z Ñ Y in C,
hXpY q “ MorCpY,Xq,

hXpfq : hXpY q “ MorCpY,Xq
´˝pZÑY q

Ñ MorCpZ,Xq “ hXpZq.
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Definition 3.3. Let C be a category. The category of presheaves on C is the category
PreshpCq :“ FunpCop, Setq, i.e., the category of contravariant functors from C to the cate-
gory Set of sets. We will also be interested in PreshpCopq “ FunpC, Setq.

As we will see, these categories contain a copy of C or Cop via the hX or the hX : they are
larger categories (e.g., if C has just one object and one morphism, PreshpCq identifies with
the category Set of sets, which is not a small category), closed under certain operations
that C or Cop may not be, as we hope the discussion on products and coproducts below
will show (see Remarks 3.21 and 3.25).

Example 3.4. If X is a topological space, one can consider the category C of open subsets
of X, where the morphisms are inclusions. In this case, the objects of PreshpCq are simply
the presheaves of sets on C in the usual sense.

More examples will be found in the following definitions of Yoneda embeddings.

Definition 3.5. (i) We upgrade X Þ⇝ hX , defined so far at the level of objects, to a
functor h‚ : Cop Ñ FunpC, Setq: if X Ñ Y is a morphism in C, corresponding to
f : Y Ñ X in Cop, then

h‚pfq : hY “ MorCpY,´q
´˝XÑY

Ñ MorCpX,´q “ hX

is the natural transformation given by pre-composition with X Ñ Y .
(ii) Similarly, X Þ⇝ hX can also be upgraded to a functor h‚ : C Ñ PreshpCq “

FunpCop, Setq: if f : X Ñ Y is a morphism in C, its image h‚pfq P NatphX , hY q is
the natural transformation MorCp´, Xq Ñ MorCp´, Y q given by post-composition
with X Ñ Y .

(iii) The functor h‚ : Cop Ñ FunpC, Setq given by X Þ⇝ hX , and the functor h‚ : C Ñ

PreshpCq “ FunpCop, Setq given by X Þ⇝ hX 3 are called Yoneda embeddings. e.g.,
the latter may be called the Yoneda embedding of C in its presheaf category.

Remark 3.6. Why ‘embedding’? A functor F : C ù D is an embedding if it is both
injective on objects and faithful (e.g., a quasi-inverse to the inclusion of vector spaces of
the form kn in all finite dimensional k-vector spaces is faithful but not injective on objects).
It is easy to check that the Yoneda embeddings are embeddings; the injectivity on objects
comes from the definitional fact that MorCpX, Y q and MorCpX 1, Y 1q are disjoint unless
X “ X 1 and Y “ Y 1. Below, we will see the Yoneda lemma, which says that these are not
just embeddings, but also fully faithful.

Example 3.7. This is an important special case of the hX of Definition 3.2(ii) above. Let
C “ pk-algfgqop be the opposite category of the category of finitely generated k-algebras
(and k-algebra homomorphisms between them): here in in the rest of this lecture, a k-
algebra will be understood to be commutative. Then C is referred to as the category of
affine algebraic schemes over k. Let X P Ob C “ Ob Cop be the finitely generated k-algebra
krx1, . . . , xns{pf1, . . . , fmq (with k understood to map to it in the obvious way). Then:

3Recall, this is abuse of notation: strictly speaking, the functors include their definition at the level of
morphisms too, which are suppressed here for brevity.
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‚ What is hXpY q? Since Y is a f.g. k-algebra, let us write k Ñ R for it.

hXpY q “ MorCpY,Xq “ Mork´algpkrx1, . . . , xns{pf1, . . . , fmq, Rq

“ tpa1, . . . , anq P Rn
| @ 1 ď j ď m, fjpa1, . . . , anq “ 0u.

Thus, for each Y “ pk Ñ Rq, hXpY q is simply the set of solutions in Rn to the
system f1 “ ¨ ¨ ¨ “ fm “ 0 of equations in n variables over k, viewed via k Ñ R as
a system of equations over R.

‚ Similarly, if Z Ñ Y is a morphism in C, corresponding to a morphism R Ñ S of k-
algebras (i.e., in Cop, so Y corresponds to R and Z to S), then then hXpY q Ñ hXpZq

is the obvious map

tSolutions of f1 “ ¨ ¨ ¨ “ fm “ 0 in Rn
u Ñ tSolutions of f1 “ ¨ ¨ ¨ “ fm “ 0 in Snu,

given by applying R Ñ S: note that this makes sense since R Ñ S is a k-algebra
homomorphism (e.g., if it takes r to s then it takes 2r2 ` 3r to 2s2 ` 3s), and
f1, . . . , fm P krx1, . . . , xns.

Definition 3.8. A presheaf F P FunpCop, Setq is said to be representable if it is natu-
rally isomorphic to hX , for some X P Ob C. Similarly, F P FunpC, Setq is said to be
corepresentable if it is naturally isomorphic to hX , for some X P Ob C.
Example 3.9. As in Example 3.7, let C “ pk-algfgqop. Then an element of PreshpCq can
be thought of as a functor F : k-algfg Ñ Set, say R Þ⇝ F pRq (at the level of objects). To
say that this functor is representable, means:

‚ Informally, it means that F pRq, as R-varies over finitely generated k-algebras, is
(bijective, functorially in R with) the set of solutions in Rn to some fixed set of
equations f1 “ ¨ ¨ ¨ “ fm “ 0 over k.

‚ Formally, of course, it means that there is some finitely generated k-algebra A with
the property that for each finitely generated k-algebra R, we have an identification

ϕR : F pRq
bij.
Ñ Homk-algpA,Rq for each f.g. k-algebra R, which is furthermore

functorial in R – i.e., for any k-algebra homomorphism f : R Ñ S, the diagram
below commutes:

F pRq
ϕR //

F pfq

��

Homk-algpA,Rq

f˝´

��
F pSq

ϕS // Homk-algpA, Sq.

How to translate from the informal to the formal perspective? If the equations are f1 “

¨ ¨ ¨ “ fm “ 0 in n variables x1, . . . , xn, then A “ krx1, . . . , xns{pf1, . . . , fmq. 4

Example 3.10. The forgetful functor AbGrp ù Set is corepresented by Z, since for any
abelian group A, MorAbGrppZ, Aq identifies with A via φ ÞÑ φp1q. Similarly the forgetful
functor R-Mod ù Set is corepresented by R.

4In fact any finitely generated k-algebra A accepts a surjection from krx1, . . . , xns, by whose Noetheri-
anness (because of the Hilbert basis theorem) A is isomorphic to some krx1, . . . , xns{pf1, . . . , fmq.



34

3.3. Yoneda lemma.

Lemma 3.11 (Yoneda). The Yoneda embeddings h‚ and h‚ are fully faithful.
In other words, letting C be a category:

(i) @ X, Y P Ob C, u ÞÑ h‚puq defines a bijection MorCpY,Xq “ MorCoppX, Y q Ñ

NatphX , hY q; and
(ii) @X, Y P Ob C, u ÞÑ h‚puq defines a bijection MorCpX, Y q Ñ NatphX , hY q.

This lemma turns out to be a special case of the following version of it – you might
possibly prefer to defer reading the precise description of the bijections in the statement
of the lemma until you read the ‘Idea of the proof’ below:

Lemma 3.12 (Yoneda). (i) For any X P Ob C and any functor F : C ù Set, the
map

NatphX , F q Ñ F pXq,

given by

η ÞÑ ηX
loomoon

MorpX,XqÑF pXq

p idX
loomoon

PMorpX,Xq

q,

is a bijection, with inverse

u ÞÑ ηu “ pηu,Y qY POb C, where ηu,Y : hXpY q Ñ F pY q sends f : X Ñ Y to F pfq
loomoon

F pXqÑF pY q

p u
loomoon

PF pXq

q.

(ii) For any X P Ob C and any functor G : Cop ù Set, the map

NatphX , Gq Ñ GpXq

given by

η ÞÑ ηX
loomoon

MorpX,XqÑGpXq

p idX
loomoon

PMorpX,Xq

q

is a bijection, with inverse

u ÞÑ ηu “ pηu,Y qY POb C, where ηu,Y : hXpY q Ñ GpY q sends f : Y Ñ X to Gpfq
loomoon

GpXqÑGpY q

p u
loomoon

PGpXq

q.

Moreover, the bijection of (i) is “natural” in X and F , while that of (ii) is “natural”
in X and G.

Proof. Both the map and its claimed inverse have been given, so you can verify that they
are indeed two-sided inverses of each other. The naturality is also easy to verify. So you
can do this as an exercise. But we explain the idea below.

Idea of the proof, for (ii). Somehow the point of the proof is the following feature of
hX . There is a ‘universal object’ in hXpXq “ MorCpX,Xq, namely, the identity morphism
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u0 :“ idX . Here, the ‘universality’ means the following: any f P hXpY q “ MorCpY,Xq, is
also the composition of idX : X Ñ X with f : Y Ñ X, so

hXpfq
loomoon

MorCpX,XqÑMorCpY,Xq

p idX
loomoon

PMorCpX,Xq

q “ f.

This means that every natural transformation η : hX Ñ G is entirely determined by where
ηX : hXpXq Ñ GpXq sends idX :

idX P
_

��

hXpXq
ηX //

hXpfq

��

GpXq

Gpfq

��

Q u “ ηXpidXq
_

��
f P hXpY q

ηY // GpY q Q Gpfqpuq

.

Make sure you can read both the ‘forward’ and ‘backward’ directions of the bijection from
the above diagram. □

Proof of Lemma 3.11. We will prove (ii); the proof of (i) will be suitably analogous. Ap-
plying Lemma 3.12 with G :“ hY , we get a bijection

MorCpX, Y q “ hY pXq “ GpXq Ñ NatphX , Gq “ NatphX , hY q,

given by

MorCpX, Y q Q u ÞÑ phXpZq “ MorCpZ,Xq Q f ÞÑ hY pfqpuq P MorCpZ, Y q “ hY pZqqZPOb C.

But hY pfqpuq is simply the composite of u : X Ñ Y with f : Z Ñ X, namely u ˝ f .
Thus, the above bijection MorCpX, Y q Ñ NatphX , hY q simply sends u to post-composition
with u, which is by definition h‚puq (see Definition 3.5(ii)). Thus, u ÞÑ h‚puq is a bijection
MorCpX, Y q Ñ NatphX , hY q, as desired. □

Remark 3.13. Here is a rephrasing of the ‘naturality assertion’ of Lemma 3.12: one has
an obvious notion CˆD of a product of two categories C and D, where the objects of CˆD
are Ob C ˆ ObD, and where

MorCˆDppX1, Y1q, pX2, Y2qq “ MorCpX1, X2q ˆ MorDpY1, Y2q.

Then the naturality assertion (say, for the latter bijection) in Lemma 3.12 says that the
collection of bijections F pXq Ñ NatphX , F q there form a natural isomorphism between
the following functors C ˆFunpCop, Setq ù Set: the evaluation functor sending pX,F q to
F pXq, and the functor sending pX,F q to NatphX , F q.

Example 3.14. Check that the functor GLn{k : k-algfg ù Set that sends pk Ñ Rq to
GLnpRq is representable on pk-algfgqop, by kry, xij | 1 ď i, j ď ns{py ¨ detpxijq ´ 1q. So is
the functor An{k that sends R to Rn, by krx1, . . . , xns. We would like to intuitively think
of GLn{k, which is a functor, as a group: in fact it can be viewed as a functor GLn{k : k-
algfg ù Grp, and we would like to think of it as acting on An{k, thought of as column
vectors, by matrix multiplication. In particular, we would like to consider the orbit map
GLn Ñ An{k sending g ÞÑ g ¨ tp1, 0, . . . , 0q. One way to do this is to define a suitable
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map krx1, . . . , xns Ñ kry, xij | 1 ď i, j ď ns{py ¨ detpxijq ´ 1q. This is not exactly pleasant.
But the Yoneda lemma, 3.11, implies that this specification can also be done by specifying
the resulting map GLnpRq Ñ Rn for each k-algebra R: namely, it sends paijq1ďi,jďn to
tra11 . . . an1s; it is functorial in R.

Similarly, we can think of the “action” map GLn{k ˆ An{k Ñ An{k by giving, for each
f.g. k-algebra R, the matrix multiplication formulation of GLnpRq ˆ Rn Ñ Rn, observing
that this is both a group action and functorial in R (and hence a natural transformation).
Again by the Yoneda lemma, this gives us a complicated map of rings.
Upshot: Thus, in many contexts, giving an element of NatphX , hY q is simpler and more
intuitive than giving an element of MorCpX, Y q.

Remark 3.15. (Some sort of “universal objects”; warning: this terminology is informal,
don’t use it in formal writing) Now assume that a presheaf F P FunpCop, Setq is repre-
sentable, say it is represented by X. In other words, there exists a natural isomorphism
from η : hX Ñ F . By Lemma 3.11, this natural isomorphism is described by an element
u P F pXq: in terms of u, ηY : hXpY q “ MorCpY,Xq Ñ F pY q is given by ηY pfq “ F pfqpuq:
in other words, the set F pY q consists of various possible images of the ‘universal object’
u P F pXq under the various F pfq, as f varies over MorCpY,Xq.

This sort of a ‘universal object’ is quite common in mathematics. An example can be
seen in Remark 3.21 below, shortly below (13). Here is an example of the analogous
phenomenon in the context of h‚ and corepresentable functors, especially for those of you
who have some familiarity with tensor products. Later we will construct a tensor product
M bR N of R-modules M and N using the representability of the functor that sends an
R-module L to the set of R-bilinear maps from M ˆ N Ñ L, and then the ‘u’ as above
will be a bilinear map M ˆ N Ñ M bR N . That every element of F pY q consists of the
various F pfqpuq will then correspond to the fact that every bilinear map M ˆN Ñ L will
be the composite of some M bR N Ñ L (the “f”) and M ˆ N Ñ M bR N (the “u”).

3.4. Products.

Definition 3.16. (i) Let X1, X2 P Ob C. A product of X1 and X2 is a triple pX, π1, π2q

consisting of an object X P C, typically denoted X1 ˆX2, and morphisms π1 : X Ñ

X1 and π2 : X Ñ X2, satisfying the following universal property: For all Y P Ob C
and every pair of morphisms f1 : Y Ñ X1 and f2 : Y Ñ X2, there exists a unique
morphism f : Y Ñ X “ X1 ˆ X2 such that f1 “ π1 ˝ f and f2 “ π2 ˝ f :

Y
f1

zz

f2

$$
D!f
��

X1 X1 ˆ X2π1
oo

π2
// X2

In other words, the following map is a bijection:

(11) MorCpY,Xq
pπ1˝´,π2˝´q

Ñ MorCpY,X1q ˆ MorCpY,X2q.
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(ii) We can similarly define pX “
ś

iPI Xi, pπi : X Ñ XiqiPIq, a product of a family
pXiqiPI indexed by some set I:

Y

fi
��

D!f

""
Xi

ś

iXiπi
oo

.

In other words, the following map is a bijection:

(12) MorCpY,Xq
pπi˝´qiPI

Ñ
ś

iPI MorCpY,Xiq.

(i) is a special case of this, and will be referred to as a ‘binary product’.
(iii) We can interpret or extend the definition in (ii) to apply to the case where I “ H:

An ‘empty product’ in a category C is by definition a terminal object or a final
object in the category, by which one means an object ˚ P Ob C such that for all
Y P Ob C, MorCpY, ˚q is a singleton.

(iv) We say that a category C has small products if every collection pXiqiPI of objects
of C has a product (since I can be empty, this includes the requirement that C has
a terminal object). These are called small products (‘small’ because I is a set)

A product in a category need not exist, but if it does, it is suitably unique:

Exercise 3.17. Show that in a category C, a product of pXiqiPI need not exist, but if it
exists, it is ‘uniquely unique’: if pX, pπiqiPIq and pX 1, pπ1

iqiPIq are both products of the Xi,
then there exists a unique isomorphism τ : X Ñ X 1 such that πi “ π1

i ˝ τ for each i P I.
(For I “ H, this is saying that a terminal object of the category, if it exists, is uniquely
unique).

The ‘uniquely’ in the assertion of Exercise 3.17 refers to the fact that the product is
not just unique up to an isomorphism, but unique up to a unique isomorphism. The
uniqueness assertion in the exercise justifies writing

ś

iXi for the (object underlying the
tuple constituting) the product of the Xi (and similarly X1 ˆ X2 for a binary product).

Example 3.18. The following categories have arbitrary small products, which coincide
with what you already have seen called the products of their objects: Set,Grp, Top,AbGrp,R-
Mod, V eck, Ring. For instance, if pXiqiPI is a family of topological spaces, we take

ś

iPI Xi

to be the set-theoretic product of the Xi, given the product topology, and πj :
ś

iPI Xi Ñ

Xj to be the projection onto the j-th factor. Except, we also need to worry about the
empty product, namely a terminal object, which exists in each of these cases: a singleton
set t˚u for Set, a trivial group for Grp and AbGrp, a singleton topological space for Top,
the zero module 0 for R-Mod (and similarly with V eck), and the zero ring for Ring.

Thus, e.g., for any topological space Y , giving a continuous map fi : Y Ñ Xi for each i
is equivalent to giving a single continuous map f : Y Ñ

ś

iXi, such that for each i, f
projects along the i-th factor to fi. This is why the product topology was defined the way
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it was: all those basic open sets etc. By the uniqueness of products (Exercise 3.17), this
was the only way the product topological space could have been defined.

For those of you who are familiar with algebraic varieties, the category of algebraic varieties
over k has binary products, which is the ‘usual’ binary product of algebraic varieties.

Exercise 3.19. In the category of fields, products do not exist, nor does the category have
a terminal object.

Exercise 3.20. Prove the following enhancement of the fact that products exist in Set:
For any category C, the category PreshpCq “ FunpCop, Setq has arbitrary small products.

More precisely, given functors pFi : C ù SetqiPI , take
ś

iPI Fi to be the functor F : C ù

Set such that for each X P Ob C,

F pXq “
ź

iPI

FipXq, this product being taken in Set.

It is clear how to complete the definition of F by defining it for morphisms, and it is clear
how to define the πi : F Ñ Fi.

Remark 3.21. (i) Recall the Yoneda embedding C ù PreshpCq. What Definition
3.22 (specifically, (12)) tells us is that pX, pπi : X Ñ Xiqq is a product of pXiqiPI if
and only if p´ ˝ πiqiPI induces, for all Y P Ob C:

hXpY q Ñ
ź

iPI

hXipY q.

Upshot: pX, pπi : X Ñ XiqiPIq is a product of pXiqiPI if and only if phX , p´ ˝ πiqiPIq
is a product of phXiqiPI in PreshpCq.

(ii) This gives us a slightly different way to define a product of pXiqiPI , as follows.
Consider the functor F :“

ś

i h
Xi in PreshpCq, defined using the explicit set-

theoretic description of Exercise 3.20, so it is given (at the level of objects) by

Y ÞÑ
ź

iPI

hXipY q.

If this functor is representable by some object X, then we say that a product of
pXiqiPI exists, and define a product of pXiqiPI to be X together with a choice of a
natural isomorphism

(13) hX Ñ
ź

iPI

hXi .

Why is this equivalent to the definition in Definition 3.22? Here is the rough idea.
As mentioned in Remark 3.15, giving an equivalence of the form (13) is equivalent to
giving the image u of idX P hXpXq in F pXq “

ś

iPI h
XipXq “

ś

iPI MorCpX,Xiq. If
this image is u “ pπiqiPI P

ś

iPI MorCpX,Xiq, then you can verify that the condition
of Definition 3.22 is satisfied with pX, pπiqiPIq. Thus, to repeat, pπiqiPI is exactly
the ‘universal object’ u of Remark 3.15.
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Rough summary of this discussion: C may not be closed under small products, but C is
contained in a category which is closed under small products, namely PreshpCq. Thus,
ś

iPI h
Xi always exists, and its representability is equivalent to the existence of

ś

iPI Xi.
Another way to look at this is that in PreshpCq, you can define products set-theoretically,
and define products in C by ‘restriction’ from PreshpCq using the Yoneda embedding.

3.5. Coproducts. Here things are as in Subsection 3.4, but with all arrows reversed, so
we will be relatively brief.

Definition 3.22. (i) A coproduct, or a categorical sum, of a family pXiqiPI in a cat-
egory C is a pair pX “

š

iPI Xi, pιiqiPIq, where X P Ob C and ιi : Xi Ñ X in C
for each i, such that given Y P Ob C and morphisms fi : Xi Ñ Y for each i P I,
there exists a unique morphism f : X Ñ Y such that for each i P I, the following
diagram commutes:

Y

Xi

fi

OO

ιi //
š

iXi

D! f
bb .

In other words, for each Y P Ob C we have a bijection

(14) MorCp
š

iXi, Y q
ιi˝´
Ñ

ś

iMorCpXi, Y q.

When I “ t1, 2u, we get the special case of a ‘binary coproduct’.
(ii) We can interpret or extend the definition in (ii) to apply in the case where I “ H:

An ‘empty coproduct’ in a category C is by definition an initial object or a coterminal
object in the category, by which one means an object X P Ob C such that for all
Y P Ob C, MorCpX, Y q is a singleton.

(iii) We say that a category C has small coproducts if every collection pXiqiPI of objects
of C has a coproduct (since the set I is allowed to be the empty set, this includes
the requirement that C has an initial object).

A coproduct in a category need not exist, but if it does, it is suitably unique:

Exercise 3.23. Formulate and prove an analogue of Exercise 3.17 for coproducts.

Again, it is the uniqueness of the coproduct (Exercise 3.23), that justifies writing
š

iXi

for the (object underlying the tuple constituting) the coproduct of the Xi (and similarly
X1

š

X2 for a binary coproduct).

Example 3.24. The following categories have arbitrary small coproducts:

‚ In Set, coproduct is given by the disjoint union:
š

iXi can be taken to be the
disjoint union X of the Xi, and ιj : Xj Ñ X to be obvious inclusion. Of course,
one also needs to remark that Set does have an initial object, which is H.
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‚ In Grp, coproduct is given by the free product: the free product G ˚H of G and H
is the sequence of words s1 ¨ ¨ ¨ sn with each si belonging to G or H, with obvious
redundancies removed: e.g., “identity elements can be removed” and two successive
terms belonging to the same group can be multiplied together. In other words,
each of its elements can be identified with either the empty word, or an alternating
sequence of elements of G and H. The maps G Ñ G ˚ H and H Ñ G ˚ H are
obvious. Grp does have an initial object, the trivial group.

‚ For Ring, a coproduct exists, and is analogous to a free product sort of construction,
but we will not bother with it (not least because I haven’t looked it up myself).
Z is an initial object in Ring (the 0 ring cannot be an initial object, because by
definition, ring homomorphisms are required to send 1 to 1).

‚ In AbGrp,R-Mod and V eck, coproduct is given by direct sum (and the trivial group
or the 0 group or module or vector space is the initial object). Thus, in all these
categories, finite coproducts and finite products can be identified with each other,
though not infinite ones.

‚ In Top, again, coproduct is given by the disjoint union, though make sure you
know how to define the ‘correct’ topology on

Ů

iXi: the Xi Ă X are all open
and disjoint, and the topology of each Xi coincides with the one it gets from the
inclusion Xi Ă X. Again, H serves as an initial object.

Thus, e.g., for any topological space Y , giving a continuous map fi : Xi Ñ Y for each i
is equivalent to giving a single continuous map f :

š

iXi Ñ Y , such that for each i, f
restricts to Xi as fi.

Remark 3.25. A coproduct in C is essentially a product in Cop, so we can use the Yoneda
embedding h‚ for Cop, h‚ : Cop ù PreshpCopq “ FunpC, Setq, to get a description of
coproduct in C. Namely, Definition 3.22 (specifically, (14)) tells us that pX, pιi : Xi Ñ Xqq

is a coproduct of pXiqiPI if and only if p´ ˝ ιiqiPI induces, for all Y P Ob C:

hXpY q Ñ
ź

iPI

hXi
pY q.

Upshot: pX, pιi : Xi Ñ Xqq is a coproduct of pXiqiPI if and only if phX , p´ ˝ ιiqiPIq is
a product of phXi

qiPI in FunpC, Setq “ PreshpCopq. Appropriate analogues of the rest of
Remark 3.21 also apply here, e.g., the existence of

š

iXi is equivalent to the representability
of

ś

i hXi
.

However, note some asymmetry between the two situations, which basically arises from
covariance vs contravariance, and is also reflected in the difference between (12) and (14):
there is a ‘

ś

’ on both sides of the former, but the latter has a ‘
š

’ on the left-hand side
and a ‘

ś

’ on the right-hand side.



41

4. Lecture 4 – Limits and colimits

We continue with the convention that, unless otherwise stated, any category that we will
encounter is locally small, though we will make an exception for presheaf categories of
categories we work with.

4.1. Monomorphisms and epimorphisms.

Definition 4.1. (i) A morphism f : X Ñ Y in a category C is said to be a monomor-
phism if it has “left-cancellation”, i.e., if g1, g2 : Z Ñ X are such that f ˝ g1 “

f ˝ g2 : Z Ñ Y , then g1 “ g2. (Equivalently: h
X Ñ hY is objectwise injective).

(ii) A morphism f : X Ñ Y is said to be an epimorphism if it has “right-cancellation”,
i.e., if g1, g2 : Y Ñ Z are such that g1 ˝ f “ g2 ˝ f : X Ñ Z, then g1 “ g2.

Thus, f : X Ñ Y in C is a monomorphism if and only if, viewed as a morphism in Cop, it
is an epimorphism.

Example 4.2. (i) In Set, a morphism f : X Ñ Y is a monomorphism (resp., epimor-
phism) if and only if it is an injective (resp., surjective) function.

(ii) The “if” part of the analogous assertion is true in Grp,AbGrp,Ring,R-Mod, V eck
and Top, and also in the full subcategory HausTop of Top consisting of the
Hausdorff topological spaces. This can be viewed more category-theoretically: if
F : C ù Set is a faithful functor, then f : X Ñ Y is a monomorphism (resp., epi-
morphism) whenever the map F pfq : F pXq Ñ F pY q of sets is (for these categories,
this is true with F the forgetful functor to Set).

(iii) However, the “only if” part, while true for Grp, Top, AbGrp,R-Mod and V eck (a
bit of work is needed to show this for Grp and Top), is not true for Ring or
HausTop: it is an easy exercise to check that every monomorphism is injective in
these categories (as also in Grp, Top), but epimorphisms may not be surjective in
Ring or HausTop: In Ring, Z Ñ Q is an epimorphism, 5 while in HausTop, any
morphism with a dense image is an epimorphism (easy but good exercise).

4.2. Equalizers and coequalizers. An ‘equalizer’ of f1, f2 : X Ñ Y tries to capture the
notion of the ‘subset of X where f2 and f2 agree’. Formally:

Definition 4.3. Let f1, f2 : X Ñ Y be morphisms in C.

(i) An equalizer of f1 and f2 is a morphism eq : E Ñ X in C, satisfying f1˝eq “ f2˝eq,
and satisfying the following universal property: for any morphism h : Z Ñ X such

5While dealing with the category of rings, please keep in mind that ring homomorphisms are required
to send 1 to 1.
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that f1 ˝h “ f2 ˝h, there exists a unique morphism g : Z Ñ E such that h “ eq ˝g:

E X Y

Z

eq f1

f2

h
D! g .

(ii) A coequalizer of f1 and f2 is a morphism coeq : Y Ñ Q, satisfying coeq ˝f1 “ coeq ˝

f2, and satisfying the following universal property: for any morphism h : Y Ñ Z
such that h ˝ f1 “ h ˝ f2, there exists a unique morphism g : Q Ñ Z such that
h “ g ˝ coeq:

X Y Q

Z

f1

f2

coeq

h
D! g .

Exercise 4.4. Formulate a statement that captures “Equalizers and coequalizers are
uniquely unique”, and prove it.

Please note that the equalizer and the coequalizer refer to the morphisms eq : E Ñ X and
coeq : Y Ñ Q, and not just to the objects E and Q. However, by abuse of notation, we
might often write just E and Q when the maps eq : E Ñ X and coeq : Y Ñ Q are clear.

Example 4.5. (i) In Set, an equalizer E of f1, f2 : X Ñ Y is simply the (largest)
subset of X where f1 and f2 agree, while their coequalizer Q is the quotient of Y
by the equivalence relation generated by the relation “f1pxq „ f2pxq for all x P X”.
In Top, the prescriptions for the equalizer E and the coequalizer Q are the same
as for Set, except that E should be given the induced topology from X and that
Q should be given the quotient topology dictated by Y Ñ Q.

(ii) In Grp, the equalizer is as in Set (but it forms a subgroup of X and one remembers
it as a subgroup, not a subset), and the coequalizer of f1, f2 : X Ñ Y is the quotient
of Y by the smallest normal subgroup of Y containing f1pxqf2pxq´1 for each x P X.

(iii) In AbGrp,R-Mod and V eck, the equalizer of f1 and f2 is the kernel of f1 ´ f2,
and their coequalizer is the cokernel of f1 ´ f2 (thus, for AbGrp, the equalizer
and the coequalizer are the same as in Grp, only the description simplifies due to
abelianness).

(iv) In PreshpCq, the equalizer is the “object-wise set-theoretic equalizer” (make this
precise and prove it).

Exercise 4.6. (i) Show that every equalizer is a monomorphism, and that every co-
equalizer is an epimorphism. The converse does not hold, but let us not bother
about that now.

(ii) Describe equalizers using the Yoneda embedding and the obvious description of
equalizers in PreshpCq “ FunpCop, Setq, in the style of Remark 3.21. Similarly,
describe coequalizers as in Remark 3.25: note that this involves an equalizer rather
than a coequalizer in the presheaf category.
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(iii) Example from wikipedia: Show that in Top, the coequalizer of the two maps f1, f2 :
t˚u Ñ r´1, 1s, where f1p˚q “ 0 and f2p˚q “ 1, is S1.

4.3. Limits and colimits. Notice that there were some parallels between products and
equalizers; limits are a simultaneous generalization of these concepts. Similarly, colimits
simultaneously generalize coproducts and coequalizers.

Notation 4.7. Note that given any functor F : J ù C, it can be also viewed as a functor
F op : Jop ù Cop: this defines F op.

Definition 4.8. (i) (Cones) Let F : J ù C be a functor. A cone to F is a pair
pC, pϕjqjPOb Jq consisting of an object C P Ob C, together with morphisms ϕj : C Ñ

F pjq, for all j P J , such that for all f : i Ñ j in J , we have F pfq ˝ ϕi “ ϕj; see the
outer triangle of the following diagram.

C

ϕi

��

ϕj

��

D!u
��
X

πi

ww

πj

''
F piq

F pfq

// F pjq

.

(ii) (Limits) A limit F is then a ‘universal cone to F ’, i.e., it is a cone pX, pπjqjPOb Jq

to F , such that given any cone pC, pϕjqjPOb Jq to F , there exists a unique morphism
u : C Ñ X such that for all j P J , we have πj “ u ˝ ϕj (see the above diagram).

(iii) (Cocones) Let F : J ù C be a functor. A cocone to F is a cone to F op : Jop ù Cop.
In other words, it is a pair pC, pψjqjPOb Jq consisting of an object C P Ob C, together
with morphisms ψj : F pjq Ñ C, for all j P J , such that for all f : i Ñ j in J , we
have ψj ˝ F pfq “ ψi; see the outer triangle of the following diagram.

F piq
F pfq

//

ιi

''
ψi

��

F pjq
ιj

ww
ψj

��

X

D!u
��
C

.

(iv) (Colimits) A colimit of F is a limit of F op : Jop Ñ Cop.
In other words, it is a ‘universal cocone to F ’, i.e., a cocone pX, pιjqjPOb Jq, such
that given any cocone pC, pψjqjPOb Jq, there exists a unique morphism u : X Ñ C
such that for all j P J , we have u ˝ ιj “ ψj (see the above diagram).

(v) By a small limit we refer to a limit of a functor F : J ù C, where J is a small
category. Similarly, we define small colimits.
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(vi) A category C is said to be complete if it is “closed under small limits” – i.e., if every
functor F : J ù C, with J a small category, has a limit. Similarly, we call C and
cocomplete if it is closed under small colimits.

Remark 4.9. If J is the empty category (no object, no morphism), then there is a unique
functor F : J ù C. In this case, a cone to F is just an object of C, so that a limit of F
is just a final object of C (this sentence means: neither a limit of F nor a final object of C
may exist, but one exists if and only if the other does, and when they do they are uniquely
isomorphic). Similarly, a colimit of F is just an initial object of C.

Exercise 4.10. (i) Let F : J ù C be a functor. Organize the cones to F into a
category by defining morphisms between them (this is vaguely formulated, but I
expect you to formulate the most natural notion of morphisms between these).
Show that a limit of F is the same as a final object of this category. This gives
another way to phrase the definition of a limit of F .

(ii) Do (i) with cones and limit replaced by cocones and colimit.
(iii) Using (i) and (ii) or otherwise, rigorously formulate and prove the following asser-

tion: a limit of F is uniquely unique if it exists, as is a colimit of F .
(iv) (Limits generalize products) Let pXjqjPJ be a set of objects of C indexed by J . We

view J as a discrete category, which means: its collection of objects is the set J ,
and its only morphisms are the identity morphisms (the “discreteness”), so that
there is a unique functor F : J ù C sending each j to Xj. Show that a limit of
F is the same as a product of pXjqjPOb J . This applies even when J is empty (see
Remark 4.9 above, which is therefore a special case of this exercise).

(v) (Limits generalize equalizers) Consider the situation of Definition 4.3, so we have
f1, f2 : X Ñ Y in C. Let J be a category consisting of two objects a, b, and which
has exactly two non-identity morphisms, denoted f̃1, f̃2 : a Ñ b. Define F : J Ñ C
so that F paq “ X,F pbq “ Y, F pf̃1q “ f1 and F pf̃2q “ f2 (and it takes identity
morphisms to the appropriate identity morphisms) (see the diagram below). Show
that a limit of F is the same as an equalizer of f1 and f2.

a b
F

ù X Y
f̃1

f̃2

f1

f2

(vi) (Colimits generalize coproducts and coequalizers) Do the colimit analogue of (iv)
and (v).

Example 4.11. (i) In Set, all small limits exist. Namely, if F : J ù C is a func-
tor with J a small category, show as an exercise that a limit of F is given by
pX, pπjqjPOb Jq, where

(15) X “

!

pxjqj P
ź

jPOb J

F pjq | @ f : i Ñ j in J, F pfqpxiq “ xj

)

,

and πj : X Ñ F pjq is given by projection to the j-th factor in
ś

jPOb J F pjq. Thus,
Set is complete. As this example illustrates, a limit is formed by products and
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equalizers – as we now formalize in the following form that will be useful later: a
limit of F is given by the equalizer of the following diagram:

(16)
ś

jPOb J F pjq
ś

fPMorpJq
F ptpfqq,

g1

g2

where:
‚ MorpJq is the set of all morphisms in J ;
‚ for f : i Ñ j in J , we have written spfq “ i and tpfq “ j (s for “source” and t
for “target”);

‚ g1ppxjqjPOb Jq “ pxtpfqqfPMorpJq and g2ppxjqjPOb Jq “ pF pfqpxspfqqqfPMorpJq (thus,
in the condition F pfqpxiq “ xj in (15), xtpfq captures xj, and F pfqpxspfqq

captures F pfqpxiq).
(ii) A similar prescription works for Grp,AbGrp,R-Mod, V eck, Ring and Top, with

the difference that one has to keep the extra structures in mind; e.g., for ev-
erything other than Top one uses component-wise operations, and for Top gives
X the induced topology from the product topology: in other words, the weakest
topology on X such that each πj : X Ñ Xj is continuous. Thus, Grp,AbGrp,R-
Mod, V eck, Ring and Top are complete.

(iii) In Set, all small colimits exist as well. Namely, if F : J Ñ Set is a functor, with J
a small category, one shows that a colimit of F is given by pX, pιjqjPJq, where:

X “

˜

ğ

jPOb J

F pjq

¸

{ „,

where the equivalence relation „ is generated by the requirement that xi „ xj when-
ever xi P F piq, xj P F pjq, and there exists f : i Ñ j such that xj “ F pfqpxiq. As
with limits above, this colimit is seen to be built out of coproducts and coequalizers.
Thus, Set is both complete and cocomplete.

(iv) A similar prescription gives small colimits in Top (involving the use of quotient
topology), so that Top is both complete and cocomplete.

(v) It turns out that Grp and Ring are complete and cocomplete too, but the con-
structions for Set and Top do not work for these. I have never bothered looking up
or working it out.

(vi) However, in AbGrp,R-Mod and V eck, small colimits are easy to define, by ap-
propriately adapting colimits for Set: replace

Ů

by
À

, and ‘equivalence relation
generated by’ by ‘subgroup/submodule/subvector space generated by’ (in other
words, “Span of”). So these categories are complete and cocomplete as well.

(vii) For any category C, PreshpCq is both complete and cocomplete: one constructs
limits and colimits “object-wise”, using the limits and colimits for Set. In partic-
ular, one can construct a limit exactly as in (16), using products and an equalizer,
namely:

(17)
ś

jPOb J F pjq
ś

fPMorpJq
F ptpfqq,

g1

g2
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with notation as in (16).

Exercise 4.12. Show that Remarks 3.21 and 3.25, and Exercise 4.6(ii), generalize to
describe limits and colimits. Namely:

(i) The Yoneda embedding h‚ : C ù PreshpCq preserves limits. In fact, a functor
F : J ù C has a limit in C if and only if the limit of h‚ ˝ F : J ù PreshpCq

(which exists since PreshpCq has been observed above in Example 4.11(vii) to be
complete) is representable. Thus, as in Remark 3.21, this can give another definition
of a limit.

(ii) Since the Yoneda embedding h‚ : Cop ù PreshpCopq “ FunpC, Setq preserves limits,
it takes colimits of C (which are limits in Cop) to limits in FunpC, Setq.

A special case of the above exercise, which is much more simple and immediate, and yet
an important result, is:

Theorem 4.13. If X P Ob C, then the functor MorCpX,´q : C ù Set as well as the
functor MorCp´, Xq : Cop ù Set preserve small limits.

Proof. Easy exercise; this is pretty much the definition of a limit and a colimit. Here, we
say that a functor G : C ù D ‘preserves small limits’ if for any functor F : J ù C with
J a small category, if pX, pπjqjq is a limit of F , then pGpXq, pGpπjqqjq is a limit of the
composite functor G ˝ F : J ù D. □

Remark 4.14. Later we will hopefully see that Theorem 4.13 contains the left-exactness
of the ‘Hom-functors’ in the context of R-modules.

4.4. Direct and inverse limits. We now discuss how “direct limits” and “inverse limits”
are special cases of the above constructions. Let pJ,ďq be a directed set: J is a nonempty
set, and “ď” is a reflexive and transitive relation on it such that any two elements of J
have an upper bound. Antisymmetry is not always imposed, but let us impose it because
I don’t want to worry about the nuances. One makes pJ,ďq into a category: its objects
are just the elements of J , and for i ‰ j in J , there is a single morphism i Ñ j if i ď j,
and none otherwise. Call this category J as well. Then we can consider limits of functors
G : Jop Ñ C and colimits of functors F : J ù C.
Limits of such functors G : Jop ù C are called inverse limits, denoted lim

Ð
j

Gpjq, and

colimits of such functors F : J ù C are called direct limits or directed colimits, denoted
lim
Ñ
j

F pjq. We will prefer saying ‘directed colimits’ for the latter, since those are colimits in

the sense defined above.

Let us be slightly more explicit; show as an easy exercise the following remark:

Remark 4.15. (i) Giving such a functor F : J ù C as above is equivalent to giving
a family pXjqjPJ of objects of C together with a family of morphisms tφji : Xi Ñ

Xjui,jPJ,iďj such that φjj “ id @ j P J , and φki “ φkj ˝φji whenever i ď j ď k in J .
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(ii) Giving a functor G : Jop ù C as above is equivalent to giving a family pXjqjPJ

of objects of C together with a family of morphisms tψij : Xj Ñ Xiui,jPJ,iďju such
that ψjj “ id @ j P J , and ψij ˝ ψjk “ ψik whenever i ď j ď k in J .

This motivates:

Definition 4.16. (i) A direct system over pJ,ďq is a pair ppXjqjPJ , tφji : Xi Ñ

Xjui,jPJ,iďJq as in Remark 4.15(i) above. Given such a direct system ppXjqj, pφjiqiďjq,
the colimit of the functor F : J ù C associated to it as above is called a directed
colimit of this directed system, and typically written

lim
Ñ
j

Xj

(by convention we have suppressed the maps φji from the notation, though this
limit depends on which φji we are using).

(ii) An inverse system over pJ,ďq is a pair ppXjqjPJ , tψij : Xj Ñ Xiui,jPJ,iďjq as in
Remark 4.15(ii) above. Given such an inverse system ppXjqj, pψijqiďjq, the colimit
of the functor G : Jop ù C associated to it as above is called an inverse limit of
this inverse system, and typically written

lim
Ð
j

Xj.

In the context of direct and inverse systems, we can translate the descriptions of limits and
colimits from Example 4.11 to the language above:

‚ Let ppXjqj, pφjiqiďjq be a direct system over pJ,ďq. If additionally C is AbGrp,R-
Mod or V eck, we can write (the object underlying) lim

Ñ
j

Xj as:

(18)

˜

à

jPJ

Xj

¸

{Spanptxj ´ φjipxiq | i, j P J, i ď juq.

For Set or Top, replace the direct sum
À

by the disjoint union
Ů

, and Span by
“the equivalence relation generated by”. Something like this can be done for Grp
and Ring, but we will not get into it.

‚ Let ppXjqj, pψijqiďjq be an inverse system over pJ,ďq. If additionally C is Set, Top,
Grp, Ring, AbGrp, R-Mod or V eck, we can write (the object underlying) lim

Ð
j

Xj

as:

(19)
!

pxjq P
ź

jPJ

Xj | xi “ ψijpxjq @ i, j P J, i ď j
)

.

Example 4.17. (i) Let ppXjqj, pφjiqiďjq be a direct system over pJ,ďq. Assume that
C is Set, Top,Grp,AbGrp,R-Mod, V eck, Ring, or the category of fields. In these
settings, we can make sense of containments such as X Ă Y . Assume that there
is some object X in C such that for all i ď j in J , we have Xi Ă Xj Ă X, and
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φji : Xi Ñ Xj is the inclusion. Then it follows from (18) that the object underlying
lim
Ñ
j

Xj identifies with

ď

jPJ

Xj,

this union taken inside X (and the morphisms ιj : Xj Ñ X are the obvious con-
tainments too). Thus, a directed colimit is a generalization of union.

(ii) Let ppXjqj, pψijqiďjq be an inverse system over pJ,ďq. Assume that C is C is Set,
Top, Grp, AbGrp, R-Mod, V eck, Ring, or the category of fields. Assume that there
is some object X in C such that for all i ď j in J , we have Xj Ă Xi Ă X, and
ψij : Xj Ñ Xi is the inclusion. Then it follows from (19) that the object underlying
lim
Ð
j

Xj identifies with

č

jPJ

Xj,

so an inverse limit can be thought of as a generalization of intersection.

Example 4.18. We now discuss some examples of directed colimits.

(i) The category of fields is bad in so many ways (e.g., it does not have binary products
or coproducts), but it does have directed colimits. If L{K is an infinite algebraic
extension, one can take J to be the set of finite extensions of K contained in L,
ordered under inclusion, and Xj :“ j for all j P J , and φji : Xi Ñ Xj to be the
inclusion i ãÑ j (which makes sense as i ď j). This is a special case of Example
4.17(i), and gives the directed colimit of the Xj as L. Thus, L is a directed colimit
of finite extensions of K.

(ii) We take pJ,ďq to be Ně1 with the partial order where m ď n if and only if m|n.
Set Xn “ p1{nqZ for each n, and for m ď n, let φnm : Xm Ñ Xn be the inclusion.
Then it follows from Example 4.17(i) that lim

Ñ
n

Xn – Q (by abuse of notation: to

complete it one should say the Xn map to this by inclusion).
(iii) We take pJ,ďq to be as in (ii), set Yn “ Z for each n, and for m ď n, we set φ1

nm :
Ym “ Z Ñ Z “ Yn to be multiplication by n{m P Z. To compute lim

Ñ
n

Yn, letting the

Xn and the φnm be as in (ii), one considers the isomorphisms fn : Yn Ñ Xn given
by x ÞÑ x{n, and then notice that φnm ˝ fm “ fn ˝ φ1

nm. This allows us to identify
the directed system ppYnqn, pφ

1
nmqmďnq with the directed system ppXnqn, pφnmqmďnq

in (ii) above, and we get

lim
Ñ
n

Yn – lim
Ñ
n

Xn – Q.

(iv) We also have the following variants of the examples in (ii) and (iii): take the same
pJ,ďq, set Xn “ p 1

n
Z{Zq and Yn “ Z{nZ for each n. One can define the φnm and

the φ1
nm exactly as in (ii) and (iii). Then the same arguments as in these examples
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give:

lim
Ñ
n

Z{nZ – lim
Ñ
n

p
1

n
Zq{Z – Q{Z.

Please note that this is nothing peculiar: this is just expressing Q{Z as a directed
colimit/union of cyclic groups in a straightforward way.

Example 4.19. We now discuss some examples of inverse limits.

(i) (p-adic integers) Take pJ,ďq to be Ně1 together with the usual order, and C to be
Ring (one could also view this example with AbGrp instead). Fix a prime number
p. Take Xn “ Z{pnZ, and for m ď n, let ψmn : Z{pnZ Ñ Z{pmZ be the obvious
map. Then, by (19), the inverse limit of this system is the ring

Zp :“ lim
Ð
n

Z{pnZ “

!

panqn P
ź

n

Z{pnZ | an P Z{pnZ reduces to am P Z{pmZ whenever m ď n
)

(with component-wise addition and multiplication). It is an easy exercise to see
that this ring Zp is an integral domain. It is called the ring of p-adic integers, and
its quotient field Qp is called the field of p-adic numbers.

(ii) (Completion of a ring with respect to an ideal) Things are as in (i), but one replaces
Z by a ring R and ppq by an ideal I, so sets Xn “ R{In, and for m ď n defines
ψmn : R{In Ñ R{Im to be the obvious map R{In Ñ R{Im. Then, by (19), the
inverse limit of this system is the ring

R̂ “ lim
Ð
n

R{In “

!

panqn P
ź

n

R{In | an P R{In reduces to am P R{Im whenever m ď n
)

,

called the completion of R with respect to I (R̂ depends on I, but one abuses
notation by suppressing I from it).

(iii) (Formal power series ring) This is a special case of (ii) above. Check as an easy
exericse that, taking Rrxs and pxq in place of R and pIq, the completion we get is

lim
Ð
n

Rrxs{pxnq “ RJxK :“
!

8
ÿ

n“0

anx
n

| an P R @n
)

,

the formal power series ring in one variable over R, with an obvious ‘formal’ ad-
dition and multiplication. Indeed, to see the above identification, note that an
element of this inverse limit looks like (up to taking representatives in Rrxs for the
Rrxs{pxnq) pa0, a0 ` a1x, a0 ` a1x ` a2x

2, . . . q, so this sequence can be mapped to
ř

anx
n P RJxK.

(iv) (The profinite completion of Z) One again takes J “ Ně1, but defines m ď n if
m|n. One takes Xn “ Z{nZ, and for m ď n one defines ψmn : Z{nZ Ñ Z{mZ to
be the obvious map. Then we get the ring

lim
Ð
n

Z{nZ “

!

panqn P
ź

n

Z{nZ | an P Z{nZ reduces to am P Z{mZ whenever m|n
)

,
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usually denoted by Ẑ, called in a group theoretic context the profinite completion
of Z.

(v) (Profinite completion) In a group theoretic context, one can similarly consider the
profinite completion of other groups: J is to be taken as the directed set of finite
index normal subgroups of the given group, ordered under reverse inclusion, and the
inverse limit is usually given an appropriate topology, called the profinite topology,
and viewed for practical reasons as a topological group.

The following exercise may be given as part of HW 2, though I am not sure yet.

Exercise 4.20. Use the Chinese remainder theorem to give an isomorphism

Ẑ –
ź

p

Zp.

4.5. Pullbacks and pushouts.

Definition 4.21. (i) (Pullback/fiber product/cartesian square) Given two morphisms
f : X1 Ñ S and f2 : X2 Ñ S in C, a pullback or a fiber product (or fibered product)

of f1 and f2 is the limit of the diagram X1
f1
Ñ S

f2
Ð X2, by which we mean the limit

of a functor F : J Ñ C, where J has three objects x1, s and x2, and exactly two
nonidentity morphisms f̃1 : x1 Ñ s and f̃2 : x2 Ñ s, and F sends x1, s, x2, f̃1, f̃2
respectively to X1, S,X2, f1, f2:

x1
f̃1 // s x2

f̃2oo F
ù X1

f1 // S X2.
f2oo

The pullback and its universal property are illustrated in the following diagram,
where the triple pX, π1, π2q is the pullback:

Q ϕ2

��

ϕ1

))

D!

  
X

π2 //

π1
��

X2

f2
��

X1
f1

// S

.

A diagram of the form of the square in the above diagram, where the morphisms
from the top left object to the top right and the bottom left objects form a fiber
product of the remaining two morphisms, is called a cartesian diagram.

(ii) (Pushout/fibered coproduct/cocartesian square) Given two morphisms f1 : S Ñ X1

and f2 : S Ñ X2 in C, a pushout or a fibered coproduct of f1 and f2 is the

colimit of the diagram X1
f1
Ð S

f2
Ñ X2, by which we mean the colimit of a functor

F : J Ñ C, where J has three objects x1, s and x2, and exactly two nonidentity
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morphisms f̃1 : s Ñ x1 and f̃2 : s Ñ x2, and F sends x1, s, x2, f̃1, f̃2 respectively to
X1, S,X2, f1, f2:

x1 s
f̃1oo f̃2 // x2

F
ù X1 S

f1oo f2 // X2 .

The pushout and its universal property are illustrated in the following diagram,
where the triple pX, ι1, ι2q is the pushout:

Q

X
D!

``

X2

ψ1ss

ι2oo

X1

ψ2

KK

ι1

OO

S
f1

oo

f2

OO

.

A diagram of the form of the square in the above diagram, where the morphisms
to the top left object from the top right and the bottom left objects form a push
out of the remaining two morphisms, is called a cocartesian diagram.

Remark 4.22. You see fibered coproducts in the Seifert-van Kampen theorem in topology.
Fiber products are quite commonly seen in algebraic geometry. Some examples are special
cases of what you have already seen for limits and colimits. For instance, in Set as in Top,
given f1 : X1 Ñ S and f2 : X2 Ñ S,

X1 ˆS X2 “ tpx1, x2q | x1 P X1, x2 P X2, and f1px1q “ f2px2q P Su,

except that in the case of Top one should also give it the induced topology from the product
topology.

4.6. Criteria for existence of limits and colimits. By a finite limit (resp., colimit),
we mean the limit (resp., colimit) of a functor F : J ù C, where J is a finite category
– i.e., the collection of objects of J is a finite set, and the collection of morphisms of J is
also a finite set. A category which has all finite limits (resp., all finite colimits) is called
finitely complete (resp., finitely cocomplete).

Theorem 4.23. (i) A category is complete if and only if it has small products and
equalizers.

(ii) A category is cocomplete if and only if it has small coproducts and coequalizers.

Moreover, the above assertions are true with ‘complete’, ‘small products’, ‘cocomplete’ and
‘small coproducts’ replaced respectively by ‘finitely complete’, ‘finite products’, ‘finitely co-
complete’ and ‘finite coproducts’.

Proof. We will prove (i) – then (ii) will follow from applying (i) to Cop, and the proof of
the ‘finite’ versions will be analogous.
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“ñ” is immediate since small products and equalizers are special cases of small limits.
Thus, let us prove “ð”, so assume that C has small products and equalizers. Let F :
J ù C be a functor, with J a small category. It is enough to show that F has a limit.

Motivated by (16), using analogous notation, we consider the equalizer of the following:

(20)
ś

jPOb J F pjq
ś

fPMorpJq
F ptpfqq,

g1

g2

where g1 is the unique map from the left-hand side to the right-hand side whose composition
with the projection onto the f -th component, for f P MorpJq, is the projection πtpfq from
the left-hand side to its tpfq-factor (recall that these projections πj come with the definition
of a product), and g2 is the map whose projection is F pfq ˝ πspfq.

To show that this equalizer is a limit of F , it is enough to show that its image under
the Yoneda embedding h‚ is the limit of h‚ ˝ F (Exercise 4.12). But since the Yoneda
embedding preserves products and equalizers, it is enough to show that the analogue of
(20) with C replaced by PreshpCq and F replaced by h‚ ˝F , has equalizer equal to the limit
of h‚ ˝ F . But this has been already observed in (17). □

Remark 4.24. It is easy to check that if a category has binary products X1 ˆ X2, then
it has all finite products X1 ˆ ¨ ¨ ¨ ˆ Xn, except possibly for the empty product (i.e., the
terminal object). Thus, by the above theorem, to check that a category is finitely complete,
it is enough to check that it has equalizers, binary products, and a final object. A similar
remark applies to check when a category is finitely cocomplete.

Exercise 4.25. Show that monomorphisms, epimorphisms, limits, colimits etc. all respect
an equivalence of categories (with ‘if and only if’ statements).
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5. Lecture 5 – Adjoint functors, tensor products

So far, we were ambiguous about whether Ring stood for the category of rings or that
of commutative rings. We now disambiguate it, and reserve Ring for the category of not
necessarily commutative rings (but associative, and with 1), and CRing for the category
of commutative rings henceforth.

5.1. Adjoint functors. We continue with the convention that, unless otherwise stated,
any category that we will encounter is locally small, though we will make an exception for
presheaf categories of categories we work with.

Definition 5.1. (i) A functor F : C ù D is said to be left adjoint to a functor
G : D ù C, or equivalently G is said to be right adjoint to F , if we have bijections

(21) adj “ adjX,Y : MorDpF pXq, Y q Ñ MorCpX,GpY qq

for all X P Ob C and Y P ObD, that are natural (i.e., functorial) in X and Y , as
captured by the following self-explanatory diagram for all f : X 1 Ñ X in C and
g : Y Ñ Y 1 in D:

(22) MorDpF pXq, Y q
adjX,Y //

g˝´˝F pfq

��

MorCpX,GpY qq

Gpgq˝´˝f

��
MorDpF pX 1q, Y 1q

adjX1,Y 1
// MorCpX 1, GpY 1qq

.

In other words, if we have a natural isomorphism 6 of functors Cop ˆ D ù Set,

(23) adj : MorDpF p´q,´q Ñ MorCp´, Gp´qq.

(ii) Such a natural isomorphism is called an adjunction between F and G.

Lemma 5.2. (Uniqueness of adjoint functors) Any two functors F, F 1 : C ù D that are
left adjoint to a given functor G : D ù C are naturally isomorphic to each other. A
similar assertion holds, with ‘left’ replaced by ‘right’.

Proof. If F, F 1 : C ù D are both left adjoint to G : D ù C, then we have identifications

MorDpF pXq,´q – MorCpX,Gp´qq – MorDpF 1
pXq,´q

for allX P Ob C, that are furthermore natural inX. By the Yoneda lemma (the h‚ version),
we have isomorphisms F 1pXq Ñ F pXq that are natural in X P Ob C, or in other words, a
natural isomorphism F Ñ F 1. This proves the assertion for left adjoint functors, and the
assertion for right adjoint functors is proved similarly. □

6Remember that ‘natural isomorphism’ is a technical term defined precisely in Lecture 2.
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Example 5.3. (i) Consider the functor Forget : AbGrp ù Set, and the functor
FreeAb : Set ù AbGrp that sends S to the free abelian group on S, denoted
FreeAbpSq, which is a free abelian group containing S as a basis. 7 8

Since S Ă FreeAbpSq is a basis, restriction to S gives, for each abelian group B,
a bijection

HomAbGrppFreeAbpSq, Bq Ñ HomSetpS,Bq “ HomSetpS, ForgetpBqq.

It is easy to see that these bijections are natural in the sets S and the groups B,
giving an adjunction realizing S Þ⇝ FreeAbpSq as left adjoint to Forget.

(ii) Similarly, the functor Forget : R-Mod ù Set has a left adjoint that sends S to
the free R-module on S, and in particular the functor Forget : V eck ù Set has a
left adjoint that sends S to the free k-vector space on S.

(iii) The functor Forget : Grp ù Set has a left adjoint, sending a set S to the free
group FreepSq on S, reviewed in Subsection 5.3 below.

(iv) The functor Forget : CRing ù Set has a left adjoint, sending a set S to the
polynomial ring Zrxs | s P Ss (if you don’t know what Zrxs | s P Ss means, make
the obvious guess; also, fill in the morphisms).

Indeed, any ring homomorphism Zrxs | s P Ss Ñ R is completely determined by
where the “free variables” xs map to, so for any commutative ring R, we have a
bijection:

(24) MorCRingpZrxs | s P Ss, Rq Ñ MorSetpS,Rq “ MorSetpS, ForgetpRqq,

that sends φ to ps ÞÑ φpxsqq, whose inverse sends f to the unique φ P MorCRingpZrxs |

s P Ss, Rq such that φpxsq “ fpsq for each s P S. Show that (24) is indeed functorial
in S and R, and hence gives the desired adjunction.
If we use R-algebras instead of CRing, something similar works, with Rrxs | s P

Ss instead of Zrxs | s P Ss.
The examples (i), (ii), (iii) and (iv) are examples of an informal principle called the
‘free-forgetful adjunction’: often a “forgetful functor” has a left adjoint provided
by a “free construction”. Similarly, e.g., we have a notion of “free monoids on S”,
a left adjoint to the forgetful functor from the category of monoids to Set (see
Subsection 5.3 below).

(v) Consider Forget : Top ù Set. Consider two functors F,G : Set ù Top, where
F pSq is S with the discrete topology, and GpSq is S with the indiscrete topology
(as usual, fill in the morphisms). Then show that F is left adjoint to Forget, while
G is right adjoint to Forget.

7More precisely, FreeAbpSq is the group of formal sums
ř

sPS ass, with as P Z for each s P S and as “ 0
for all but finitely many s, where the ‘s’ of ass is a formal symbol corresponding to s P S. The inclusion
ιS : S ãÑ FreeAbpSq that realizes S as a subset of FreeAbpSq is defined by viewing each s P S as the
element

ř

δs,s1s1 P FreeAbpSq, where δs,s1 equals 1 if s “ s1 and zero otherwise. Thus, S Ă FreeAbpSq

forms a basis.
8Recall, since this only defines the functor at the level of objects, you should mentally fill in how it

‘should’ be defined at the level of morphisms.
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(vi) A left adjoint to the inclusion functor AbGrp ù Grp is the abelianization functor
Grp ù AbGrp that sends G to its abelianization Gab :“ G{rG,Gs (as usual,
define the abelianization functor for morphisms; this will mostly not be repeated in
future): if G is a group and H is an abelian group, then any homomorphism G Ñ H
factors as the composite of the abelianization map G Ñ Gab with a homomorphism
Gab Ñ H, and this induces a bijection

MorGrppG,Hq Ñ MorAbGrppG
ab, Hq.

(vii) Show that a left adjoint to the inclusion functor from the category of fields to
that of integral domains, is given by the functor that takes any integral domain to
its quotient field. See this by proving the following: any homomorphism from an
integral domain R to a field factors uniquely through the obvious inclusion R ãÑ K,
where K is the quotient field of R.

(viii) A left adjoint to the inclusion functor from the category of Hausdorff topological
spaces to Top, is given by the “Hausdorffization” functor, sending each topological
space X to its “maximal Hausdorff quotient”. The point is that any continuous
map from X to a Hausdorff topological space factors uniquely through this quotient
(show that this gives the desired adjunction).

A left adjoint to the inclusion functor from the category of compact Hausdorff
spaces to that of all topological spaces, is given by the Stone-Čech compactification:
any continuous map from X to a compact Hausdorff space factors uniquely through
the Stone-Čech compactification (show that this gives the desired adjunction).

(ix) Let Ring be the category of rings with 1, and Rng the category of rings with-
out 1. The forgetful functor Ring ù Rng has a left adjoint given by “adjoining
the identity”: if R P ObRng, adjoining identity involves considering a ring whose
underlying abelian group is R^ :“ Z ‘ R, where 1 P Z Ă R^ acts as a multi-
plicative identity, and where the multiplication on R Ă Z ‘ R coincides with the
multiplication coming from the Rng-structure on R. Again, the point is that any
homomorphism in Rng from R to a ring R1 with 1 factors uniquely through the
inclusion R Ă R^ (show that this gives the desired adjunction).

(x) Z and R are directed sets, and hence can be viewed as categories as in Lecture
4: there is exactly one morphism a Ñ b if a ď b, and none otherwise. Then the
inclusion functor Z ù R has:

‚ a left adjoint given has the ceiling function x ÞÑ rxs := the smallest integer
ě x: indeed, for a P R and b P Z, a ď b if and only if ras ď b; and

‚ a right adjoint given by the floor function x ÞÑ txu :“ the largest integer ď x:
indeed, for a P Z and b P R, a ď b if and only if a ď tbu.

(xi) We will see more examples, such as:
‚ Hom-tensor adjointness, ´ bR N is left adjoint to HomRpN,´q.
‚ Sending V P ObV eck to its tensor algebra T pV q, is a left adjoint to:

Forget : Not necessarily commutative k-algebras ù V eck.
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5.2. Adjointness and commutativity with colimits/limits. When we discuss tensor
products, we will need to prove that tensor products commute with taking direct sums as
well as with taking cokernels: pM1 ‘M2q bR N – M1 bR N ‘M2 bR N , and cokerpM1 Ñ

M2q bRN – cokerpM1 bRN Ñ M2 bRNq. Both of these are special cases of the assertion
that ´ bR N commutes with colimits: note that a direct sum is a coproduct and hence
a colimit, while a cokernel of f , being the coequalizer of f and the 0 map, is a colimit as
well. This motivates the following definition:

Definition 5.4. A functor F : C ù D is said to be continuous if it commutes with small
limits, and cocontinuous if it commutes with small colimits.

That ´ bRN commutes with small colimits, will be a consequence of its being left adjoint
to some functor (HomRpN,´q in this case), so that the following proposition will apply:

Proposition 5.5. Let F : C ù D be a left adjoint to a functor G : D ù C. Then F is
cocontinuous, and G is continuous.

Proof. We will prove the result for F ; the result for G is analogous.

Suppose pX, pιjqjq is a colimit of H : J ù C: this is the same as saying that for all
Y P Ob C, setting Xj :“ Hpjq for j P Ob J , we have a bijection:

MorCpX, Y q
p´˝ιjqj

Ñ

!

pfjqj P
ź

jPOb J

MorpXj, Y q | @h : i Ñ j in J , we have fi “ fj ˝ Hphq

)

.

Let adj be the adjunction between F and G, as in (23). Then for Z P ObD, we have
bijections:

MorDpF pXq, Zq
adj
Ñ MorCpX,GpZqq

p´˝ιjqj
Ñ

!

pfjqj P
ź

jPOb J

MorCpXj, GpZqq | @h : i Ñ j in J , we have fi “ fj ˝ Hphq

)

adj
Ñ

!

pgjqj P
ź

jPOb J

MorDpF pXjq, Zq | @h : i Ñ j in J , we have gi “ gj ˝ F pHphqq

)

,

where the last map is justified by the commutativity of the following diagram, for h : i Ñ j
in J :

fj P
_

��

MorCpXj, GpZqq
´˝Hphq

// MorCpXi, GpZqq Q fi_

��
gj P MorDpF pXjq, Zq

´˝F pHphqq
//

adj

OO

MorCpF pXiq, Zq

adj

OO

Q gi

,

which in turn follows from the naturality of adj (see (22), rotated 90 degrees anticlockwise).

To conclude from here that pF pXq, F pιjqjq is a colimit of F ˝H : J ù D, it is enough to
show that the composite of the above chain of bijections is given by p´ ˝ F pιjqqj. This is
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equivalent to showing that the following diagram commutes for each j P Ob J :

MorDpF pXq, Zq
adj //

´˝F pιjq

��

MorCpX,GpZqq

´˝ιj
��

MorDpF pXjq, Zq
adj // MorCpXj, GpZqq

,

which again follows from the naturality of adj (see (22)). □

We end this discussion with an exercise which might as well belong to an earlier subsection.

Exercise 5.6. This exercise introduces the units/counits of an adjunction, and explains
how to describe the adjunction maps adjX,Y in terms of these. Let F be left adjoint to G,
and let an adjunction as in (23) between them be given, so we have the bijections adjX,Y
(see (21)). For all X P Ob C and Y P ObD, define

ηX : X Ñ GpF pXqq and ϵY : F pGpY qq Ñ Y

as follows:

‚ ηX “ adjX,F pXqpidF pXqq P MorCpX,GpF pXqqq (see (21), apply it with Y “ F pXq).

‚ ϵY “ adj´1
GpY q,Y pidGpY qq P MorDpF pGpY qq, Y q (see (21), apply it with X “ GpY q).

Show that η “ pηXqXPOb C is a natural transformation idC Ñ G˝F , where idC is the identity
functor C ù C; one calls η the unit of the adjunction (23). Similarly ϵ “ pϵY qY PObD is a
natural transformation F ˝ G Ñ idD, called the counit of the adjunction.

Show that η and ϵ give ways to describe adj: namely, adjX,Y : MorDpF pXq, Y q Ñ MorDpX,GpY qq

is given by g ÞÑ Gpgq˝ηX , and the inverse bijection adj´1
X,Y : MorDpX,GpY qq Ñ MorDpF pXq, Y q

is given by f ÞÑ ϵY ˝ F pfq.

Example 5.7. The forgetful functors AbGrp ù Set and R-Mod ù Set do not respect
coproducts: they take a direct sum to a set-theoretic product rather than to a disjoint
union. One can show that the forgetful functors Grp ù Set and CRing ù Set do
not respect coproducts either (the former can be shown using material later in this chap-
ter). Therefore, these functors do not have a right adjoint, unlike the forgetful functor
Top ù Set (Example 5.3(v)). Recall, though, that these functors all had a left adjoint
(see Example 5.3).

Similarly, the inclusion functor AbGrp ù Grp does not respect coproducts: the material
later in this lecture will show that given two abelian groups A and B, their coproduct in
the category Grp (which is called a free product of A and B and denoted A˚B) is typically
nonabelian and hence different from their coproduct A‘B in AbGrp. For instance, this is
the case when A “ B “ Z. Thus, this functor does not have a right adjoint either, though
we saw that it has a left adjoint given by abelianization.
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5.3. Free groups. Let us now discuss the free group on a set S, denoted FreepSq. Some
of this subsection will be informal (e.g., the definition of the equivalence relation „ in
Construction 5.10 below), and at least two of the proofs will be skipped (Proposition 5.11
and Lemma 5.15). If you want a more detailed treatment, please look up a reference,
such as the book of Dummit and Foote, or Section 2.2.2 of “Geometric Group Theory:
An Introduction” by Clara Löh, about which I learnt from Radhika Gupta. A different
treatment can be seen in Serge Lang’s “Algebra”, where he defines FreepSq to be a group
that satisfies the universal property we expect from it (see Lemma 5.13 below), first showing
the existence of such a group using an argument due to Tits, and then giving an approach
(or two) showing that this group can be described as in more conventional treatments (as
followed in the discussion below).

Definition 5.8. Let S be a set. The free monoid on S is the set FreeMonpSq of all
sequences of elements of S, made into a monoid via concatenation: a typical sequence
ps1, . . . , snq P FreeMonpSq is called a word and written s1s2 . . . sn, and the product of
s1s2 . . . sn and t1t2 . . . tm is written s1s2 . . . snt1t2 . . . tm. This includes the empty sequence,
which is written 1 and is the identity of FreeMonpSq.

There is an obvious inclusion S ãÑ FreeMonpSq, sending s P S to the singleton sequence
with just s in it.

Exercise 5.9. (i) Show that restriction with respect to the obvious inclusion S Ă

FreeMonpSq induces, for any monoid M , a bijection

(25) MorMonoidpFreeMonpSq,Mq Ñ MorSetpS,Mq.

(ii) Use (i) to extend S ÞÑ FreeMonpSq to a functor FreeMon : Set ù Monoid, and
show that the maps of (25), as the set S and the monoid M vary, realize FreeMon
as a left adjoint to the forgetful functor Forget :Monoid ù Set.

Construction 5.10. Let S be a set. Introduce a symbol s´1 for all s P S, and let
T “ S \ S´1, where S´1 “ ts´1 | s P Su. Given w1, w2 P FreeMonpT q, declare w1 „ w2

if they can be obtained from each other by a finite sequence of insertions or deletions of
words of the form xx´1 or x´1x, where x P S Ă T . This is clearly an equivalence relation,
so we may form FreeMonpT q{ „.

The following proposition is not difficult at all, but I don’t want to write out the details:

Proposition 5.11. In the setting of Construction 5.10, the multiplication on FreeMonpT q

descends to a well-defined multiplication on FreeMonpT q{ „, making it into a group.

Proof. Omitted. Please look it up somewhere, say Section 2.2.2 of Clara Löh’s book. □

Definition 5.12. Let S be a set. Then we define FreepSq to be the group whose underlying
set is FreeMonpT q{ „ as in Construction 5.10, with multiplication induced from that in
FreeMonpT q (as justified by Proposition 5.11). Let ιS : S Ñ FreepSq be the obvious map.
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Recall that a group G is generated by S 1 Ă G if the smallest subgroup of G containing S 1

equals G. Equivalently, if every element of G can be written as a product sa11 . . . sann , where
si P S 1 and ai P Z. Clearly, the image of S in FreepSq generates FreepSq.

To construct S Þ⇝ FreepSq as a functor, i.e., to define it at the level of morphisms, we will
use the following lemma.

Lemma 5.13. Restriction to S (i.e., ´ ˝ ιS) defines, given any group G, a bijection

(26) MorGrppFreepSq, Gq Ñ MorSetpS,Gq “ MorSetpS, ForgetpGqq.

Proof. The injectivity follows from the fact that ιSpSq generates FreepSq. For surjectivity,
given φ P MorSetpS, ForgetpGqq, note that the universal property of FreeMonpT q gives us
a unique monoid homomorphism FreeMonpT q Ñ G that, for each s P S, sends s to φpsq
and s´1 to φpsq´1. It is clear that this homomorphism respects the equivalence relation „,
and hence descends to a monoid homomorphism FreeMonpT q{ „Ñ G, which is the same
as a group homomorphism FreepSq Ñ G, whose composite with ιS is φ : S Ñ G. □

Corollary 5.14. The map ιS : S Ñ FreepSq is injective.

Proof. Given s1, s2 P S with s1 ‰ s2, there exists φ P MorSetpS,Zq with φps1q ‰ φps2q, and
hence, by Lemma 5.13, a homomorphism ψ : FreepSq Ñ Z with ψ ˝ ιSps1q ‰ ψ ˝ ιSps2q,
forcing ιSps1q ‰ ιSps2q. □

Lemma 5.13 lets us define S Þ⇝ FreepSq as a functor: given f : S Ñ S 1, define Freepfq :
FreepSq Ñ FreepS 1q by taking G “ FreepS 1q in (26), and letting Freepfq be the inverse
image under that bijection of

ιS1 ˝ f : S Ñ FreepS 1
q “ G.

It is easy to check that Freepf2 ˝f1q “ Freepf2q ˝Freepf1q and that FreepidSq “ idFreepSq.

We will probably not use the lemma below, but it tells us what elements in FreepSq look
like, justifying the use of the word ‘free’.

Lemma 5.15. Every equivalence class in FreepSq “ FreeMonpT q{ „ contains a unique
reduced word, by which we mean a word that does not contain any subsequence of the form
xx´1 or x´1x, with x P S. Thus, every element of FreepSq can be uniquely written in the
form

sa11 . . . sann ,

where si P S and ai P Zzt0u for each i, and si ‰ si`1 for all 1 ď i ď n ´ 1 (note that n is
allowed to be 0, in which case the above element is the identity element of FreepSq).

Proof. The proof of the first assertion is omitted, please look up some source such as
Dummitt and Foote. The second assertion is a restatement of the first. □
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5.4. Presentation of groups by generators and relations. A presentation of a group
G, or a description of G using generators and relations, is a triple pS,R, hq consisting of a
set S, a subset R Ă FreepSq, and a surjective homomorphism h : FreepSq Ñ G such that
kerphq Ă FreepSq is the normal subgroup of FreepSq generated by R, i.e., the smallest
normal subgroup of FreepSq that contains R.

Note that given such a presentation, hpSq Ă G generates G, since h : FreepSq Ñ G is
surjective, and S generates FreepSq. One might often suppress h from the notation and
say that G has a presentation xS|Ry or that G – xS|Ry.

Lemma 5.16. Any group G has a presentation.

Proof. Let G be any group and let S Ă G be a set of generators. Consider FreepSq; one
has inclusion morphisms ιS : S ãÑ FreepSq and f : S ãÑ G, but this should not cause
confusion (between, e.g., s31s2 viewed as an element of FreepSq, and s31s2 viewed as an
element of G; the latter may be trivial but the former is never so). Corresponding to the
latter map, f : S ãÑ G, (26) gives us a homomorphism h : FreepSq Ñ G sending ιSpsq to
fpsq. Since S was chosen as a set of generators for G, it follows that h : FreepSq Ñ G is
surjective, i.e., every group is a quotient of a free group. One can then take R to be any
set of generators for kerphq, for instance kerphq itself. □

Example 5.17. It is easy to see that for any group G, G – xG|xyz´1 | z “ xy P Gy:
if G0 Ă FreepGq is the normal subgroup generated by the xyz´1 with z “ xy P G, then
restriction via G ãÑ FreepGq gives bijections:

MorGrppFreepGq{G0, Hq Ñ tf P MorSetpG,Hq | fpxqfpyq “ fpzq @ z “ xy P Gu “ MorGrppG,Hq.

Example 5.18. (i) For G “ Z{nZ, one can take S “ tau to be a singleton, and
R “ tanu, so G – xa|any “ xa, a2|an, a2ny.

(ii) A dihedral group Dn of order 2n has a presentation

Dn “ xr, f | rn, f 2, prfq
2
y,

which we may also write as xr, f | rn “ f 2 “ prfq2 “ 1y or as xr, f | rn “ f 2 “

1, frf´1 “ r´1y (note that there are multiple irredundant ways to present any
group).

Here, the use of the letters ‘r’ and ‘f ’ is motivated by the usual realization of Dn

as a group of symmetries of the Euclidean space R2, where ‘the Euclidean space
R2’ means ‘the vector space R2 together with its standard inner product’: r stands
for an anticlockwise rotation of 2π{n about the origin, and f stands for a flip, or a
reflection, across the line through the origin that makes an angle of π{n with the
x-axis. r and f in this picture could be more general (exercise: try to describe the
other possible r and f in the picture).

(iii) The symmetric group Sn on n letters can be shown to have a presentation

xs1, . . . , sn´1|s2i “ 1 @ 1 ď i ď n´1, sisj “ sjsi @ j ‰ i˘1, sisi`1si “ si`1sisi`1 @1 ď i ď n´2y.

Let us sketch how to show this. Writing Wn for the group with the above pre-
sentation, first, it is easy to see that sending si to the transposition pi, i ` 1q gives
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a homomorphism Wn Ñ Sn: this is because it is easy to compute that the above
relations are satisfied when each si replaced by pi, i ` 1q. This homomorphism
Wn Ñ Sn is surjective, since the pi, i ` 1q generate Sn. Therefore, it is enough to
show that #Wn “ n!.

We will do this by induction. The analogous map Wn´1 Ñ Sn´1 is an isomor-
phism by induction, so #Wn´1 “ pn ´ 1q!. Therefore, it is enough to show that
#pWn{Wn´1q “ n, which follows if we show that any right coset of Wn´1 in Wn

contains a representative from t1, sn´1, sn´2sn´1, . . . , s1 . . . sn´1u (we assume this
inductively, with n replaced by n ´ 1). For this, given w P WnzWn´1 expressed as
a product of the si, one first manipulates this product using the relations so as to
have exactly one copy of sn´1. This implies that Wn “ Wn´1 \ Wn´1sn´1Wn´1.
Therefore:

Wn “ Wn´1 \ Wn´1sn´1Wn´1

“ Wn´1 \ pt1u \ tsj . . . sn´2 | 1 ď j ď n ´ 2uqWn´2sn´1Wn´1

“ Wn´1 \ sn´1Wn´1 \ tsj . . . sn´2 | 1 ď j ď n ´ 2usn´1Wn´1,

where in the second step we used the induction hypothesis to get coset represen-
tatives for Wn´1{Wn´2, and in the third step we used the fact that Wn´2 can be
commuted past sn´1. This gives the desired set of coset representatives.

(iv) PSL2pZq has a presentation xa, b | a2, b3y, where a maps to

ˆ

0 ´1
1 0

˙

and b to
ˆ

0 ´1
1 1

˙

. This is not obvious; you can look up if you are interested but don’t like

a challenge at this point.
(v) The free abelian group on S has a presentation xS|taba´1b´1 | a, b P Suy (exercise).

5.5. Colimits in the category of groups.

‚ If Gi “ xSi|Riy for all i P I, let

G :“ xS :“
ğ

iPI

Si | R :“
ğ

iPI

Riy.

Then it is immediate that for each i, we get a map ιi : Gi Ñ G (sending the
image of si in Gi to the image of si in G), such that the images of the ιi generate
G. The map

HompG,Hq
p´˝ιiqiPI

Ñ
ź

i

HompGi, Hq

is bijective: the injectivity follows since every element of S (or rather, its image
in G) belongs to the image of some Gi, while for surjectivity, use that given φi P

HompGi, Hq for each i, sending si P Si Ă S to φipsiq for each i satisfies each relation
in R and hence gives a well-defined homomorphism φ : G Ñ H with φ|Gi

“ φi for
each i. Therefore, pG, pιiqiq is a coproduct of the Gi. Note that each ιi is injective,
so we may think of the Gi as subgroups of G, that together generate G. The binary
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coproduct G1 \ G2 is also denoted G1 ˚ G2, and called the free product of G1 and
G2.

‚ More generally, let F : J ù Grp be a functor, with J a small category. Write
Gj “ F pjq, and form the coproduct pG :“

Ů

jPOb J Gj, ιj : Gj Ñ Gq. Each ιj is a
monomorphism, and can hence be viewed as an inclusion, so we regard the Gj as
subgroups of G. Then a colimit of F is given as the quotient of G by the normal
subgroup generated by

tgjpF pfqpgiqq
´1

| f : i Ñ j in J, gj P Gj, gi P Giu.

‚ A special case is when we have tGi | i P Iu indexed by a set I, and a group
A mapping to each Gi. This realizes an obvious functor F : J ù G, where
Ob J “ I \ t˚u, whose colimit G is called the amalgamated product of the Gi.
Explicitly, check that this colimit G is the quotient of

Ů

iGi by the normal subgroup
generated by

tφipaqφjpaq
´1

| i, j P I, a P Au.

Note that when I “ t1, 2u has two elements, the above is nothing but a pushout of
A Ñ G1 and A Ñ G2: we will denote this by G1 ˚A G2.

Example 5.19. The presentation of PSL2pZq given in Example 5.18(iv) implies that
PSL2pZq – pZ{2Zq˚pZ{3Zq. Note that, while Z{2Z and Z{3Z are finite, their free product
is the infinite “large looking” group PSL2pZq.

In topology, you will learn the Seifert-Van Kampen theorem:

Theorem 5.20 (Seifert-Van Kampen theorem). Suppose a topological space X is the union
of two path connected subspaces U1 and U2, such that U1 X U2 is nonempty and path con-
nected. Let x P U1 X U2, so applying the functor π1 to the inclusions pU1 X U2, xq ãÑ

pUi, xq Ñ pX, xq of pointed topological spaces give a commutative diagram:

π1pU1, xq

**
--

π1pU1 X U2, xq

77

''

π1pU1, xq ˚π1pU1XU2,xq π1pU2, xq
g // π1pX, xq

π1pU2, xq

44
11

(see the explanation below the theorem). Then the map g : π1pU1, xq˚π1pU1XU2,xqπ1pU2, xq Ñ

π1pX, xq in the above diagram is an isomorphism, realizing π1pX, xq as the amalgamated
product of π1pU1, xq and π1pU2, xq over π1pU1 X U2, xq.

To explain the diagram in the above theorem, we used that the composite map π1pU1 X

U2, xq ãÑ π1pUi, xq Ñ π1pX, xq is independent of i P t1, 2u, being obtained by applying π1
to the inclusion pU1 X U2, xq ãÑ pX, xq; this is why, by the universal property of pushouts,
we get the map g : π1pU1, xq ˚π1pU1XU2,xq π2pU2, xq Ñ π1pX, xq.
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Thus, since π1pS
1, txuq – Z, we get that the fundamental group of the “figure 8” space, a

union of two circles intersecting at exactly one point, is Z ˚ Z, which is just a free group
on two generators.
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6. Lecture 6 – tensor products over commutative rings

Correction: In Lecture 5, I defined a continuous functor as one that preserves all limits.
This is wrong: a continuous functor is one that preserves all small limits. Similarly, a
cocontinuous functor is one that preserves all small colimits.

6.1. The definition of tensor products.

Notation 6.1. Throughout today’s lecture, R will denote a commutative ring. When
C “ R-Mod, MorC will be denoted by HomR.

Definition 6.2. (i) For modules M1, . . . ,Mr and L over a commutative ring R, write

MultRpM1, . . . ,Mr;Lq “ tf :M1 ˆ ¨ ¨ ¨ ˆ Mr Ñ L | f is R-multilinear},
where we recall that ‘R-multilinear’ means ‘R-linear in each variable’. MultRpM1, . . . ,Mr;Lq

has an obvious structure of an R-module, using the R-module structure on L.
(ii) MultpM1, . . . ,Mr;´q “ MultRpM1, . . . ,Mr;´q 9 can be thought of either as a func-

tor R-Mod ù R-Mod, or as a functor R-Mod ù Set. When r “ 2, we write
BilR for MultR.

(iii) A tensor product of M1, . . . ,Mr over R can be defined in one of the following two
equivalent ways:

‚ It is an R-moduleM , together with an R-multilinear map u :M1 ˆ¨ ¨ ¨ˆMr Ñ

M , such that for each R-module L, the map

HomRpM,Lq
´˝u
Ñ MultRpM1, . . . ,Mr;Lq

is a bijection (and hence an isomorphism of R-modules). In other words, ´ ˝u
is a natural isomorphism of functors HomRpM, ¨q Ñ MultRpM1, . . . ,Mr;´q.

‚ It is anR-moduleM P ObR-Mod that corepresents the functorMultRpM1, . . . ,Mr;´q,
together with a natural isomorphism hM Ñ MultRpM1, . . . ,Mr;´q of functors
R-Mod ù Set.

As you should be able to immediately see by now, a tensor product pM,uq of M1, . . . ,Mr

is uniquely unique if it exists, so I am not even listing that as an exercise.

Exercise 6.3. (i) Convince yourself of the equivalence between the two ways of defin-
ing a tensor product of M1, . . . ,Mr (hint: see Remark 3.15 from Lecture 3: u P

MultRpM1, . . . ,Mr;Mq is what was informally referred to as the ‘universal object’).
(ii) (Easy) If pM,uq is a tensor product of M1, . . . ,Mr, show that upM1 ˆ ¨ ¨ ¨ ˆ Mrq

spans M .

Notation 6.4. Instead of denoting a tensor product of M1, . . . ,Mr by pM,uq, we will
typically write M1 bR ¨ ¨ ¨ bR Mr in place of M , or even M1 b ¨ ¨ ¨ b Mr or

Âr
i“1Mi when

R is understood from the context, and write m1 b ¨ ¨ ¨ b mr for upm1, . . . ,mrq P M .

9One uses the former when R is understood.
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Note that this notation does encode information about u, since u is then given by pm1, . . . ,mrq ÞÑ

m1 b ¨ ¨ ¨ b mr, and under it the defining property of the tensor product can be rephrased
as follows: given a multilinear map h : M1 ˆ ¨ ¨ ¨ ˆ Mr Ñ L, there exists a unique linear
map f : M1 bR ¨ ¨ ¨ bRMr Ñ L with the property that fpm1 b ¨ ¨ ¨ b mrq “ hpm1, . . . ,mrq

whenever mi P Mi for all 1 ď i ď r. This notation is well-defined, since the tensor product
is uniquely unique. This is how we will mostly write the tensor product from now on.

Remark 6.5. Assume that M1 bR ¨ ¨ ¨ bRMr exists (which we will prove soon).

(i) By Exercise 6.3(ii), while not every element of M1 bR ¨ ¨ ¨ bRMr is of the form the
m1 b ¨ ¨ ¨ b mr, every element of M1 bR ¨ ¨ ¨ bRMr can be written as a finite linear
combination (or equivalently, as a finite sum) of terms of the form m1 b ¨ ¨ ¨ b mr,
which may be referred to as ‘pure tensors’.

(ii) This has the consequence that every R-module homomorphismM1 bR ¨ ¨ ¨ bRMr Ñ

L, for any R-module L, is uniquely determined by where it sends the m1 b¨ ¨ ¨bmr:
this fact will be implicitly used in what follows, to automatically consider various
uniqueness assertions as having been proved.

(iii) The multilinearity of the above map M1 ˆ ¨ ¨ ¨ ˆ Mr Ñ M1 bR ¨ ¨ ¨ bR Mr means
that the expression m1 b ¨ ¨ ¨ bmr is multilinear in m1, . . . ,mr, and that it vanishes
when some mi equals 0.

Here are some examples of tensor products we can already calculate.

Proposition 6.6. (i) For any R-module N , a tensor product of R and N is given by
the (obviously bilinear) multiplication map R ˆ N Ñ N , i.e., pa, nq ÞÑ an, and a
tensor product of N and R by the map N ˆ R Ñ R, pn, aq ÞÑ an. In other words,
using Notation 6.4, we have isomorphisms R bR N – N – N bR R, under which,
for all a P R and n P N , a b n ÞÑ an Ð [ n b a.

(ii) For any R-module N and ideal I Ă N , we have unique isomorphisms R{I bR N –

N{IN – N bRR{I, such that for all a P R and n P N , ābn ÞÑ an Ð [ nb ā, where
ā and an are the images of a and an in R{I and N{IN (Exercise: translate this
into the “pM,uq” notation).

Remark 6.7. Recall that IN is not tan | a P I, n P Nu, but SpanRptan | a P I, n P Nuq.

Proof of Proposition 6.6. We have anR-module homomorphism BilRpR,N ;Lq Ñ HomRpN,Lq,
sending B to n ÞÑ Bp1, nq. This map is an isomorphism, since a two-sided inverse is readily
checked to be the map sending φ P HomRpN,Lq to pa, nq ÞÑ aφpnq “ φpanq. This isomor-
phism being clearly functorial in L, the multiplication map RˆN Ñ N is a tensor product
for R and N . A similar argument applies to bilinear maps on N ˆ R, and (i) follows.

Now we come to (ii). Note that pā, nq ÞÑ an is a well-defined map R{I ˆ N Ñ N{IN ,
which is bilinear. Therefore, for any R-module L, ´ ˝ ppā, nq ÞÑ anq is an R-module
map HomRpN{IN, Lq Ñ BilRpR{I,N ;Lq, and it is enough to prove that this map is an
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isomorphism. It is the left vertical arrow of the following diagram:

HomRpN{IN, Lq
� � ´˝pNÑN{INq

//

´˝ppā,nqÞÑanq

��

HomRpN,Lq

´˝ppa,nqÞÑanq

��
BilRpR{I,N ;Lq

� � ´˝ppa,nqÞÑpā,nqq

BilRpR,N ;Lq

.

It is clear that this diagram is commutative. The top rows are clearly injections, and
hence will be viewed as inclusions. By (i), the right vertical arrow in the diagram is an
isomorphism, so it is enough to show that it maps the submodule HomRpN{IN, Lq Ă

HomRpN,Lq onto the submodule BilRpR{I,N ;Lq Ă BilRpR,N ;Lq; or equivalently, that
its inverse maps BilRpR{I,N ;Lq to HomRpN{IN, Lq.

BilRpR{I,N ;Lq Ă BilRpR,N ;Lq is precisely the submodule consisting of the bilinear maps
that vanish on I ˆN . The inverse image of this submodule under the right vertical arrow
is the submodule of HomRpN,Lq that vanishes on tan | a P I, n P Nu, or equivalently, on
its span. But this span is precisely IN . In other words, the isomorphism BilRpR,N ;Lq Ñ

HomRpN,Lq sends BilRpR{I,N ;Lq to the submodule of HomRpN,Lq that vanishes on
IN Ă N , which identifies with HomRpN{IN, Lq Ă HomRpN,Lq, via the top horizontal
arrow, which was what we wanted to prove. □

Example 6.8. In particular:

‚ R{I bR R{J – pR{Jq{IpR{Jq – R{pI ` Jq.
‚ As an even more special case, it follows that pZ{mZqbZpZ{nZq – Z{pm,nqZ, which
is 0 if pm,nq “ 1. Thus, for instance, pZ{2Zq bZ pZ{3Zq “ 0, showing that, unlike
what we will see in Example 6.12 below, there can be a lot of ‘collapsing’ when one
takes tensor products of non-free modules.

Lemma 6.9. If fi : Mi Ñ Ni is an R-module homomorphism for 1 ď i ď r, and both
Âr

i“1Mi and
Âr

i“1Ni exist, then there exists a unique R-module homomorphism

r
â

i“1

fi :
r

â

i“1

Mi Ñ

r
â

i“1

Ni

with the property that whenever mi P Mi for all 1 ď i ď r, we have

´ r
â

i“1

fi

¯

pm1 b ¨ ¨ ¨ b mrq “ f1pm1q b ¨ ¨ ¨ b frpmrq.

Moreover, this construction is functorial: stated informally, if Mi
fi
Ñ Ni

gi
Ñ Li, and

Âr
i“1?i

exists for ? P tM,N,Lu, then

r
â

i“1

pgi ˝ fiq “

´ r
â

i“1

gi

¯

˝

´ r
â

i“1

fi

¯

,
r

â

i“1

idMi
“ idÂr

i“1Mi
.
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Proof. The first assertion follows from the fact that pm1, . . . ,mrq ÞÑ f1pm1q b ¨ ¨ ¨ b frpmrq

is R-multilinear, together with the defining property of the tensor product
Âr

i“1Mi. One
can also obtain this by applying the Yoneda lemma to the natural transformation

MultRpN1, . . . , Nr,´q Ñ MultRpM1, . . . ,Mr,´q

obtained by pulling back with respect to

pf1, . . . , frq :M1 ˆ ¨ ¨ ¨ ˆ Mr Ñ N1 ˆ ¨ ¨ ¨ ˆ Nr.

The functoriality is immediate from the uniqueness (which should be understood to follow
as explained in Remark 6.5(ii)). □

Proposition 6.10. (i) Suppose M bR Ni and Mi bR N exist for each i P I. Then
M bR p

À

iNiq and p
À

iMiq bR N exist, and there exists a unique isomorphism

M bR

´

à

iPI

Ni

¯

Ñ
à

iPI

M bR Ni,
´

resp.,
´

à

iPI

Mi

¯

bR N Ñ
à

iPI

Mi bR N
¯

,

defined by the requirement that it send each m b pniqi to pm b niqi, (resp., each
pmiqi b n to pmi b nqi).

(ii) Suppose a sequence of homomorphisms

M1
f

Ñ M2
g

Ñ M Ñ 0

of R-modules is exact, and that M1 bR N and M2 bR N exists. Then M bR N
exists, and the sequence

(27) M1 bR N
fbidN

Ñ M2 bR N
gbidN

Ñ M bR N Ñ 0

(where f b idN and g b idN are as in Lemma 6.9) is exact as well. A similar
assertion applies to tensoring with N on the left.

Remark 6.11. (i) Please don’t read Proposition 6.10(i) as just saying that p
À

iMiqbR

N is isomorphic to
À

iMibRN : it is making the stronger statement that there is a
very particular isomorphism

À

iMi bRN Ñ p
À

iMiq bRN , sending each pmi bnqi
to pmiqi b n.

(ii) Here is another way to express the condition that
À

iMi bR N Ñ p
À

iMiq bR N
takes pmi b nqi to pmiqi b n. Namely, applying the functoriality of ´ bR N to
the inclusion ιj : Mj ãÑ

À

iMi gives us a homomorphism ιj b idN : Mj bR N Ñ

p
À

iMiq bR N , and the condition pmi b nqi ÞÑ pmiqi b n above is equivalent to
saying that the pιi b idNqi together sum up to an isomorphism

À

iMi bR N Ñ

p
À

iMiq bR N . Thus, Proposition 6.10(i) is essentially saying “´ bR N respects
coproducts”.

(iii) If it is not already obvious to you, please make sure you understand that (ii) of the
proposition can be rephrased as follows. Suppose f :M1 Ñ M2 is a homomorphism
of R-modules, and let M :“ cokerpfq. If M1 bR N and M2 bR N exist, then
MbRN exists as well, and can be described as follows: if g :M2 Ñ M is the obvious
surjection, then (ii) of the proposition is telling us that gbidN :M2bRN Ñ MbRN
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has kernel equal to the image of fbid :M1bRN Ñ M2bRN , and that the resulting
map

cokerpf b idN :M1 bR N Ñ M2 bR Nq Ñ cokerpf :M1 Ñ M2q bR N “ M bR N

is an isomorphism. In other words, “tensoring respects cokernels”.
(iv) The property in (ii) of the proposition will be referred to as saying that the “oper-

ations” 10 ´ bR N and N bR ´ are “right exact”.
(v) If M is the cokernel of an injection M1 ãÑ M2, then (ii) of the proposition does not

let us write pM2{M1q bRN as pM2 bRNq{pM1 bRNq, since M1 bRN Ñ M2 bRN
may not be injective. We just have an (explicit) isomorphism

(28) pM2{M1q bR N – cokerpM1 bR N Ñ M2 bR Nq.

For an explicit example as to why, see Remark 6.13.
(vi) From the proof below, you can see that that both (i) and (ii) of the proposition can

be immediately generalized to tensor products of r ą 2 factors (but where all the
variation happens at only one factor). For brevity, we will not state it formally.

(vii) For another (perhaps more usual, possibly more succinct/simpler to describe) proof
of (ii) of the proposition, see Remark 6.19.

Proof of Proposition 6.10. For j P J , let ιj : Mj ãÑ
À

iMi be the obvious inclusion. For
(i), we use the following diagram, which is functorial in L:

HomRp
À

iMi bR N,Lq
´˝pppmiqi,nqÞÑpmibnqiq //

–p´˝ιibidN qi

��

BilRp
À

iMi, N ;Lq

– p´˝pιiˆidN qqi

��
ś

iHomRpMi bR N,Lq
p´˝ppmi,nqÞÑmibnqqi //

ś

i BilRpMi, N ;Lq

.

The vertical arrows are readily seen to be isomorphisms, and the bottom horizontal arrow
is an isomorphism by the defining property of the Mi bR N . Therefore, the top horizontal
arrow exists and is an isomorphism as well, and hence, by definition, gives a tensor product
of

À

iMi and N . This implies that p
À

iMiqbRN exists and is isomorphic to
À

ipMibRNq.
Moreover, check that the top horizontal arrow is given by ´ ˝ pppmiqi, nq ÞÑ pmi b nqiq as
marked, so that the resulting isomorphism p

À

iMiq bRN Ñ
À

ipMi bRNq indeed satisfies
the requirement that pmiqi b n be sent by it to pmi b nqi, as claimed.

The proof of (ii) is a straightforward adaptation of that of Proposition 6.6(ii), so we will
be brief. Setting M̃ :“ cokerpf b id : M1 bR N Ñ M2 bR Nq, check that we have the
following diagram which commutes, whose left square is analogous to the square in the

10Soon to be established as functors.
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proof of Proposition 6.6(ii):

0 // BilRpM,N ;Lq // BilRpM2, N ;Lq // BilpM1, N ;Lq

0 // HomRpM̃, Lq //

D –

OO

HomRpM2 bR N,Lq

– ´˝pM2ˆNÑM2bRNq

OO

// HompM1 bR N ;Lq

– ´˝pM1ˆNÑM1bRNq

OO
.

Check that the rows of the above diagram are exact: the exactness of the bottom row is
a simple fact seen in Lemma 6.18 below, while the exactness of the top row asserts that a
bilinear map M2 ˆ N Ñ L restricts via f ˆ idN to the zero bilinear map M1 ˆ N Ñ L if
and only if it is a pullback, under g ˆ idN , of a bilinear form on M ˆ N .

But this means that the middle vertical map restricts to give an isomorphism HomRpM̃, Lq Ñ

BilRpM,N ;Lq, the dotted arrow of the above diagram. Hence, a tensor product M bR N
of M and N over R is given by the map M ˆ N Ñ M̃ – cokerpf b idNq that, for
m “ gpm2q P M and n P N , sends pm,nq to the image of m2 b n P M2 bR N in
cokerpf b idNq “ M̃ . 11

Thus, we have an exact sequence

M1 bR N
fbid
Ñ M2 bR N

g̃
Ñ M̃ “ M bR N Ñ 0

(the exactness following from the definition of M̃ as cokerpf b idq), where the map M2 bR

N Ñ M bR N sends m2 b n to m b n whenever m “ gpm2q (this follows from the last
sentence of the previous paragraph). In other words, the map M2 bRN Ñ M bRN above
is exactly g b id, finishing the proof. □

Example 6.12. If M1 is a free R-module with basis teiui and M2 is a free R-module with
basis tfjuj, then by Proposition 6.10(i), it is easy to see that that M1 bR M2 is free with
a basis given by tei b fj | i, j P Ju.

Let us discuss an example:

Remark 6.13. Rishiraj asked the timely question as to whether the tensor product is
“exact” rather than just “right exact”: i.e., if a sequence

0 Ñ M1
f

Ñ M2
g

Ñ M Ñ 0

of R-modules is exact, then (assuming all tensor products exist) is the sequence

0 Ñ M1 bR N
fbidN

Ñ M2 bR N
gbidN

Ñ M bR N Ñ 0

exact? The answer is no. By Proposition 6.10(ii), this question is equivalent to the
following: if f : M1 ãÑ M2 is injective, is f b idN : M1 bR N Ñ M2 bR N also injective?
A counterexample is given by taking f : M1 Ñ M2 to be the map ˆ2 : Z Ñ Z given by
multiplication by 2, and N to be Z{2Z. Then use Proposition 6.6 to see that the map

11See this by chasing the left square of the diagram.
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f b idN : M1 bR N Ñ M2 bR N is the map ˆ2 : Z{2Z Ñ Z{2Z, which is the zero map,
and hence not injective.

Later, we will study about flat R-modules M : those for which ´ bRM is exact.

As remarked, the proof of Proposition 6.10(ii) is a generalization of that of Proposition
6.6(ii), so the latter can be seen from the former. Let I Ă R be an ideal. Then by (28),
for any R-module M , we have

M bR pR{Iq – cokerpM bR I Ñ M bR Rq – cokerpM bR I Ñ Mq – M{IM,

since, althoughMbR I Ñ M may not be injective, it takes
ř

mjbij to
ř

mjbij P MbR,
that is to say, to

ř

ijmj P IM , and therefore the image of M bR I Ñ M is exactly IM .

Proposition 6.14. For all R-modules M1, . . . ,Mr, a tensor product pM,uq of M1, . . . ,Mr

exists. Thus, sending pM1, . . . ,Mrq to
Âr

i“1Mi and f1, . . . , fr to
Âr

i“1 fi defines a functor

r
â

i“1

: R-Mod ˆ R-Mod ˆ ¨ ¨ ¨ ˆ R-Mod
looooooooooooooooooooomooooooooooooooooooooon

r factors

ù R-Mod.

Proof. Proof 1, when r “ 2. Let us prove the first assertion (when r “ 2). By Proposition
6.6, it is true when M1 “ R or M2 “ R. Thus, by Proposition 6.10(i), it is true when
M1 or M2 is free. Since any R-module is a cokernel of a map of free modules, Proposition
6.10(ii) implies that it, i.e., the first assertion, is true for general M1 and M2. The second
assertion follows from the first, using Lemma 6.9. However, this involves the “strong axiom
of choice”: for each M1,M2, we are making a choice of M1 ˆM2 Ñ M1 bRM2, which is a
priori only well-defined up to a unique isomorphism.

This proof is easily generalized to the case of all r ě 2 (see Remark 6.11(vi)), but (even
for r “ 2) it involves the strong axiom of choice. As Professor Nitsure alerted me to, the
usual proof, given below, has the advantage of not using the strong axiom of choice.

Proof 2. Let M̃ “ FreeRpM1 ˆ ¨ ¨ ¨ ˆ Mrq, the free R-module on the set M1 ˆ ¨ ¨ ¨ ˆ Mr.
Thus, pullback with respect to be obvious map M1 ˆ ¨ ¨ ¨ ˆMr Ñ M̃ , sending pm1, . . . ,mrq

to pm1, . . . ,mrq, induces an identification, for each set (and in particular R-module) L,

(29) HomRpM̃, Lq “ MorSetpM1 ˆ ¨ ¨ ¨ ˆ Mr, Lq.12

Thus, our answer is going to be a quotient of M̃ , since that is what it takes to cut down
the collection of morphisms from M̃ .

Let N Ă M̃ be the submodule generated by the elements of the following type:

pm1, . . . ,mi ` m1
i, . . . ,mrq ´ pm1, . . . ,mi, . . . ,mrq ´ pm1, . . . ,m

1
i, . . . ,mrq,

pm1, . . . , ami, . . . ,mrq ´ apm1, . . . ,mrq,

12Because we saw in Lecture 5 that S ÞÑ FreeRpSq is a left adjoint to the forgetful functor R-Mod ù

Set.
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as the 1 ď i ď r, the various mj P Mj for 1 ď j ď r, m1
i P Mi and a P R vary. Set M :“

M̃{N . ComposingM1ˆ¨ ¨ ¨ˆMr Ñ M̃ with M̃ Ñ M , we get a map u :M1ˆ¨ ¨ ¨ˆMr Ñ M .

It is immediate that u is linear in each variable, that is, it is multilinear.

Moreover, under the bijection (29), the subspace of HomRpM̃, Lq that vanishes on N ,
namely HomRpM,Lq, maps to the collection of elements f P MorSetpM1 ˆ¨ ¨ ¨ˆMr, Lq such
that

fpm1, . . . ,mi ` m1
i, . . . ,mrq “ fpm1, . . . ,mi, . . . ,mrq ` fpm1, . . . ,m

1
i, . . . ,mrq,

fpm1, . . . , ami, . . . ,mrq “ afpm1, . . . ,mrq,

as the 1 ď i ď r, the various mj P Mj for 1 ď j ď r, m1
i P Mi and a P R vary. But this is,

by definition, simply MultRpM1, . . . ,Mr;Lq. In other words, (29) restricts to a bijection

MultRpM1, . . . ,Mr;Lq Ñ HomRpM,Lq.

It is clear that this bijection is induced by pullback with respect to u. The functoriality
has already been taken care of, in Lemma 6.9. Here, no axiom of choice was involved, since
the tensor product was explicitly constructed. □

Henceforth, we will not use the construction in Proof 2 of Proposition 6.14 at all.

6.2. Hom-tensor adjointness. Let M,N,L be R-modules. By the definition of bilinear-
ity, we get bijections (in fact R-module isomorphisms)

HomRpN,HomRpM,Lqq Ð BilRpM,N ;Lq Ñ HomRpM,HomRpN,Lqq,(30)

n ÞÑ Bp´, nq Ð [ B ÞÑ pm ÞÑ Bpm,´qq

that are functorial in M,N and L.

Thus, fixing M , we consider two functors R-Mod ù R-Mod, given by F “ M bR ´ and
G “ HomRpM,´q. We get a bijection:

HomRpF pNq, Lq “ HomRpMbRN,Lq – BilRpM,N ;Lq
(30)
Ñ HomRpN,HomRpM,Lqq “ HomRpN,GpLqq,

functorial inN and L, and hence realizingMbR´ as left adjoint to HomRpM,´q. Similarly,
using the other equality of (30), ´ bRM is also left adjoint to HomRpM,´q.

In other words, we have proved:

Proposition 6.15. M bR ´ and ´ bRM are both left adjoint to HomRpM,´q (and hence
in particular, by Lemma 5.2, naturally isomorphic to each other).

We will redo the parenthetical natural isomorphism ofM bR´ and ´bRM in Proposition
6.20 later below. Note that it agrees with earlier results such as Proposition 6.6.

Corollary 6.16. M bR ´ (or equivalently, ´ bR M) is cocontinuous, i.e., it commutes
with small colimits.
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Proof. Since M bR ´ and ´ bR M are left adjoint to some functor by Proposition 6.15,
they both preserve small colimits (Proposition 5.5). □

Remark 6.17. (i) Since coproducts are colimits, and so are cokernels (cokerpfq is the
coequalizer of f and 0), Corollary 6.16 gives a simultaneous proof of the parts (i)
and (ii) of Proposition 6.10.

(ii) Conversely, Proposition 6.10 can yield a proof of Corollary 6.16 as well. Namely,
one can show that, for categories having all small colimits (like R-Mod), a func-
tor that preserves small coproducts and coequalizers also preserves small colimits
(and a functor that preserves small products and equalizers preserves small lim-
its, if the categories involved have all small limits). This shouldn’t be surprising,
given that we have seen how the existence of small products and equalizers (resp.,
small coproducts and coequalizers) implies the existence of small limits (resp., small
colimits).

Now we note the analogue of Proposition 6.10(ii) for the functors HomRpN,´q and HomRp´, Nq:
these are much easier than Proposition 6.10(ii).

Lemma 6.18. (i) For an exact sequence 0 Ñ M
g

Ñ M1
f

Ñ M2 of R-modules,

0 Ñ HomRpN,Mq
g˝´
Ñ HomRpN,M1q

f˝´
Ñ HomRpN,M2q

is exact. In other words, HomRpN,´q : R-Mod ù R-Mod is “left exact”.

(ii) For an exact sequence M1
f

Ñ M2
g

Ñ M Ñ 0 of R-modules,

0 Ñ HomRpM,Nq
´˝g
Ñ HomRpM2, Nq

´˝f
Ñ HomRpM1, Nq

is exact. In other words, HomRp´, Nq : R-Modop ù R-Mod is “left exact”.

Proof. Proof 1. Both parts of the proposition are easy to verify directly. Namely, the first
says that homomorphisms into M1 which vanish on applying f land in ker f “ image g,

which means they factor throughM
g
Ă M1. The second says that homomorphisms fromM2

to N whose “restriction” (via f) to M1 vanish, factor through M2{imagepfq “ M2{ ker g –

M .

Proof 2. The first part is a special case of the assertion that HomRpN,´q preserves limits
in R-Mod, or equivalently, Set: but that is how limits in general categories C were defined,
namely, to ensure that any MorCpX,´q preserves limit. The second part is a special case of
the assertion that HomRp´, Nq takes colimits in R-Mod, or equivalently limits in R-Modop,
to limits in R-Mod or equivalently, in Set: again, this is how colimits were defined.

Proof 3. (this is a bit too artificial though) HomRpN,´q, being a left-adjoint (to N bR ´),
preserves small limits (Proposition 5.5). As for HomRp´, Nq: since

HomRpL,HomRpM,Nqq – BilRpLˆM,Nq – HomRpM,HomRpL,Nqq “ HomR-ModoppHomRpL,Nq,Mq,

it follows that HomRp´, Nq, viewed as a functor R-Modop ù R-Mod, is right adjoint to
HomRp´, Nq, but this time viewed as a functor R-Mod ù R-Modop, and is hence left
exact. □
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Remark 6.19. (i) A moral of some of the discussion above is that “left adjoint is right
exact and right adjoint is left exact” (convince yourself of this; but this is informal
since we will only formally define “right exact” and “left exact” later, when we
(hopefully) do abelian categories).

(ii) While Lemma 6.18 tells us that HomRpN,´q and HomRp´, Nq are left exact when
appropriately interpreted, neither is exact: applying HomZpZ{2Z,´q destroys the
exactness of Z Ñ Z{2Z Ñ 0, while applying HomZp´,Zq destroys the exactness of

0 Ñ Z ˆ2
Ñ Z (Exercise: work out the details).

(iii) Later we will hopefully study about projective modules P (HomRpP,´q is exact),
and injective modules I (HomRp´, Iq is exact).

(iv) One way to articulate the part of the proof of Proposition 6.10(ii) that describes
M bR N , is to use Lemma 6.18(ii), which gives (in the notation of Proposition
6.10(ii)) the exactness of

0 Ñ HomRpM,HomRpN,Lqq
´˝g
Ñ HomRpM2,HomRpN,Lqq

´˝f
Ñ HomRpM1,HomRpN,Lqq,

or equivalently that of

0 Ñ HomRpM bR N,Lq
´˝gbidN

Ñ HomRpM2 bR N,Lq
´˝fbidN

Ñ HomRpM1 bR N,Lq.

This means precisely that M2 bR L
gbidN

Ñ M bR N is the coequalizer of f b idN
and 0, or in other words, a cokernel of f b idN , proving the exactness assertion in
Proposition 6.10(ii).

(v) Much of what we have done today looks like a form of Proposition 5.5 (left adjoint
functors preserve small colimits and right adjoint functors preserve small limits).

6.3. Some other properties of tensor products. You can check that the natural iso-
morphism in the proposition below coincides with that in Proposition 6.15.

Proposition 6.20. For R-modules M and N , there is a unique isomorphism of R-modules
M bRN Ñ N bRM that maps each mbn to nbm. The collection of these isomorphisms
is natural in M and N , i.e., forms a natural isomorphism between functors R-Mod ˆ R-
Mod ù R-Mod (given by pM,Nq ù M bR N and pM,Nq ù N bRM).

Proof. We have an isomorphism of functors BilRpM,N ;´q Ñ BilRpN,M ;´q obtained by
“swapping M and N”. This implies that

N ˆ M
swap
Ñ M ˆ N Ñ M bR N

is a tensor product for NˆM , taking pn,mq tombn. By the uniqueness of tensor products,
there is a unique isomorphism from NbRM Ñ MbRN , that transports NˆM Ñ NbRM
to N ˆM Ñ M bRN , or in other words, takes nbm to mbn for each m P M,n P N . □

Proposition 6.21. If L,M,N are modules over R, there is are isomorphisms

pL bRMq bR N
a

Ñ L bRM bR N
b

Ð L bR pM bR Nq,
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where either arrow is the unique isomorphism between its source and its target satisfying
the property that for all l P L,m P M and n P N , the corresponding relation below holds:

pl b mq b n
a

ÞÑ l b m b n
b

Ð [ l b pm b nq.

.

Sketch of the proof of Proposition 6.21. We will prove the assertions involving a. For any
R-module P , we have

HomRppL bRMq bR N,P q – BilRppL bRMq, N ;P q
(30)
– HomRpL bRM,HomRpN,P qq

– BilRpL,M ; HomRpN,P qq – MultRpL,M,N ;P q – HomRpL bRM bR N,P q,

(31)

where the second-to-last isomorphism uses an argument analogous to that for (30): it
sends B : L ˆ M Ñ HomRpN,P q to A : pl,m, nq ÞÑ Bpl,mqpnq. This being functorial in
P , (31) gives a natural isomorphism between functors corepresented by pL bR Mq bR N
and LbRM bR N , and hence also an isomorphism pLbRMq bR N Ñ LbRM bR N . It
remains to prove that this isomorphism sends pl b mq b n to l b m b n.

Chase through the isomorphisms in (31) and verify that, under that chain, if φ P HomRppLbR

Mq bR N,P q corresponds to A P MultRpL,M,N ;P q and ψ P HomRpL bR M bR N,P q,
then φppl b mq b nq “ Apl,m, nq “ ψpl b m b nq. This forces the above isomorphism
pL bRMq bR N Ñ L bRM bR N to send pl b mq b n to l b m b n. □

Of course, the above lemma immediately generalizes to a sort of “associativity for arbi-
trarily bracketed tensor products”, which we may use in what follows.
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7. Lecture 7 – tensor products, the case of noncommutative rings

7.1. Definition of tensor products over noncommutative rings. If M,L are left
modules over a noncommutative ring R, then HomRpM,Lq is only an abelian group, and
not an R-module: for φ P HomRpM,Lq and r P R, m ÞÑ rφpmq is no longer an R-module
homomorphism, since r ¨ φpsmq “ rsφpmq ‰ s ¨ rφpmq in general.

Similarly, for left modules M,N over a noncommutative ring R, defining tensor products
using R-bilinear maps M ˆ N Ñ L would not work well, since that would cause a lot of
collapsing: if B :M ˆ N Ñ L is bilinear in the sense defined in Lecture 6, then

rsBpm,nq “ rBpm, snq “ Bprm, snq “ sBprm, nq “ srBpm,nq,

forcing each rs ´ sr to annihilate the image of B.

Instead, the “correct” definition turns out to involve a right R-module with a left R-module:

Definition 7.1. Let M P ObMod-R be a right R-module, and N P ObR-Mod a left
R-module.

(i) For an abelian group L, a map B : M ˆ N Ñ L is said to be R-middle linear
(sometimes the word “balanced” is used instead) if it is biadditive (i.e., Z-bilinear),
and if for all r P R,m P M and n P N we have:

Bpmr, nq “ Bpm, rnq.

(ii) Write MidlinRpM,N ;Lq for the abelian group (under addition in L) of R-middle
linear mapsMˆN Ñ L, and MidlinRpM,N ;´q : AbGrp ù AbGrp for the functor
L Þ⇝ MidlinRpM,N ;Lq.

(iii) A tensor product of M and N over R is an abelian group M bR N , together with
an R-middle linear map u :M ˆN Ñ M bRN , such that for all abelian groups L,
the following map is a bijection:

HomAbGrppM bR N,Lq
´˝u
Ñ MidlinRpM,N ;Lq.

Thus, by the Yoneda lemma, a tensor product M bR N is of M and N over R an
object of AbGrp corepresenting the functor MidlinRpM,N ;´q : AbGrp ù AbGrp,
together with an associated corepresentation.

Clearly, a tensor product of M and N is uniquely unique if it exists.

Proposition 7.2. Let R be a commutative ring. Then M bR N , as defined above, exists
and coincides with the abelian group underlying the Lecture 6 version of M bR N .

You can try to prove this as an exercise; in any case, we will give a proof later in this
lecture.

As in Lecture 6, if a tensor product of M and N over R exists, we will denote it and its
underlying abelian group by M bRN , and the map u :M ˆN Ñ M bRN will be denoted
by pm,nq ÞÑ mb n. As in Lecture 6 again, it is easy to see that every element of M bRN
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is (highly non-uniquely) a Z-linear combination of the mibni, with each mi P M and each
ni P N .

Proposition 7.3. Let R be a (not necessarily commutative, as usual) ring. Then for any
right R-module M and a left R-module N , a tensor product M bR N of M and N exists,
and is functorial in M and N , i.e., this defines a functor

Mod-R ˆ R-Mod ù AbGrp.

Proof. One can adapt to this situation ‘Proof 2’ of the analogous assertion from Lecture 6.
Namely, one considers the free abelian group (rather than the freeR-module) onMˆN , and
quotients it by relations of the form pm`m1, nq´pm,nq´pm1, nq, pm,n`n1q´pm,nq´pm,n1q

and pmr, nq ´ pm, rnq as m,m1 P M,n, n1 P N and r P R vary. □

7.2. R-S-bimodules.

Definition 7.4. (i) An R-S-bimodule is an abelian group M given the structure of a
left R-module and a right S-module such that the actions of R of S onM commute:
r ¨ pm ¨ sq “ pr ¨mq ¨ s for all m P M , r P R and s P S. In other words, we are given
homomorphisms R Ñ EndZpMq and Sop Ñ EndZpMq with commuting images.

(ii) Write R-Mod-S for the category of R-S-bimodules (as usual, it is clear what R-S-
bimodule homomorphisms should mean), and HomR,Sp´,´q for morphisms in this
category.

(iii) IfM is an S-R-bimodule and N is an R-S 1-bimodule, thenM bRN has a structure
of an S-S 1-bimodule, satisfying spm b nqs1 “ sm b ns1 – prove this as an easy
exercise using the universal property of the tensor product multiple times – and
will be regarded as one.

(iv) For any S-R-bimodule L, we will denote by MidlinR,pS,S1qpM,N ;Lq the set of those
B P MidlinRpM,N ;Lq that satisfy Bpsm, ns1q “ sBpm,nqs1 for all s P S, s1 P

S 1,m P M and n P N .
(v) If N is an R-S-bimodule, and L is an R-S 1-module, HomRpN,Lq is an pS, S 1q-

bimodule under ps ¨ f ¨ s1qpnq “ fpnsqs1. 13 If L is simply a left R-module instead,
then N and L can be regarded as pR,Zq-bimodules, so HomRpN,Lq is then just a
pZ,Zq-bimodule, which in fact comes from just an abelian group.

Similarly, if N is an R-S 1-bimodule and L is an S-S 1-bimodule, then HomS1pN,Lq

is an S-R-bimodule via ps ¨ f ¨ rqpnq “ s ¨ fprnq.

Proposition 7.5. If M is an S-R-bimodule and N is an R-S 1-bimodule, the map u :
M ˆ N Ñ M bR N satisfies the following universal property: for any L P ObS-Mod-S 1,
the following is a well-defined bijection:

HomS,S1pM bR N,Lq
´˝u
Ñ MidlinR,pS,S1qpM,N ;Lq.

13Note that, since S acts on N on the right, its action on maps f from N into any space by ps ¨ fqpnq “

fpnsq is a left action: when you take an action into an argument of a function, a left action becomes a
right action and vice versa.
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Proof. We already have the bijection between abelian groups that contain either side:

HomZpM bR N,Lq
´˝u
Ñ MidlinRpM,N ;Lq.

u is clearly pS, S 1q-bilinear, so if φ P HomZpM bRN,Lq and B “ φ˝u P MidlinRpM,N ;Lq,
then

B P MidlinR,pS,S1qpM,N ;Lq ðñ Bpsm, ns1
q “ sBpm,nqs1, @ s P S,m P M,n P N, s1

P S 1,

ðñ φpsm b ns1
q “ sφpm b nqs1, @ s P S,m P M,n P N, s1

P S 1,

ðñ φ P HomS,S1pM bR N,Lq,

since the m b n span M bR N . □

Proof of Proposition 7.2. First we claim that M bR N , defined as above, has an obvious
R-module structure.

For any commutative ring R, an R-module can be thought of as an R-R-bimodule, via
r ¨ m ¨ s “ pr ¨ sq ¨ m. In the converse direction, note that an R-R-bimodule L arises
in this way from an R-module if and only if a ¨ m “ m ¨ a for all a P R and m P M .
Thus, the R-R-bimoduleM bRN arises this way from an R-module structure onM bRN :
apm b nq “ am b n “ ma b n “ m b an “ m b na “ pm b nqa.

Then for any R-module L, viewing both M bR N and L as R-R-bimodules, inside the
sets HomZpM bR N,Lq and MidlinRpM ˆ N ;Lq, the subsets HomR,RpM bR N,Lq and
MidlinR,pR,RqpM ˆN ;Lq coincide with HomRpM bR N,Lq and BilRpM,N ;Lq respectively
(check this). Therefore, by Proposition 7.5 (for the arrow involving “´˝u” in the following
sequence), we get bijections

HomRpM bR N,Lq “ HomR,RpM bR N,Lq
´˝u
Ñ MidlinR,pR,RqpM ˆ N,Lq “ BilRpM,N ;Lq,

showing that M bR N , with its R-module structure as defined above, is a tensor product
of M and N as defined in Lecture 6. □

Moral. Thus, unlike what Definition 7.1 might naively suggest, tensor product for non-
commutative rings does satisfactorily generalize the tensor product for commutative rings:
only, for a commutative ring R, an R-module M should be viewed as an pR,Rq-bimodule
when we look at it as per the theory for noncommutative rings.

Lemma 7.6. If Mi is an Ri´1-Ri-bimodule for i “ 1, 2, 3, then we have a unique isomor-
phism of R0-R3-bimodules:

pM1 bR1 M2q bR2 M3 – M1 bR1 pM2 bR2 M3q,

taking each pm1 b m2q b m3 to m1 b pm2 b m3q.

Sketch of proof. Check that both sides corepresent, in the category of R0-R3-bimodules, the
functor that sends L to the abelian group of maps ψ :M1ˆM2ˆM3 Ñ L that are Z-trilinear
and satisfy ψpm1r1,m2,m3q “ ψpm1, r1m2,m3q, ψpm1,m2r2,m3q “ ψpm1,m2, r2m3q, and
ψpr0m1,m2,m3r3q “ r0ψpm1,m2,m3qr3 whenever mi P Mi and ri P Ri for P t0, 1, 2, 3u. □
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One way to view the lemma is as follows. Just like the binary tensor products above,
we can define M1 bR1 bM2 b ¨ ¨ ¨ bRn´1 Mn, where M1 is a right R1-module, Mn is a
left Rn´1-module, and for 2 ď i ď n ´ 1, each Mi is an pRi´1, Riq-bimodule. If further
M1 extends to an pR0, R1q-bimodule and Mn extends to an pRn´1, Rnq-bimodule, then
M1 bR1 bM2 bR2 ¨ ¨ ¨ bRn´1 Mn is an pR0, Rnq-bimodule. All of these are proved as in the
binary case. Then the above lemma can be justified by arguing that both modules agree
with the unbracketed tensor product M1 bR1 M2 bR2 M3, as an pR0, R3q-bimodule.

However, we will not deal much with nonbinary tensor products for noncommutative rings
in the rest of this course.

7.3. Hom-tensor adjointness, noncommutative case. Now check as an exercise that
for any pS,R)-bimodule M , pR, S 1q-bimodule N , and an pS, S 1q-bimodule L, we have bi-
jections (in fact isomorphisms of abelian groups):

HompR,S1qpN,HomSpM,Lqq Ð MidlinR,pS,S1qpM,N ;Lq Ñ HompS,RqpM,HomS1pN,Lqq,

pn ÞÑ Bp´, nqq Ð[ B ÞÑ pm ÞÑ Bpm,´qq.

Check also that the inverses are given by ψ ÞÑ ppm,nq ÞÑ ψpnqpmqq and ζ ÞÑ ppm,nq ÞÑ

ζpmqpnqq.

We have seen maps of this form earlier, from when we proved Hom-tensor adjointness in
the commutative case. Therefore, we know that these work when R “ S “ S 1 “ Z, so
what you need to check to do this exercise is that the conditions imposed by R, S and S 1 on
either side are compatible: for example, if B is R-middle linear, then under n ÞÑ Bp´, nq,
we have rn ÞÑ Bp´ ¨ r, nq, which is r ¨ Bp´, nq by the definition of how HomSpM,Lq is
viewed as a left R-module.

Using the identification MidlinR,pS,S1qpM,N ;Lq Ñ HompS,S1qpM bR N,Lq of Proposition
7.5, whose inverse is φ ÞÑ ppm,nq ÞÑ φpmbnqq, we get both the assertions of the following
proposition:

Proposition 7.7. (i) Let M be an S-R-bimodule. Then the functor M bR ´ : R-
Mod-S 1 ù S-Mod-S 1 is left-adjoint to HomSpM,´q : S-Mod-S 1 ù R-Mod-S 1:
we have functorial bijections in N P ObR-Mod-S 1 and L P ObS-Mod-S 1:

HomS,S1pM bR N,Lq Ñ HomR,S1pN,HomSpM,Lqq,

given by φ ÞÑ pn ÞÑ pm ÞÑ φpmbnqqq, with inverse taking ψ P HomR,S1pN,HomSpM,Lqq

to an element of HomS,S1pM bR N,Lq that maps each m b n to ψpnqpmq.
(ii) Similarly, if N is is an R-S 1-bimodule, then ´ bR N : S-Mod-R ù S-Mod-S 1 is

left-adjoint to HomS1pN,´q : S-Mod-S 1 ù S-Mod-R. 14

14Here is one way to remember this: for an R-S1-bimodule, the adjoint of tensoring with respect to
R should be homming with respect to the other ring, namely S1: the two functors should go in opposite
direction, so should use up actions of different rings.



79

Corollary 7.8. Let M be an S-R-bimodule. Then the functor M bR ´ : R-Mod ù S-
Mod and ´ bSM :Mod-S ù Mod-R are right exact, while the functor HomSpM,´q : S-
Mod ù R-Mod is left exact.

Proof. This follows from the fact that M bR ´ and ´ bRM , being left adjoints, preserve
small colimits and hence cokernels, and HomSpM,´q, being a right adjoint, preserves small
limits and hence kernels. 15 However, one can also prove this directly (especially, the latter
is easy), using arguments from Lecture 6. □

Exercise 7.9. Recall the notion of units and counits of an adjunction, either from the
notes for Lecture 4 or from HW 3. Show that, the adjunction of Proposition 7.7 between
M bR ´ and HomSpM,´q has unit and counit equal to the natural transformations

id Ñ HomSpM,M bR ´q and M bR pHomSpM,´qq Ñ id,

given by the mapsN Ñ HomSpM,MbRNq andMbRHomSpM,Lq Ñ L, given respectively
by n ÞÑ pm ÞÑ m b nq and the evaluation map m b ω ÞÑ ωpmq. Mentally relate these
formulas to the prescriptions in Proposition 7.7 by staring long enough (the point being
that the adjunctions are described explicitly using the unit and counit).

7.4. Extension, restriction and coextension of scalars. Let R Ñ S be a homomor-
phism of not necessarily commutative rings. We would like to look at the special cases of
Proposition 7.7 where M “ S. Then M can be viewed either as an S-R-bimodule or as an
R-S-bimodule, giving us two functors R-Mod ù S-Mod, and two functors S-Mod ù R-
Mod:

Definition 7.10. (i) Viewing M “ S as an pS,Rq-bimodule:
‚ M bR ´ becomes the functor S bR ´ : R-Mod ù S-Mod. This functor is
called the extension of scalars along R Ñ S, arguably the most ‘obvious’ way
of producing an S-module from an R-module.

‚ HomSpM,´q “ HomSpS,´q : S-Mod ù R-Mod. We have a functorial iso-
morphism HomSpS, Lq Ñ L, given by φ ÞÑ φp1q. Under this isomorphism,
the left R-module structure on HomSpS, Lq obtained from the S-R-bimodule
structure on S transfers to the left R-module structure on L obtained as fol-
lows: L is already a left S-module, so R acts on it via R Ñ S. Thus, this
functor is described more simply as: “given N P ObS-Mod, take it to N it-
self, but viewed as in ObR-Mod, through R Ñ S”. This functor is called the
restriction of scalars along R Ñ S.”

(ii) Viewing M as an pR, Sq-bimodule:
‚ This time, we have an isomorphismM bSN “ SbSN – N for each S-module
N , and under this isomorphism, the R-module structure on S bS N , which
comes from the left-multiplication by R on S, clearly transfers to the action of
R on the S-module N via R Ñ S. Thus, S bS ´ : S-Mod ù R-Mod is the
same as the restriction of scalars along R Ñ S seen above.

15In general (for “additive functors”), left adjoint functors are right exact, and right adjoint functors
are left exact.
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‚ On the other hand, HomRpS,´q : R-Mod ù S-Mod is called the coextension
of scalars along R ù S.

Thus, Proposition 7.7 immediately gives, on specializing to the above two situations:

Proposition 7.11. Let R Ñ S be a homomorphism of not necessarily commutative rings
(but with 1, as always):

(i) The extension of scalars functor S bR ´ : R-Mod ù S-Mod is left adjoint to
the restriction of scalars functor S-Mod ù R-Mod. More precisely, for any left
R-module N , and left S-module L, we have a functorial isomorphism of abelian
groups:

HomSpS bR N,Lq
´˝pnÞÑ1bnq

Ñ HomRpN,Lq,

given by precomposition with the map ι P HomRpN,S bR Nq given by n ÞÑ 1 b n
(on the right-hand side, L stands for L viewed as an R-module via R Ñ S).

(ii) The coextension of scalars functor HomRpS,´q : R-Mod ù S-Mod is right adjoint
to the restriction of scalars functor S-Mod ù R-Mod. More precisely, for any
left S-module N and left R-module L, we have a functorial isomorphism

HomRpN,Lq Ñ HomSpN,HomRpS, Lqq,

whose inverse given by post-composition with the map HomRpS, Lq Ñ L defined by
φ ÞÑ φp1q (the map itself takes ψ P HomRpN,Lq to n ÞÑ ps ÞÑ ψpsnqq).

Proof. The above discussion tells us how to apply Proposition 7.7. More precisely:

‚ The prescription for the former isomorphism maps HomSpSbRN,Lq Ñ HomRpN,HomSpS, Lqq

by φ ÞÑ pn ÞÑ ps ÞÑ φps b nqqq, which, upon identifying HomSpS, Lq with L via
ψ ÞÑ ψp1q, becomes φ ÞÑ pn ÞÑ φp1 b nqq, which is as claimed.

‚ The prescription for the inverse of latter isomorphism maps (recalling that R and
S are now interchanged) HomSpN,HomRpS, Lqq to HomRpS bS N,Lq by sending
ψ P HomSpN,HomRpS, Lqq to the element of HomRpS bS N “ N,Lq that sends
1 b n “ n to ψpnqp1q: in other words, this inverse is given by composing ψ with
the map HomRpS, Lq Ñ L taking ζ to ζp1q.

□

Example 7.12. (i) Let R “ R ãÑ C “ S. Then Proposition 7.11(i) tells us that R-
linear maps from a real vector space V to a complex vector spaceW are in bijection
with C-linear maps from the complexification VC :“ V bR C of V to W . Prove this
elementarily: V Ă VC has VC “ V ‘iV as its C-span, and any R-linear map V Ñ W
extends uniquely to a C-linear map VC Ñ W , and any C-linear map VC Ñ W arises
this way. You might have seen this in many contexts.

(ii) Again, let R “ R ãÑ C “ S. Proposition 7.11(ii) tells us that R-linear maps from
a complex vector space V to a real vector space W are in bijection with C-linear
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maps from V to the complex vector space HomRpC,W q (which gets the C-vector
space structure from viewing the C in HomRpC,W q as a right C-module).

One ‘popular’ situation where this is applied is the deduction of the Hahn-Banach
theorem in the complex case from the real case. Consider the particular case where
W “ R, so we get a bijection HomRpV,Rq Ñ HomCpV,HomRpC,Rqq. But we
can identify HomRpC,Rq with C as a C-vector space, using the unique C-linear
isomorphism HomRpC,Rq Ñ C whose inverse takes 1 P C to the element “read off
the real part” P HomRpC,Rq. Now you can check that the inverse of the bijection
HomRpV,Rq Ñ HomCpV,HomRpC,Rqq “ HomCpV,Cq takes a linear functional F P

HomCpV,Cq to Re F P HomRpV,Rq, which is what is used in the Hahn-Banach
theorem for complex Banach spaces.

(iii) If R is a commutative ring and I Ă R is an ideal, we have an “inclusion functor”
from the category of R{I-modules to the category of R-modules, which is an equiv-
alence onto the full subcategory of R-modules annihilated by I. Note that this
functor is just the restriction of scalars functor along R Ñ S :“ R{I. In this case,
you already know that a left-adjoint to this functor is given byM Þ⇝M{IM , which
is just saying that any morphism from M to a module N annihilated by I factors
uniquely through M Ñ M{IM . This is a manifestation of Proposition 7.11(i),
since according to it a left-adjoint is given by R{I bRM , and we have already seen
that R{I bR M – M{IM . Thus, this basic fact about annihilators is included in
the adjunction between the extension of scalars and the restriction of scalars.

(iv) Let R be an integral domain, and let K be its quotient field. The ‘inclusion functor’
from K-vector spaces to R-modules is restriction of scalars along R ãÑ K, and
has left-adjoint given by ´ bR K, from R-modules into K-vector spaces: any R-
module map from an R-module M into a K-vector space uniquely factors through
M Ñ M bR K – pM{Mtorsq bR K.

If R is a principal ideal domain and a module M over R is isomorphic to Rn ‘

p
À

iR{pdiqq with each di a nonunit, thenMbRK – Kn. Thus, the uniqueness of the
rank n of the “free” part of M can also be read off by tensoring with K. Similarly,
if we write M as Rn ‘ p

À

iR{ppaii qq, with p ranging over primes, the uniqueness
of the contribution of the parts corresponding to a single p can be obtained by
tensoring M with R{ppnq for a large enough n. The language of tensoring allows us
to make the proof of the uniqueness assertion in the structure theorem for modules
over a PID slightly simpler to write down, as a convenient linguistic tool, but in
many other situations is tremendously simplifying and useful in arguably much
more fundamental ways.

7.5. Application to representation theory. In this subsection, we will let k be any
commutative ring (not necessarily a field). Given a group G, we will perhaps abusively
refer to k-modules on which G acts as representations of G on k-modules: these are actions
GˆM Ñ M of G on k-modulesM by k-module automorphisms, which can also be written
G Ñ AutkpMq. Denote their category by RepkpGq. However, despite this terminology, the
results that follow work for general commutative rings k, and in the case where k “ Z, the
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induced and coinduced representations that we talk of below coincide with induced and
coinduced modules that one sees in group cohomology (where one studies groups acting
on abelian groups, i.e., on Z-modules).

As we now briefly recall, this category is isomorphic to the category of krGs-modules, where
krGs is the so called group algebra of G, a ring whose underlying set is the set

ř

gPG agg
of formal k-linear combinations of elements of G, where ag “ 0 for all but finitely many
elements of G, and multiplication is given by convolution:

´

ÿ

g

agg
¯´

ÿ

g

bgg
¯

“
ÿ

g

´

ÿ

h,kPG
hk“g

ahbk

¯

g.

The multiplicative identity is
ř

agg, where ag “ 0 unless g “ e, the identity element of G,
and where ae “ 1.

Specifically, we have an inclusion G ãÑ krGs, sending g to
ř

δg,g1g1, where δg,g1 equals 1 or
0 depending on whether or not g “ g1. Clearly, G Ă krGs is a basis, so any representation
ρ : G Ñ AutkpMq extends k-linearly to a k-module homomorphism krGs Ñ EndkpMq,
with

ř

g agg acting by
ř

g agρpgq. Using the above definition of multiplication, it is easy

to check this extension krGs Ñ EndkpMq is a k-algebra homomorphism, and thus realizes
M as a krGs-module. Conversely, given a krGs-module M given by krGs Ñ EndkpMq, we
obtain a representation G Ñ AutRpMq by restricting to G Ă krGsˆ Ă krGs (invertible
elements in Rˆ act as automorphisms on any R-module).

Check that this allows us to identify RepkpGq with krGs-Mod.

Remark 7.13. Part of what we showed up above is that G ù krGs is a left-adjoint to
the functor from k-algebras to groups that sends R to Rˆ. Note also that G ù krGs is
analogous to S Þ⇝ FreekpSq, except that we have a group G here, and correspondingly a
ring structure on FreekpSq.

In what follows, we will use the identification between RepkpGq and krGs-Mod above the
remark, to identify representations of any groupG with krGs-modules. If π : G Ñ AutkpMq

is a representation ofG, we will refer toM as the ‘space of π’, and refer to the representation
also as pπ,Mq.

Now let G be a group, and H Ă G a subgroup. The inclusion H ãÑ G extends k-linearly
to an inclusion R :“ krHs ãÑ krGs “: S, which is a homomorphism of rings.

Our first task is to just translate Proposition 7.11 in this situation, from the language of
R-modules and S-modules to the language of representations of H and G.

Definition 7.14. (i) The extension of scalars functor

krGs bkrHs ´ : RepkpHq “ krHs-Mod ù krGs-Mod ù RepkpGq

will also be referred to as induction of representations from H to G, and written
π Þ⇝ IndGH π. Ind

G
H π is called the representation obtained by inducing π from H to

G.
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(ii) Similarly, the coextension of scalars functorRepkpHq Ñ RepkpGq, given by HomkrHspkrGs,´q,

is called coinduction of representations from H to G, and written π Þ⇝ coIndGH π.
(iii) Similarly, the functor of restriction of representations from G to H – which amounts

to viewing a krGs-module as a krHs module via krHs ãÑ krGs, denoted σ Þ⇝ σ|H
or π Þ⇝ ResGHσ.

Remark 7.15. (i) Thus, by Proposition 7.11, IndGH π comes with a map π ãÑ IndGH π,
composition with which induces a bijection, for any representation σ of G,

HomGpIndGH π, σq Ñ HomHpπ, σ|Hq.

Moreover, it is immediate to check that for any representation pπ,Mq of H in
RepkpHq, the description of ρ :“ IndGH π as krGs bkrHsM , agrees with the following
description from Serre’s book on linear representations of finite groups: ρ is ob-
tained by inducing π from H to G if ρ|H contains a copy of π, whose translates by
representatives for G{H direct sum to π (see Definition 3.3 of the book).

(ii) Similarly, coIndGH π comes with a map coIndGH π Ñ π, composition with which
induces a bijection, for any representation σ of G,

HomGpσ, coIndGH πq Ñ HomHpσ, π|Hq.

Moreover, we can describe coinduction at the level of representations as follows.
Since H Ă krHs and G Ă krGs are free k-module bases, any element of (the
underlying space of) HomkrHspkrGs, pπ,Mqq is determined by its restriction to G Ă

krGs, which is a function f : G Ñ M , satisfying fphgq “ πphqfpgq for all h P G.
Thus, the elements of coIndGH π can be described as

(32) tf : G Ñ M | fphgq “ πphqfpgq @h P H, g P Gu,

on which the action of G is given by right-multiplication: pg ¨ fqpg1q “ fpg1gq

(since the left krGs-module structure on HomkrHspkrGs, pπ,Mqq is given by right-
multiplication by krGs on the argument).

(iii) On the other hand, the restriction of scalars functor RepkpGq ù RepkpHq is much
easier: it is just viewing a representation σ of G on M as a representation of H on
M by restricting the action of G to H.

(iv) All the three functors, IndGH , coInd
G
H and ResGH , are exact, as we now explain. For

general rings R Ñ S, restriction of scalars along it is obviously exact, but extension
and coextension of scalars may not be, though note that they are if S is free as an
R-module. This is clearly the case when R “ krHs ãÑ krGs “ S, with H Ă G.

Proposition 7.16. If H Ă G is of finite index, then the functors IndGH and coIndGH of
induction and coinduction are naturally isomorphic to each other.

Proof. Proof 1. Let pπ,Mq be a representation of H. Define coIndGHpπ,Mq Ñ IndGHpπ,Mq

by sending pf : G Ñ Mq P coIndGHpπ,Mq (realized as in (32)) to
ř

gPrHzGs
g´1 b fpgq P

krGs bkrHs M “ IndGHpπ,Mq, where rHzGs is a set of representatives for HzG in G:
this sum is independent of the choice of representatives rHzGs, since phgq´1 b fphgq “
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g´1h´1 b h ¨ fpgq “ g´1 b fpgq (as the tensor product is taken over krHs). This map is
readily verified to be an isomorphism of k-modules, with a two-sided inverse sending gbm
to the map G Ñ M that sends any hg´1 with h P H to hm, and every element of GzpHg´1q

to 0. It also respects the G-action, since it takes pg0fq : g ÞÑ fpgg0q to
ÿ

gPrHzGs

g´1
b fpgg0q “ g0 ¨

ÿ

gPrHzGs

pgg0q
´1

ÿ

gPrHzGs

pgg´1
0 q b fpgg0q “ g0 ¨

ÿ

gPrHzGs

g´1
b fpgq,

since tgg0 | g P rHzGsu is also a set of representatives for HzG. Since this isomorphism is
functorial in pπ,Mq, it gives a natural isomorphism from coIndGH to IndGH .

Proof 2. If S is a free left R-module of finite rank, then for any left R-module M , applying
´bRM gives an isomorphism HomRpS,RqbRM Ñ HomRpS,Mq of abelian groups (where
HomRpS,Rq is viewed as a right-R-module using the right R-module structure on R):
indeed, this is clear if S “ R, and the general case follows by taking direct sums (here
the finite rank condition is necessary since HomRp´, Rq converts a direct sum into a direct
product).

If further S Ñ HomRpS,Rq is an isomorphism of pS,Rq-bimodules, then S bR M Ñ

HomRpS,Rq bR M is an isomorphism of left S-modules. Thus, if R Ñ S is a ring ho-
momorphism that makes S into a finite rank free right R-module, then to get a natural
isomorphism S bR ´ Ñ HomRpS,´q of functors valued in S-modules, it is enough to get
an isomorphism S Ñ HomRpS,Rq of S-R-bimodules.

We will show this for R “ krHs ãÑ krGs “ S. It is immediate that S is a free left R-
module with basis given by a set rHzGs of representatives for HzG, and similarly a free
right R-module as well.

To get an isomorphism S Ñ HomRpS,Rq of S-R-bimodules, it is enough to get a perfect
pairing

p¨, ¨q : S ˆ S Ñ R

such that pss1, s2q “ ps1, s2sq and ps1r, s2q “ ps1, s2qr, for all s, s1, s2 P S and r P R: given
such a pairing, s ÞÑ ps,´q P HomRpS,Rq will give the desired isomorphism. Here, “perfect
pairing” means a pairing such that s ÞÑ ps,´q defines an isomorphism S Ñ HomRpS,Rq

(so the previous sentence is a tautology, except you should check that the various actions
match).

Define a “trace” tr : krGs Ñ krHs by sending
ř

gPG agg to
ř

hPH ahH. Now define

ps1, s2q “ trps2s1q.

The property pss1, s2q “ ps1, s2sq is immediate, while the property ps1r, s2q “ ps1, s2qr
follows from the fact that tr is a right-R-module homomorphism (even an pR,Rq-bimodule
homomorphism).

It remains to show that this pairing is perfect. For this, it is enough to show that there
is a basis for (the first copy of) S as a free left R-module, that is dual for the pairing to
some basis for (the second copy of) S as a free right R-module. Indeed, tg | g P rHzGsu

and tg´1 | g P rHzGsu are such bases. □
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8. Lecture 8 – tensor products of algebras, and tensor algebras
(Incomplete/extra crude)

8.1. Tensor product of algebras. Throughout today’s lecture, R will denote a commu-
tative ring. But other rings, like S, will not be assumed to be commutative. Recall that
an R-algebra is a homomorphism of rings ι : R Ñ S, such that ιpRq is contained in the
center of S. Note that it is both unnecessary and “lossy” to require ι to be injective.

Let j1 : R Ñ S1 and j2 : R Ñ S2 be R-algebras. In this subsection, we would like to realize
S1 bR S2 as an R-algebra.

Consider

S1 ˆ S2 ˆ S1 ˆ S2 Ñ S1 bR S2,

given by ps1, s2, s
1
1, s

1
2q ÞÑ s1s

1
1 b s2s

1
2.

This map is clearly R-multilinear, and hence factors through a map

pS1 bR S2q bR pS1 bR S2q – S1 bR S2 bR S1 bR S2 Ñ S1 bR S2,

satisfying:
´

ÿ

i

s1,i b s2,i

¯´

ÿ

j

s1
1,j b s1

2,j

¯

“
ÿ

i,j

s1,is
1
1,j b s2,is

1
2,i.

It is easy to check that this map, or ‘operation’, is associative, has multiplicative identity
1 b 1, and that it distributes over addition, making S1 bR S2 into a ring. Moreover,
r ÞÑ j1prq b 1 “ 1 b j2prq defines a ring homomorphism R Ñ S1 bR S2, with image in the
center of S1 bR S2, so that S1 bR S2 is an R-algebra. If S1 and S2 are commutative, so is
S1 bR S2.

It is clear that there are ring homomorphisms (in fact, R-algebra homomorphisms) ι1 :
S1 Ñ S1 bR S2 and ι2 : S2 Ñ S1 bR S2, given by ι1ps1q “ s1 b 1 and ι2ps2q “ 1 b s2.

Remark 8.1. If S1 is commutative, then ι1 : S1 Ñ S1 bR S2 makes S1 bR S2 into an
S1-algebra, upgrading the R-algebra structure on it. Similarly with ι2.

Proposition 8.2. The tensor product is a coproduct in the category of commutative R-
algebras: if R Ñ S1 and R Ñ S2 are commutative R-algebras, a coproduct of theirs is given
by pS1 bR S2, ι1, ι2q, where ι1 : S1 Ñ S1 bR S2 and ι2 : S2 Ñ S1 bR S2 are as above.

Remark 8.3. S1 bR S2 is not a coproduct of S1 and S2 in the category of not-necessarily-
commutative R-algebras, even if S1 and S2 are themselves commutative: coproducts in
the category of not-necessarily-commutative R-algebras, like coproducts in the category of
nonabelian groups, are more complicated.

Proof of Proposition 8.2. For a commutative R-algebra S, what we need to prove is that
the following map is a bijection:

HomR-algpS1 bR S2, Sq
p´˝ι1,´˝ι2q

Ñ HomR-algpS1, Sq ˆ HomR-algpS2, Sq.
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It is an injection because ι1pS1q and ι2pS2q generate S1 bR S2 as a ring, so let us see its
surjectivity. Given φ1 P HomR-algpS1, Sq and φ2 P HomR-algpS2, Sq, the map S1 ˆ S2 Ñ S
given by ps1, s2q ÞÑ φ1ps1qφ2ps2q is R-bilinear, and hence gives us an R-linear map φ :
S1 bR S2 Ñ S satisfying φps1 b s2q “ φ1ps1qφ2ps2q. φ respects multiplication at the level
of ‘pure tensors’ s1 b s2 and s1

1 b s1
2:

φpps1bs2qps1
1bs

1
2qq “ φps1s

1
1bs2s

1
2q “ φ1ps1s

1
1qφ2ps2s

1
2q “ φ1ps1qφ2ps2qφ1ps1

1qφ2ps
1
2q “ φps1bs2qφps1

1bs
1
2q,

where the second step from the last uses that S is commutative. Therefore, by distribu-
tivity, φ respects multiplication in general. φp1 b 1q “ φ1p1qφ2p1q “ 1, so φ is a ring
homomorphism. It is clear that φ : S1 bR S2 Ñ S respects the R-algebra structures on
the two sides, so it is an R-algebra homomorphism. Clearly, φ ˝ ι1 “ φ1 and φ ˝ ι2 “ φ2,
proving the surjectivity. □

Remark 8.4. Recall that, purely terminologically, we defined the category of affine alge-
braic schemes over k to be the category opposite to that of commutative finitely generated
k-algebras. Therefore, the product in this category is given by the coproduct in the cat-
egory of finitely generated commutative k-algebras, which by Proposition 8.2 is given by
the tensor product of k-algebras. For those of you who have seen some basic algebraic
geometry, this (plus some “reducedness/irreducibility considerations”) is why a product
of affine varieties is described by taking the tensor product of the coordinate rings. Here
is how this ‘productness’ is realized at the level of ‘k-points’ of these varieties: if affine
varieties X1 and X2 over an algebraically closed field k have coordinate rings R1 and R2,
respectively, and X is the variety with coordinate ring R1 bk R2, then we get bijections

Xpkq Ñ Homk-AlgpR1 bkR2, kq
Prop.8.2

Ñ Homk-AlgpR1, kqˆHomk-AlgpR2, kq Ñ X1pkqˆX2pkq.

We similarly get bijections XpSq Ñ X1pSqˆX2pSq, functorially in commutative k-algebras
S.

8.2. Some examples of tensor products of algebras.

Example 8.5. In this example, all rings are commutative.

(i) For any R-algebra S, we claim that we have an isomorphism SbRRrxs – Srxs of R-
algebras (it is implicitly understood that Srxs is an R-algebra via R Ñ S ãÑ Srxs).
For this, since Rrxs is a free R-module with basis the xi, the commutativity of the
tensor product with direct sum gives us an R-module isomorphism φ : SbRRrxs Ñ

Srxs. Since this transports psbxiqps1bxjq “ pss1bxi`jq to ss1xi`j “ sxi ¨s1xj, this is
muliplicative at the level of pure tensors, and hence by distributivity multiplicative
in general. Hence it is a ring homomorphism (it takes 1 to 1 as well), and clearly
is also an R-algebra homomorphism. This example did not even need S to be
commutative.

Another way to see this when S is commutative, is to note that in a homomor-
phism from Rrxs or Srxs, the “x can go anywhere”, so we get identifications

HomR-algpSrxs, S1
q “ HomR-algpS, S

1
q ˆ S 1

– HomR-algpS, S
1
q ˆ HomR-algpRrxs, S1

q,
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realizing Srxs as a coproduct of S and Rrxs in the category of commutative R-
algebras. When S is commutative, S bR Rrxs Ñ Srxs is clearly in fact an isomor-
phism of S-algebras.

(ii) More generally, we similarly have S bR Rrxj | j P Js – Srxj | j P Js as both
R-algebras and as S-modules (or as S-algebras if S is commutative), and hence
Srxi | i P Is bR Rrxj | j P Js – Srxi | i P I \ Js.

(iii) As a special case, Rrxs bR Rrxs – Rrx, ys, where the ‘x’ on the right-hand side
corresponds to the ‘xb 1’ on the left, 16 and the ‘y’ on the right corresponds to the
‘1 b x’ on the left. For those of you who have seen some basic algebraic geometry,
this corresponds to the fact that the product of the affine line A1 over k with itself
is the affine plane A2 over k.

(iv) Let S1, S2 be R-algebras, and let I1 Ă S1 be an ideal. Then by the right-exactness
of tensor products for modules,

pS1{I1q bR S2 – pS1 b S2q{imagepI1 bR S2 Ñ S1 bR S2q,

as R-modules. Check that it is also an isomorphism of R-algebras. It is immediate
that the image of I1 bR S2 Ñ S1 bR S2 is simply the ideal I1pS1 bR S2q, where I1
is understood to act by mapping to S1 bR S2 via I1 ãÑ S1 Ñ S1 bR S2.

(v) As an even more special case, let us compute C bR C. We have, using (iv),

CbRC – pRrxs{px2`1qqbRC
(iv)
– Crxs{px2`1q – Crxs{ppx´iqpx`iqq – Crxs{px´iqˆCrxs{px`iq – CˆC,

where the second step from the last used the Sunzi’s theorem, i.e., the Chinese
remainder theorem.

Check that the above isomorphism maps abb to pab, ābq: an informal explanation
is that the i that occurs in the expansion of a using its real and imaginary parts
is the “x” of the Crxs{px2 ` 1q, and this x was sent to i in the Crxs{px ´ iq – C
factor, and to ´i in the Crxs{px ` iq factor.

Example 8.6. This example generalizes Example 8.5(v). Please go through this carefully,
it will be considered an important example for this course.

Let E{F be a finitely generated separable extension of fields. The primitive element theo-
rem says that E “ F rαs for some α P E. Let f be the minimal polynomial of α. If K is
another field containing F , we have

(33) E bF K – pF rxs{pfq bF Kq
Example 8.5(iv)

– Krxs{pfq –

r
ź

i“1

Krxs{pfiq,

where f “ f1 . . . fr is the factorization of f in Krxs into irreducible polynomials, and we
have used the Chinese remainder theorem, as justified by the fact that these factors are
pairwise coprime (since E{K is separable). Since each fi is irreducible, each Krxs{pfiq is
a field extension of K, so we might like to express the Krxs{pfiq in terms of fields that are
some how ‘composed of E and K’.

16Obviously I am talking informally when I say ‘corresponds’ but what I mean is clear: xb 1 ÞÑ x, and
1 b x ÞÑ y, under this isomorphism.
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This can be done as follows. Let Ksep{K be a separable closure of K: thus, Ksep{K is
a separable algebraic extension, and every separable polynomial over K splits into linear
factors over Ksep. In particular, f has deg f “ rE : F s-many distinct roots in Ksep. There
is a bijection

(34) HomF -AlgpE,K
sep

q
bij
Ñ tβ | β is a root of f in Ksep

u,

sending σ : E ãÑ Ksep 17 to β :“ σpαq, which is a root of f since α is. The inverse sends β
to the unique embedding σ : E – F rxs{pfq ãÑ Ksep that sends α to β.

But recall from (33) that we are interested in describing the Krxs{pfiq, which are obtained
by adjoining roots of fi. This means that we need to group the roots of f (on the right-hand
side of (34)) into those that are roots for a common fi. For this, note that:

‚ If β P Ksep is a root of some fi, then the roots of fi are precisely the σpβq, as σ
ranges over GalpKsep{Kq.

‚ GalpKsep{Kq acts on the left-hand side of (34), i.e., on HomF -AlgpE,K
sepq, by

composition. This makes (34) equivariant for GalpKsep{Kq: if σ : E ãÑ Ksep maps
to β, so σpαq “ β, then for all τ P GalpKsep{Kq, τ ˝ σpαq “ τpβq, so τ ˝ σ maps to
τpβq.

Thus, we get a bijection:

(35) GalpKsep
{KqzHomF -AlgpE,K

sep
q Ñ tfi | 1 ď i ď ru,

sending the GalpKsep{Kq-orbit of σ P HomF -AlgpE,K
sepq to the unique fi such that β :“

σpαq is a root of fi. For such σ and β “ σpαq, we have:

Krxs{pfiq – Krβs “ Krσpαqs “ the subfield of Ksep generated by K and σpEq,

since E “ F rαs. In other words, we have described Krxs{pfiq in terms of σ : E ãÑ Ksep, a
representative of the GalpKsep{Kq-orbit in GalpKsep{KqzHomF -AlgpE,K

sepq corresponding
to fi under the bijection (35).

Conclusion. By (33), we get an isomorphism of F -algebras (even of K-algebras)

(36) E bF K Ñ
ź

σPrGalpKsep{KqzHomF -AlgpE,Ksepqs

Kσ,

where rGalpKsep{KqzHomF -AlgpE,K
sepqs is a set of representatives in HomF -AlgpE,K

sepq

for GalpKsep{KqzHomF -AlgpE,K
sepq, and for σ in this set Kσ Ă Ksep denotes the subfield

generated by K and σpEq inside Ksep, which contains both K and σpEq. Explicitly, this
isomorphism satisfies:

a b b ÞÑ pσpaqbqσPrGalpKsep{KqzHomF -AlgpE,Ksepqs.

Notice how this generalizes Example 8.5(v). If we change the choice of the representa-
tives GalpKsep{KqzHomF -AlgpE,K

sepq, we get isomorphic but possibly different right-hand
sides, but in any case different isomorphisms.

17Any ring homomorphism between fields is injective.
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Exercise 8.7. Show – first using direct computation, and then separately using the de-
scription around (36) – that

Qr
3

?
2s bQ Qr

3
?
2s – Qr

3
?
2s ˆ Qr

3
?
2, ωs,

where ω is a cube root of unity.

When I taught the second semester algebra earlier, one of the questions in the first midterm
was to describe Qr

3
?
2s bQ Qr

3
?
2s without proof.

Example 8.8. Separability was really crucial to the description in Example 8.6. For in-
stance, suppose that F has characteristic p, and that E{F is a purely inseparable extension
of degree p obtained by adjoining a p-th root α of some a P F . Then

E bF E – F rxs{pxp ´ aq bF E – Erxs{pxp ´ aq “ Erxs{px ´ αq
p

– Erxs{pxpq,

the last step using the “change of variables” mapping x to x`α. Thus, unlike in (36), this
time EbF E – Erxs{pxpq has nilpotents, and hence cannot be a product of field extensions
of F .

Hopefully, we will discuss field and Galois theory in a later lecture, and see that, among
finite field extensions E{F . the separable ones can be characterized as those for which EbF

K is a product of fields, while purely inseparable ones acquire “nilpotents” on tensoring
with suitable K (e.g., with an algebraic closure of F ).

Exercise 8.9. Let H be the Hamilton quaternions: as a vector space it is a noncommu-
tative R-algebra with an R-basis written as t1, i, j, ku, and its multiplication is defined by
requiring that 1 is the multiplicative identity and i2 “ j2 “ k2 “ ´1, ij “ k, jk “ i and
ki “ j. Then show that H bR C (which is clearly a C-algebra) is isomorphic to M2pCq as
a C-algebra.

8.3. Tensor algebras. Henceforth, till the end of this lecture, R will denote an arbitrary
commutative ring, unless otherwise specified. Let ncR-Alg denote the category of non-
commutative (i.e., not necessarily commutative) R-algebras, and R-Alg the category of
commutative R-algebras.

A motivating question is: does

Forget : ncR-Alg ù R-Mod

have a left adjoint? Namely, does it make sense to talk of a “free R-algebra on a given
R-module M?”

To motivate, let us look for an R-algebra T together with functorial bijections

Hom ncR-AlgpT, Sq
bij
Ñ HomRpM,Sq

for all noncommutative R-algebras S and R-modules M . Let S be an R-algebra, say
φ0 : R Ñ S, together with an R-module homomorphism φ1 :M Ñ S.

We then have, for all r ě 1, an r-multilinear map

M ˆ ¨ ¨ ¨ ˆ M Ñ S, pm1, . . . ,mrq ÞÑ φ1pm1q . . . φ1pmrq,
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which therefore quotients to a map φr : M
Âr

Ñ S, where T rpMq “ Mbr stands for the
n-fold tensor product M b ¨ ¨ ¨ b M of M with itself. We set Mb0 “ T 0pMq “ R.

Therefore, we get a map

(37) T pMq :“
à

rě0

φr :
à

rě0

Mbr
Ñ S.

It is immediate how to turn the left-hand side into a ring: for r, s ě 1, we have an
isomorphism

M
Â

r
bRM

Â

s
Ñ M

Â

pr`sq,

by an easy argument generalizing the isomorphism pM bR Nq bR L – M bR N bR L
from Lecture 6. This defines a bilinear map M

Â

r ˆ M
Â

s Ñ M
Â

pr`sq, and extending by
distributivity we get a map

T pMq ˆ T pMq Ñ T pMq.

Definition 8.10. (i) T pMq, which will be seen in Exercise 8.11 below to be an R-
algebra, is called the tensor algebra associated to the R-algebra M .

(ii) By the functoriality of the tensor product discussed in Lecture 6, T r “ br, for
each r ą 0, is a functor R-Mod ù R-Mod, where for f P HomRpM,Nq, T rpfq “

brf : brM Ñ brN . For r “ 0, we view T 0 as a functor by defining, for each
homomorphism f : M Ñ N of R-modules, T 0pfq : T 0pMq “ R Ñ R “ T 0pNq to
be the identity. Thus, now we have a functor T rp´q : R-Mod ù R-Mod, for each
r ě 0.

(iii) T p´q : R-Mod ù ncR-Alg will stand for the functor that assigns to an R-module
M its tensor algebra T pMq, and to an R-module homomorphism f : M Ñ N the
map T pfq “

À8

r“0 T
rpfq : T pMq Ñ T pNq, which is an algebra homomorphism by

Exercise 8.11(ii) below.

Exercise 8.11. (i) Show that the above map T pMqˆT pMq Ñ T pMq satisfies associa-
tivity, and that for the multiplication it defines, T pMq has an identity given by with
1 P R “ T 0M ãÑ T pMq: thus, T pMq is a ring. In fact, since R “ b0M ãÑ T pMq

has image in the center of T pMq, it follows that R ãÑ T pMq is in fact an R-algebra.
(ii) Prove the claim in Definition 8.10(iii): if M Ñ N is an R-module homomorphism,

then
À8

r“0 T
rpfq : T pMq Ñ T pNq is a homomorphism of R-algebras.

Proposition 8.12. For an R-module M , consider the R-module homomorphism ιM :M “

T 1pMq ãÑ T pMq. Then for any M P ObR-Mod and S P Ob ncR-Alg, precomposition with
ιM induces a bijection:

Hom ncR-AlgpT pMq, Sq
´˝ιM
Ñ HomRpM,Sq,

realizing T p´q as left-adjoint to the forgetful functor ncR-Alg ù R-Mod.

Proof. An exercise, using the above discussion. □
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Exercise 8.13. (i) Define what a ‘noncommutative polynomial algebra in n variables’
should mean. IfM “ Rn, show that T pMq is a noncommutative polynomial algebra
in n variables over R.

(ii) When M “ R{I for an ideal I, show that we have an identification

T pMq – ta0 ` a1x ` ¨ ¨ ¨ ` anx
n

| n P N, a0 P R, ai P R{I @ 1 ď i ď nu,

with addition and multiplication defined just as for polynomials.

T pMq is not just an R-algebra, but an R-algebra graded by the additive monoid N :“ Zě0

(recall that for us, 0 is a natural number):

Definition 8.14. (i) A ring T is said to be graded by a monoid G, or G-graded, if we
have a decomposition of abelian groups:

(38) T “
à

gPG

Tg,

such that Tg ¨ Th Ă Tgh for all g, h P G. The various Tg are called the graded
or homogeneous components of T ; Tg is said to be the graded or homogeneous
component of degree g.

(ii) We say that T is a G-graded R-algebra if T is both a G-graded ring and an R-
algebra, such that the image of R Ñ T lies in the graded component Te correspond-
ing to the identity element e P G. Thus, if T is a G-graded R-algebra, then we have
a decomposition as in (38), but involving R-modules in place of abelian groups. 18

(iii) By homogeneous elements of T , we refer to elements that belong to Tg for some
g P G. If x P Tg, we say that x is homogeneous of degree d.

(iv) By just graded, without specifying a G, we will mean N-graded.

Remark 8.15. In the lecture, I gave a different and incorrect definition of a graded R-
algebra, as opposed to the standard one given above. One of you called out my definition: I
had simply required (38) to be a decomposition of R-modules. This requirement is satisfied
if T is a graded R-algebra in the ‘standard’ sense given above: if R Ñ T lands in Te, then
(38) is indeed a decomposition of R-modules. However, the converse may not be true.
Nevertheless, the converse does seem clear if the monoid G satisfies that h ‰ gh ‰ g for all
e ‰ g, h P G: indeed, in this case the projection of 1 P T to Te under (38) also functions as
a multiplicative identity, forcing 1 P Te, and therefore also that R Ă Te. So for N-graded
rings, the definition I gave should also work. But the standard definition is a better one,
as it certainly seems to work better for general monoids.

To see that T pMq is an N-graded R-algebra, use that T rpMq ¨T spMq Ă T r`spMq, and note
that R “ T 0pMq. This lets us view T p´q as a functor

R-Mod ù ncGr-R-Alg,

where ncGr-R-Alg stands for the category of N-graded not necessarily commutative R-
algebras.

18where, as usual, the R-module structure on T comes from the R-algebra structure on T .
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Exercise 8.16. Show that T , viewed as a functor R-Mod ù ncGr-R-Alg, is left adjoint
to Forget : ncGr-R-Alg ù R-Mod (the proof of Proposition 8.12 is respectful of grading,
and hence goes through for this case).

The following simple exercises are kind of boring, but they will be needed for their analogues
for the symmetric and exterior algebras.

Exercise 8.17. (i) If B : M ˆ N Ñ R is an R-bilinear pairing of R-modules M and
N , show that there exists a unique pairing

Bbn :Mbn
ˆ Nbn

Ñ R,

such that for all x1, . . . , xn P M and y1, . . . , yn P N , we have

Bbn
px1 b ¨ ¨ ¨ b xn, y1 b ¨ ¨ ¨ b ynq “

n
ź

i“1

Bpxi, yiq.

(ii) If M “ M1 ‘ M2, show, using the maps T pM1q Ñ T pMq and T pM2q Ñ T pMq, an
isomorphism, for all n P N:

T npMq –
à

f :t1,...,nuÑt1,2u

Mfp1q b ¨ ¨ ¨ b Mfpnq –
à

p,qPN
p`q“n

pMbp
1 b Mbq

2 qpn
pq.

8.4. The definition of symmetric and exterior algebras. Symmetric and exterior
algebras are quotients of tensor algebras: the former are ‘the commutative variant’ of
tensor algebras, and the latter are a ‘graded commutative’ or ‘super’ version of the tensor
algebra, a notion which is important but which we will not discuss much.

Recall that for a noncommutative ring T and a two-sided ideal I Ă T , the quotient T {I is
a ring (this wouldn’t be true if I were only a left-ideal or a right-ideal). If T is a graded
ring, when does T {I get a grading from T?

Definition 8.18. (i) Let T “
À

gPG Tg be a noncommutative ring graded by a monoid
G. A left, right or two-sided ideal I Ă T is said to be a homogeneous ideal if it
is generated by homogeneous elements. Equivalently (prove this equivalence as an
easy exercise), if the inclusion

à

gPG

pI X Tgq Ă I

is an equality. A similar result applies to graded R-algebras.
(ii) If T “

À

gPG Tg is a noncommutative ring graded by a monoid G, and I “
À

gPG Ig
is a homogeneous two-sided ideal of T , where Ig “ I XTg, then T {I has an obvious
grading:

T {I “
à

gPG

Tg{Ig

(note that pTg{Igq ¨ pTh{Ihq Ă Tgh{Igh), and hence will be viewed as a graded ring.

Now we can define symmetric and exterior algebras:
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Definition 8.19. (i) (a) For any R-module M , the symmetric algebra SpMq of M
is the quotient of T pMq by the two-sided ideal ISpMq Ă T pMq generated by
tx b y ´ y b x | x, y P Mu “ T 1pMq Ă T pMq. Since each x b y ´ y b x is
homogeneous of degree 2, ISpMq is a homogeneous ideal, so that SpMq is an
N-graded R-algebra:

SpMq “
à

ně0

SnpMq.

The n-th graded piece SnpMq of SpMq with its obvious structure of an R-
module, will be called the n-th symmetric power of M .

(b) For any R-moduleM , the exterior algebra ΛpMq ofM is the quotient of T pMq

by the two-sided ideal IΛpMq Ă T pMq generated by tx b x | x P T 1pMq Ă

T pMqu. Since each x b x is homogeneous of degree 2, ΛpMq is an N-graded
R-algebra:

ΛpMq “
à

ně0

ΛnpMq.

The n-th graded piece ΛnpMq of ΛpMq, with its obvious structure of an R-
module, will be called the n-th exterior power of M .

(ii) Given any homomorphism f : M Ñ N of R-modules, note that T pfq : T pMq Ñ

T pNq sends ISpMq to ISpNq and IΛpMq to IΛpNq, and hence descends to R-algebra
homomorpisms Spfq : SpMq Ñ SpNq and Λpfq : ΛpMq Ñ ΛpNq. This defines
functors Sp´q,Λp´q : R-Mod ù ncGr-R-Alg.

(iii) Since ISpMq and IΛpMq consist of elements of degree at least two, the maps
#

R Ñ T 0pMq Ñ S0pMq

R Ñ T 0pMq Ñ Λ0pMq
, and

#

M Ñ T 1pMq Ñ S1pMq

M Ñ T 1pMq Ñ Λ1pMq

are isomorphisms, giving in particular injections ιS,M : M ãÑ SpMq and ιΛ,M :
M ãÑ ΛpMq.

(iv) Given m1b¨ ¨ ¨bmn P T npMq Ă T pMq, we denote its image in SnpMq by m1 . . .mn,
and its image in ΛnpMq by m1 ^ ¨ ¨ ¨ ^ mn.

8.5. Some basic properties of symmetric powers. We will usually write Mˆn for
the n-fold product

Śn
i“1M “ M ˆ ¨ ¨ ¨ ˆM (we usually write this instead of Mn when we

wish to discuss multilinear maps from it; although this is probably non-standard notation).
Recall that R-Alg is the category of commutative R-algebras.

For each n ě 0, note that the symmetric group Sn on n letters 19 acts by permutation on
Śn

i“1M , pulling multilinear forms back to multilinear forms. Hence this gives an action of
Sn on T npMq “ M

Â

n by R-module automorphisms, which satisfies: σ ¨ pm1 b ¨ ¨ ¨ bmnq “

pmσp1q b ¨ ¨ ¨ b mσpnqq.

The following long exercise studies the symmetric algebra and the symmetric powers:

19Using Sn instead of Sn for the symmetric group, to avoid confusion with the S of SpMq.
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Exercise 8.20. (i) ISpMq X T npMq Ă T npMq “ Mbn is the span of all the

pm1 b ¨ ¨ ¨ b mi b ¨ ¨ ¨ b mj b ¨ ¨ ¨ b mnq ´ pm1 b ¨ ¨ ¨ b mj b ¨ ¨ ¨ b mi b ¨ ¨ ¨ b mnq,

as the pm1, . . . ,mnq P Mˆn and the 1 ď i, j ď n vary.
To put it another way, show that ISpMq Ă T npMq is the span of all σ ¨ x ´ x,

where σ varies over Sn and x over T npMq. 20

(ii) Deduce as a consequence that the map u : Mˆn Ñ SnpMq has the following
universal property: u is multilinear and symmetric, in the sense that it takes the
same value on pm1, . . . ,mnq and pmσp1q, . . . ,mσpnqq for each pm1, . . . ,mnq P Mˆn

and each σ P Sn, and for any R-module L, ´ ˝ u induces a bijection

HomRpSnpMq, Lq
´˝u
Ñ

!

Symmetric multilinear maps Mˆn
Ñ L

)

.

(iii) Show that SpMq is a commutative R-algebra.
Hint: The image of ιS,M :M ãÑ SpMq generates SpMq, and the definition imposes
commutativity on these generators.

(iv) Show that for all commutative R-algebras A and R-modules M , composition with
ιS,M :M ãÑ SpMq gives a bijection,

HomR-AlgpSpMq, Aq
´˝ιS,M

Ñ HomRpM,Aq.

This realizes Sp´q as a left-adjoint to the forgetful functor R-Alg ù R-Mod.
(v) Sp´q can also be viewed as a functor from R-Mod into the category Gr-R-Alg

of graded commutative R-algebras. Show that ´ ˝ ιS,M also realizes Sp´q as a
left-adjoint to the forgetful functor Gr-R-Alg ù R-Mod.

(vi) LetM be a free R-module with basis tes | s P Su. Then, viewing ιS,M :M ãÑ SpMq

as an inclusion, show that we have an isomorphism SpMq – Rrxs | s P Ss, sending
each es to the variable xs. In particular, SnpMq consists of the various monomials
es1 . . . esn of degree n, with each si P S.

Thus, if M is a R-free module of rank r, then SnpMq is a free R-module of rank
`

r`n´1
n

˘

.
(vii) Read and convince yourself of the following. The above important exercise tells

you that the symmetric algebra on a free module is a coordinate-free version of a
polynomial algebra. It also tells you how to think of polynomials in a coordinate-
free fashion: if V is a free R-module, and V _ :“ HomRpV,Rq, then:

SpV _
q is the space of polynomial functions on V .

More precisely elements of S0pV _q “ R are the constant functions on V , the
elements of V _ “ HomRpV,Rq are the linear functions on V without a constant
term, the elements of S2pV _q are the homogeneous quadratic functions on V – they
are the linear combinations of products of elements of V _ – and so on.
There is a caveat here: if R is ‘small’, different elements of SpV _q may give the

same function on V ; but if you interpret the meaning of a ‘polynomial function’

20This way of quotienting a module N on which Sn acts, by the span of all the σpxq ´ x as x varies
over N , is called the process of taking coinvariants.



95

suitably – giving a map V bR S Ñ S for each commutative R-algebra S, and
functorially so – the above can still be viewed as making sense. In fact, this is how
polynomial maps are viewed in a lot of algebraic geometry.

(viii) This exercise describes an isomorphism

SpM1q bR SpM2q – SpM1 ‘ M2q

of R-algebras. SupposeM “ M1‘M2 is the direct sum of two R-modules. Applying
Sp´q to M1 ãÑ M and M2 ãÑ M , we get homomorphisms SpM1q Ñ SpMq and
SpM2q Ñ SpMq of graded R-algebras, and hence – using that the tensor product
is a coproduct in the category of commutative R-algebras (which these rings are,
by (iii) above) – a homomorphism of R-algebras,

SpM1q bR SpM2q Ñ SpMq.

Show that this homomorphism is an isomorphism.
Hint: This is just because left-adjoints commute with coproducts.

(ix) Conclude from the previous exercise that, when M “ M1 ‘M2 as in that exercise,
we have for each n P N, an isomorphism:

SnpMq –
à

p,qPN
p`q“n

SppM1q bR S
q
pM2q,

whose inverse is obtained using SppM1 Ñ Mq and SqpM2 Ñ Mq together with the
map SppMq bR S

qpMq Ñ Sp`qpMq given by multiplication in SpMq.
Hint: Define the notation of a ‘graded tensor product’, so that SpM 1q bR SpM2q

naturally has a grading, and show that SpM 1q bR SpM2q Ñ SpMq respects the
grading.

(x) Symmetric tensors. By symmetric tensors in Mbn, we mean pMbnqSn : While
SnpMq is only a quotient module of T npMq, the symmetric tensors form a submodule
of T npMq.

We can define the symmetrization map from Mbn to pMbnqSn , by :

x ÞÑ
ÿ

σPSn

σ ¨ x

namely, summing over the group action. If n! is invertible in R, show that this
map, or equivalently the ‘averaging map’

x ÞÑ pn!q´1
ÿ

σPSn

σ ¨ x,

defines an isomorphism from pMbnqSn to SnpMq. Thus, in this case (i.e., when n!
is invertible in R), we can use this map to think of SnpMq as the space of symmetric
tensors.
Hint: Prove this in greater generality, which makes it easier to see what is going
on: if G is a finite group with a map G Ñ AutRpMq, where M is an R-module,



96

and if #G is invertible in R, then show that

m ÞÑ p#Gq
´1

ÿ

gPG

g ¨ m,

induces an isomorphism MG Ñ MG, where

MG :“ M{SpanZptg ¨ m ´ m | g P G,m P Muq

is the quotient module of G-coinvariants for M , and MG Ă G is the submodule
consisting of G-fixed elements.

(xi) (This exercise doesn’t seem that important, but its exterior power analogue will be
important).
If B : M ˆ N Ñ R is an R-bilinear pairing of R-modules M and N , show that
there exists a unique pairing

SnpBq : SnpMq ˆ SnpNq Ñ R,

such that for all x1, . . . , xn P M and y1, . . . , yn P N , we have

SnpBqpx1 . . . xn, y1 . . . ynq “
ÿ

σPSn

Bbn
px1b¨ ¨ ¨bxn, σpy1b¨ ¨ ¨bynqq “

ÿ

σPSn

Bpx1, yσp1qq . . . Bpxn, yσpnqq,

with Bbn as in Exercise 8.17(i).
If further M and N are free with bases e1, . . . , er and f1, . . . , fr, respectively,

with Bpei, fjq “ δi,j (thus, N is dual to M), show that this pairing between SnpMq

and SnpNq can be given as follows: given basis elements eI “ ei1 . . . ein of SnpMq

and fJ “ fj1 . . . fjn of SnpNq, where I and J are multisets over t1, . . . , ru, 21 then
SnpBqpeI , eJq “ 0 if I ‰ J , and equals

śr
j“1 npj, Iq! otherwise, where npj, Iq is the

number of elements in I that equal J .
Thus, this pairing is somewhat ugly, and even when M are N are free modules

of finite rank in duality with each other it is only perfect if n! P Rˆ.

8.6. Some basic properties of exterior powers.

Remark 8.21. In this subsection, we will need the notion of the sign sgnpσq P t˘1u of a
permutation σ P Sn. The following are equivalent ways to define sgnpσq:

‚ If σ “ s1 . . . sm with each sn P Sn a transposition, then sgnpσq “ p´1qm. The
reason this is well-defined is that, if σ “ s1

1 . . . s
1
m1 is another such decomposition,

then one can show that m ´ m1 is even. One way to prove this is to use the other
descriptions in the next point.

‚ Represent σ as a matrix: say e1, . . . , en is the standard basis of Rn, and σ can be
represented by the permutation matrix that sends each ei to eσpiq. The determi-
nant of this matrix is sgnpσq as discussed in the previous point: this follows from
the fact that the permutation matrix associated to each transposition clearly has
determinant ´1.

21“multisets” are like sets but with repetition allowed; so here I and J contain elements from 1, . . . , r,
but they are not sequences, in that we don’t keep track of the order
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‚ sgnpσq equals p´1qN , where N “ #tpx, yq | x ă y and σpxq ą σpyqu. You can try
to prove this or look up somewhere; we will not use this today.

The following exercise studies the exterior algebra and the exterior powers:

Exercise 8.22. (i) Show the following facts about IΛpMq:
(a) IΛpMq contains xby`ybx for all x, y P M . Thus, the ‘alternating condition’

of annihilating every xbx implies the ‘skewsymmetry condition’ of annihilating
every x b y ` y b x.
Hint: Consider px ` yq b px ` yq, x b x and y b y.

(b) If 2 is invertible in R, then the two-sided ideal generated by the xb y ` y b x
contains all the x b x, and hence contains IΛpMq. Thus, when 2 is invertible,
the skewsymmetry condition implies the alternating condition.

(ii) (a) IΛpMq X T npMq Ă T npMq “ Mbn can be described as the span of all the the
elements of the form m1 b ¨ ¨ ¨ bmn, such that mi “ mi`1 for some 1 ď i ă n.

(b) IΛpMq X T npMq contains all elements of the form

m1 b ¨ ¨ ¨ b mi b ¨ ¨ ¨ b mj b ¨ ¨ ¨ b mn ` m1 b ¨ ¨ ¨ b mj b ¨ ¨ ¨ b mi b ¨ ¨ ¨ b mn.

Hint: First consider the case where j “ i ` 1. Then iterate what you get an
odd number of times for more general j. If this looks too complicated, first
consider n “ 3.

(c) IΛpMq X T npMq Ă T npMq “ Mbn can also be described as the span of all the
the elements of the form m1 b ¨ ¨ ¨ b mn with mi “ mj for some 1 ď i, j ď n
with i ‰ j.
Hint: Use the above part.

(d) If 2 is invertible in R, then IΛpMq X T npMq Ă Mbn can also be described as
the span of all the elements of the form

m1 b ¨ ¨ ¨ b mi b ¨ ¨ ¨ b mj b ¨ ¨ ¨ b mn ` m1 b ¨ ¨ ¨ b mj b ¨ ¨ ¨ b mi b ¨ ¨ ¨ b mn.

To put it another way, show that if 2 is invertible in R, then IΛpMq Ă T npMq

is the span of all σ ¨ x´ sgnpσq ¨ x, where σ varies over Sn and x over T npMq.
22

(iii) Deduce from (c) of the previous problem that the map u :Mˆn Ñ ΛnpMq has the
following universal property: u is multilinear and alternating, where ‘alternating’
means that it vanishes on pm1, . . . ,mnq whenever mi “ mj for some i ‰ j, and for
any R-module L, ´ ˝ u induces a bijection

HomRpΛnpMq, Lq
´˝u
Ñ

!

Alternating multilinear maps Mˆn
Ñ L

)

.

22This is again a process of taking coinvariants, but this time “pSn, χq-coinvariants”: if a group G acts
on an R-module N and χ : G Ñ Rˆ is a character, then the R-module Nχ of pG,χq-coinvariants of N is
the quotient of N by the span of all the g ¨ n ´ χpgqn such that g P G and n P N . Then Nχ is a quotient
R-module of N , and gets an induced action of G: the induced action of each g P G on Nχ is then simply by
multiplication by χpgq. Moreover, any G-equivariant R-module homomorphism from N to another module
on which G acts through χ factors through N Ñ Nχ. Thus, this generalizes the discussion of coinvariants
we had in the context of SnpMq.
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(iv) Show that ΛpMq is a graded commutative R-algebra, where ‘graded commutative’
means that for all x P ΛrpMq and y P ΛspMq,

x ^ y “ p´1q
rsy ^ x.

Hint: The image of ιΛ,M :M ãÑ ΛpMq generates ΛpMq, and the definition imposes
graded commutativity on these generators.

(v) Show that for all not necessarily commutative R-algebras A and R-modules M ,
composition with ιΛ,M :M ãÑ ΛpMq gives a bijection,

tφ P Hom ncR-AlgpΛpMq, Aq | φpxq
2

“ 0 @x P Mu
´˝ιΛ,M

Ñ HomRpM,Aq.

One can interpret this as implying that Λp´q is left-adjoint to the forgetful functor
R-superAlg ù R-Mod, where R-superAlg is the category of super R-algebras,
but let us not worry about this.

(vi) IfM is generated as an R-module by e1, . . . , er, show that ΛnM is generated by the
various ei1 ^ ¨ ¨ ¨ ^ ein , where the i1, . . . , in ranges over strictly increasing sequences
of numbers between 1 and r. Deduce that ΛnM “ 0 if n ą r.

(vii) This is not trivial, but is somewhat important; please make sure to look at this.
Suppose M is a free R-module with basis e1, . . . , er. Show that ΛnM is a free
R-module with basis consisting of the various ei1 ^ ¨ ¨ ¨ ^ ein , where the sequence
i1, . . . , in runs over strictly increasing sequences of numbers between 1 and n. Thus,
it is a free R-module of rank

`

r
n

˘

.
Hint: By the previous problem, it suffices to show that the ei1 ^¨ ¨ ¨^ein are linearly
independent. Define Mbn Ñ Mbn by an ‘antisymmetrization map’:

x ÞÑ
ÿ

σPSn

sgnpσqpσ ¨ xq.

This map vanishes on IΛpMq X T npMq, and hence factors through ΛpMq. This
factored map sends ei1 ^ ¨ ¨ ¨ ^ ein to

ř

σ sgnpσqeσpi1q b . . . eσpinq. Now for two dis-
tinct such sequences i1 ă ¨ ¨ ¨ ă in and j1 ă ¨ ¨ ¨ ă jn, and σ, τ P Sn, iσp1q, . . . , iσpnq

and jτp1q, . . . , jτpnq are distinct, since we started with distinct increasing sequences.
Thus, the various

ř

σ sgnpσqeσpi1q b . . . eσpinq as above involve coefficients from dis-
joint sets of basis elements of Mbn. This forces them to be linearly independent.

(viii) Suppose M “ M1 ‘ M2 is the direct sum of two R-modules. Applying Λp´q to
M1 ãÑ M and M2 ãÑ M , we get homomorphisms ΛpM1q ãÑ ΛpMq and ΛpM2q ãÑ

ΛpMq of R-algebras. Show that this induces an isomorphism

ΛnpMq –
à

p,qPN
p`q“n

ΛppM1q bR ΛqpM2q.

Like with symmetric algebras, we can interpret this as an equality as saying that
ΛpMq is an appropriate graded tensor product of ΛpM1q and ΛpM2q. There is a
way to adapt the proof from the case of symmetric algebras. But let us not worry
about this; one can do this directly.
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Hint: The inverse of the isomorphism asked for has been constructed in the prob-
lem. Construct an explicit candidate for the isomorphism itself: given an element
of ΛnpMq which is a wedge of a particular sequence of elements from M1 and M2,
use a permutation σ to have all the M1-terms first, and then all the M2-terms
(somewhat in the spirit of Exercise 8.17(ii)), but compensate for this by throwing
in a sgnpσq.

(ix) Application to the structure theorem for modules over a PID. Use the above exercise
to show that if

M “ R{pd1q ‘ ¨ ¨ ¨ ‘ R{pdrq,

with dr| . . . |d1 (for convenience we have inverted the usual order), then for j ě 1
we have:

ΛjpMq “

#

À

1ďi1ă¨¨¨ăijďr R{pdijq, if j ď r, and

0, if j ą r.

the annihilator AnnRpΛjMq of ΛjM in R is dj. Deduce from this another proof of
the uniqueness assertion in the structure theorem for modules over a PID.
Hint: The above problem gives

ΛjpM1 ‘ ¨ ¨ ¨ ‘ Mrq “
à

i1,...,irě0
i1`¨¨¨`ir“j

Λi1pM1q b ¨ ¨ ¨ b ΛirpMrq.

Further, by (vi) above, ΛipR{Iq “ 0 if i ě 2 and I Ă R is any ideal. This gives

ΛjpMq “
à

ts1,...,sjuĂt1,...,r

R{pds1q bR ¨ ¨ ¨ bR R{pdsjq.

Finally, if s1 ă ¨ ¨ ¨ ă sj, then dsj | . . . |ds1 , and it is easy to see from the right-
exactness of the tensor product that R{pds1q bR ¨ ¨ ¨ bR R{pdsjq – R{pdsjq, which
is a quotient of R{pdjq. Put all these together (this is not all of the solution, but
quite close to it. If you are not able to do this, please make sure to ask me).

(x) This will be useful later when we discuss quadratic forms, probably in Lecture 9.
(a) If B :M ˆN Ñ R is an R-bilinear pairing of R-modules M and N , show that

there exists a unique pairing

ΛnB : ΛnM ˆ ΛnN Ñ R,

such that for all x1, . . . , xn P M and y1, . . . , yn P N , we have

ΛnBpx1 ^ ¨ ¨ ¨ ^ xn, y1 ^ ¨ ¨ ¨ ^ ynq “ detprBpxi, yjqs1ďi,jďnq “
ÿ

σPSn

sgnpσq

n
ź

j“1

Bpxi, yσpjqq.

by means of the abovge pairing.
(b) Let e1, . . . , er be a basis for a free R-module M , and let e_

1 , . . . , e
_
r be the dual

basis for M_. Apply (a) above to the natural pairing M_ ˆ M Ñ R, and
conclude that the resulting pairing ΛnM_ ˆ ΛnM Ñ R realizes ΛnpMq_ as
isomorphic to ΛnpM_q. More precisely, recalling from (vii) above that ΛnM
and ΛnM_ have bases consisting of the ei1 ^ ¨ ¨ ¨ ^ ein and the e_

i1
^ ¨ ¨ ¨ ^ e_

in ,
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where i1, . . . , in run over strictly increasing sequences of elements of 1, . . . , r,
show that these bases are dual to each other for the pairing between ΛnM_

and ΛnM described above.
(xi) Let M be a free module of finite rank r. This problem introduces some basic linear

algebra applications, such as a coordinate-free treatment of the determinant and
minors of a matrix.
(a) By (vii) above, ΛrM is a free rank one module. Given any T P EndRpMq,

therefore, ΛrT : ΛrM Ñ ΛrM (as made sense of using the functoriality of
Λr) is an endomorphism of a free rank one module, and is hence given by
multiplication by a scalar, called detT . 23 Show that, given any basis of M ,
the matrix A of T with respect to that basis satisfies detA “ detT .

(b) Deduce the multiplicativity of determinants from the above: detpTSq “ pdetT qpdetSq.
Many of the properties of determinants can be similarly obtained from the al-
ternating property and multilinearity.

(c) Now suppose 1 ď n ď r. Consider ΛnT : ΛnM Ñ ΛnM . If T has matrix A
with respect to a basis e1, . . . , er of M , and ei1 ^ ¨ ¨ ¨ ^ ein and e_

j1
^ ¨ ¨ ¨ ^ e_

jn

are basis elements of ΛnM and pΛnMq_ – ΛnM_ as in (x) above, show that
the matrix entry of ΛnT corresponding to ei1 ^ ¨ ¨ ¨ ^ ein and e_

j1
^ ¨ ¨ ¨ ^ e_

jn ,
namely

xe_
j1

^ ¨ ¨ ¨ ^ e_
jn ,Λ

nT pei1 ^ ¨ ¨ ¨ ^ einqy,

equals the nˆ n-minor of A corresponding to pj1, . . . , jn; i1, . . . , inq. Thus, the
n ˆ n minors of a linear transformation T have coordinate-free interpretation
in terms of ΛnT , as the various xv_,ΛnT pvqy, where v_ varies along M_ and
v along M .

(d) Now the the characteristic polynomial of an R-linear endomorphism T P

EndRpMq of a free R-module M of finite rank has been defined independently
of coordinates, since the determinant has been. Show that the characteristic
polynomial of T can also be described as:

n
ÿ

i“0

p´1q
i trpΛiT qxn´i.

In other words, the coefficients of the characteristic polynomial of T are, up to
signs, traces of various exterior powers of T .
Hint: One approach is to prove this for diagonalizable matrices over C, extend
by density to MnpCq, deduce for Zrxij|1 ď i, j ď ns, and then use this to extend
to general R: this strategy has been discussed in Lecture 2 while discussing
one of the proof of the Cayley-Hamilton theorem.

23This lets us define detT without using coordinates. Without this, one can choose a basis of M , let
A be the matrix of T with respect to that basis, and define detT to be detA: since it would still be
independent of the choice of the basis, as detpBAB´1q “ detA, and hence well-defined. But it is still more
elegant, and often practically useful, to have its direct definition without recourse to bases.
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8.7. Some applications of tensor, symmetric and exterior powers. Let
PnpCq denote the set of lines in Cn through the origin. More generally, given a
vector space V over C, let PpV q denote the set of one-dimensional subspaces of V .
In algebraic geometry, PpV q is realized as an algebraic variety.

Example 8.23.
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9. Lecture 9 — various kinds of bilinear forms, and quadratic forms

Throughout today’s lecture, R is a commutative ring, where we assume 1 ‰ 0 to be safe.
For any R-module M , we set M_ “ HomRpM,Rq. Unless otherwise stated, M will be an
R-module. We say “M is finite free over R” to mean M is a free R-module of finite rank.
Later, we will specialize to the case where R “ F is a field.

9.1. Symmetric, skewsymmetric and alternating bilinear forms.

Definition 9.1. (i) A bilinear form (with respect toR) on anR-moduleM is a bilinear
map B :M ˆ M Ñ R, i.e., an element of BilRpMq :“ BilRpM,M ;Rq – pT 2Mq_.

(ii) We denote by B ÞÑ tB the “swapping” map BilRpMq Ñ BilRpMq, i.e., given
by action of the nontrivial element of S2 on BilRpM,M ;Rq “ pT 2Mq_. Thus,
tBpm,nq “ Bpn,mq for all m,n P M .

(iii) A bilinear form B :M ˆ M Ñ R is called
‚ symmetric, if tB “ B, i.e., if it factors through T 2M Ñ S2pMq;
‚ alternating, if Bpm,mq “ 0 for all m P M , i.e., if B factors through T 2pMq Ñ

Λ2pMq;
‚ skew-symmetric, if tB “ ´B, i.e., if Bpm,nq “ ´Bpn,mq for all m,n P M .

This gives subsets SymBilRpMq,AltBilRpMq, SkewsymBilRpMq Ă BilRpMq. The
subscript R may be dropped if it is understood.

Remark 9.2. (i) As a special case of our discussion on Hom-tensor adjointness, we
have:

HomRpM,M_q BilRpMq
B ÞÑBpm,´q
oo

B ÞÑBp´,mq
// HomRpM,M_q

HomRpT 2M,Rq “ pT 2Mq_

´˝pMˆMÑT 2Mq

OO
.

Thus, when M is free of finite rank, BilRpMq – pT 2Mq_ can also be described as
M_ bRM

_ “ T 2pM_q, using the pairing between Mbn and pM_qbn from Lecture
8. This also lets us view a bilinear form on M as a “noncommutative degree two
homogeneous polynomial on M”.

(ii) Like with tensors, any alternating form is skew-symmetric, and the converse is
true when 2 P Rˆ but not in general. When 2 P Rˆ, we will also see later that
symmetric bilinear forms are essentially the same as quadratic forms (to be defined
later today). The objects of primary interest seem to be quadratic and alternating
forms, rather than symmetric and skewsymmetric forms (except that the latter are
essentially the former when 2 P Rˆ).

(iii) We will mostly only be interested in bilinear forms on M when M is a free R-
module of finite rank, but this notion is typically interesting at least when M is a
projective R-module of finite rank, a notion that we have not defined.

(iv) When 2 “ 0 in R, skewsymmetric is the same as symmetric, but as mentioned
above, these notions are of secondary interest in this case.
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(v) It follows from the definition that SymBilpMq,AltBilpMq, SkewsymBilpMq Ă BilpMq

identify with

pS2Mq
_

“ ppT 2Mq
_

q
S2 Ă pT 2Mq

_, pΛ2Mq
_

Ă pT 2Mq
_ and ppT 2Mq

_
q
S2,sgn,

respectively. 24 For some more descriptions, see the following exercise.

Exercise 9.3. Hopefully understanding the following can clarify the context.

(i) Let a group G act on an R-module M , and let χ : G Ñ Rˆ be a character.
Recall, from HW 4, the submodule M pG,χq Ă M of pG,χq-invariants of M , and the
quotient moduleMpG,χq of pG,χq-coinvariants ofM . G acts onM_ :“ HomRpM,Rq

by pg ¨ fqpmq “ fpg´1 ¨ mq.
(a) The quotient map M Ñ MpG,χq induces an injection pMG,χq_ ãÑ M_. Show

that this injection defines an isomorphism pMpG,χqq
_ Ñ pM_qG,χ

´1
.

(b) In contrast, we also have a map pM_qG,χ´1 Ñ pMG,χq_, because the restriction
map M_ Ñ pMG,χq_ factors through M_ Ñ pM_qG,χ´1 , but this may not be
an isomorphism.

(c) Conclude from (a) that when M is free of finite rank, pSnMq_ identifies with
the space of symmetric tensors in T nM_ and pΛnMq_ identifies with the space
of antisymmetric tensors in T nM_.
Hint: By an exercise from Lecture 8, since M is free of finite rank, pT nMq_

identifies with T nM_ Sn-equivariantly (i.e., the pairing of T nM with T nM_

from Lecture 8 satisfies xg ¨ λ, g ¨ µy “ xλ, µy for all g P Sn – verify this). Be
warned that SnM doesn’t always identify with the space of symmetric tensors
in M .

(ii) Assume that M is a finite free R-module. Define a sequence of “obvious maps”

SymBilpMq – pS2Mq
_

– ppT 2Mq
_

q
S2 – pT 2M_

q
S2 “ {Symmetric tensors in T 2M_} Ñ S2

pM_
q,

where the last arrow is an isomorphism when 2 P Rˆ but not in general (more
about this in the discussion on quadratic forms).

(iii) (To be double-checked) Assume thatM is a finite free R-module. Define a sequence
of “obvious maps”

AltBilpMq – pΛ2Mq
_

– ppT 2Mq
_

q
S2,sgn – pT 2M_

q
S2,sgn “ {Antisymmetric tensors in T 2M_} Ñ Λ2

pM_
q,

where these maps are all isomorphisms, even when 2 R Rˆ.
Hint/note: The last map in the above line is not

{Antisymmetric tensors in T 2M_} ãÑ T 2M_
Ñ Λ2M_,

since this is not an isomorphism in general. Rather, the proof that Λ2M was free
(for free finite rank M) gave us an injection Λ2M Ñ T 2pMq, whose image was the
space of alternating tensors in M . The last map is inverse to this, with M replaced
by M_. This also gives the isomorphism pΛ2Mq_ – Λ2pM_q from HW 4.

24This is true regardless of R, because care has been applied in deciding the order of the decorations:
e.g., S2M is a quotient module of T 2M , so pS2Mq_ is a submodule of pT 2Mq_.
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Lemma 9.4. Assume that 2 P Rˆ. Then the inclusions of pS2Mq_, pΛ2Mq_ in pT 2Mq_

induce an isomorphism pT 2Mq_ – pS2Mq_ ‘pΛ2Mq_. In other words, when 2 P Rˆ, every
bilinear form is uniquely a sum of a symmetric bilinear form and a skew-symmetric (or
equivalently since 2 P Rˆ, an alternating) bilinear form.

Proof. Easy; use B “ pB ` tBq{2 ` pB ´ tBq{2. □

9.2. Matrices associated to bilinear forms, and determinant.

Exercise 9.5. Let M “ Rn. Write e1, . . . , en for the standard basis of Rn. Show that
there is an R-module isomorphism

BilRpMq Ñ MnpRq,

sending B P BilRpMq to rBpei, ejqs1ďi,jďn P MnpRq, and whose inverse sends A P MnpRq to

pX, Y q ÞÑ
tXAY,

with X, Y P Rn thought of as column vectors in the obvious way.

Definition 9.6. Let M be a free finite rank R-module. If B P BilRpMq, then for any basis
e1, . . . , en of M , the matrix of B with respect to that basis is defined to be

A “ rBpei, ejqs1ďi,jďn.

Remark 9.7. (i) In the context of Definition 9.6, note that the basis e1, . . . , en iden-
tifies M with Rn. Either by transporting B to Rn via this isomorphism and using
Exercise 9.5, or (better) directly, note that we can describe B P BilRpMq in terms
of its image A P MnpRq as:

(39) B
´

n
ÿ

i“1

xiei,
n

ÿ

j“1

yjej

¯

“
tXAY,

where X, Y are the column vectors defined by px1, . . . , xnq P Rn and py1, . . . , ynq P

Rn. It easily follows that sending B to its matrix with respect to e1, . . . , en defines
an R-module isomorphism (depending on the choice of e1, . . . , en)

(40) BilRpMq Ñ MnpRq.

(ii) Let M – Rn. If A P MnpRq is the matrix of B P BilRpMq with respect to some
basis, then regardless of this choice of basis, B P SymBilRpMq if and only if A
is a symmetric matrix, B P AltBilRpMq if and only if A “ raijs is an alternating
matrix in the sense that aij “ ´aji and aii “ 0 for all 1 ď i, j ď n, and B P

SkewsymBilRpMq if and only if A “ raijs is a skewsymmetric matrix.
(iii) While the isomorphism BilRpMq Ñ MnpRq of (40) depends on the choice of the

basis e1, . . . , en, this dependence is easy to describe. Namely, if e1
1, . . . , e

1
n is another

basis of M , say e1
i “

ř

k pikek for each 1 ď i ď n for some matrix P “ rpijs1ďi,jďn P
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MnpRq, then automatically P P GLnpRq, and the matrix of B with respect to
e1
1, . . . , e

1
n is given by A1 “ ra1

ijs, where

a1
ij “ P pe1

i, e
1
jq “ B

´

ÿ

k

pikek,
ÿ

l

pjlel

¯

“
ÿ

k,l

pikBpek, elqpjl “
ÿ

k,l

pikaklpjl “ pPA tP qi,j,

so that A1 “ P ¨A ¨ tP . Thus, the matrix of B with respect to e1
1, . . . , e

1
n is P ¨A ¨ tP ,

with P P GLnpRq relating the ei to the e1
i as above.

Exercise 9.8. LetM be a finite free R-module. If the matrix of B P BilRpMq with respect
to e1, . . . , en is A, then with respect to the choices of e1, . . . , en as a basis for M and the
dual basis e_

1 , . . . , e
_
n as a basis for M_, show that the matrix of the linear transformations

m ÞÑ Bpm,´q and m ÞÑ Bp´,mq are tA and A.

Definition 9.9. (i) Let M be a finite free R-module. The determinant detB of B P

BilRpMq is an element of R{Rˆ2, the quotient of the set R under the multiplicative

action of the group Rˆ2 (i.e., the set 25 of Rˆ2-orbits on R), defined in either of the
following equivalent ways:
(a) Definition using coordinates/matrices. detB is defined to be the image of detA

in R{Rˆ2, where A is the matrix of B with respect to any basis of M : this is
well-defined, because replacing the basis will replace A by some P ¨A ¨ tP , with
P P GLnpRq (see Remark 9.7(iii) above), and detpP ¨A¨ tP q “ pdetAqpdetP q2 P

pRˆq2 ¨ detA (recall/note that elements of GLnpRq have determinant in Rˆ).
(b) Coordinate-free definition.

‚ IfM is free of rank one, then Bpx, xq, where x is any generator ofM , has

a well-defined image in R{Rˆ2, which we call detB: any other generator

is of the form ax with a P Rˆ, and Bpax, axq “ a2Bpx, xq P Bpx, xq¨Rˆ2.
‚ For generalM that is free of finite rank n, a problem from HW4 associates
to B a bilinear form ΛnB P BilRpΛnMq. Since ΛnM is of rank one,
the rank one case gives a definition of detpΛnBq, and we set detB “

detpΛnBq.
To see that these definitions agree, look back at the definitions, and make sense
(in R{Rˆ2) of:

detB
second notion

“ ΛnBpe1 ^ ¨ ¨ ¨ ^ en, e1 ^ ¨ ¨ ¨ ^ enq “ detprBpei, ejqs1ďi,jďnq
first notion

“ detB.

(ii) Recall that associated to B are two maps M Ñ M_, namely m ÞÑ Bpm,´q and
m ÞÑ Bp´,mq.

‚ B is said to be nondegenerate if these maps are both injective: i.e., given
m P M , there exist m1,m2 P M such that Bpm,m1q ‰ 0 ‰ Bpm2,mq.

‚ B is said to be perfect if one of these maps is an isomorphism. Easy exercise:
this is equivalent to both of these maps being isomorphisms (e.g., use Remark
9.10(i) below).

25it is just a set and not a group or anything.



106

(iii) Let M and M 1 be R-modules, B P BilRpMq and B1 P BilRpM 1q. The direct sum of
the pairs pM,Bq and pM 1, B1q, denoted pM,Bq ‘ pM 1, B1q or pM,Bq K pM 1, B1q, is
defined to be pM ‘M 1, B‘B1q, where B‘B1 is the bilinear form on M ‘M 1 such
that for all m1,m2 P M and m1

1,m
1
2 P M 1 we have:

pB ‘ B1
qppm1,m

1
1q, pm2,m

1
2qq “ Bpm1,m2q ` B1

pm1
1,m

1
2q.

Remark 9.10. (i) It is immediate that either of m ÞÑ Bpm´q or m ÞÑ Bp´,mq is an

isomorphism if and only if detB P R{Rˆ2 belongs to Rˆ{Rˆ2: use Exercise 9.8.
(ii) If B is perfect, then it is nondegenerate, but not conversely (e.g., B : Z ˆ Z Ñ Z

given by Bpm,nq “ 2mn is nondegenerate, but not perfect). However, note that
if R is a field, then since M and M_ are vector spaces of the same dimension,
nondegenerate B are perfect as well. Thus, once we specialize to fields, we will
simply write nondegenerate, but “perfect” will also be understood.

(iii) Henceforth, we will be interested in pairs pM,Bq consisting of a finite free R-module
M , and B P BilRpF q. It is clear how to define isomorphisms between such pairs
pM,Bq and pM 1, B1q: they should beR-module isomorphisms T :M Ñ M 1 that pull
B1 back to B (i.e., B1pTm1, Tm2q “ Bpm1,m2q for all m1,m2 P M). Isomorphisms
between such pairs will also be referred to as ‘isometries’. In contrast, I haven’t
noticed much interest in the notion of just morphisms (as opposed to isomorphisms)
between such pairs.

Exercise 9.11. (i) Verify any claim in Remark 9.10 that you don’t see immediately.
(ii) Show that isometries preserve the various notions you have seen above, such as

determinant, nondegenerate and perfect.
(iii) Let M,M 1 be finite free R-modules. If bilinear forms B P BilRpMq and B1 P

BilRpM 1q have matrices A and A1 with respect to choices of bases e1, . . . , en of M
and e1

1, . . . , e
1
n1 of M 1, then the bilinear form B ‘ B1 P BilRpM ‘ M 1q has matrix,

with respect to the basis e1, . . . , en, e
1
1, . . . , e

1
n, matrix of the form

ˆ

A
A1

˙

(where the entries in the ‘blank’ blocks are understood to be all 0).

9.3. Quadratic forms.

Definition 9.12. Let M be a finite free R-module.

(i) A quadratic form on M is a function q :M Ñ R that satisfies any of the following
four equivalent conditions, their equivalence following from Exercise 9.13(i) below:
(a) It is given by a homogeneous polynomial of degree 2: i.e., Df “

ř

lil
1
i P

S2pM_q, with each li, l
1
i P M_, such that for all m P M we have fpmq “

ř

lipmql1ipmq.
(b) We have qpamq “ a2qpmq for all a P R andm P M , and the map Bq :MˆM Ñ

R given by Bqpm,nq :“ qpm ` nq ´ qpmq ´ qpnq is an R-bilinear form on M .
We will call Bq the bilinear form associated to q.
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(c) There exists B P BilRpMq such that for all m P M , we have qpmq “ Bpm,mq.
In this case, we might write q “ qB, and call q the quadratic form associated
to B.

(d) Using some 26 basis ofM to identify it with Rn, there exist ai P R for 1 ď i ď n
and aij P R for 1 ď i ă j ď n, such that for all px1, . . . , xnq P Rn “ M , we
have qpx1, . . . , xnq “

ř

1ďiďn aix
2
i `

ř

1ďiăjďn aijxixj.
In short, just “a homogeneous polynomial of degree 2”.

(ii) Let QuadpMq “ QuadRpMq denote the R-module of quadratic forms on M . The
fact that each element of QuadpMq is defined by an element of S2pM_q gives us
a surjective R-module homomorphism S2pM_q Ñ QuadpMq, which is an isomor-
phism by Exercise 9.13(ii) below.

(iii) By a quadratic space over R we will refer to a pair pM, qq, where M is a free R-
module of finite rank, and q P QuadRpMq is a quadratic form. It is clear how to
define isomorphisms of quadratic spaces, and those will be referred to as isometries.

Exercise 9.13. (i) Show the equivalence of the four definitions of quadratic forms.
Hint: It could be easier to relate the condition (d) to the remaining three condi-
tions. Anyway, please do make sure you can do this exercise.

(ii) Show that the R-module homomorphism S2pM_q Ñ QuadpMq is an isomorphism.
Hint: Without loss of generality, let M “ Rn. By the previous exercise, assume
qpx1, . . . , xnq “

ř

1ďiďjďn aijxixj. If some aii ‰ 0, take m “ ei. If each aii “ 0 and
some aij ‰ 0, take m “ ei ` ej.

(iii) LetM be a free R-module of finite rank. Show that we have a commutative diagram
with exact rows, each of whose columns are isomorphisms:

0 // AltBilRpMq

��

incl. // BilRpMq
B ÞÑqB//

��

QuadRpMq

(ii)
��

// 0

0 // Λ2pM_q // T 2pM_q // S2pM_q // 0

.

Again, Λ2pM_q Ñ T 2pM_q is the not-so-obvious inclusion, since Λ2pM_q is a priori
a quotient of T 2pM_q: one is using the exercise from Lecture 8 proving that Λ2pM_q

is a free R-module (when M is finite free).
(iv) Recall Bq and qB from (b) and (c) of Definition 9.12(i). Show that the composite

of q ÞÑ Bq and B ÞÑ qB, in either direction, is not the identity, but multiplication
by 2. Thus, if 2 P Rˆ, these maps are not “lossy” at all, 27 and in this case, it may
be more convenient to replace Bq by

B1
q :“ p1{2qBq : px, yq ÞÑ 2´1

¨ pqpx ` yq ´ qpxq ´ qpyqq,

which ensures qB1
q

“ q and B1
qB

“ B.

26or as is easily seen to be equivalent, any.
27which they are if, say 2 “ 0 in R.
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(v) Verify that one way to transcribe the above exercise is as follows: When 2 P

Rˆ, so that BilRpMq “ SymBilRpMq ‘ AltBilRpMq, the surjection BilRpMq Ñ

QuadRpMq given by B ÞÑ qB vanishes on AltBilRpMq, and restricts to an iso-
morphism SymBilRpMq Ñ QuadRpMq. This isomorphism also respects various
constructs we will define in what follows, such as the radical etc.

(vi) On the other hand, when 2 R Rˆ, SymBilRpMq ãÑ BilRpMq Ñ QuadRpMq fails
quite spectacularly to be an isomorphism; say when 2 “ 0 in R (e.g., if R “ F2):

‚ Any element of AltBilRpMq Ă BilRpMq is contained in SymBilRpMq, but maps
to 0 in QuadRpMq: thus, these give B such that qB “ 0. Specifically, consider
M “ R2, Bppx1, y1q, px2, y2qq “ x1y2 ` x2y1: B is nondegenerate, but qB “ 0.

‚ While every element of QuadRpMq is still of the form qB for some B P BilRpMq,
there may not exist such B P SymBilRpMq; e.g., M “ R2, Qpx, yq “ xy.

We may see these more explicitly in examples later.

9.4. Sesquilinear forms. Recall that complex inner products, being only conjugate-linear
in one of the variables, are not bilinear. So what generalizes complex inner products are
not bilinear forms, but sesquilinear forms (“1.5-linear forms”), to define which we need a
‘conjugation’, so that we can talk of conjugate-linearity.

In this subsection, we will take R “ F to be a field, and let E{F be a separable quadratic
extension. We will probably not use the following facts from field theory, but it is probably
good to keep them in mind/make sure you can prove them:

(i) If charF ‰ 2, then E “ F rαs “ F r
?
as, for some nonsquare a P F , with α2 “ a.

(ii) If charF “ 2, then E “ F rαs, for some root α of a quadratic polynomial of the
form x2 ´ x ´ a “ 0 (if α satisfies xpx ´ bq ` c “ 0, then b ‰ 0 by separability, so
replace α by αb, which gives the same extension).

It is easy to see that GalpE{F q :“ AutF -AlgpEq “ t1, σu, where σ swaps the roots α and
´α of x2 ´ a “ 0 (if charF ‰ 2) or the roots α and 1´α of x2 ´x´ a “ 0 (if charF “ 2).

Notation 9.14. (i) Given E{F and 1 ‰ σ P GalpE{F q as above, we will typically
denote σ by a ÞÑ ā.

(ii) We will write trE{F : E Ñ F and NE{F : Eˆ Ñ Fˆ for the trace and norm maps
associated to E{F , which we recall are defined by: trE{F paq “ a ` ā P F and
NE{F paq “ aā P F . Alternatively, a ÞÑ pb ÞÑ abq defines a ring homomorphism
E Ñ EndF pEq, whose composite with tr : EndF pEq Ñ F and det : EndF pEq Ñ F
define trE{F and NE{F , respectively (see Exercise 9.18 below).

Definition 9.15. Fix a separable quadratic extension E{F as above.

(i) Let V be a vector space over E. An E{F -sesquilinear form on V is a Z-bilinear
map

B : V ˆ V Ñ E,

such that for all v, w P V and a P E, we have:

Bpav, wq “ āBpv, wq, and Bpv, awq “ aBpv, wq.
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Thus, a sesquilinear form is linear in the second variable and “conjugate-linear” in
the first variable. “Sesqui” means 1.5.

(ii) Sesquilinear forms on V form an E-vector space of dimension equal to pdimV q2,
which will be denoted by SesLinE{F pV q “ SesLinpV q.

(iii) It is immediately checked that we have a linear involution ˚ : SesLinpV q Ñ SesLinpV q,

denoted B ÞÑ B˚, such that B˚pv, wq “ Bpw, vq for each v, w P V : note that B˚ is
indeed sesquilinear, unlike pv, wq ÞÑ Bpw, vq.

(iv) A sesquilinear form B is called Hermitian if B˚ “ B, and skew-Hermitian if
B˚ “ ´B. This gives us subsets HermE{F pV q “ HermpV q, SkewHermE{F pV q “

SkewHermpV q Ă SesLinpV q, which are not E-subspaces (if B is Hermitian or skew-
Hermitian, then for a P EzF , aB will usually not be Hermitian or skew-Hermitian):
they are F -subspaces of SesLinpV q.

Notation 9.16. To study E{F -sesquilinear forms on an E-vector space V , it is helpful to
consider the E-vector space V̄ whose underlying abelian group is V , on which E operates
through σ followed by the usual scalar multiplication: its elements can be denoted tv̄ | v P

V u, where each v̄ is a formal symbol, and its vector space structure defined by av̄ ` w̄ “

āv ` w.

Remark 9.17. Let Eσ be the E-algebra σ : E Ñ E, thought of as an pE,Eq-bimodule.
It is an easy exercise to see that that V̄ has an obvious identification with the E-vector
space Eσ bE V . We will probably not use this today, but this sort of consideration is quite
common in mathematics.

Exercise 9.18. Use your knowledge of tensor products to show that the two definitions
of trE{F and NE{F coincide.
Hint: It is enough to show that the eigenvalues of b ÞÑ ab are a and σpaq, respectively.
To see this, it is natural to consider E bE E, the extension of scalars of the F -vector
space E to an E-vector space. Show that, as an E-vector space, we have an isomorphism
EbF E – E‘E of E-vector spaces, which transports “multiplication by a” to the E-linear
transformation of E‘E that is “multiplication by ā” on the first factor and “multiplication
by a” on the second.

Exercise 9.19. In these questions, unless otherwise stated, E{F is a separable quadratic
extension, and V is an E-vector space.

(i) Show that B ÞÑ pv ÞÑ Bpv,´qq and B ÞÑ pv ÞÑ Bp´, vqq define E-linear isomor-
phisms SesLinpV q Ñ HomEpV̄ , V _q and SesLinpV q Ñ HomEpV, V̄ _q. Here we
identify the underlying sets of V and V̄ via v ÞÑ v̄.

(ii) For any E-basis e1, . . . , en of V , define the matrix of B with respect to this basis to
be A “ rBpei, ejqs1ďi,jďn. Give an “X˚AX” description for B, where X˚ “ σp tXq,
σ being applied entry-wise to tX. Similarly, give a “PAP ˚” change of basis formula
for this matrix.

(iii) For any choice of basis of E, show that B P SesLinpV q is Hermitian if and only if
its matrix A is Hermitian (i.e., A˚ “ A), and that B is skew-Hermitian if and only
if its matrix A is skew-Hermitian (i.e., A˚ “ ´A).
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(iv) For B P SesLinpV q, define what detB should be, as an element of E{NE{F pEˆq.
Define both coordinates-based and coordinate-free variants of this notion, and prove
their equivalence.

(v) Define the notion of nondegeneracy for B P SesLinpV q, which also agrees with what
perfectness should be, and show that B is nondegenerate (i.e., perfect) if and only
if detB is not 0 inside E{NE{F pEˆq.

(vi) Let B P SesLinpV q. Show that if B is Hermitian, then detB P F . Show also that if
B is skew-Hermitian and dimV is odd (resp., even), then detB P kerptrE{F q “ tx P

E | trE{F pxq “ 0u (resp., detB P F ). Note that kerptrE{F q is a one-dimensional
F -subspace of E just like F is.
Hint: Use that detA˚ “ detA.

(vii) Define direct sums and isometries for pairs pV,Bq consisting of an E-vector space
V and an E{F -sesquilinear form B : V ˆ V Ñ E.

(viii) Unlike the difference between symmetric and skew-symmetric forms, the difference
between Hermitian and skew-Hermitian forms is not serious: if 0 ‰ β P E is such
that trE{F pβq “ 0 (if charF ‰ 2, one can take β P EzF such that β2 P F , and
otherwise one can take β “ 1), multiplication by β gives an F -linear isomorphism
HermpV q Ñ SkewHermpV q.

Remark 9.20. In the theory of algebraic groups, orthogonal groups are defined as groups
of isometries of (nondegenerate) quadratic forms, symplectic groups as groups of isome-
tries of (nondegenerate) alternating forms, and unitary groups as groups of isometries of
(nondegenerate) Hermitian (sesquilinear) forms. By Exercise 9.19(viii), unitary groups are
also groups of isometries of skew-Hermitian (sesquilinear) forms.

9.5. Radicals, orthogonals etc. Henceforth, we will only consider the case when R “ F
is a field, or when we have a quadratic separable extension E{F of fields.

Definition 9.21. Consider one of the following scenarios:

(a) V is a vector space over a field F , and B is a symmetric or alternating bilinear
form on V . We will only use the ‘symmetric’ case when charF ‰ 2.

(b) E{F is a quadratic separable field extension, V is a vector space over E, and
B P HermpV q or B P SkewHermpV q.

Then:

(i) For S Ă V , we define the orthogonal of S with respect to B to be:

SK :“ tv P V | Bpv, Sq “ t0uu “ tv P V | BpS, vq “ t0uu

(the two descriptions agree since we are in the symmetric/alternating/Hermitian/skew-
Hermitian situation). Note that SK Ă V is a subspace (i.e., an F -subspace in the
bilinear case, and an E-subspace in the sesquilinear case).

(ii) The radical of B, denoted radpBq, is defined to be V K, so radpBq “ tv P V |

Bpv, V q “ t0uu “ tv P V | BpV, vq “ t0uu.
V is nondegenerate (or equivalently, perfect) if and only if radpBq “ 0 (easy).
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Definition 9.22. Let pV, qq be a quadratic space over a field F . If charF ‰ 2, we define
the radical radpqq of q to be radpBqq, and say that q is nondegenerate/perfect if Bq is.
However, a definition that works independently of its characteristic is given as follows:

(i) Radical. The radical of pV, qq is defined to be

radpqq :“ tv P radpBqq | qpvq “ 0u,

which is readily checked to be a vector subspace of V (If qpvq “ qpwq “ 0 with
v, w P radpBqq, then qpv ` wq “ qpvq ` qpwq ` Bqpv, wq “ 0).

(ii) Nondegeneracy.
(a) pV, qq is regular if radpqq “ 0.
(b) pV, qq is nondegenerate if one of the following three conditions, which can be

shown to be equivalent, are satisfied, where qK is obtained from q by extending
scalars along F ãÑ K (exercise: make this precise):

‚ radpqKq “ 0 for every field K containing F ;
‚ radpqKq “ 0 for some algebraically closed field K containing F ; and
‚ pV, qq is regular and dimF radpBqq ď 1.

Exercise 9.23. If charF ‰ 2, show that radpqq “ radpBqq, since q|radpBqq can be recovered
from Bq|radpBqq (easy/immediate). Note that when charF “ 2, taking M “ F and qpxq “

x2, radpBqq “ F but radpqq “ 0. Hopefully this gives at least a very partial explanation of
why we defined ‘radical’ and ‘nondegenerate’ for quadratic forms the way we did.

Remark 9.24. The point of giving uniform characteristic-independent definitions as above
(which we did not discuss in the lecture) is that, with these uniform definitions, a lot of
the nontrivial properties of quadratic forms and orthogonal groups outside characteristic
two also work over characteristic two. I haven’t justified this, and am appealing to your
faith here: the appeal-to-faith point is that often when one identifies the ‘correct’ general
definitions, a lot of things extend to the general case, but identifying the ‘correct’ general
definitions, or even realizing that such exist, might involve work.

Exercise 9.25. (i) Let pV,Bq be as in Definition 9.21. Show that B descends to a
bilinear form B̄ on V { radpBq, and that radpB̄q “ 0.

(ii) We do not have a canonical maximal nondegenerate subspace of pV,Bq, rather we
have several noncanonical ones: show that any subspace W Ă V that is comple-
mentary to radpBq satisfies that pW,B|W q is nondegenerate. (Easy). Moreover,
V Ñ V { radpBq restricts to an isometry from pW,B|W q to pV { radpBq, B̄q.

(iii) Formulate and prove the analogue of the above questions for quadratic spaces pV, qq.

Example 9.26. (i) The case where dimF V “ 1 or dimE V “ 1, as appropriate:
‚ Bilinear cases: For V “ F , BilF pF q “ SymBilF pF q “ tpBa : px, yq ÞÑ axyq |

a P F u, and AltBilF pF q “ 0. Note that detBa “ aFˆ2. It is easy to see that

Ba and Bb are isometric if and only if a P bFˆ2, i.e., detBa “ detBb.
It easily follows that sending pV,Bq to detB gives a bijection

{Isometry classes of pV,Bq with dimF V “ 1 and B P BilF pV q} Ñ F {Fˆ2
,
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and we can replace BilF pV q with SymBilF pV q in the above assertion. All the
pV,Bq are symmetric in this case, none alternating. pF,Baq is a representative

with determinant aFˆ2.
‚ Sesquilinear cases: For E{F quadratic separable and V “ E, SesLinE{F pEq “

tpBa : px, yq ÞÑ ax̄y | a P Eu, HermE{F pEq “ tBa | a P F u, SkewHermE{F pEq “

tBa | a P kerptrE{F qu. We have detpBaq “ aNE{F pEˆq, and Ba is isometric to
Bb if and only if detBa “ detBb.
It easily follows that sending pV,Bq to detB gives a bijection

{Isometry classes of pV,Bq with dimE V “ 1 and B P SesLinE{F pV q} Ñ E{NE{F pEˆ
q.

We have a similar assertion involving HermE{F pV q and F {NE{F pEˆq, and one
involving SkewHermE{F pV q and kerptrE{F q{NE{F pEˆq.

‚ Quadratic cases: Sending V to qpvqFˆ2, where 0 ‰ v P V is any basis vector,
gives a bijection

{Isometry classes of pV, qq with dimF V “ 1} Ñ F {NE{F pEˆ
q.

A representative with determinant (the image of) a is given by pF, ax2q.
(ii) Hyperbolic planes.

(i) In the context of symmetric or Hermitian (resp., alternating or skew-Hermitian)
forms, a hyperbolic plane over F or E is a pair pV,Bq that has, with respect
to some basis, matrix

ˆ

1
1

˙

´

resp.,

ˆ

´1
1

˙

¯

.

(ii) In the context of quadratic spaces, a hyperbolic plane over F is a quadratic
space that is isomorphic to pF 2, px, yq ÞÑ xyq.

Note that every hyperbolic plane is nondegenerate. A hyperbolic space is defined
to be a direct sum of hyperbolic planes.

(iii) In all the five contexts, a vector 0 ‰ v P V is called isotropic if Bpv, vq “ 0 or
qpvq “ 0 as appropriate, and anisotropic otherwise.

(iv) A subspaceW Ă V is called anisotropic if every 0 ‰ w P W is anisotropic, isotropic
if it is not anisotropic, and totally isotropic if B|W “ 0 or q|W “ 0, as appropriate.
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10. Lecture 10 — various kinds of bilinear forms, and quadratic forms
(contd.)

Notation 10.1. In this lecture, pV,Bq will denote a finite dimensional vector space to-
gether with a symmetric, alternating, Hermitian or skew-Hermitian form as above, asso-
ciated to a field F or a separable quadratic extension E{F as appropriate. A subspace
W Ă V will refer to an F -subspace in the former two cases, and to an E-subspace in the
latter two cases. We will often omit to mention the finite dimensionality of various pairs
pV,Bq as above, but it should be considered as understood.

Further, in the symmetric case, we will assume charF ‰ 2. In the bilinear cases (i.e., in
the symmetric and the alternating cases), if we say E we will mean F , if we say V̄ , we will
mean V , etc.

We recall that when charF “ 2, symmetric is the same as skew-symmetric, but neither
of these notions works well. However, quadratic and alternating forms do work well in
characteristic 2.

If you don’t like this level of generality, at least on a first reading just think of the symmetric
bilinear case. Recall the notion of direct sums of bilinear forms, nondegenerate, orthogonal,
radical etc.

10.1. Building pV,Bq from smaller subspaces. In many situations we can get direct
sum decompositions, thanks to the following simple lemma:

Lemma 10.2. (i) Suppose pV,Bq is as in Notation 10.1. If a subspace W Ă V is
nondegenerate, then V “ W ‘ WK (i.e., pV,Bq “ pW,B|W q ‘ pWK, B|WKq.

(ii) If instead V is nondegenerate, we still have dimW ` dimWK “ dimV .

Remark 10.3. In (ii) of the lemma, we may not have V “ W‘WK, sinceWXWK may be
nonzero: e.g., W can be a totally isotropic subspace of V , in which case W Ă WK. For an
even more particular example, suppose pV,Bq is a hyperbolic plane, where V “ Fe1 `Fe2
with Bpe1, e1q “ Bpe2, e2q “ 0 and Bpe1, e2q “ 1. Then if W equals Fe1 or Fe2, we have
W “ WK.

Proof of Lemma 10.2. For ease of reading, we will discuss only the symmetric bilinear case:
for the Hermitian and the skew-Hermitian cases, simply put a “̄ ” at the appropriate places.
For both assertions, by the rank-nullity theorem, it is enough to show that the following
sequence is exact, where we recall that W_ : HomF pW,F q:

0 Ñ WK ãÑ V
v ÞÑBpv,´q

Ñ W_
Ñ 0

(this would give dimW ` dimWK “ dimW_ ` dimWK “ dimV ; in the situation of (i),
since W X WK “ 0, this would also give V “ W ‘ WK).

The exactness at WK and V are immediate, while for the surjectivity of V Ñ W_:
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‚ In the situation of (i), use that B|W is perfect (nondegenerate), so already the
restriction W Ñ W_ of V Ñ W_, given by v ÞÑ Bpv,´q, is surjective.

‚ In the situation of (ii), V Ñ W_ is the composite of the surjective map V _ Ñ W_

(given by restriction to W ) and the isomorphism V Ñ V _ given by v ÞÑ Bpv,´q.

□

Exercise 10.4. This exercise is trivial, but is helpful to keep in mind; it will be used
without further comment in what follows: if pV,Bq is one of the four kinds of pairs above,
and is nondegenerate, and we have a decomposition pV,Bq – pW1, B1q ‘ pW2, B2q, then
pW1, B1q and pW2, B2q are nondegenerate.

By Lemma 10.2, to decompose pV,Bq, it is enough to construct smaller nondegenerate
subspaces within pV,Bq. Here are two ways to do this:

‚ Any anisotropic vector spans such a subspace.
‚ Any isotropic vector in V is contained in a hyperbolic plane in V , by the following
lemma.

Lemma 10.5. Let pV,Bq be as in Notation 10.1 (thus, charF ‰ 2 in the symmetric
bilinear case), and assume that pV,Bq is nondegenerate. If 0 ‰ v P V is an isotropic
vector, then pV,Bq contains a hyperbolic plane (for its type) containing v.

Proof. We have Bpv, vq “ 0. It is enough to find w P V such that Bpw,wq “ 0 ‰ Bpv, wq:
for, then we can scale w to ensure Bpv, wq “ 1, and then Spanpv, wq will be a hyperbolic
plane.

Since pV,Bq is nondegenerate, there exists w1 P V such that Bpv, w1q ‰ 0. It is enough to
find a scalar a such that Bpw1 ´ av, w1 ´ avq “ 0: then w :“ w1 ´ av satisfies Bpv, wq “

Bpv, w1q ‰ 0 “ Bpw,wq. Thus, we need Bpw1, w1q “ Bpw1, avq ` Bpav, w1q, which can be
ensured case-by-case:

‚ In the alternating case, this is automatic.
‚ In the symmetric case (where charF ‰ 2 by assumption), choose a “ Bpv, w1q{2.
‚ In the Hermitian case, choose a P E such that trE{F paBpw1, vqq “ Bpw1, w1q P F
(such an a exists since trE{F : E Ñ F is surjective, because E{F is separable).

‚ In the skew-Hermitian case, choose a P E such that aBpw1, vq ´ aBpw1, vq “

Bpw,wq (choose c such that trE{F c “ 0, and then a such that trE{F pcaBpw1, vqq “

cBpw1, w1q P F (explanation for why cBpw1, w1q P F : c̄ “ ´c, Bpw1, w1q “ ´Bpw1, w1q,

so cBpw1, w1q “ cBpw1, w1q, so cBpw1, w1q P F ): this is the same trick we used in
Lecture 9 to say that skew-Hermitian is not essentially different from Hermitian.

□

Corollary 10.6. In the alternating cases, we have (of course noncanonically)

pV,Bq “

˜

n
à

i“1

H

¸

‘ pW, 0q,
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where H stands for an alternating hyperbolic plane, and pW, 0q is the radical of B.

Proof. Choosing any complement W 1 of radpBq to write V as a direct sum of pW, 0q and a
nondegenerate subspace pW 1, V |W 1q (this was an exercise, Exercise 9.25((ii)), from Lecture
9), we reduce to the nondegenerate case. Now, any nonzero vector in V is isotropic, so we
can inductively apply Lemma 10.5 together with Lemma 10.2(i) (H is nondegenerate; we
also use the easy Exercise 10.4, which will typically not even be cited henceforth). □

Remark 10.7. Thus, the classification of alternating forms is uniform over all fields (ap-
parently, also over local rings and Dedekind domains; see Professor Nair’s notes).

Corollary 10.8. Let pV,Bq belong to the symmetric, Hermitian or skew-Hermitian cases.
Then there is a basis of V for which the matrix of B is diagonal: there exists a basis
e1, . . . , en of V and nonzero a1, . . . , ar belonging to E or F , where r “ n´dim radpBq ď n,
such that

Bpei, ejq “

#

0, if i ‰ j or i “ j ą r, and

ai, if 1 ď i “ j ď r.

Proof. As in Corollary 10.6, we choose a complement of radpBq to reduce to the case
where pV,Bq is nondegenerate. We can induct using Lemma 10.2(i), if show that any
nondegenerate pV,Bq has an anisotropic vector. This is Lemma 10.9 below. □

Lemma 10.9. Any nondegenerate symmetric bilinear, Hermitian or skew-Hermitian space
pV,Bq has an anisotropic vector.

Proof. Let v, w P V with Bpv, wq ‰ 0. If Bpv, vq ‰ 0 or Bpw,wq ‰ 0, we are done.
Otherwise:

‚ In the symmetric case, if v and w are isotropic, then Bpv`w, v`wq “ 2Bpv, wq ‰ 0.
‚ In the Hermitian case, choose a P E so that trE{F paBpv, wqq ‰ 0; then if v and w
are anisotropic, Bpv ` aw, v ` awq “ trE{F paBpv, wqq ‰ 0.

‚ The skew-Hermitian case is similar, with trE{F paBpv, wqq replaced by aBpv, wq ´

aBpv, wq (see the proof of Lemma 10.5).

□

Henceforth, we will mostly ignore the skew-Hermitian case: as seen in Lecture 9 and above,
we can reduce the proofs in the skew-Hermitian case to those in the Hermitian case, using
a trace zero element in E.

Corollary 10.10. Let pV,Bq belong to the symmetric or Hermitian cases. Let E be a

set of representatives for F {Fˆ2 in the symmetric case, and a set of representatives for
F {NE{F pEˆq in the Hermitian case.

(i) V has a basis relative to which B has a matrix of the form diagpa1, . . . , anq, where
each ai belongs to E.



116

(ii) Assume that we are in the symmetric case (so charF ‰ 2) and that F is alge-
braically closed. Sending pV,Bq to pdimV, dim radpBqq gives a bijection

{Isometry classes of pairs pV,Bq over F with B symmetric bilinear} Ñ tpn,mq P N2
| m ď nu.

(iii) (Sylvester’s law of inertia) Assume that we are either in the symmetric case with
F “ R, or in the sesquilinear case with E{F “ C{R. Then there is a bijection

{Isometry classes of pairs pV,Bq in this setting} Ñ tpp, q, rq P N3
u,

sending pV,Bq to pp, q, rq where r “ dim radpBq, and p (resp., q) is the maximal
possible dimension of a B-positive definite (resp., B-negative definite) subspace of
V .

Proof. Let us see (i). Corollary 10.8 gives us a basis e1, . . . , en of V , relative to which
B has matrix of the form diagpa1, . . . , anq. Choose nonzero ci such that aic

2
i P E (in the

symmetric case) or aiNE{F pciq P E (in the Hermitian case). Then, relative to the basis
c1e1, . . . , cnen of V , the matrix of B is diagonal, with entries in E .
If F is algebraically closed, and pV,Bq is symmetric bilinear, we can take E “ t0, 1u, and
(ii) follows.

Now we come to (iii). In both the symmetric and the Hermitian cases, we can take
E “ t0, 1,´1u. Thus, every pV,Bq in this setting has a basis with respect to which its
matrix is of the form diagp1p,´1q, 0rq, where we have written 1p for a sequence of p 1’s,
etc. It is clear that if e1, . . . , en is such a basis, then r “ dim radpBq, B is positive definite
on the p-dimensional subspace spanned by e1, . . . , ep, and it is negative definite on the
q-dimensional subspace spanned by ep`1, . . . , ep`q.

To check that p is the maximal dimension of a positive definite subspace of V – and
hence uniquely determined – note that no positive definite subspace of V can intersect
Spanpep`1, . . . , enq, and hence has dimension at most p. Similarly, q is the maximal dimen-
sion of a negative definite subspace of V , and is hence uniquely determined. □

Definition 10.11. If pV,Bq is a symmetric bilinear, Hermitian or skew-Hermitian form,
then a basis e1, . . . , en of V is said to be an orthogonal basis (with respect to B) if its
elements are pairwise B-orthogonal, i.e., if Bpei, ejq “ 0 for i ‰ j, i.e., if B has a diagonal
matrix with respect to this basis.

Remark 10.12. By Corollary 10.10, every quadratic form q on a vector space V over
a field F with charF ‰ 2 can be diagonalized, i.e., there exists a basis e1, . . . , en of V
and a1, . . . , an P F such that qp

řn
i“1 xieiq “

řn
i“1 aix

2
i , for all x1, . . . , xn P F . However,

this is not true when F has characteristic two: note that when charF “ 2, if q can be
diagonalized, then Bq “ 0, but we have several q such that Bq ‰ 0, e.g., a hyperbolic plane
q given by qpx1e1 ` x2e2q “ x1x2.

Exercise 10.13. Above, we saw the classification of symmetric nondegenerate bilinear
forms over the real numbers. Read up about the classification of symmetric nondegenerate
bilinear forms/quadratic forms over finite fields, at least outside characteristic two. The
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main result in this context is: if pV,Bq and pV 1, B1q are nondegenerate, then they are

isometric if and only if dimV “ dimV 1 and detB “ detB1. Since #pFˆ
q {Fˆ

q
2
q “ 2, it

follows that there are exactly two isometry classes of nondegenerate quadratic forms over
Fq of a given dimension, when q is odd.

Example 10.14. A special case of Sylvester’s law of inertia helps us understand why there
are three cases of nondegenerate conics: ellipses, parabolas and hyperbolas. Recall that a
conic in R2 is the subset given by a degree two polynomial fpx, yq “ f2px, yq ` f1px, yq `

f0px, yq, where f2px, yq “ ax2 ` bxy ` cy2 is a homogeneous quadratic polynomial, f1 is a
linear polynomial, and f0 is a constant. Denote this conic by Cf .

Thus, f2 is a quadratic form. If this quadratic form is positive definite or negative definite
(i.e., has signature p2, 0, 0q or p0, 2, 0q, then Cf is an ellipse. If it has signature p1,´1, 0q or
p´1, 1, 0q, then Cf is a hyperbola. Otherwise f2 is degenerate, and Cf is either a parabola
or ‘degenerate’ in the sense of being a line or a product of two lines, etc. Thus, finding the
shape of Cf basically amounts to diagonalizing the quadratic form f2.

In higher dimensions, i.e., in Rn, too, one considers solutions of quadratic equations in
n variables. Such solutions are called quadrics (as opposed to conics, which are in R2).
It is clear that Sylvester’s law of inertia helps us study and classify quadrics in Rn too:
e.g., in R3, one gets objects such as elliptic hyperboloids, parabolic hyperboloids etc.,
distinguished from each other by the signature of the associated quadratic form (namely,
the “homogeneous of degree two part” of the given equation).

Corollary 10.15. Let pV,Bq belong to the symmetric, Hermitian or skew-Hermitian cases.
Then we have a decomposition

pV,Bq “ pVh, Bhq ‘ pVa, Baq ‘ pradB, 0q,

where pVh, Bhq is a direct sum of hyperbolic planes, and pVa, Baq is anisotropic.

Proof. As before, reduce to the case where pV,Bq is nondegenerate. If pV,Bq is anisotropic,
we are done. If not, we have a hyperbolic plane in pV,Bq by Lemma 10.5, so we can use
Lemma 10.2 and induct. □

Remark 10.16. In the above corollary, the subspaces pVh, Bhq and pVa, Baq of pV,Bq

are not uniquely determined. It so turns out, nevertheless, that their isometry classes
are uniquely determined: this is not obvious, and will be proved in Corollary 10.22 as a
consequence of Witt’s theorem.

The following slight strengthening of Lemma 10.5 will help us reduce the proof of Witt’s
theorem to the nondegenerate case.

Lemma 10.17. Let pV,Bq belong to the symmetric, Hermitian or skew-Hermitian cases.
Assume that pV,Bq is nondegenerate.

(i) Given any totally isotropic subspace W0 Ă V , with basis e1, . . . , es, there exists a
totally isotropic subspace U0 Ă V , and a basis f1, . . . , fs of U0, such that Bpei, fjq “

δi,j for 1 ď i, j ď s (then automatically, W0 ` U0 “ W0 ‘ U0 inside V ).
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(ii) Let W Ă V be an arbitrary subspace. Write W “ W0 ‘W1, where W0 “ radpB|W q,
andW1 is any complement toW0 inW (thus, B|W1 is nondegenerate). Let e1, . . . , es
be a basis for W0. Then there exists a totally isotropic subspace U0 Ă WK

1 Ă V ,
and a basis f1, . . . , fs of U0, such that Bpei, fjq “ δi,j for 1 ď i, j ď s (thus,
W0 ` W1 ` U0 “ W0 ‘ W1 ‘ U0 inside V ).

Proof. (ii) follows from applying (i) to WK
1 Ą W0 (which is nondegenerate as V and W1

are), so it is enough to prove (i). By nondegeneracy, which implies that v ÞÑ Bpv,´q defines
a bijection V Ñ V _, we can choose f 1

1 P V such that Bpei, f
1
1q “ δi,1 for all 1 ď i ď s. As

in the proof of Lemma 10.5, there exists a scalar a such that Bpf 1
1 ´ ae1, f

1
1 ´ ae1q “ 0.

Setting f1 “ f 1
1 ´ ae1, it is still true that Bpei, f1q “ δi,1 for all 1 ď i ď s (use that W0

is totally isotropic). V1 :“ Spanpe1, f1q is a hyperbolic plane, and is hence nondegenerate,
and e2, . . . , es belong to V K

1 . Now we can induct. □

(i) of the lemma above can be summarized as follows: given a totally isotropic subspace
W0 Ă V , there exists a totally isotropic subspace U0 Ă V such that B restricts to a perfect
pairing between W0 and U0. Automatically, W0 ` U0 “ W0 ‘ U0 Ă V is a direct sum of
hyperbolic planes. The configuration of (ii) of the lemma, with W0 ‘ W1 ‘ U0 Ă V , and
with B restricting to a nondegenerate form on W1 and to a perfect pairing between the
totally isotropic subspacesW0 and U0 of V , is also something very commonly seen. Writing
W1 in between W0 and U0 is for reasons to do with group theory (algebraic groups).

10.2. Witt’s theorem: statement and consequences. Recall that whenever we talk
of a symmetric bilinear form, we assume that charF ‰ 2.

Theorem 10.18 (Witt’s theorem/Witt’s extension theorem). Let pV,Bq be a nondegen-
erate symmetric bilinear, alternating bilinear, Hermitian or skew-Hermitian form, and let
h : pW,B|W q Ñ pW 1, B|W 1q be an isometry between subspaces W,W 1 Ă V . Then there
exists g P AutpV,Bq such that g|W “ h. In other words, h can be extended to an isometry
V Ñ V .

Here is another way to state the same theorem:

Theorem 10.19 (Witt’s theorem, slight restatement). Let pV,Bq and pV 1, B1q be isometric
nondegenerate symmetric, alternating, Hermitian or skew-Hermitian spaces, and let h :
pW,B|W q Ñ pW 1, B|W 1q be an isometry between subspaces W Ă V,W 1 Ă V 1. Then there
exists an isometry g : pV,Bq Ñ pV 1, B1q such that g|W “ h.

Theorem 10.19 is a formal consequence of Theorem 10.18 (please make sure you understand
that this is trivial), so only the former will be proved. Before proving Theorem 10.18, let
us derive some corollaries.

Corollary 10.20 (Witt cancellation theorem). Let pV,Bq and pV 1, B1q be nondegenerate
symmetric, alternating, Hermitian or skew-Hermitian spaces. Assume that

pV,Bq “ pW1, B1q ‘ pW2, B2q, and pV 1, B1
q “ pW 1

1, B
1
1q ‘ pW 1

2, B
1
2q.
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If pV,Bq – pV 1, B1q and pW1, B1q – pW 1
1, B

1
1q, then pW2, B2q – pW 1

2, B
1
2q (where “–” means

“is isometric to”).

Proof, assuming Witt’s theorem. Let h : W1 Ñ W 1
1 be any isometry, and use Theorem

10.19 to extend it to an isometry g : V Ñ V 1. Then automatically, g takes WK
1 to W 1

1
K

(every isometry behaves well with respect to taking ‘K’).

It follows from the nondegeneracy of V that that W1,W2,W
1
1,W

1
2 are nondegenerate (by

now, it shouldn’t be necessary to quote Exercise 10.4 here), and (using Lemma 10.2) that

the inclusions W2 Ă WK
1 and W 1

2 Ă W 1
1

K are equalities, so g takes pW2, B|W2q “ pW2, B2q

to pW 1
2, B

1|W 1
2
q “ pW 1

2, B
1
2q. □

Corollary 10.21. Let pV,Bq be as above, nondegenerate. All maximal totally isotropic
subspaces of pV,Bq are AutpV,Bq-translates of each other, and hence have the same di-
mension.

Proof, assuming Witt’s theorem. IfW,W 1 Ă V are maximal totally isotropic and dimW ď

dimW 1, then any injection h : W ãÑ W 1 is an isometry, and hence extends to an isometry
g : V Ñ V . Then g´1pW 1q is a totally isotropic subspace containing W , and hence equals
W by maximality. □

Corollary 10.22. Let pV,Bq be as above, nondegenerate.

(i) All maximal hyperbolic subspaces of pV,Bq are AutpV,Bq-translates of each other,
and hence have the same dimension.

(ii) Write, using Corollary 10.15:

pV,Bq – Hs
‘ pVan, Banq,

where Hs is an s-fold sum of hyperbolic planes H, and pVan, Banq is anisotropic.
Then s and the isometry class of pVan, Banq are uniquely determined by pV,Bq.

Proof, assuming Witt’s theorem. (i) follows exactly as in Corollary 10.21.

Let us prove (ii). Given a decomposition pV,Bq “ pW1, B1q ‘ pW2, B2q, we claim that
W1 Ă V is a maximal hyperbolic subspace if and only if pW2, B2q is anisotropic: to see
“ñ”, use Lemma 10.5; to see “ð”, if W 1

1 Ľ W1 is a hyperbolic subspace, and hence a
direct sum of its own totally isotropic subspaces, then the image ofW 1

1 under the projection
V Ñ W2 has a nonzero isotropic vector, a contradiction. Thus, any Hs ãÑ V as in (ii) is a
maximal hyperbolic subspace of V , and s is half its dimension, so that the uniqueness of s
follows from (i). The uniqueness of the isometry class of pVan, Banq then follows from the
Witt cancellation theorem (Corollary 10.20). Note that in the alternating case, of course,
s “ dimV {2, and Van “ 0. □

Definition 10.23. In the context of the above corollary, (the isometry class of) pVan, Banq

is called the anisotropic kernel of pV,Bq.
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10.3. The proof of Witt’s theorem in the symmetric bilinear case. We will only
prove Theorem 10.18 in the symmetric bilinear case.

Step 1. Reduction to the case where W Ă V is nondegenerate. Let W0 “ radpB|W q Ă W
have basis e1, . . . , es. Consider the basis e1

1 :“ hpe1q, . . . , e
1
s :“ hpesq of W 1

0 :“ hpW0q “

radpB|W 1q. Let W1 be any complement to W0 in W , so that W 1
1 :“ hpW1q is a complement

to W 1
0 in W 1.

Associate toW,W0,W1 and e1, . . . , es, the subspace U0 and its basis f1, . . . , fs as in Lemma
10.17(ii). Associate, similarly, U 1

0 and f 1
1, . . . , f

1
s to W

1,W 1
0,W

1
1 and e1

1, . . . , e
1
s.

We extend h to a map W ` U0 Ñ W1 ` U0, still denoted h, as follows:

h : W ` U0 “ W0 ‘ W1 ‘ U0 Ñ W 1
0 ‘ W 1

1 ‘ U 1
0 “ W 1

` U 1
0,

that agrees with h on W “ W0 ‘W1 (and in particular takes each ei to e
1
i), and such that

hpfiq “ f 1
i for each i. It is immediately verified (please do verify) that this new h is an

isometry on W0 `U0 “ W0 ‘U0 as well as on W1, and hence on W0 `W1 `U0 “ W `U0.
It is enough to extend this new h to g.

Since B is nondegenerate on each of W1 and W0 `U0, it is nondegenerate on W `U0 (it is
an easy exercise to prove that a direct sum of nondegenerate subspaces is nondegenerate).
Similarly, it is nondegenerate on W 1 `U 1

0. Thus, if we know how to extend isometries from
nondegenerate W Ă V , the general case follows.

Remark 10.24. To go ahead, the following very obvious principles will be helpful, and we
will use them repeatedly (so please make sure you are very clear with their justifications):

‚ If pV,Bq “ pW,B|W q ‘ pWK, B|WKq, then any isometry g0 : W Ñ W has a unique
extension to an isometry g : V Ñ V that acts as the identity on WK.

‚ If pV,Bq “ pW,B|W q‘pWK, B|WKq is nondegenerate, then any isometry g : V Ñ V
that maps W into itself also maps WK into itself.

Step 2. Reduction to smaller subspaces. The induction will sort of be on dimW , rather
than on dimV . The induction is carried out by the following lemma.

Lemma 10.25. Assume thatW0,W1 Ă V are nondegenerate, and orthogonal to each other.
Suppose:

‚ Any isometry h0 : W0 ãÑ V extends to an isometry g0 : V Ñ V ; and
‚ Any isometry h1 : W1 ãÑ WK

0 Ą W1 extends to an isometry g1 : WK
0 Ñ WK

0 , and
hence to an isometry g1 : V Ñ V that acts as the identity on W0 (see Remark
10.24; we won’t repeat this henceforth).

Then any isometry h : W0 ‘ W1 Ñ V extends to an isometry g : V Ñ V .

Proof. Write W “ W0 ‘ W1. Extend h0 :“ h|W0 to an isometry g0 : V Ñ V . Note
that g´1

0 h : W ãÑ V is an isometry, and we have pg´1
0 hq|W0 “ h´1

0 h0 “ identity, so that
g´1
0 h maps W1 Ă WK

0 into WK
0 . Therefore, we can extend h1 :“ g´1

0 h|W1 to an isometry
g1 : V Ñ V that acts as the identity on W0.
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Consider g “ g0g1: this is clearly an isometry of V , and it restricts to h on W because:

‚ On W0, it equals g0 “ h0.
‚ On W1, it equals g0h1 “ g0 ¨ g´1

0 h|W1 “ h|W1 .

□

One proof of Witt’s extension theorem that we will describe in the symmetric bilinear case,
will use the notion of reflections, that are interesting and important in their own right.

Definition 10.26. Let V be a vector space over F , and B a symmetric nondegenerate
bilinear form on it. Let v P V be an anisotropic vector, so that V “ Fv ‘ vK (vK Ă V is
the hyperplane orthogonal to v). Then the reflection rv associated to v, or the reflection
about the hyperplane orthogonal to v, is the unique isomorphism V Ñ V that sends v to
´v, and fixes vK.

Clearly, any reflection rv : V Ñ V is an isometry. Check that, concretely, it can be given
by the following formula (it is enough to check it separately on v and on vK):

rvpwq “ w ´
2Bpv, wq

Bpv, vq
v.

Let us emphasize that we have defined reflections only in the symmetric bilinear case.
There are somewhat related notions in the other cases, but those behave differently, and
seem to be less useful. Note also that we associate reflections only to anisotropic vectors.

Proof of Witt’s theorem. The symplectic case is much easier, and is left as an exercise.
The skew-Hermitian case follows from the Hermitian case, since these two cases are not
“essentially different”, by an observation from Lecture 9. Thus, we consider the symmetric
and the Hermitian cases.

Since V is nondegenerate, we know that there is an anisotropic vector v P W (Lemma
10.9). By the previous lemma and induction, we are reduced to proving the following
(after possibly replacing V with a smaller subspace):
Step 3. The lemma is true when W “ Fv for some anisotropic vector v P V . Thus, assume
that W “ Fv.

Let hpvq “ w, so Bpv, vq “ Bpw,wq. It is enough to show that there exists an isometry
g : V Ñ V with gpvq “ w. For this we give two arguments.

An argument that applies only in the symmetric case. This argument follows Professor
Nair’s notes, which follows Scharlau’s book.

If v and w are parallel, then w “ ˘v, so we can take g to be either the reflection rv or
multiplication by ˘1, both of which are isometries. Thus, assume that v and w span a
two-dimensional subspace of v.

Case 1. v´w is anisotropic. In this case, there exists a reflection rv´w about the hyperplane
orthogonal to v ´ w. Since Bpv, vq “ Bpw,wq, v ` w is orthogonal to v ´ w, and hence
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rv´wpv ` wq “ v ` w, while rv´wpv ´ wq “ ´pv ´ wq. This forces rv´wpvq “ w, as desired
(note that we have used the invertibility of 2 here).

Case 2. v´w is isotropic. Since Bpv´w, v´wq`Bpv`w, v`wq “ 2Bpv, vq`2Bpw,wq “

4Bpv, vq ‰ 0 (recall that 2 ‰ 0 in F by assumption), we get that ´v ´ w is anisotropic.
Thus, the argument of Case 1 applies with v replaced by ´v, and gives that r´v´w “ rv`w

sends ´v to w. Thus, rv`wrv sends v to w, as desired.

This finishes the symmetric case, now we consider a more general one.

An argument that applies in the symmteric and the Hermitian cases (not discussed in the
lecture). This argument follows Serge Lang’s book.

If v is parallel to w, say v “ aw with a a scalar, then since Bpv, vq “ Bpw,wq, we
have a “ ˘1 (in the symmetric bilinear case) or NE{F paq “ 1 (in the Hermitian case).
Therefore, we can take g to be multiplication by a, which is in either case an isometry.
Assume therefore that v, w span a two-dimensional subspace of V .

Case 1. Spanpv, wq Ă V is a nondegenerate subspace. If Bpv, wq ‰ 0, then the unique
scalar a such that Bpv, wq “ aBpw, vq satisfies the following property: a “ 1 in the symmet-

ric case, and NE{F paq “ 1 in the Hermitian case (where Bpv, wq “ Bpw, vq). If Bpv, wq “ 0,
choose any a with this property, and we automatically have Bpv, wq “ aBpw, vq. Since
Spanpv, wq is nondegenerate, we get a self-isometry of Spanpv, wq, extending h : Fv Ñ V ,
by sending v to w and w to av (that it is an isometry needs to be checked only on pairs
involving the basis elements v and w, which is easy in this case). This can be extended to
a self-isometry g : V Ñ V that acts as the identity on pSpanpv, wqqK (see Remark 10.24).
Clearly, g extends h, as desired.

Case 2. Spanpv, wq is a degenerate subspace. Let v0 span radpSpanpv, wqq (which cannot
be the whole of Spanpv, wq, since v is anisotropic). Let w “ av ` bv0, with a, b scalars.
Since Bpv, vq “ Bpw,wq, we get a “ ˘1 or NE{F paq “ 1. We can replace v by av (since
multiplication by a is an isometry), so we may now assume that w “ v ` bv0. Scaling
v0 if necessary, we have w “ v ` v0. By Lemma 10.17(ii), there exists u0 P vK such that
Bpv0, u0q “ 1, so Bpu0, v0q “ 1 as well. Spanpu0, v, v0q “ Spanpu0, w, v0q is nondegenerate.

Set a “ ´Bpv, vq´1 (we are reusing the letter a: the earlier a was different and serves
no purpose now). We claim that there exists a scalar b such that b ` b̄ “ ´aāBpv, vq “

´Bpv, vq
´1
: here, we write b̄ for b itself in the symmetric case, and for its GalpE{F q-

conjugate in the Hermitian case. In the symmetric case, this follows from the hypothesis
that 2 P Fˆ, while in the Hermitian case, this is the case because trE{F is surjective. One
then checks that the following defines an isometry of Spanpu0, v, v0q:

v0 ÞÑ v0, v ÞÑ v ` v0 “ w, u0 ÞÑ u0 ` av ` bv0

(check on each pair of basis elements). This isometry sends v to w. Since Spanpu0, v, v0q

is nondegenerate, this isometry can be extended to V (Remark 10.24). □

The above proof has the following corollary:
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Corollary 10.27. Let pV,Bq be a nondegenerate symmetric bilinear form over F (as usual,
charF ‰ 2), and let σ : W Ñ W 1 be an isometry between two subspaces of V . Then there
is a product of at most 2 ¨dimV reflections in B that restricts to σ. In particular, every ele-
ment of the orthogonal group OpV,Bq :“ AutpV,Bq is a product of at most 2pdimV q-many
reflections. If further pV,Bq is anisotropic, then we need at most dimV -many reflections.

Proof of Corollary 10.27. Easy exercise going through the proof of Theorem 10.18. Con-
sider the crucial step whereW “ Fv and we had to find an isometry V Ñ V taking v to w.
If v “ w nothing needed to be done; if v “ ´w one can use rv; when v´w was anisotropic,
this was accomplished with one reflection rv´w; and otherwise it was accomplished with 2
reflections rv and rv`w. □

Remark 10.28. (i) Something stronger than Corollary 10.27 holds: in its setting,
every element of OpV,Bq is a product of dimV -many reflections, just like in the
anisotropic case. This is a theorem of Cartan and Dieudonne, but doesn’t follow
from the proofs given above.

(ii) One can, somewhat analogously, prove that any self-isometry of a pV,Bq with B an
alternating nondegenerate bilinear form, is a product of what are called symplectic
transvections: each of these, say τ , by definition fixes a hyperplane W Ă V , and
satisfies τpvq ´ v P W for all v P V . We will not get into the details.

(iii) These theorems do not work as such for quadratic forms in characteristic two, but
some variants of theirs do hold: e.g., there is a form of Witt cancellation for nonde-
generate quadratic forms q whose associated bilinear forms Bq are nondegenerate.

Corollary 10.29. Consider the classical group SOnpRq “ tg P GLnpRq | g ¨ tg “ 1, det g “

1u. Give it the topology induced from the embedding SOnpRq ãÑ GLnpRq ãÑ Rn2
, obtained

by reading the matrix entries. Then SOnpRq is path connected.

Proof. SOnpRq is the special orthogonal group associated to the symmetric nondegenerate
bilinear form on Rn, thought of as the space of column vectors, given by the Euclidean inner
product pX, Y q ÞÑ tX ¨ Y . Thus, by Corollary 10.27, any element of OnpRq is a product of
reflections (with respect to the Euclidean inner product). By determinant considerations,
therefore, every element of SOnpRq is a product of an even number of reflections (a reflection
has determinant ´1, while by definition, any element of SOnpRq has determinant 1). Thus,
it now suffices to show that any product of two reflections with respect to the Euclidean
inner product, say rv ¨ rw, can be connected by a path to the identity. But Spanpv, wq is
equal to or contained in some two-dimensional subspace W Ă Rn, and rv ¨ rw then belongs
to SOpW q Ă SOpRnq, where we are viewing SOpW q as the subgroup of SOpRnq acting as
the identity on WK (use Remark 10.24). Since SOpW q – SOp2q is homeomorphic to S1

and hence path connected, rvrw lies in the path connected component of 1 P SOnpRq. □

10.4. Clifford algebras (Optional, not discussed in the lecture).



124

Definition 10.30. Let pV, qq be a quadratic space over F . Then the Clifford algebra CpV q

of V is defined to be the following quotient of the tensor algebra T pV q of V (over F ):

CpV q “ T pV q{ICpV q, where ICpV q “ the two-sided ideal generated by tvbv´qpvq | v P V u.

Denote the image of v1 b ¨ ¨ ¨ b vn P T nV in CpV q by v1 . . . vn.

ICpV q Ă CpV q is not a homogeneous ideal, so CpV q is not Z-graded. However, its gener-
ators are linear combinations of elements v b v of degree 2 and elements qpvq of degree 0,
so CpV q gets a Z{2Z-grading instead:

CpV q “ C0
pV q ‘ C1

pV q, where Ci
pV q “ the image of

à

n”i mod 2

T ipV q.

One motivation for considering Clifford algebras is that they can be used to define a two-
fold cover of special orthogonal groups, called spin groups: in appropriate settings and
appropriately interpreted, these are the universal covers of special orthogonal groups. Let
us assume that charF ‰ 2, so there exists a symmetric nondegenerate bilinear form B on
V such that qpvq “ Bpv, vq for all v P V .

Here are some basic properties of Clifford algebras – see Professor Nair’s notes or some
other reference for proofs:

(i) One can show that CpV q is finite dimensional over F , with dimension 2dimV .
(ii) In fact, the “2dimV ” can be realized as follows: if v1, . . . , vn is an orthogonal basis

for V (which exists since charF ‰ 2), then a basis for CpV q is given by txi1 . . . xir |

r ď n, 1 ď i1 ă i2 ă ¨ ¨ ¨ ă ir ď nu. This is not surprising: if q “ 0, then by
definition, the Clifford algebra CpV, qq is just the exterior algebra ΛpV q.

(iii) The main computation in proving this is: one notes that the Clifford algebra of
each Fvi is F rxs{px2 ´ qpviqq (easy), and shows that CppV, qq ‘ pV 1, q1qq is, for a
suitable notion of tensor product, CpV, qq b CpV 1, q1q.

(iv) From the above description for a basis of CpV q, it follows that the map V “

T 1pV q Ñ CpV q is an injection.

Here is some idea about why it is plausible that Clifford algebras can used to define covers
of special orthogonal groups.

‚ If v P V is anisotropic, then in CpV q we have v ¨ v “ qpvq P Fˆ Ă C0pV qˆ, so as an
element of CpV q, v is invertible.

‚ Now let x, v P V with x anisotropic. Then in CpV q, xv` vx “ px` vq2 ´ x2 ´ v2 “

qpx ` vq ´ qpxq ´ qpvq “ 2Bpx, vq. It follows that:

xvx´1
“ p´vx ` 2Bpx, vqqx´1

“ ´v ` 2
Bpx, vq

qpxq
x “ ´

´

v ´ 2
Bpx, vq

Bpx, xq
x

¯

“ ´rxpvq.

Thus, v ÞÑ ´rxpvq can be realized on V Ă CpV q as conjugation by x. This suggests that
anisotropic vectors in CpV q, which we have seen to be invertible in CpV q, may generate
something that maps to the orthogonal group.
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One considers:

‚ Let ε : CpV q Ñ CpV q be the automorphism that is the identity on C0pV q and acts
as multiplication by ´1 on C1pV q: it accounts for the “´” in the ´rxpvq above.

‚ One defines the Clifford group and the special Clifford group, also known as the
GPin group and the GSpin group, to be:

ΓpV q “ GPinpV q “ tx P CpV q
ˆ

| εpxqvx´1
P V @ v P V u.

SΓpV q “ GSpinpV q “ GPinpV q X C0
pV q

ˆ
“ tx P C0

pV q
ˆ

| xvx´1
P V @ v P V u.

Motivation. If x P V Ă CpV q is anisotropic, then εpxqvx´1 “ ´xvx´1 “ rxpvq P V ,
so x P ΓpV q. It acts as rx P OpV, qq on V Ă CpV q.
This generalizes: one shows that sending x P ΓpV q to pv ÞÑ εpxqvx´1q P GLpV q

has image in OpV q “ OpV, qq, 28 and gives us an exact sequence

1 Ñ Fˆ
Ñ ΓpV q Ñ OpV q Ñ 1

(these are nonabelian groups, so we haven’t defined exactness: but we mean that
Fˆ Ñ ΓpV q is injective, with image the kernel of ΓpV q Ñ OpV q, which is surjec-
tive). The presence of Fˆ Ă ΓpV q is not surprising: if x P V is anisotropic, then
for any α P Fˆ, x and αx are different elements in ΓpV q, but map to rx “ rαx in
OpV q.

This then restricts to

1 Ñ Fˆ
Ñ GSpinpV q Ñ SOpV q Ñ 1.

We thus get an “Fˆ”-cover of SOpV q. To cut it down to a double cover, we need
to remove roughly Fˆ-worth of material from GSpinpV q.

‚ On CpV q, one has x ÞÑ x˚, the unique anti-involution that is the identity on F and
on V : so pv1 . . . vnq˚ “ vn . . . v1 if v1, . . . , vn P V “ CpV q. Define Npxq “ xx˚ for
x P CpV q. One shows that N : CpV q Ñ CpV q restricts to N : ΓpV q Ñ Fˆ (easy).

‚ SpinpV q is defined to be kerpN |GSpinpV qq Ă GSpinpV q. Unsurprisingly, it maps to
SOpV q by x ÞÑ pV Q v ÞÑ xvx´1q. Alternatively,

SpinpV q “ tt P C0
pV q | t˚t “ 1, and tV t´1

“ V u.

Exercise 10.31. Read up about Witt rings, and more about Clifford algebras, from Pro-
fessor Nair’s notes.

11. A summary of very basic facts about classifying quadratic spaces

Let F be a field. We will assume that 2 ∤ charF , though it is not necessary for some of
the following. We will also restrict to nondegenerate pV, qq. In what follows, a lot of the
results will be stated without proof. Many of the proofs can be found in notes of Professor
William Casselman (Bill Casselman), whom I generally enjoy reading:

28This is easy if x P SΓpV q: qpxvx´1q “ pxvx´1q2 “ xv2x´1 “ xqpvqx´1 “ qpvq. And not much harder
if x P ΓpV qzSΓpV q.
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https://personal.math.ubc.ca/ cass/research/pdf/QForms.pdf

https://personal.math.ubc.ca/ cass/siegel/FiniteFields.pdf

‚ pV, qq with dimV “ 1 (and nondegenerate by the current convention): these are

classified by Fˆ{Fˆ2, as we saw in Lecture 9.
‚ pV, qq with dimV “ 2: A homework problem asked you to prove that these are
either hyperbolic planes, or of the form aNK{F with a P Fˆ, and K{F a separable
quadratic extension. Here K{F can be described as F r

?
´ det qs, and is hence

uniquely determined up to isomorphism by q (and pV, qq is a hyperbolic plane if
and only if ´ det q is already a square in F ). It is easy to see that aNK{F and a1NK1{F

are isometric if and only if K{F is isomorphic to K 1{F and a1 P a ¨NK{F pKˆq. This
continues to be true in characteristic two.

‚ When F is algebraically closed: then the isometry class of pV, qq is determined by
dimF V ; see Corollary 10.10(ii).

‚ When F “ R: This is handled by Sylvester’s law of inertia, see Corollary 10.10(iii).
This implies that there are only finitely many (d ` 1) nondegenerate quadratic
spaces of dimension d over R, up to isomorphism.

‚ When F is a finite field: In this case, one can show that pV, qq – pV 1, q1q if and
only if dimV “ dimV 1 and det q “ det q1. In other words, nondegenerate quadratic
forms over finite fields of odd characteristic are classified by their dimension and
determinant. When charF “ 2, the determinant no longer seems to be a reasonable
thing, but here is a characteristic-free description of the set of isometry classes of
pV, qq with dimV equal to a given d:

– If d is even, there are two: Hd{2 and Hpd{2q´1 ‘ NK{F , for the unique-up
to-isomorphism quadratic extension K{F (NK{F is surjective, so considering
aNK{F does note give us a different form).

– If d is odd, the various Hd{2 ‘ cx2, where c ranges over representatives for
Fˆ{Fˆ2: note that there is only one of these in characteristic two, but two in
odd characteristic.

‚ When F is a p-adic field Qp: the isometry class of pV, qq is completely determined
by dimV , det q and what is known as a Hasse-invariant; if q –

ř

aix
2
i , the Hasse-

invariant is given by
ś

iăjpai, ajq, where px, yq stands for what is called the Hilbert

symbol. Not all combinations of (dimension, discriminant, Hasse-invariant) arise,
but most do. Thus, like with R and with finite fields, there are only finitely many
isometry classes of nondegenerate quadratic forms of a given dimension.

‚ When F “ Q. The take home message here is that Q is far more complicated, for
the purposes of this theory, than C,R, finite fields and p-adic fields. For instance,
over Q, even with dimV “ 1, there are infinitely many isomorphism classes pV, qq:

this is because Qˆ{Qˆ2 is infinite (it is the product of ˘1 and the free abelian
group generated by the prime numbers). Hopefully this also gives some idea that
the classification of quadratic forms over Q is number theoretic in nature.
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One important result in the classification of quadratic forms over Q is the Hasse-
Minkowski theorem, which says that pV, qq and pV 1, q1q are isometric if and only if
they become isomorphic when considered over R as well as over each Qp (this helps
because the theory is simpler over R and over each Qp). A proof of this result is
given in Serre’s “A course in arithmetic”.
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11. Lecture 11 — Additive and abelian categories (Incomplete/extra
crude)

Today: all categories except possibly the presheaf categories that we encounter will be
locally small.

Very informal motivation. The categories AbGrp,R-Mod,RepkG etc. share many common
properties: each Hom set is actually a Hom group, they all have a ‘0’ object, the injectivity
of a morphism can be checked by simply seeing if the kernel is trivial, etc.

We will define

Pre-additive categories ù additive categories ù preabelian categories ù abelian categories,

each more restrictive than the other.

Notation 11.1. Today, for any category C, we will denote MorC by HomC: this feels more
natural when each HomCpX, Y q is a group.

11.1. Additive categories.

Definition 11.2. (i) A category C is called preadditive if we are given the structure
of an abelian group on HomCpX, Y q “ HompX, Y q for each X, Y P Ob C, such that
for all X, Y, Z P Ob C, the map

˝ : HompY, Zq ˆ HompX, Y q Ñ HompX,Zq

given by composition is Z-bilinear. 29

(ii) (a) A zero object in a category is an object which is both an initial object and
a terminal object; it may not exist, but if it does it is unique up to a unique
isomorphism. A (choice of a) zero object in a category C will be denoted by
0 “ 0C.

(b) If C has a zero object, then for all X, Y P Ob C, the set HompX, Y q has a
canonical element obtained as the composite X Ñ 0 Ñ Y . It will be called
the zero morphism, and be denoted 0 : X Ñ Y or 0 P HompX, Y q. Note that,
in this case each HompX, Y q is a pointed set (with 0 being the distinguished
element), in an appropriately functorial way, and the composite of any chain of
morphisms that contains a zero object or a zero morphism, is a zero morphism.

(iii) A preadditive category C is called an additive category if it has a zero object and
binary products. See Lemma 11.4 below for other equivalent ways to define an
additive category.

We will regularly use the following from now on, mostly without further mention.

Exercise 11.3. If a preadditive category has a zero object, then the identity element of
each of the groups HompX, Y q is the zero morphism.
Hint: Use the bilinearity, and the fact that each HompX, 0q and Homp0, Y q are the trivial
group.

29so not a group homomorphism or anything.
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Lemma 11.4. Let C be a preadditive category with a zero object. The following are equiv-
alent (and hence imposing any of them makes C into an additive category):

(i) C has binary products.
(ii) C has binary coproducts.
(iii) For each X, Y P Ob C, there exist an object X ‘ Y P Ob C and morphisms

X X ‘ Y Y
ιX

pX pY

ιY
,

such that

(41) pX ˝ ιX “ idX , pY ˝ ιY “ idY , pX ˝ ιY “ 0 P HompY,Xq, pY ˝ ιX “ 0 P HompX, Y q,

and such that

(42) ιX ˝ pX ` ιY ˝ pY “ idX‘Y .

When these equivalent conditions hold, pX ‘ Y, ιX , ιY q is a coproduct of X and Y , while
pX ‘ Y, pX , pY q is a product of X and Y .

Proof. If pX ‘Y “ X ˆY, pX , pY q is a product of X and Y , then by definition, D ιX : X Ñ

X ‘ Y such that pX ˝ ιX “ idX , and pY ˝ ιX “ 0. Similarly define ιY : Y Ñ X ‘ Y . (41)
is automatically satisfied. To see (42), since pX ‘ Y, pX , pY q is a product of X and Y , it
is enough to check that pX ˝ pιX ˝ pX ` ιY ˝ pY q “ pX , and pY ˝ pιX ˝ pX ` ιY ˝ pY q “ pY .
The former follows since

pX ˝pιX ˝pX`ιY ˝pY q
bilinearity

“ ppX ˝ιXq˝pX`ppX ˝ιY q˝pY “ idX ˝pX`0˝pY
Exercise 11.3

“ pX ,

and the latter is similar.

This gives (i) ñ (iii), and an appropriate variant of this argument gives (ii) ñ (iii).

Now suppose (iii) holds. Let us prove that pX ‘ Y, ιX , ιY q is a coproduct of X and Y , or
equivalently, that for all Z P Ob C:

HompX ‘ Y, Zq
p´˝ιX ,´˝ιY q

Ñ HompX,Zq ˆ HompY, Zq

is a bijection. For this, let us check that a two-sided inverse is given by

pf, gq ÞÑ f ˝ pX ` g ˝ pY .
30

Indeed, in one direction, use the computation

pf ˝pX`g˝pY q˝ιX
bilinearity

“ f ˝ppX ˝ιXq`g˝ppY ˝ιXq “ f ˝ idX `g˝0
Exercise 11.3

“ f ˝ idX “ f,

30How is this motivated? It can be helpful to think of how all this works in AbGrp. There, pX and pY
are the projections from X ‘ Y onto X and Y , and the equation being quoted is saying that a morphism
h on X ‘ Y is the sum of h ˝ pX and h ˝ pY , which is obvious for AbGrp. Thus, one often can guess such
arguments by working out the abelian group case, and then try to make the arguments ‘arrow-theoretic’
without involving the individual elements.



130

(where ‘bilinearity’ refers to the bilinearity of composition) and a similar computation with
ιY . For the other direction, since for all h P HompX ‘ Y, Zq, it follows from (42) that:

h “ h ˝ ιX ˝ pX ` h ˝ ιY ˝ pY P HompX ‘ Y, Zq.

This shows that ((iii)) implies (ii). A similar argument gives us that pX ‘ Y, pX , pY q is a
product of X and Y , so (iii) implies (i).

The proof that (iii) implies the other two conditions also gives the final assertion of the
theorem. □

Corollary 11.5. In an additive category, finite coproducts and products exist coincide,
i.e., if tXi | i P Iu in Ob C with I finite, then

š

iPI Xi and
ś

iPI Xi exist, and have the
same underlying object.

Proof of Corollary 11.5. The case of the empty product is taken care of by the zero object.
The case of nonempty products follows from an easy induction using Lemma 11.4. □

Definition 11.6. Given tXi | i P Iu in Ob C with I finite, we will denote the objects
š

iPI Xi “
ś

iPI Xi by
À

iPI Xi, and call it the direct sum of the Xi. Since
À

iPI Xi is
both a product and a coproduct of the Xi, it will be referred to as a biproduct of the
Xi. Check (exercise!) that a biproduct of tXi | i P Iu, with I finite, can also be defined
as a triple p

À

iPI Xi, pιiqiPI , ppiqiPIq, where
À

iPI Xi P Ob C, and ιj : Xj Ñ
À

iPI Xi and
pj :

À

iPI Xi Ñ Xj are morphisms in C for each j P I, subject to the conditions

pi˝ιj “ 0 P HompXj, Xiq, @ i ‰ j, pi˝ιi “ idXi
for each i P I, and

ÿ

iPI

ιi˝pi “ idÀ

iPI Xi
.

Example 11.7. (i) AbGrp,R-Mod,Mod-R, V eck, V ec
fd
k , R-Modfg (finitely generated

R-modules), RepkpGq “ krGs-Mod the category TorsAbGrp of torsion abelian
groups, the category of free R-modules, that of finitely presented R-modules etc.
are all additive categories.

(ii) The category of divisible abelian groups – those abelian groups A with the property
that the map a ÞÑ na is a surjection A Ñ A for all n P Zě1 – is additive.

(iii) The categories BanR and BanC of Banach spaces over R and C, and bounded
linear homomorphisms between them, are additive categories. Note that in these
categories, isomorphisms are not required to be norm-preserving; they just transfer
the norm on the source to a norm equivalent to the one on the target. Or, one can
think of Banach spaces not as complete normed linear spaces, but as topological
vector spaces whose topology can be given by a complete norm.

(iv) The category Z-FilAbGrp of abelian groups with an increasing filtration indexed
by Z. Its objects are pA, tAnunq, where A is an abelian group and tAnunPZ is an
increasing filtration of A index by Z, i.e., a doubly infinite sequence

0 Ă ¨ ¨ ¨A´1 Ă A0 Ă A1 Ă ¨ ¨ ¨ Ă A

of increasing subgroups of A (as usual, define the morphisms in this category). The
morphisms between pA, tAnunq and pB, tBnunq are homomorphisms f : A Ñ B
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such that fpAnq Ă Bn for all n. Similarly, one can also consider filtered vector
spaces.

(v) The categories Set, Top, the category of manifolds etc. are not additive categories:
they don’t have a zero object, since in these categories an initial object is not
isomorphic to a final object.

Exercise 11.8. Supply the details justifying the claims in Example 11.7.

11.2. Group objects. This subsection will be slightly terse, and perhaps slightly informal.
I will not ask questions in homework or examinations based on it, but I recommend your
reading it, since it is a basic notion that is helpful in other topics you might learn, such
as the theory of algebraic groups. Its relevance here is that it addresses the question: why
not define an additive category as a category where every object has some structure that
imitates the structure of abelian groups? And indeed, that is sort of possible.

Definition 11.9. A group object in a category C is an object Y P Ob C, together with
31 the structure of an abelian group on hY pXq “ HompX, Y q for each X P Ob C, which
is functorial in X. In other words, it consists of the object Y together with a functor
F : Cop ù Grp, lifting hY : Cop Ñ Set in the sense that hY “ Forget ˝ F .

We might often refer to Y itself as the group object when the functor F is understood: this
is an abuse of notation. When each hY pXq “ F pXq is an abelian group, we will informally
and non-standardly refer to Y as an abelian group object.

Remark 11.10. Some people define group objects only for categories that have finite
products and a final object 1. In this case, an alternate definition for a group object is as
follows: it is an object Y P Ob C together with morphisms

‚ m : Y ˆ Y Ñ Y (playing the role of group multiplication),
‚ e : 1 Ñ Y (playing the role of the inclusion of the identity element in Y ), and
‚ inv : Y Ñ Y (playing the role of inversion in the group),

such that:

‚ m is associative: m ˝ pm ˆ idY q “ m ˝ pidY ˆmq : Y ˆ Y ˆ Y Ñ Y ;
‚ e is a two-sided unit of m: m ˝ pidY ˆeq “ pr1 : Y ˆ 1 Ñ Y and m ˝ pe ˆ idY q “

pr2 : 1 ˆ Y Ñ Y ;
‚ inv is a two-sided inverse with respect to m: m ˝ pidY ˆinvq and m ˝ pinv ˆ idY q

are both the composite Y Ñ 1
e

Ñ Y .

Exercise 11.11. (i) Write out in greater detail the definition for a group object in
Remark 11.10, and verify the equivalence of that definition with the one in Defini-
tion 11.9.
Hint: The verification is just an application of the Yoneda lemma.

31The ‘together with’ signifies that a group object is not just an object in the category satisfying some
conditions/properties, but an object plus some extra structure. This is like how a group is not a set with
some properties, but a set plus some operations.
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(ii) How do you express the condition of a group object being an abelian group object,
using the approach of Remark 11.10?

Example 11.12. A group object in Set is a group, a group object in Top is a topological
group (where we do not require topological groups to be Hausdorff; otherwise use the
category of Hausdorff topological spaces), a group object in the category of manifolds is a
Lie group, a group object in the category of algebraic varieties (resp., algebraic schemes)
over a field k is an algebraic group (resp., algebraic group scheme) over k. Prove as many
of these as you can, as an exercise.

Conclusion: Thus, given an additive category C, every Y P Ob C can be thought of
as (or rather, naturally enhanced into) an abelian group object, and the resulting map
m : Y ˆ Y “ Y ‘ Y Ñ Y gives the group structure on HompX, Y q:
(43)

HompX, Y q ˆ HompX, Y q
df. of prod.

“ HompX, Y ˆ Y q “ HompX, Y ‘ Y q
m˝´
Ñ HompX, Y q.

11.3. Additiveness is a property, not an extra structure. We would like to describe
the map Y ‘ Y Ñ Y above; it turns out to be the codiagonal morphism defined below.

Definition 11.13. For this definition, allow C to be an arbitrary category.

‚ If Y P Ob C and pY ˆY, p1, p2q is a product of Y with itself, the associated diagonal
morphism is the unique morphism ∆ : Y Ñ Y ˆY defined by the requirement that
p1 ˝ ∆ “ p2 ˝ ∆ “ idY .

‚ Similarly, if pY
š

Y, ι1, ι2q is a coproduct of Y with itself, the associated codiagonal
morphism is the unique morphism ∇ : Y

š

Y Ñ Y is defined by the requirement
that ∇ ˝ ι1 “ ∇ ˝ ι2 “ idY .

Example 11.14. (i) In Set or Top, each diagonal ∆ : Y Ñ Y ˆ Y is given by y ÞÑ

py, yq (hence the term ‘diagonal’), while each codiagonal ∇ : Y
š

Y Ñ Y sends
each py, iq P Y ˆ t0u Y Y ˆ t1u “ Y

š

Y to y.
(ii) In AbGrp, each diagonal ∆ : Y Ñ Y ˆ Y is again given by y ÞÑ py, yq, but each

codiagonal ∇ : Y
š

Y “ Y ‘ Y Ñ Y is given by py1, y2q ÞÑ y1 ` y2. This suggests
that the codiagonal could give the group structures in a general additive category.
This is indeed, what we are going to see below.

Lemma 11.15. Let C be an additive category, and let Y P Ob C. The ‘multiplication’ map
m : Y ‘Y “ Y ˆY Ñ Y (see around (43) for what this means) is the codiagonal morphism
Y ‘ Y Ñ Y .

For those who are not reading the subsection on group objects (Subsection 11.2) in detail,
we will prove another version of Lemma 11.15 below, namely Lemma 11.16, which doesn’t
refer to that subsection. Lemma 11.15 is similar and simpler, though it also follows from
Lemma 11.16.
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Lemma 11.16. Let C be an additive category, and let X, Y P Ob C. Let pY, p1, p2q be the
product of Y with itself. Then the group multiplication in HompX, Y q coincides with the
following composite:
(44)

HompX, Y q ˆ HompX, Y q
p´˝p1,´˝p2q´1

Ñ HompX, Y ˆ Y q “ HompX, Y ‘ Y q
∇˝´
Ñ HompX, Y q,

where ∇ : Y ‘ Y Ñ Y is the codiagonal.

Proof. Write the coproduct of Y with itself as pY, ι1, ι2q.

By the Z-bilinearity of the group structures under composition, the given composite is a
group homomorphism. Therefore, to show that it coincides with the group multiplication
on HompX, Y q, it is enough to show that it takes each pf, 0q and p0, fq to f .

This in turn follows if we show that, under the identification

HompX, Y q ˆ HompX, Y q
p´˝p1,´˝p2q´1

Ñ HompX, Y ˆ Y q “ HompX, Y ‘ Y q,

pf, 0q and p0, fq correspond respectively to ι1 ˝ f and ι2 ˝ f . But this is because

p1 ˝ ι1 ˝ f “ f, p2 ˝ ι1 ˝ f “ 0, p1 ˝ ι2 ˝ f “ 0, and p2 ˝ ι2 ˝ f “ f.

□

Exercise 11.17. Make sense of and justify the following assertion. Another way to write
the description of the group multiplication on HompX, Y q in (44) is as follows: if f, g P

HompX, Y q, then f ` g P HompX, Y q is given by:

(45) X
∆
Ñ X ‘ X

f‘g
Ñ Y ‘ Y

∇
Ñ X.

Remark 11.18. Thus, if a category C can be made into an additive category by putting
group structures on all those HompX, Y q, then there is only one way of putting those group
structures, namely, given by (44), which depends only on the underlying category, and not
the extra information which supposedly constituted the additive category. In other words,
every additive category is uniquely determined by its underlying category.
Slogan. The additiveness of a category is a property of the category, and not extra structure.

11.4. Additive functors.

Definition 11.19. An additive functor is a functor F : C ù D between additive cate-
gories C and D, such that for all X, Y P Ob C:

HomCpX, Y q Ñ HomDpF pXq, F pY qq, given by f ÞÑ F pfq,

is a group homomorphism.

Lemma 11.20. If F : C ù D is a functor, the following are equivalent:

(i) F is additive.
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(ii) F takes a zero object in C to a zero object in D, and a binary coproduct in C to one in
D: F p0Cq “ 0D using obvious notation, and given a binary coproduct pX‘Y, ιX , ιY q

of X and Y , pF pX ‘ Y q, F pιXq, F pιY qq is a coproduct of F pXq and F pY q (or in
short, the ‘obvious map’ F pXq ‘ F pY q Ñ F pX ‘ Y q is an isomorphism);

(iii) F takes a zero object in C to a zero object in D, and a binary product in C to
one in D: F p0Cq “ 0D, and given a binary product pX ‘ Y, pX , pY q of X and Y ,
pF pX‘Y q, F ppXq, F ppY qq is a product of F pXq and F pY q (or in short, the ‘obvious
map’ F pX ‘ Y q Ñ F pXq ‘ F pY q is an isomorphism).

Remark 11.21. The argument that (ii) and (iii) imply (i) was not discussed in Lec-
ture 11; the result itself was stated at the beginning of Lecture 12. On the other hand,
we will not use it in any crucial way: in fact, only to discuss some characterizations
of left exactness in Lecture 12. What is given here is not a very good exposition. If
you wish to follow it but find it difficult, you can ask me, or look up Lemma 12.7.1 in
https://stacks.math.columbia.edu/tag/010M .

Proof of Lemma 11.20. First let us assume (i), and prove (ii) and (iii). We have

idF p0Cq “ F pid0Cq “ F p0 P HomCp0, 0qq “ p0 P HomDpF p0q, F p0qq,

where the first step used that any functor preserves identity morphisms, while the last step
used that an additive functor takes a zero morphism to a zero morphism (as follows using
Exercise 11.3). Thus, the identity morphism of F p0q is also a zero morphism of F p0q, so
the claim that F p0Cq is a zero object of D follows from the observation that any object Y
whose zero morphism is also an identity morphism is a zero object: indeed, in addition to
0 Ñ Y Ñ 0 being the identity, Y Ñ 0 Ñ Y equals 0 : Y Ñ Y and hence idY : Y Ñ Y .

Now, for the statements about coproducts and products, it is enough to prove that if
pX ‘ Y, ιX , ιY , pX , pY q are as in (iii) of Lemma 11.4, i.e., if these satisfy (41) and (42),
then so do pF pX ‘ Y, F pιXq, F pιY q, F ppXq, F ppY qq. Since our proof so far shows that F
sends a zero morphism to a zero morphism (and since it respects identity morphisms and
compositions, being a functor), the condition imposed by (41) follows. The same for (42)
follows from the fact that F being additive respects the ‘`’ in it as well.

This gives both (ii) and (iii).

Now note that (ii) and (iii) are equivalent, since F pXq‘F pY q Ñ F pX‘Y q Ñ F pXq‘F pY q

is the identity (to see this, apply F to (41)). Therefore, it is now enough to assume both
(ii) and (iii), and show (i).

We already know that F sends 0C to 0D, so it remains to show that it induces a group
homomorphism HomCpX, Y q Ñ HomDpF pXq, F pY qq, i.e., that F pf ` gq “ F pfq ` F pgq P

HomDpF pXq, F pY qq, for all f, g P HomCpX, Y q. Let pf, gq P HomCpX, Y ‘ Y q be such that
p1 ˝ pf, gq “ f and p2 ˝ pf, gq “ g. Then by Lemma 11.16, f ` g “ ∇Y ˝ pf, gq, where
∇Y : Y ‘ Y Ñ Y is the codiagonal. Similarly, we have an expression F pfq ` F pgq “

∇F pY q ˝ pF pfq, F pgqq.
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Thus, it is enough to show that∇F pY q˝pF pfq, F pgqq equals F p∇Y ˝pf, gqq “ F p∇Y q˝F pf, gq.
It follows from (iii) that the isomorphism F pY ‘Y q Ñ F pY q ‘F pY q transports F pf, gq to
pF pfq, F pgqq. Therefore, it is enough to show that the inverse isomorphism F pY q‘F pY q Ñ

F pY ‘ Y q transports ∇F pY q : F pY q ‘ F pY q Ñ F pY q to F p∇Y q : F pY ‘ Y q Ñ F pY q.

The observation “F pXq ‘ F pY q Ñ F pX ‘ Y q Ñ F pXq ‘ F pY q is the identity” gives that
this inverse isomorphism is the obvious map F pY q ‘ F pY q Ñ F pY ‘ Y q (built out of
pF pι1q, F pι2qq, and hence the claim that it transports ∇F pY q : F pY q ‘ F pY q Ñ F pY q to
F p∇Y q : F pY ‘ Y q Ñ F pY q follows from (ii).

□

Example 11.22. Most of the functors we saw in the setting of R-modules, such as
HomRpM,´q,HomRp´,Mq,´ bR M etc. are all additive functors (including when R is
noncommutative, in which case the target should be taken as AbGrp).

11.5. Kernels and cokernels.

Definition 11.23. Let f : X Ñ Y be a morphism in an additive category C.

(i) A kernel of f may be defined in any of the following equivalent ways (some of these
are obtained by rephrasing some others):
(a) It is an equalizer of f and 0 : X Ñ Y .
(b) It is a pair pker f, ιq consisting of an object ker f P Ob C, together with a

morphism ι : ker f Ñ X, such that for all h : Z Ñ X in C with the property
that f ˝ h “ 0 : Z Ñ Y , there exists a unique map g : Z Ñ kerpfq with the
property that h “ ι ˝ g:

ker f X Y

Z

ι f

h
D! g

0
.

(c) It is an object ker f representing the functor C Ñ Set given by

Z Þ⇝ kerpf ˝ ´ : HompZ,Xq Ñ HompZ, Y qq, 32

together with a natural isomorphism between hker f and this functor.
(d) It is a limit of the diagram

0

��
X

f // Y

.

32As usual, define it at the level of morphisms.
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(ii) One similarly defines the cokernel of f , which is a coequalizer of f and 0, and is
also a colimit of the diagram:

X
f // Y

��
0

.

If it exists, it corepresents the functor C Ñ AbGrp given by Z ÞÑ cokerp´ ˝ f :
HompY, Zq Ñ HompX,Zqq.

(iii) A subobject of X is a monomorphism Z Ñ X, and a quotient object of X is an
epimorphism X Ñ Z. Given a subobject Z ãÑ X, we might often write X{Z for
cokerpZ ãÑ Xq (in analogy with what happens for AbGrp).

As usual, kernels and cokernels are unique when they exist.

Exercise 11.24. Let C be an additive category.

(i) Given f, g : X Ñ Y in C, show that their equalizer is kerpf ´ gq, and that their
coequalizer if cokerpf ´ gq. Conclude that all equalizers exist in C if and only if all
kernels exist in C, and similarly with cokernels and coequalizers.

(ii) Show that f : X Ñ Y in C is a monomorphism if and only if ker f “ 0 : 0C Ñ X,
where 0C P Ob C is a zero object. Prove the analogous result for epimorphisms and
cokernels.

(iii) Show that every kernel is a monomorphism, and that every cokernel is an epimor-
phism.
Note: It may not be the case that every monomorphism is a kernel, or that every
epimorphism is a cokernel. This being so is one of the characterizations of an ad-
ditive category with kernels and cokernels being an abelian category, a notion we
will see in the next section.

(iv) (a) In an additive category C, if a composite X Ñ Y Ñ Z is a monomorphism,
show that X Ñ Y is a monomorphism. More generally, show that kerpX Ñ

Y q Ñ X factors through kerpX Ñ Y Ñ Zq Ñ X (and why is this “More
generally”?).

(b) If this composite X Ñ Y Ñ Z is an epimorphism, show that Y Ñ Z is an
epimorphism. More generally, show that Z Ñ cokerpX Ñ Y Ñ Zq factors
through Z Ñ cokerpY Ñ Zq.

Note: Please do this; it is very easy.

11.6. Preabelian categories.

Definition 11.25. An additive category C is called preabelian if it satisfies:

(AB1) Kernels and cokernels exist in C.
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Example 11.26. (i) AbGrp,R-Mod,Mod-R, V eck, V ec
fd
k andRepkpGq are preabelian,

where each kernel and cokernel is ‘the usual ones’ (or rather, the inclusion morphism
of the usual kernel in the source, and the surjection to the usual cokernel from the
target; in some cases we abuse notation by identifying kernels and cokernels with
their underlying objects, but remember that these are really morphisms).

(ii) The full category DivAbGrp of AbGrp consisting of all the divisible abelian groups
is preabelian: if f : A Ñ B is a homomorphism of divisible abelian groups, the
cokernel of f as computed in AbGrp, is divisible, and is hence also a cokernel in
DivAbGrp. On the other hand, the kernel of f as computed in AbGrp may not be
divisible, but it has a ‘maximal divisible subgroup’, consisting of all its ‘infinitely
divisible’ elements, which functions as a kernel in DivAbGrp.

(iii) The categories BanR and BanC of Banach spaces over R and C, and bounded
linear maps, is preabelian: given f : X Ñ Y , its kernel is the ‘usual one’, while its
cokernel is Y {fpXq, the quotient of Y by the closure of fpXq in Y .

(iv) The category Z-FilAbGrp of filtered abelian groups is preabelian (as is, simi-
larly, the category of filtered vector spaces over k, etc.): given f : pA, tAnunq Ñ

pB, tBnunq, a kernel for f is pker f, tker f XAnunq, and a cokernel for f is given by
pcoker f, tB̄nunq, where B̄n is the image of Bn in coker f .

(v) The category HTAG of Hausdorff topological abelian groups is preabelian: the
kernels and the cokernels are as in BanR or BanC.

(vi) Let R be a commutative ring (for simplicity, I guess). The category R-Modfg of
finitely generated R is preabelian if and only if R is Noetherian.

Preabelian categories are not enough, because often monomorphisms/epimorphisms/kernels/cokernels
can behave badly:

Example 11.27. (i) In DivAbGrp, Q Ñ Q{Z is both a monomorphism and an epi-
morphism (and thus have trivial kernel and cokernel), but it is not an isomorphism
since there is no nonzero homomorphism Q{Z Ñ Q.

(ii) In BanR or BanC, if f : X Ñ Y is injective with dense image (e.g., Cr0, 1s ãÑ

L2pr0, 1sq), then f is both a monomorphism and an epimorphism, but not an iso-
morphism. Similar comments apply to the categoryHTAG of Hausdorff topological
abelian groups. Alternatively, for HTAG, if G is a Hausdorff topological abelian
group and Gd is G with discrete topology, then Gd Ñ G is both a monomorphism
and an epimorphism, but not an isomorphism.

(iii) In the category Z-FilAbGrp of abelian groups with an increazing Z-filtration, con-
sider objects pA, tAnunq and pB, tBnunq, where A “ B “ Z,

An “

#

2Z, if n ě 0,

0, if n ă 0
, and Bn “

#

Z, if n ě 0,

0, if n ă 0
.

There is an obvious morphism pA, tAnunq Ñ pB, tBnunq, defined by the identity
map Z Ñ Z, which has trivial kernel and cokernel, but is not an isomorphism.

Exercise 11.28. Justify the claims in Example 11.26 and Example 11.27.
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11.7. Abelian categories. To define abelian categories, let us first try to define the image
of a morphism f : X Ñ Y in a preabelian category C, using kernels and cokernels. There
seem to be two obvious candidates:

Definition 11.29. Let f : X Ñ Y be a morphism in a preabelian category C. Then:

(i) An image of f is defined to be kerpcoker fq: if g : Y Ñ Z is a cokernel of f , then
an image of f is, by definition, a kernel impfq Ñ Y of g.

(ii) A coimage of f is defined to be cokerpker fq: if g : Z Ñ X is a kernel of f , then a
coimage of f is, by definition, a cokernel X Ñ coimpfq of g.

Note that the image and coimage of f are unique up to a unique isomorphism.

Let K Ñ X be a kernel of f , and Y Ñ C a cokernel of f . Write f 5 : X Ñ coimpfq and
f 6 : X Ñ impfq for a coimage and an image of f , respectively.

(46) K // X

f 5

����

f // Y // C

coimpfq
f̄ //

f˛

99

impfq
?�
f 6

OO .

Note that f 5, being a cokernel, is an epimorphism, while f 6, being a kernel, is a monomor-
phism (see Exercise 11.24(iii)).

We claim that we have a unique map f̄ : coimpfq Ñ impfq fitting into the above commu-
tative diagram, i.e., such that f “ f 6 ˝ f̄ ˝ f 5. The follows because:

‚ Since f ˝ pK Ñ Xq “ 0, we get f ˛ : coimpfq Ñ Y such that f ˛ ˝ f 5 “ f (as shown
in the diagram).

‚ Since pY Ñ Cq ˝ f “ 0 and since f 5 : X Ñ coimpfq is an epimorphism, , it follows
that pY Ñ Cq ˝ f ˛ “ 0. Since f 6 is a kernel of Y Ñ C, we get a factorization
f ˛ “ f 6 ˝ f̄ . Clearly it is unique, proving the claim.

Example 11.30. Compute the following examples for images and coimages:

(i) For AbGrp,R-Mod,Mod-R, V eck and RepkpGq, given a morphism f : M Ñ N ,
coim f isM{ ker f , while an image of f is given by the inclusion impfq :“ fpMq ãÑ

N , with fpMq thought of as a module in the obvious way. Further, the map
f̄ : coim f Ñ im f is given bym`ker f ÞÑ fpmq. To say that this is an isomorphism
is the first isomorphism theorem.

(ii) In BanR or BanC, given f : X Ñ Y , coim f Ñ im f identifies with the inclusion

fpXq Ñ fpXq, where fpXq is made into a Banach space as the quotient of X by

ker f , while fpXq gets the induced Banach space structure from Y . Thus, coim f Ñ

im f is not always an isomorphism (e.g., Cr0, 1s Ñ L2pr0, 1sq). Something similar
applies to the category HTAG of Hausdorff topological abelian groups.
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(iii) In DivAbGrp, given f : X Ñ Y , coim f Ñ im f identifies with the map X{A Ñ

fpXq, where A is the kernel of f inDivAbGrp. Thus, for Q Ñ Q{Z, coim f Ñ im f
identifies with Q Ñ Q{Z, and is hence not an isomorphism.

(iv) In Z-FilAbGrp, given f : pA, tAnunq Ñ pB, tBnunq, im f Ñ coim f identifies with
the obvious map pA{ ker f, tAn ` ker funq Ñ pfpAq, tfpAq XBnunq. In general, the
containment fpAq X Bn Ą fpAn ` ker fq is not an equality, so coim f Ñ im f is
not always an isomorphism.

Hopefully the above examples tell us that the following definition of an abelian category
sort of amounts to imposing the first isomorphism theorem:

Definition 11.31. A category C is called abelian if it is preabelian, and satisfies:

(AB2) For every f : X Ñ Y in C, the map f̄ : coimf Ñ imf as in (46) is an isomorphism.

Example 11.32. It follows that AbGrp,R-Mod,Mod-R, V eck, RepkpGq are abelian cate-
gories, while BanR, BanC, HTAG,DivAbGrp and Z-FilAbGrp are not abelian categories.

This can also be seen from Example 11.27; see Lemma 11.33 below.

Abelian categories avoid some of the problems in Example 11.27:

Lemma 11.33. Any morphism f : X Ñ Y in an abelian category that is both a monomor-
phism and an epimorphism, is an isomorphism.

Proof. Since f is a monomorphism, X Ñ coim f identifies with idX : X Ñ X, and since f
is an epimorphism, im f Ñ Y identifies with idY : Y Ñ Y . Therefore, f̄ : coim f Ñ im f
identifies with f : X Ñ Y , forcing f to be an isomorphism by (AB2). □

Exercise 11.34. (i) In the situation of (46), show that kerpf̄ ˝ f 5q “ ker f , and
cokerpf 6 ˝ f̄q “ coker f .

(ii) (To be checked, I haven’t done this myself). In the situation of (46), show that
the morphism f̄ is both a monomorphism and an epimorphism. As we have noted
before, this is not enough to ensure that f̄ is an isomorphism.

(iii) (To be checked, I haven’t done this myself). In some sources, one sees the following
notions of image and coimage for a general category:

‚ An image of f is a monomorphism i : I ãÑ Y through which f : X Ñ Y
factors, and such that given any other monomorphism i1 : I 1 Ñ Y through
which f factors, there exists a unique v : I Ñ I 1 such that i “ i1 ˝ v. (Think
of I 1 as being “bigger” than I”, e.g., it could be Y itself; so the image is the
“smallest” monomorphism through which f factors).

‚ Similarly, a coimage of f is an epimorphism c : X Ñ C through which f factors,
where C is “the smallest possible”, i.e., such that any other epimorphism
c1 : X Ñ C 1 through which f factors is the composite c1 “ u ˝ c for a unique
map u : C 1 Ñ C.
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Show that for an abelian (note that I am not saying additive) category, these notions
of image and coimage agree with the notions we have defined.
Note: Thus, if I understand it right, the point seems to as follows. For a general
additive category, there seems to be no way to describe image and coimage using
universal properties – because kernel and cokernel have sufficiently ‘differently ori-
ented’ universal properties that a kernel of a cokernel or a cokernel of a kernel seems
to have neither. But for an abelian category, where the coimage and the image are
forced to agree, these compensate for each other’s awkwardness.

Exercise 11.35. Prove, or look up a proof, that (AB2) can be described in the following
equivalent ways. The following conditions on a preabelian category C are equivalent:

(i) It satisfies (AB2), i.e., it is an abelian category;
(ii) (Okay, this is just a rephrasing of the (AB2) given above) Given any morphism

f : X Ñ Y in C, there exists a sequence

K Ñ X Ñ I Ñ Y Ñ C,

where:
‚ The composite X Ñ I Ñ Y equals f ;
‚ K Ñ X is a kernel of f and Y Ñ C is a cokernel of f ;
‚ X Ñ I is a coimage of f , and I Ñ Y is an image of f ;

(iii) Any monomorphism in C is a kernel, and any epimorphism in C is a cokernel;
(iv) Any monomorphism in C is the kernel of its cokernel, and any epimorphism in C is

the cokernel of its kernel.
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12. Lecture 12 — Abelian categories (contd.; incomplete/extra crude)

Today again, all categories except possibly presheaf categories will be locally small. Today
we will mostly work with abelian categories, which we will denote by A,B etc. rather than
C,D etc. Since many arguments are ‘routine’ but take time to write down, they will be
skipped.

12.1. Constructing abelian categories from existing ones.

Proposition 12.1. Let B be a full subcategory of an abelian category A. Assume:

(i) ObB contains a zero object of A.
(ii) @X, Y P ObB, some direct sum X ‘ Y of X, Y P ObA lies in B.
(iii) @ f : X Ñ Y in B, B contains some kernel of f in A, and some cokernel of f in

A.

Proof. This is easy, but let us list the steps:

‚ B is preadditive: Since B is a full subcategory of A, HomBpX, Y q “ HomApX, Y q

is a group for all X, Y P ObB, and clearly bilinearity of composition is satisfied.
‚ B is additive: show that the zero objects and biproducts are inherited by B from
A.

‚ B is pre-abelian: show that for all f : X Ñ Y in B, any kernel or cokernel of f in
A that lies in B (as is assumed to exist) also functions as a kernel or cokernel for f
in B.

‚ B is abelian: show, using the above observation on kernels and cokernels, that for
all f : X Ñ Y in B, some coimage X ↠ coimpfq and some image impfq ãÑ Y of f
can be taken to lie in B, and that for these choices, the map f̄ : coimpfq Ñ impfq

from the condition (AB2) also functions as such a map for A, and is hence an
isomorphism.

□

The following was Rishiraj’s question from Lecture 11.

Proposition 12.2. The product of two abelian categories is abelian, and in an ‘obvious’
way.

Proof. Exercise. □

Proposition 12.3. Let I be a small category and A an abelian category. The category
FunpI,Aq of functors from I to A, whose morphisms are given by natural transformations
(it was introduced in Lecture 2) is an abelian category with the group laws, zero objects,
biproducts, kernels and cokernels defined in an appropriately ‘pointwise’ sense.

Proof. Exercise. □
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Example 12.4. Here are two examples copied from Arvind’s notes (for a third example
of quivers, you can look up his notes):

(i) Recall the category ˚G which has only one object, ˚, and where MorCp˚, ˚q is given by
G. Then RepkpGq “ Funp˚G, V eckq, recovering that RepkpGq is an abelian category
(we can also recover this by identifying RepkpGq with krGs-Mod).

(ii) If X is a topological space, let OpenpXq be the category of open subsets of X,
where morphisms are given by inclusions. Then the category of presheaves on X
with values in A is, by definition, the category PreshpXq :“ FunpOpenpXqop,Aq,
and is hence abelian. Concretely, a presheaf on X assigns to each open subset
U Ă X an element FU P A, and whenever U Ă V Ă X are open subsets, we are
given restriction maps FV Ñ FU , compatible with chains of inclusions U Ă V Ă W
(e.g., A could be V ecC, FU could be the the vector space of continuous complex
valued functions on U , and FV Ñ FU could be the restriction of functions).

12.2. Exactness and “ker f{im f”. Let A be an abelian category.

Definition 12.5. A chain X
f

Ñ Y
g

Ñ Z of maps in A is exact if im f ãÑ Y is a kernel of
g.

Here is another way to put it, to help us understand it better. If g˝f “ 0, in AbGrp we have
im f Ă ker g, which for abelian categories should be read as an obvious monomorphism,
im f ãÑ ker g:

X

����

f // Y
g // Z

coimpfq
f̄ // 44impfq

?�

OO

� � // ker g
2 R

dd .

To see this, note that:

‚ Since g ˝ f “ 0 and since X Ñ coimpfq is an epimorphism, we have g ˝ pcoimpfq Ñ

Y q “ 0 (use the definition of an epimorphism). By the universal property of ker g,
this naturally gives a map coimpfq Ñ ker g.

‚ But because f̄ : coimpfq Ñ impfq is an isomorphism – we are in an abelian category
and not just a preabelian one – this can be promoted to a map impfq Ñ ker g.

‚ This map impfq Ñ ker g is a monomorphism, since impfq Ñ Y is (use one of the
questions from Exercise 11.24).

Exercise 12.6. The motivation for this exercise is that in AbGrp, assuming g ˝ f “ 0,
pker gq{pim fq can be described in many ways:
‚ cokerpX Ñ ker gq; ‚ pker gq{pim fq; ‚ impker g Ñ coker fq; and ‚ kerpcoker f Ñ im gq.
Show that these descriptions adapt to a general abelian category A.
Hint: We will probably not need these descriptions, but perhaps this amounts to some
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practice in thinking without elements. All this is described in the book of Kashiwara and
Schapira, to which you can refer if the following hint is not enough. Consider diagrams:

coimpfq
� � φ // ker g� _

��
X

OOOO

f // Y
g //

����

Z

coker f
ψ // im g

.

Let u denote the composite ker g ãÑ Y ↠ coker f . Show that φ is a kernel for u, and that
ψ is a cokernel for u. Therefore, we get:

(47) cokerφ – coimpuq
pAB2q

– impuq – kerψ.

Definition 12.7. Given a chain of maps X
f

Ñ Y
g

Ñ Z such that g ˝ f “ 0, define

HpX
f

Ñ Y
g

Ñ Zq “ cokerpimpfq Ñ kerpgqq.

Thus, HpX
f

Ñ Y
g

Ñ Zq also has several descriptions, as in Exercise 12.6.

We will use the following exercise, often without further comment, from now on.

Exercise 12.8. Let A be an abelian category. Consider chains of maps X
f

Ñ Y
g

Ñ Z in
A such that g ˝ f “ 0. Make these into (the objects of) a category, whose morphisms can
be described by diagrams:

X
f //

��

Y
g //

��

Z

��
X 1

f 1

// Y 1
g1

// Z 1

,

both whose squares commute. Extend Hp´q, which is currently defined only on the objects
of this category, to a functor from this category to A.

Remark 12.9. (i) Note that doing the above exercise involves the global axiom of

choice: HpX
f

Ñ Y
g

Ñ Zq is only well-defined up to a unique isomorphism, since
ker g and impfq themselves are. Thus, defining Hp´q as a functor involves choosing,

for each object X
f

Ñ Y
g

Ñ Z in this category, a choice of HpX
f

Ñ Y
g

Ñ Zq.
(ii) This also illustrates the importance of having things defined up to a unique iso-

morphism, rather than just up to an isomorphism: without things defined up to a
unique isomorphism, definingHp´q at the level of morphisms would involve choices,
which would interfere with enuring that Hp´q respects compositions and the iden-
tity. Thus, things being “unique up to a unique isomorphism” is crucial to even
having various functors defined.
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Now, as in Lecture 1, we define:

Definition 12.10. Let A be an abelian category.

(i) A chain or a sequence of morphisms in A is said to be exact if it is exact at each
object in the chain that is a source of some map in the chain and a target of another.
Thus, X Ñ Y Ñ Z Ñ W Ñ U is exact if it is exact at Y, Z and W .

(ii) A short exact sequence in A is a chain of morphisms in A of the form

(48) 0 Ñ X Ñ Y Ñ Z Ñ 0

that is exact. Short exact sequences in A form an abelian category, which we may
often denote by SESpAq.

We will use the following exercise, too, often:

Exercise 12.11. Show that (48) is exact if and only if X Ñ Y is a monomorphism, Y Ñ Z
is an epimorphism, and the map impfq Ñ ker g is an isomorphism.

Remark 12.12. Any morphism f : X Ñ Y in an abelian category ‘breaks up’ into two
short exact sequences, as follows:

0 Ñ ker f Ñ X Ñ coimpfq “ impfq Ñ 0,

and
0 Ñ coimpfq “ impfq Ñ Y Ñ coker f Ñ 0.

12.3. Left and right exactness for functors. First, we define left and right exactness
for categories that may not be abelian (but are subject to some restrictions):

Definition 12.13. (i) Let F : C ù D be a functor, and assume that C has finite
limits. We say that F is left exact if it preserves finite limits.

(ii) Let F : C ù D be a functor, and assume that C has finite colimits. We say that
F is right exact if it preserves finite colimits.

We will mainly only be interested in this definition for abelian categories (and additive
functors between them), in which case we would like to make a more relatable interpretation
of these notions, for which we will use the following exercise:

Exercise 12.14. (i) Assume that C has finite limits. Let F : C ù D be a functor.
Show that the following are equivalent:
(a) F preserves finite limits.
(b) F preserves finite products and equalizers.
(c) F preserves a terminal object, binary products, and equalizers.
(d) F preserves a terminal object, and pullbacks.

(ii) Do the same for colimits. Also, do a version of all these problems without finite.

Now we give an equivalent definition for left and right exactness in the special case of
abelian categories.
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Definition 12.15. Let F : A Ñ B be a functor.

(i) We say that F is left exact, if it is additive and preserves kernels. Note that the
latter condition can be written as follows: whenever

0 Ñ A
f

Ñ B
g

Ñ C

is exact in A, so is

0 Ñ F pAq
F pfq
Ñ F pBq

F pgq
Ñ F pCq.

(ii) We say that F is right exact, if it is additive and preserves cokernels. Note that
the latter condition can be written as follow: whenever

A
f

Ñ B
g

Ñ C Ñ 0

is exact in A, so is

F pAq
F pfq
Ñ F pBq

F pgq
Ñ F pCq Ñ 0.

(iii) We say that F is exact, if it is both left exact and right exact.

Exercise 12.16. Show that Definition 12.15 is a special case of Definition 12.13.

Exercise 12.17. (Recommended)

(i) Show that a sequence

0 Ñ A Ñ B Ñ C (resp., A Ñ B Ñ C Ñ 0)

in an abelian category A is exact if and only if for all E P ObA,

0 Ñ HompE,Aq Ñ HompE,Bq Ñ HompE,Cq (resp., 0 Ñ HompC,Eq Ñ HompB,Eq Ñ HompA,Eq)

is exact.
(ii) Let F : A Ñ B be a functor between abelian categories A and B, not assumed to

be additive. Show that F is left-exact if and only if it preserves pull-backs, and
that it is right-exact if and only if it preserves push-outs.

(iii) Let F : A Ñ B be an additive functor between abelian categories A and B. Show

that F is exact if and only if whenever 0 Ñ A
f

Ñ B
g

Ñ C Ñ 0 is exact in A,

0 Ñ F pAq
F pfq
Ñ F pBq

F pgq
Ñ F pCq Ñ 0 is exact in B.

(iv) Let A and B be abelian categories, and let F : A Ñ B be a functor left adjoint to
a functor G : B Ñ A. Show that F is right exact and G is left exact (in particular,
F and G are automatically additive).

12.4. Isomorphism theorems. We said that the condition AB2 in the definition of an
abelian category was basically the first isomorphism theorem. We will now state forms of
the second and the third isomorphism theorems.

In the following exercise and in what follows, whenever Z ãÑ X is a subobject of X, we
may write X{Z for cokerpZ ãÑ Xq.



146

Proposition 12.18. This is the second isomorphism theorem in an abelian category: Given
a subobjects M 1,M2 ãÑ M , define

M 1
X M2 :“ M 1

ˆM M233

(please make sure you understand that this is indeed an intersection in the context of
AbGrp), and

M 1
` M2

“ impM 1
‘ M2

Ñ Mq.

Then M2 ãÑ M 1 ‘ M2 Ñ M 1 ` M2 is a monomorphism, and

M2 ãÑ M 1
` M2

Ñ pM 1
` M2

q{M 1

factors through an isomorphism

M2
{pM 1

X M2
q Ñ pM 1

` M2
q{M 1.

Proposition 12.19. Let
0 Ñ M 1

Ñ M Ñ M2
Ñ 0

be a short exact sequence in an abelian category A. If L2 ãÑ M2 is a subobject, consider
L :“ M ˆM2 L2 Ñ M . Then L Ñ L2 is an epimorphism. Moreover, M 1 ãÑ M factors
through M 1 ãÑ L, and induces an isomorphism L{M 1 – L2.

To prove these results, we will need to understand pullbacks and pushouts in an abelian
category better. This will use a few lemmas, which we will mostly not prove; but they are
easy, and yet if you don’t want to bother to prove them yourselves a reference for them is
stacks.math.columbia.edu/tag/00ZX

Lemma 12.20. Consider the following diagram in an abelian category C:

(49) D
k //

h
��

A

f
��

B
g // C

.

(i) The diagram is cartesian (i.e., realizes D as the fiber product of f : A Ñ C and
f : B Ñ C) if and only if:

0 Ñ D
pk,hq
Ñ A ‘ B

pf,´gq
Ñ C

is exact. Here, pf,´gq : A ‘ B Ñ C is the unique map that is f when composed
with A ãÑ A ‘ B, and is ´g when composed with B ãÑ A ‘ B, and pk, hq has an
analogous interpretation, but with ‘products’ instead of ‘coproducts’.

(ii) The diagram is cocartesian (i.e., realizes C as the pushout of k : D Ñ A and
h : D Ñ B) if and only if:

D
pk,´hq

Ñ A ‘ B
pf,gq
Ñ C Ñ 0

is exact.

33the pullback M 1 ˆM M2 exists as a special case of the fact that finite limits and colimits exist in an
abelian category, something we have already seen.
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A terse expression of a proof. We will prove both (i) and (ii) simultaneously. If A “

AbGrp, the lemma is easy to check, and this case is left as an exercise. We will reduce the
general case to this case.

By the definition of limits, the diagram is cartesian (resp., cocartesian) if and only if
for all E P ObA, the diagram obtained by applying HompE,´q (resp., Homp´, Eq) to
it is cartesian 34 The cartesianness of the latter diagrams, in Set, is equivalent to its
cartesianness in AbGrp (because fiber products work the same way for AbGrp and Set).
Since we know the lemma when A “ AbGrp, the cartesianness (resp., the cocartesianness)
of the given diagram is therefore equivalent to the exactness, for all E P ObA, of

0 Ñ HompE,Dq
pk˝´,h˝´q

Ñ HompE,Aq ‘ HompE,Bq
pf,´gq˝´q

Ñ HompE,Cq

presp., 0 Ñ HompC,Eq
´˝pf,´gq

Ñ HompA,Eq ‘ HompB,Eq
p´˝k,´˝hq

Ñ HompD,Eq.q

By Exercise 12.17, this is equivalent to the exactness of the given sequence. □

Lemma 12.21. (i) If (49) is cartesian, then the morphism ker k Ñ ker g induced by
h is an isomorphism.

(ii) If (49) is cocartesian, then the morphism cokerh Ñ coker f induced by g is an
isomorphism.

Remark 12.22. (i) What does h inducing ker k Ñ ker g mean? For AbGrp this mean-
ing is clear, and for a general abelian category A, we can interpret it as follows.
We have ker k ãÑ D and ker g ãÑ B, and h runs from D to B. The meaning of h
inducing ker k Ñ ker g is that

h ˝ pker k ãÑ Dq : ker k Ñ B

factors as a composite of some map ker k Ñ ker g and the monomorphism ker g ãÑ

B. The fact that ker g ãÑ B is a monomorphism implies, by the definition of a
monomorphism, that this factored map ker k Ñ ker g is unique, allowing us to refer
to it as the map induced by h.

(ii) Please make sure you work this lemma out in AbGrp before reading the proof, and
get an intuitive feel of why the statement of the lemma is reasonable.

Slightly terse proof of Lemma 12.21. If A “ AbGrp, the corollary is easy to check. We will
reduce the general case to this case.

Let us prove the assertion about ker k Ñ ker g. For each E P ObA, we have a commutative
diagram:

0 �
� // HompE, ker kq //

��

HompE,Dq
k˝´ //

h˝´

��

HompE,Aq

f˝´

��
0 �
� // HompE, ker gq // HompE,Bq

g˝´ // HompE,Cq

,

34there is no ‘(resp., cocartesian)’ here; limits are defined by requiring MorpE,´q in Set to give a limit
in Set, while colimits are defined by requiring Morp´, Eq to give a limit – not a colimit – in Set.
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where the left vertical arrow is induced by the middle vertical one, since HompE, ker kq

identifies with kerpHompE,Dq
k˝´
Ñ HompE,Aqq, and similarly with HompE, ker gq. The

rows of this diagram are exact, and the right square is cartesian. Since we know the case
where A “ AbGrp, it follows that the left vertical arrow is an isomorphism. The Yoneda
for h‚ then gives ker k Ñ ker g; note that the description in the Yoneda lemma implies that
ker k Ñ kerh is indeed induced by h in the sense described in Remark 12.22.

The assertion about cokerh Ñ coker f is analogous, where one uses Homp´, Eq and reverses
some directions instead. □

Here is a corollary to the above two lemmas:

Corollary 12.23. (i) If (49) is cartesian and g is an epimorphism, then it is cocarte-
sian and k is an epimorphism.

(ii) If (49) is cocartesian and h is a monomorphism, then it is cartesian and f is a
monomorphism.

Sketch of proof. If (49) is cartesian, then Lemma 12.20(i) together with the fact that g is
an epimorphism implies that

0 Ñ D
pk,hq
Ñ A ‘ B

pf,´gq
Ñ C Ñ 0

is exact, so Lemma 12.20(ii) shows that (49) is cocartesian. That k is an epimorphism is
then easy to see using Lemma 12.21.

This gives (i), and (ii) is analogous. □

Lemma 12.24. Let A be an abelian category.

(i) If M Ñ N is an epimorphism, then for all L Ñ N , the map M ˆN L Ñ L is an
epimorphism.

(ii) If M Ñ N is a monomorphism, then for all M Ñ L, the map L Ñ L
š

M N is a
monomorphism.

Proof. This is immediate from Corollary 12.23. □

Sketch of the proof of Proposition 12.18. First,M 1 ãÑ M andM2 ãÑ M both factor through
M 1 ` M2 ãÑ M , and since M 1 ` M2 ãÑ M is a monomorphism (being an image of a
morphism to M), it is easy to see that M 1 X M “ M 1 ˆM M2 “ M 1 ˆM 1`M2 M2. 35

Moreover, since M 1 ãÑ M and M2 ãÑ M are monomorphisms, so are M 1 ãÑ M 1 `M2 and
M2 ãÑ M 1 ` M2 (use one of the questions from Exercise 11.24).

35In other words, if A Ñ C and B Ñ C factor through a monomorphism C 1 ãÑ C, then we can write
A ˆC B “ A ˆC1 B.
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Thus, the following diagram is cartesian:

M 1 X M2 //

��

M2

��
M 1 // M 1 ` M2

.

If we show that this diagram is also cocartesian, it will follow from Lemma 12.21(ii) that
M2 Ñ M 1 `M2 induces an isomorphism M2{pM 1 XM2q Ñ pM 1 `M2q{M 1, and we would
be done.

To see that this diagram is cocartesian, we combine its cartesianness with Lemma 12.20(i)
to get that the following sequence is exact except possibly at M 1 ` M2:

0 Ñ M 1
X M2

Ñ M 1
‘ M2

Ñ M 1
` M2

Ñ 0.

However, M 1 ‘ M2 Ñ M 1 ` M2 is the ‘obvious map’ M 1 ‘ M2 Ñ M 1 ` M2, and hence
surjective, so the above sequence is exact. Now Lemma 12.20(ii) implies that the diagram
is cocartesian, as required. □

Proof of Proposition 12.19. Since M 1 Ñ M Ñ M2 equals 0, we get a unique map M 1 Ñ L
whose composite with L Ñ M is the inclusion M 1 ãÑ M , and whose composition with
L Ñ L2 is zero. Thus, M 1 ãÑ M factors through M 1 Ñ L, which is a monomorphism since
M 1 ãÑ M is.

By Lemma 12.21(i), applied to the cartesian diagram

L //

��

L2

��
M // M2

,

L Ñ L2 has M 1 Ñ L as a kernel. Thus, it remains to see that L Ñ L1 is an epimorphism,
which follows from Lemma 12.24. □

12.5. Chain complexes and cochain complexes.

Definition 12.25. Let A be an abelian category.

(i) A chain complex in A is a sequence:

A‚ : ¨ ¨ ¨ Ñ Ai`1
Bi`1
Ñ Ai

Bi
Ñ Ai´1

Bi´1
Ñ . . .

of morphisms in A, indexed by Z, such that Bi ˝ Bi`1 “ 0 for all i P Z. The Bi are
called boundary operators, or differentials. 36

Standard abuses of notation. In what follows, if a chain complex is given as A‚, B‚

etc., we assume Ai, Bi etc. to be as above, so we have Bi : Ai`1 Ñ Ai, Bi : Bi`1 Ñ Bi

36Those of you who have seen homology know why the word ‘boundary’ is used. This is likely part
of why the symbol ‘B’ is used, and the other probably relates to the terminology ‘differentials’ perhaps
coming from de Rham complexes.
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etc.: note that the same Bi be a morphism on Ai, Bi etc., so its identity will need
to be figured out from the context.

(ii) A morphism f‚ : A‚ Ñ B‚ of chain complexes in A is a collection fi : Ai Ñ Bi of
morphisms, that are compatible with the boundary operators, i.e., such that for all
i P Z, we have

Ai
Bi //

��

Ai´1

��
Bi

Bi // Bi´1

(We have made some standard abuses of notation, such as implicitly taking Ai to
be as in (i) and Bi to be analogous, and writing Bi for the boundary operators of
both A‚ and B‚).

(iii) With these morphisms, the chain complexes for A form a category, which we denote
by ChpAq (and which we will soon see to be abelian).

(iv) A cochain complex is a sequence

A‚ : ¨ ¨ ¨ Ñ Ai´1 di´1

Ñ Ai
di
Ñ Ai`1 di`1

Ñ . . .

of morphisms in A, indexed by Z, such that di`1 ˝ di “ 0 for all i P Z. 37

(v) In obvious analogy with (ii), we define morphisms of cochain complexes in A.
(vi) With these morphisms, cochain complexes in A form a category, which we will

denote by CoChpAq.

Proposition 12.26. Let A be an abelian category. ChpAq and CoChpAq are abelian
categories, where zero objects, biproducts, kernels and cokernels defined in an appropriately
‘pointwise’ sense.

Proof. Let I be the small category with Ob I “ Z, and where there exists a unique mor-
phism i Ñ j if i ď j, and none otherwise. By Proposition 12.3, FunpIop,Aq is abelian.
This category has a description analogous to that of ChpAq, except that the conditions
Bi ˝ Bi`1 are not imposed. ChpAq is the full subcategory of FunpI, Aq consisting of objects
with these additional conditions imposed. Note that this subcategory, in addition to being
full, is closed under zero objects, direct sums, kernels and cokernels, and is hence abelian
by Proposition 12.1. □

Definition 12.27. Let A be an abelian category.

(i) For each n P Z and each A‚ P ObChpAq, define:

HnpA‚q “ HpAn`1
Bn`1
Ñ An

Bn
Ñ An´1q “ “

ker Bn

{
impBn`1q”

(see Definition 12.7). Define also the (I guess ‘object of’) n-cycles of A‚, by
ZnpA‚q “ ker Bn P ObA, and the n-boundaries of A‚, by BnpA‚q “ impBnq; these are

37Thus, notice two difference with chain complexes: maps go from the object indexed with i to that
indexed with i ` 1 rather than i ´ 1, and secondly the index is superscripted rather than subscripted.
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implicitly meant to be considered along with the obvious monomorphisms Zn ãÑ An
and Bn ãÑ An.

(ii) For each n P Z and each A‚ P ObCChpAq, define the degree n chain homology of
A by

Hn
pA‚

q “ HpAn´1 dn´1

Ñ An
dn
Ñ An`1

q.

Define also the n-cocycles ofA‚, defined by ZnpA‚q “ ker dn, and the n-coboundaries
of A‚, defined by BnpA‚q “ impdnq. Again, these are implicitly meant to be con-
sidered with Zn ãÑ An and Bn ãÑ An.

(iii) Zn, Bn, Hn, Z
n, Bn and Hn, defined so far at the level of objects of ChpAq and

CochpAq, extend to functors ChpAq ù A and CochpAq ù A, respectively.

Exercise 12.28. (i) Justify the claim in Definition 12.27(iii).
(ii) Make sure you are clear about interpreting Hn “ Zn{Bn and Hn “ Zn{Bn: the

assertion for Hn, e.g., is that Bn “ impBn`1q ãÑ An factors through Zn “ ker Bn ãÑ

An (this crucially uses the condition Bn ˝ Bn`1 “ 0), and that the resulting unique
map Bn Ñ Zn has cokernel which is, by definition, Hn:

. . . An`1

Bn`1 //

from Bn`1
((

An
Bn // An´1 . . .

Bn

* 


im of
Bn`1

88

// Zn
?�

ker of Bn

OO

// // Hn

.

Example 12.29. Let R be a commutative ring.

(i) In your algebraic topology course, you will see functors

Hn : Top ù AbGrp and Hnp´, Rq : Top ù R-Mod,

defined as composite functors

Hn : Top
C‚p´q
ù ChpAbGrpq

Hn
Ñ AbGrp

(note that we are using the notation Hn stand for at least three different things,
please don’t get confused here), and

Hnp´, Rq : Top
C‚p´,Rq

ù ChpR-Modq
Hn

ù R-Mod.

I will not describe C‚p´q and C‚p´, Rq, but simply say that the degree n pieces
CnpXq and CnpX,Rq of C‚pXq and C‚pX,Rq are given as follows:

CnpXq “ FreeAbGrpp{Continuous maps ∆n
Ñ X}q,

CnpX,Rq “ the free R-module on continuous maps ∆n
Ñ X,

where ∆n is the ‘standard n-simplex’, consisting of the convex hull of the standard
basis vectors e0, . . . , en in Rn`1.
C‚ is called the singular chain complex functor, C‚pXq the singular chain complex

associated to X, X Þ⇝ HnpXq the singular homology functor, and HnpX,Rq the
singular homology of X with coefficients in the ring R.
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(ii) For a topological space X, dualizing the chain complexes C‚pXq and C‚pX,Rq give
us cochain complexes C‚pXq and C‚pX,Rq. This gives us the singular cohomology
functor

Hn : Topop
C‚p´q
ù CoChpAbGrpq

Hn

Ñ AbGrp,

and the functor of singular cohomology with coefficients in R:

Hn
p´, Rq : Topop

C‚p´,Rq
ù CoChpR-Modq

Hn

ù R-Mod.

12.6. Homological and cohomological δ-functors. Motivation. ConsiderR-Mod, where
R is a commutative ring. If 0 Ñ M 1 Ñ M Ñ M2 Ñ 0 is exact, and a P R is a nonzero
divisor, we know that, on taking ´ bR R{paq, we get a right-exact sequence

(50) M 1
{aM 1

Ñ M{aM Ñ M2
{aM2

Ñ 0.

This would not be exact if we put a ‘0 Ñ’ before M 1{aM 1. Therefore, we would like a
means to measure a failure of exactness. For this, one uses the following exercise, which
also follows from Lemma 12.32 discussed further below:

Exercise 12.30. The exact sequence (50) continues to an exact sequence

(51) 0 Ñ aM
1

Ñ aM Ñ aM
2 δ

Ñ M 1
{aM 1

Ñ M{aM Ñ M2
{aM2

Ñ 0,

where aM “ tm P M | am “ 0u, aM
1 and aM

2 are defined similarly, and the only non-
obvious map δ : aM

2 Ñ M 1{aM 1 is a map such that δpm2q equals the image of m1 P M 1 in
M 1{aM 1, whenever m1 is chosen as follows. Since m2 P aM

2, so that am2 “ 0, there exists
m P M with image m2. Note that am P kerpM Ñ M2q, so that am has some preimage in
M 1, which we take to be m1. (In particular, you should show that given m2, though m1 as
above depends on the choice of m lifting m2, the image of m1 in M 1{aM 1 is independent
of this choice).

Discussion on this exercise. Thus, we are not quite computing exactly the kernel of
M 1{aM 1 Ñ M{aM , which would have been ideal, but rather the best we can do in general
seems to be to give an exact sequence as above; in specific situations, we would be able
to manipulate such exact sequences and get whatever information we need about their
kernels.

For more general left or right exact functors, we will not be able to get a six term exact
sequence as above, but rather an ‘infinite’ exact sequence, called a long exact sequence.
This is formalized in the following definition.

Definition 12.31. Let A,B be abelian categories.

(i) A homological δ-functor from A to B is a collection of additive functors tTn : A Ñ

Buně0, and a family of morphisms

δn : TnpA2
q Ñ Tn´1pA

1
q

for all n ě 1, satisfying the following two conditions:
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(i) For all short exact sequences 0 Ñ A1 f
Ñ A

g
Ñ A2 Ñ 0, we have a long exact

sequence
(52)

¨ ¨ ¨ Ñ Tn`1pA
2
q
δn`1
Ñ TnpA1

q
Tnpfq
Ñ TnpAq

Tnpgq
Ñ TnpA2

q
δn
Ñ . . .

T1pgq
Ñ T1pA

2
q
δ1
Ñ T0pA

1
q
T0pfq
Ñ T0pAq

T0pgq
Ñ T0pA2

q Ñ 0.

(ii) Each δn is functorial in short exact sequences, i.e., whenever we have a map of
short exact sequences:

0 // A1 //

d1

��

A //

d
��

A2 //

d2

��

0

0 // B1 // B // B2 // 0

,

the following diagram commutes for each n ě 1:

TnpA2q
δn //

Tnpd2q

��

Tn´1pA
1q

Tn´1pd1q

��
TnpB2q

δn // Tn´1pB
1q

.

In other words, this condition of ‘functoriality in short exact sequences’ means
the following: given the functors T 2

n and T 1
n´1 on SESpAq sending a short

exact sequence 0 Ñ A1 Ñ A Ñ A2 Ñ 0 to TnpA2q and Tn´1pA
1q, respectively,

the condition is that δn should define a natural transformation T 2
n Ñ T 1

n´1.
We set Tn “ 0 for n ă 0.

(ii) We similarly define a cohomological δ-functor from A to B as a collection of additive
functors tT n : A Ñ Buně0, and a family of morphisms

δn : T npA2
q Ñ Tn`1pA

1
q

for all n ě 0, satisfying the following two conditions:

(i) For all short exact sequences 0 Ñ A1 f
Ñ A

g
Ñ A2 Ñ 0, we have a long exact

sequence
(53)

0 Ñ T 0
pA1

q
T 0pfq
Ñ T 0

pAq
T 0pgq
Ñ T 0

pA2
q
δ0
Ñ T 1

pA1
q
T 1pfq
Ñ . . .

δn´1

Ñ T npA1
q
Tnpfq
Ñ T npAq

Tnpgq
Ñ T npA2

q
δn
Ñ T n`1

pA1
q Ñ . . .

(ii) There is an analogous condition of functoriality of δn in short exact sequences
for each n ě 0, taking the form of a commutative diagram:

T npA2q
δn //

Tnpd2q

��

T n`1pA1q

Tn`1pd1q

��
T npB2q

δn // T n`1pB1q

.

Again, we set T n “ 0 for n ă 0.
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Please understand the long exact sequence (52) of the above definition in analogy with
Exercise 12.3051: the idea is that if a right exact functor T0 is realized as part of a
homological δ functor ppTnqn, pδnqnq, then given an exact sequence 0 Ñ A1 Ñ A Ñ A2 Ñ 0,
the exact sequence

T0pA1
q Ñ T0pAq Ñ T0pA

2
q Ñ 0

is continued by (52)

Similarly, if a left exact functor T 0 is realized as a part of a cohomological δ-functor
ppT nqn, pδ

nqnq, then given an exact sequence 0 Ñ A1 Ñ A Ñ A2 Ñ 0, the exact sequence

0 Ñ T 0
pA1

q Ñ T 0
pAq Ñ T 0

pA2
q

is continued by (53).

12.7. Snake lemma (proof mostly omitted). The key tool in constructing long exact
sequences as in (52) and (53) is the snake lemma:

Lemma 12.32. Let A be an abelian category. Suppose we are given a diagram

(54) M 1
f //

d1

��

M
g //

d
��

M2 //

d2

��

0

0 // N 1 i // N
j // N2

,

whose both rows are assumed to be exact. Then there is an exact sequence

(55) ker d1 f
Ñ ker d

g
Ñ ker d2 δ

Ñ coker d1 ī
Ñ coker d

j̄
Ñ coker d2,

where f, g, ī, j̄ also stand for maps induced by f, g, i, j, and δ is, informally, given by the
prescription “δpm2q “ i´1 ˝ d ˝ g´1pm2q”, which will be explicated in the proof. Moreover,
this exact sequence (55) is functorial in the diagram (54) (see Remark 12.34 below).

Before proving the above lemma, let us observe that some obvious very minor variants that
follow from it:

Lemma 12.33. In (54), if f is a monomorphism (resp., j is an epimorphism), then so is

the map ker d1 f
Ñ ker d (resp., the map coker d

ḡ
Ñ coker d2) of (55). Thus, e.g., if f is a

monomorphism and j is an epimorphism, then Lemma 12.32 implies the exactness of:

0 Ñ ker d1 f
Ñ ker d

g
Ñ ker d2 δ

Ñ coker d1 ī
Ñ coker d

j̄
Ñ coker d2

Ñ 0.

Proof. Easy exercise. □

Some comments on the construction of δ. I will skip the proof of the snake lemma, since
I don’t have time. For modules it is completely straightforward, and you can do it as
an easy, though tedious, exercise. For abelian categories, one needs some number of
not so obvious manipulations to make the proof “element-free” and thus to work for
an abelian category. Proving some of the prerequisites was the purpose of Subsection
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12.4. Thus, we are not really covering this proof in the course. You can see a proof in
https://stacks.math.columbia.edu/tag/00ZX or you can search for category theory notes
by Julia Godecke. For a crude pointer to another approach, see Theorem 12.35 and the
discussion just before it.

Nevertheless, below, I will first describe how to construct δ when A “ R-Mod, and then I
will describe how to translate that into a description that works for an arbitrary abelian
category.

Description of δ, when A “ R-Mod. Please compare this description to the construction
of aM

2 Ñ M 1{aM 1 in Exercise 12.30.

Let m2 P ker g, and let us define δpm2q P coker d1:

‚ Since M Ñ M2 is surjective, m2 “ gpmq for some m P M (now we have “g´1pm2q”,
namely m).

‚ Since d2pm2q “ d2gpmq “ jdpmq “ 0, we have dpmq P ker j (now we have
“dg´1pm2q”, namely, dpmq).

‚ Since ker j “ impiq, it follows that dpmq “ ipm1q for some m1 P M 1 (now we have
i´1dg´1pm2q, namely m1).

Then δpm2q is defined to be the image of m1 in coker d1 “ N 1{dpM 1q. Of course, one needs
to check that this definition is independent of the choice of m, but instead of testing the
effect of replacing m, let us rewrite the above description without these choices. Namely,
we have a commutative diagram

g´1pker d2q{fpMq

d
��

g´1pker d2q{pker gq
g

–
// ker d2

cokerpd1q “ N 1{d1pM 1q
i

–
// ipN 1q{pi ˝ d1qpM 1q pker jq{dpfpMqq

.

Since all maps except the vertical arrow above is an isomorphism, it gives the required
map δ : ker d2 Ñ coker d1, which agrees with the “i´1dg´1pm2q”-prescription given above.

How do we describe this in term that apply to an abelian category? For instance, g´1pker d2q

can be captured asMˆM2ker d2. As an exercise, check that the above prescription amounts
to the following: δ is the unique (as needs to be proved) dotted arrow in the following the
diagram that makes it commute:

M

d
��

M ˆM2 ker d2oo // ker d2

δ
��

N // coker d1
š

N 1 N coker d1oo

.

This diagram is taken from stacks project (tag 00ZX, Section 12.5 as of typing this). You
can see that page for a general proof of the snake lemma in an abelian category.
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But that such a δ exists needs to be proved. I will describe how to prove that M ˆM2

ker d2 Ñ N from the above diagram factors through ker d2: this is about one-half the proof.
Its kernel takes the form of an obvious map M 1 Ñ M ˆM2 ker d2 for a kernel, by Lemma
12.21(i). On the other hand, it is an epimorphism by Lemma 12.24(i). Thus, to show that
M ˆM2 ker d2 Ñ N factors through ker d2, it suffices to show that

M 1
Ñ M ˆM2 ker d2 d

Ñ N Ñ coker d1
ž

N 1

N

is zero. But this chain equals, by the commutativity of the left square in the diagram:

pM 1 d1

Ñ N 1 i
Ñ N Ñ coker d1

ž

N 1

Nq “ pM 1 d1

Ñ N 1
Ñ coker d1

Ñ coker d1
ž

N 1

Nq “ 0,

where the first equality only uses the commutativity of the pushout diagram, and the

second equality the fact that M 1
d1

Ñ N 1Ñ coker d1 “ 0. □

Remark 12.34. Now let us describe the functoriality of the snake lemma as mentioned
in , e.g., (with the version of the snake lemma that does not require f : A Ñ B to be a
monomorphism) this assertion of functoriality becomes the assertion that if:

M 1 //

}} d1

��

M //

~~ d

��

M2 //

}} d2

��

0

L1 //

e1

��

L //

e

��

L2 //

e2

��

0

0 // N 1 //

}}

N //

~~

N2

}}
0 // P 1 // P // P 2

,

with exact rows, then there is the following commutative diagram, where both the rows
are given by the snake lemma and the vertical arrows are induced by corresponding slanted
arrows in the above diagram:

ker d1

��

// ker d

��

// ker d2

��

// coker d1

��

// coker d

��

// coker d2

��
ker e1 // ker e // ker e2 // coker e1 // coker e // coker e2

.

12.8. The Freyd-Mitchell embedding theorem (statement only). One way to prove
the snake lemma for an arbitrary abelian category is to give the easy proof for R-Mod,
and then appeal to the following Freyd-Mitchell embedding theorem:

Theorem 12.35 (Freyd-Mitchell embedding theorem). Let A be a small abelian category.
Then there exists a (not necessarily commutative) ring R (with identity), and a fully faithful
exact functor

A ù R-Mod.
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If A is small, then the above theorem immediately reduces the proof of the snake lemma
for A to that for R-Mod, which is easy to verify by hand. But even if A is not small, we
can restrict to a suitable small abelian subcategory of A that contains the given diagram,
and thus reduce the snake lemma for A to that for R-Mod.

However, this does not mean we have proved the snake lemma in general, since we have
not proved the Freyd-Mitchell embedding theorem. If you are interested, a sketch of the
proof is given in wikipedia.
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13. Lecture 13 — Preparation for derived functors

Typically, we will denote an object of ChpAq by pA‚, B‚q, if A‚ is given by

A‚ : . . .
Bi`1
Ñ Ai

Bi
Ñ Ai´1

Bi´1
Ñ . . . .

A morphism in ChpAq may be denoted by f‚ : A1
‚ Ñ A‚, whose the individual maps will

be assumed to be denoted by fi : A
1
i Ñ Ai, as i varies over Z. Similarly, we will write

pA‚, d‚q for an object in CochpAq.

Throughout, given a map f in an abelian category, f̄ will implicitly stand for a map induced
by f on a subobject or a quotient object.

Remark 13.1. We will typically work with an arbitrary abelian category A today. Oc-
casionally, we might explain proofs using notation that applies to R-Mod instead of to A,
but those proofs can all be adapted to the case of an arbitrary abelian category A. If you
do not feel comfortable with general abelian categories, you may, at select occasions while
dealing with the proofs, just consider R-Mod instead.

13.1. The long exact sequence associated to a short exact sequence of complexes.

Remark 13.2. Since kernels and cokernels in ChpAq are defined “point-wise”, a sequence

0 Ñ pA1
‚, B

1
‚q

f‚
Ñ pA‚, B‚q

g‚
Ñ pA2

‚, B
2
‚q Ñ 0

in ChpAq is exact if and only if for each i P Z,

0 Ñ A1
i
fi
Ñ Ai

gi
Ñ A2

i Ñ 0

is exact. An analogous assertion applies with CochpAq in place of ChpAq.

Proposition 13.3. Let A be an abelian category.

(i) For each exact sequence

(56) 0 Ñ pA1
‚, B

1
‚q

f‚
Ñ pA‚, B‚q

g‚
Ñ pA2

‚, B
2
‚q Ñ 0

in ChpAq, there exist morphisms δi : HipA
2
‚q Ñ Hi´1pA

1
‚q for each i P Z, functorial

in the short exact sequence (56), such that the following sequence is exact:

(57) . . .
δi`1
Ñ HipA

1
‚q

Hipf‚q
Ñ HipA‚q

Hipg‚q
Ñ HipA

2
‚q

δi
Ñ Hi´1pA1

‚q
Hi´1pf‚q

Ñ . . .

(ii) For each exact sequence

(58) 0 Ñ pA‚
˝, d

‚
˝q

f‚

Ñ pA‚, d‚
q
g‚

Ñ pA‚
˝˝, d

‚
˝˝q Ñ 0

in CochpAq, there exist morphisms δi : H ipA‚
˝˝q Ñ H i`1pA‚

˝q for each i P Z, func-
torial in the short exact sequence (58), such that the following sequence is exact:

. . .
δi´1

Ñ H i
pA‚

˝q
Hipf‚q

Ñ H i
pA‚

q
Hipg‚q

Ñ H i
pA‚

˝˝q
δi
Ñ H i`1

pA‚
˝q

Hi`1pf‚q
Ñ . . .
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Exercise 13.4. (i) The δi and the δi above are called connecting homomorphisms.
We haven’t spelled out what their functoriality in short exact sequences means. If
you are uncomfortable with this, please spell it out explicitly as an exercise. It
is very similar to the functoriality of the δn (resp., δn) that what we saw in the
definition of a homological (resp., cohomological) δ-functor.

(ii) Consider the full (abelian) subcategory Chě0pAq of ChpAq consisting of complexes
A‚ such that Ai “ 0 for all i ă 0. Convince yourself that (i) of the proposition
is furnishing a homological δ-functor ptTnu, tδnuq from Chě0pAq to A, where T0 “

H0 : Chě0pAq ù A. Similarly, (ii) is furnishing an appropriate cohomological
δ-functor.

Proof of Proposition 13.3. We will prove (i); (ii) is analogous.

Applying the snake lemma to the top two rows (resp., the bottom two rows) of the diagram

0 // A1
i`1

fi`1 //

B1
i`1

��

Ai`1

gi`1 //

Bi`1

��

A2
i`1

//

B2
i`1

��

0

0 // A1
i

fi //

B1
i

��

Ai
gi //

Bi

��

A2
i

//

B2
i

��

0

0 // A1
i´1

fi´1 //

B1
i´1

��

Ai´1

gi´1 //

Bi´1

��

A2
i´1

//

B2
i´1

��

0

0 // A1
i´2

fi´2 // Ai´2

gi´2 // A2
i´2

// 0

,

we get the top row (resp., the bottom row) of the following commutative diagram:

coker B1
i`1

f̄i //

B̄1
i

��

coker Bi`1
ḡi //

B̄i

��

coker B2
i

//

B̄2
i

��

0

0 // ker B1
i´1

f̄i´1 // ker Bi´1

ḡi´1 // ker B2
i´1

Here, the reason the vertical arrow B̄i in the above diagram is well-defined is that Bi˝Bi`1 “

0: this ensures that Bi vanishes on impBi`1q ãÑ Ai, and hence factors as Ai Ñ coker Bi`1 Ñ

Ai´1.
38 Similarly with B̄1

i and B̄2
i .

Applying the snake lemma to this latter diagram, we get an exact sequence

(59) ker B̄
1
i
f̄i
Ñ ker B̄i

ḡi
Ñ ker B̄

2
i
δi
Ñ coker B̄

1
i

f̄i´1
Ñ coker B̄i

ḡi´1
Ñ coker B̄

2
i

(this defines what is going to be our connecting homomorphism, δi).

All that remains to do now is to interpret (59). For this:

38This means that Bi ˝ pimpBi`1q ãÑ Aiq “ 0, so by the universal property of the cokernel, Bi induces
B̄i : cokerpBi`1q Ñ Ai´1.
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(a) Since Ai Ñ coker Bi`1 is an epimorphism, it is immediate that

cokerpB̄i : coker Bi`1 Ñ ker Bi´1q “ cokerpBi : Ai Ñ ker Bi´1q “ Hi´1pA‚q.

(b) Using an exercise that followed the definition of exactness in Lecture 12, we get

kerpB̄i : coker Bi`1 Ñ ker Bi´1q – HipA‚q

(or, think of R-Mod, where this is straightforward: writing Zi Ă Ai for kerpBiq and
Bi Ă Ai for impBi`1q, we are looking at

kerpB̄i : Ai{impBi`1q Ñ Bi´1 ãÑ Ai´1q “ kerpB̄i : Ai{Bi Ñ Ai´1q “ Zi{Bi “ HipA‚q.

).

Similar assertions apply with A‚ replaced by A1
‚ and A2

‚. With these identifications, it is
easy to see that the f̄i, ḡi, f̄i´1 and ḡi´1 from (59) become, respectively,Hipf‚q, Hipg‚q, Hi´1pf‚q

and Hi´1pg‚q. Thus, (59) becomes:

(60) HipA
1
‚q

Hipf‚q
Ñ HipA‚q

Hipg‚q
Ñ HipA

2
‚q

δi
Ñ Hi´1pA

1
‚q

Hi´1pf‚q
Ñ Hi´1pA‚q

Hi´1pg‚q
Ñ Hi´1pA

2
‚q.

Now that the various δi are defined, so is (57). The exactness of (57) follows from the fact
that (60) is exact for each i.

The functoriality of the δi in the short exact sequences (56) follows from the functoriality
the ‘δ’ in the snake lemma, which is also called the connecting homomorphism. □

Remark 13.5. The above proposition doesn’t tell us what the δn or the δn are, except
that they can be somehow computed using the snake lemma. Yet, the above proposition
is helpful, e.g.:

‚ Often one may know that HipA
2
‚q “ 0 for some purely formal reasons (e.g., it

may be an abelian group annihilated by two coprime integers), in which case
the proposition implies that Hi´1pf‚q : Hi´1pA

1
‚q Ñ Hi´1pA‚q is an injection. If

HipA
2
‚q “ Hi´1pA2

‚q “ 0, the proposition implies that this map is an isomorphism.
‚ The fact that the δn and the δn are functorial in short exact sequences can give a
handle on them.

13.2. A brief description of the strategy for constructing some δ-functors. Recall
that if F : A Ñ B is a right-exact functor between abelian categories, we wanted to
construct a homological δ-functor ptTnu, tδnuq with T0 “ F . The following is a naive
strategy towards this suggested by the above proposition: it doesn’t work as such, but will
be modified appropriately. Try to associate to each A P ObA a complex

A‚ : . . .
B2
Ñ A1

B1
Ñ A0 Ñ 0,

with the following properties:

‚ A‚ should be functorial in A.
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‚ We should have H0pA‚q “ A, i.e., A “ cokerpA1 Ñ A0q. By the right exactness of
F , we would then have F pAq “ H0pF pA‚qq, where we have written F pA‚q somewhat

abusively for the complex . . .
F pB2q
Ñ F pA1q

F pB1q
Ñ F pA0q Ñ 0.

‚ Given a short exact sequence 0 Ñ A1 Ñ A Ñ A2 Ñ 0, the sequence 0 Ñ A1
‚ Ñ

A‚ Ñ A2
‚ Ñ 0 (resulting from the supposed functoriality of A Þ⇝ A‚) should be

exact in ChpAq, i.e., exact in each degree. Moreover, so should be

0 Ñ F pA1
‚q Ñ F pA‚q Ñ F pA2

‚q Ñ 0

(this is not obvious, and will depend on the A1
i, Ai, A

2
i being special sorts of objects

– injective or projective objects that we will see later).

In the hypothetical scenario where these conditions are satisfied, Proposition 13.3 gives
a homological δ-functor ptHnpF pA‚qq, δnuq with H0pF pA‚qq “ F pAq, as desired (e.g., use
Exercise 13.4(i)).

It doesn’t seem easy, if at all possible, to attach a single complex A‚ to each A which
satisifies all these properties. Instead, what is done is to attach to A an equivalence class
of complexes A‚ with H0pA‚q “ A; one should then show that the choice of A‚ in its
equivalence class does not matter. The equivalence relation that is useful here turns out
to be chain homotopy, which we now proceed to discuss.

13.3. Chain and cochain homotopies. Throughout this subsection, let A be an abelian
category.

Definition 13.6. (i) Define a morphism u‚ : pA1
‚, B

1
‚q Ñ pA‚, B‚q in ChpAq to be null

homotopic if there exists a sequence of morphisms psi : A
1
i Ñ Ai`1qiPZ such that for

all i P Z, we have

ui “ Bi`1 ˝ si ` si´1 ˝ B
1
i.

. . . // A1
i`1

B1
i`1 //

ui`1

��

A1
i

B1
i //

ui

��

si

}}

A1
i´1

//

ui´1

��

si´1

}}

. . .

. . . // Ai`1

Bi`1 // Ai
Bi // A1

i´1
// . . .

.

If u‚ is null homotopic, we write u‚ „ 0.
(ii) Given u‚, v‚ : pA1

‚, B
1
‚q Ñ pA‚, B‚q, we say that u‚ „ v‚, or that u‚ and v‚ are

(chain) homotopy equivalent, if u‚ ´ v‚ „ 0, namely, if there exists a collection
psi : A

1
i Ñ Ai`1qiPZ of morphisms such that

(61) ui ´ vi “ Bi`1 ˝ si ` si´1 ˝ B
1
i

for all i P Z.
In this case, psiqi is said to be a (chain) homotopy equivalence between u‚ and

v‚.
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(iii) Similarly, given u‚, v‚ : pA‚
˝, d

‚
˝q Ñ pA‚, d‚q in CochpAq, we define what it means

for u‚ to be null homotopic, as denoted by u‚ „ 0, and what it means for u‚ to be
(cochain) homotopy equivalent to v‚, as denoted by u‚ „ v‚. Namely, the latter
condition is equivalent to there existing a a collection of morphisms psi : Ai˝ Ñ

Ai´1qiPZ, called a (cochain) homotopy equivalence between u‚ and v‚, such that
ui ´ vi “ di´1 ˝ si ` si`1 ˝ di for all i P Z.

The definition can be motivated by the following lemma which says that often, we can pass
to a homotopy class of maps.

Lemma 13.7. (i) Chain homotopic maps induce the same maps on homology: given
homotopy equivalent u‚, v‚ : A1

‚ Ñ A‚ in ChpAq, we have

Hipu‚q “ Hipv‚q : HipA
1
‚q Ñ HipA‚q, @ i P Z.

(ii) Cochain homotopic maps induce the same maps on cohomology: given homotopy
equivalent u‚, v‚ : A‚

˝ Ñ A‚ in CochpAq, we have

H i
pu‚

q “ H i
pv‚

q : H i
pA‚

˝q Ñ H i
pA‚

q, @ i P Z.

Proof. We prove (i); (ii) is analogous. Since Hipu‚ ´ v‚q “ Hipu‚q ´Hipv‚q (this is entirely
straightforward, but please make sure you understand this clearly), we may replace u‚ and
v‚ by u‚ ´ v‚ and 0, respectively. Thus, it is enough to start with some u‚ „ 0, and show
that

(62) Hipu‚q : HipA
1
‚q Ñ HipA‚q

is the 0 morphism, for all i P Z. Recall the notation Zi “ kerpBiq, Bi “ impBiq Ă Ai;
similarly we set Z 1

i “ kerpB1
iq, B

1
i “ impB1

iq Ă A1
i. Recall that (62) is induced by ui|Z1

i
: Z 1

i Ñ

Zi, so it is enough to show that ui|Z1
i
factors through Bi ãÑ Zi.

39

On Z 1
i, we have B1

i “ 0, so ui “ Bi`1 ˝si`si´1 ˝ B1
i restricts to ui|Zi

“ Bi`1 ˝si|Z1
i
, and clearly

Bi`1 ˝ si has image in Bi, as desired. □

Remark 13.8. Here is a motivation for the definition of homotopy equivalence, from
algebraic topology, which is where it originated. A basic theorem one studies about singular
homology says that homotopic maps induce the same maps on homology: if f, g : X Ñ Y
are homotopy equivalent continuous maps between topological spaces, then for all i P Z,
(63) Hipfq “ Hipgq : HipXq Ñ HipY q.

Recall that HipXq “ HipC‚pXqq, where we write C‚ for the singular chain complex functor.
Thus, by Lemma 13.7, (63) follows if one shows that

C‚pfq, C‚pgq : C‚pXq Ñ C‚pY q

are homotopy equivalent to each other. While the proof is involved, I will make some
vague remarks about it, that hopefully help motivate the above notion of chain homotopy

39Of course, ui|Z1
i
really stands for ui ˝ pZ 1

i ãÑ A1
iq.
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equivalence for complexes. Consider an i-simplex A in X (namely, a continuous map
∆i Ñ X), and its images fpAq and gpAq under f and g in Y , which are simplices in Y .
The homotopy itself is a map r0, 1sˆX Ñ Y , so what that gives on applying to the simplex
A is not a simplex in Y , but a prism in Y , with the simplices fpAq and gpAq as faces (see
the figure below). The point is that while the difference between fpAq and gpAq is not
the boundary of the prism, (as you can see in the figure below) their difference can be
described (up to putting in appropriate signs) as:

(the boundary of the prism) ´ (the prism over the boundary)

– namely, the top and the bottom faces of the prism in the following figure are obtained
by subtracting, from the collection of all faces (the boundary of the prism), just the “side
faces” (the prism over the boundary, which is a prism over a triangle in the picture).

gpAq

fpAq

This is what is reflected in (61): si stands for ‘taking the prism on a given simplex’ (which
is why it goes from A1

i to Ai`1, one dimension higher), Bi`1 ˝ si stands for the ‘boundary
of the prism’ (‘B’ is boundary), and si´1 ˝ Bi stands for the ‘prism over the boundary’.

Definition 13.9. The above definition motivates associating to each additive category A
the following categories.

(i) The homotopy category of chain complexes in A, denoted by KchpAq, is defined
as follows:
(a) ObKchpAq “ ObChpAq.
(b) HomKchpAqpA

1
‚, A‚q “ HomChpAqpA

1
‚, A‚q{ „, where „ stands for homotopy

equivalence.
To really complete this definition, we must have a well-defined composition of mor-
phisms, which is described in Exercise 13.10 below.

(ii) The homotopy category of cochain complexes inA, denoted byKcochpAq, is defined
as follows:
(a) ObKcochpAq “ ObCochpAq.
(b) HomKcochpAqpA

‚
˝, A

‚q “ HomCochpAqpA
‚
˝, A

‚q{ „, where „ stands for homotopy
equivalence.

Again, the composition of morphisms is left to Exercise 13.10 below.

Exercise 13.10. (i) Show that if u‚, v‚ : A1
‚ Ñ A‚ are chain homotopic, as are w‚, t‚ :

A‚ Ñ A2
‚, then so are w‚ ˝ u‚ and t‚ ˝ v‚. Conclude that the composition in
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ChpAq induces a well-defined composition in KchpAq (once we see that it is well-
defined, the associativity of multiplication and the existence of identity morphisms
are immediate).

(ii) Similarly, show that the composition in CochpAq induces a well-defined composition
in KcochpAq.

(iii) Show that KchpAq and KcochpAq are additive categories.
Note: It is a fact that they are not abelian categories, but we will not even discuss
an example to illustrate this, for now. But if we discuss triangulated categories
later, we may do so then.

We have an obvious functor ChpAq Ñ KchpAq, taking each A‚ P ObChpAq to itself, and
each morphism u‚ in ChpAq to its chain homotopy class. Similarly, we have an obvious
functor CochpAq Ñ KcochpAq. Now Lemma 13.7 implies:

Proposition 13.11. For all i P Z, Hi : ChpAq Ñ A factors as a composite

ChpAq Ñ KchpAq
Hi
Ñ A

(note that we are using Hi to also denoted the factored functor KchpAq Ñ A). Similarly,
H i : CochpAq Ñ A factors as a composite

CochpAq Ñ KcochpAq
Hi

Ñ A.

Proof. This is just a restatement of Lemma 13.7. □

Now, to carry out (the appropriate modification of) the strategy in Subsection 13.2, we
will construct – under some assumptions – functors

A Ñ KchpAq
Hi
Ñ A, A Ñ KcochpAq

Hi

Ñ A.

Constructing the functors A Ñ KchpAq and A Ñ KcochpAq will need the notion of
injective and projective objects.

13.4. Projective and injective objects. In this subsection, let A denote an arbitrary
abelian category.

Definition 13.12. (i) An object P in the abelian category A is called projective if
HompP,´q : A ù AbGrp is exact.

(ii) An object I in A is called injective if Homp´, Iq : Aop ù AbGrp is exact.

Exercise 13.13. It was an exercise from Lecture 12 that if A is abelian, then so is Aop, in
a compatible way: this is why the above definition of an injective object makes sense (i.e.,
we can talk of exactness for a functor on Aop). Show that an object P is projective in A
if and only if, when viewed as an element of Aop, it is injective.

Proposition 13.14. (i) For P P ObA, the following are equivalent:
(a) P is a projective object.
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(b) If A Ñ B is an epimorphism in A, then HompP,Aq Ñ HompP,Bq is surjective:
in other words, given an epimorphism A Ñ B in A, any morphism P Ñ B
can be lifted to a morphism P Ñ A:

A // B // 0

P

OO

D

__ .

(c) Any epimorphism p : A Ñ P has a section, i.e., there exists a morphism
s : P Ñ A such that p ˝ s “ idP .

(ii) For I P ObA, the following are equivalent:
(a) I is an injective object.
(b) If A Ñ B is a monomorphism in A, then HompB, Iq Ñ HompA, Iq (the re-

striction, or rather composition with A Ñ B) is surjective: in other words,
given a monomorphism A Ñ B in A, any morphism A Ñ I can be extended
to a morphism B Ñ I:

0 // A //

��

B

D��
I

.

(c) Any monomorphism ι : I Ñ A has a section, i.e., there exists a morphism
s : A Ñ I such that s ˝ ι “ idI .

Before proving the proposition, let us make sure we understand the conditions (i)(c) and
(ii)(c); for the following exercise, P need not be projective, and I need not be injective.

Exercise 13.15. (i) An epimorphism p : A Ñ P in A is said to be a split epimorphism
if it has a section, i.e., a map s : P Ñ A such that p˝s “ idP . Show that p is a split

epimorphism if and only if there exists an isomorphism a : Q ‘ P
–
Ñ A such that

Q‘P
a

Ñ A
p

Ñ P is the identity on P and 0 on Q (thus, Q – ker p). In other words
(slightly informally), a split epimorphism p : A Ñ P is one that lets us realize the
quotient P of A as a direct summand of A.
Hint: For “ñ”, let Q “ ker p, let a be pincl., sq, and show that an inverse to a is
given by pidA ´s ˝ p, pq.

(ii) Similarly, a monomorphism ι : I ãÑ A is said to be a split monomorphism if it has
a section s : A Ñ I. Show that ι is a split monomorphism if and only if there exists
an isomorphism A – Q ‘ I, such that I ãÑ A – Q ‘ I is just the inclusion onto
the second factor. Thus, a monomorphism I ãÑ A is a split monomorphism if and
only if it realizes the subobject I of A as a direct summand of A.

Proof of Proposition 13.14. We will prove (i); (ii) is similar.

HompP,´q is anyway left exact, so HompP,´q is exact if and only if it satisfies the addi-
tional property of preserving epimorphisms. This gives the equivalence of (a) and (b).
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If (b) is satisfied, then applying it with B “ P and considering the identity morphism
P Ñ B “ P , we get (c). It is now enough to assume (c) and prove (b). Thus, assume
given an epimorphism A↠ B, and a morphism P Ñ B. Tautologically, this morphism can
be lifted to P Ñ A if and only if P ˆB A Ñ P has a section: this is simply the definition
of the fiber product P ˆB A.

Thus, by the condition (c) being assumed, it is now enough to show that P ˆB A Ñ P “

P ˆB B is an epimorphism. This is a consequence of a lemma discussed in the notes to
Lecture 12: 40 basically, the lemma characterizing pull-backs in an abelian category gave
us the exactness of 0 Ñ P ˆBA Ñ P ‘A Ñ B, and the map P ‘A Ñ B is an epimorphism
because A Ñ B is. Now the lemma characterizing push-outs in an abelian category showed
us that this realizes B as a push-out of P and A over P ˆB A; now use the lemma which
said that pushout preserves cokernels). □

Exercise 13.16. If you are not comfortable with the implication proof of the implication
(c) ñ (b) of Proposition 13.14, prove this implication when A “ R-Mod.

Lemma 13.17. If P “
À

iPI Pi in A, then P is projective if and only if each Pi is projec-
tive. If I “

ś

iPI Ii in A, then I is injective if and only if each Ii is injective.

Proof. For the assertion about projective objects, use the criterion in (i)(b) of Proposition
13.14, as follows. Given an epimorphism A Ñ B in A, HompP,Aq Ñ HompP,Bq identifies
with
ź

i

HompPi, Aq – Hom
´

à

i

Pi, A
¯

“ HompP,Aq Ñ HompP,Bq “ Hom
´

à

i

Pi, B
¯

–
ź

i

HompPi, Bq

(use that Hom from a direct sum (colimit) is the direct product of the Hom’s (limit)).
Thus, HompP,Aq Ñ HompP,Bq is surjective if and only if each HompPi, Aq Ñ HompPi, Bq

is. The proof of the assertion about injective objects is similar, using the criterion (ii)(b)
of Proposition 13.14. □

The conditions under which we will define homological or cohomological δ-functors are as
follows.

Definition 13.18. (i) We say that A has enough projectives if for each A P ObA,
there exists an epimorphism P ↠ A in A with P P ObA projective.

(ii) We say that A has enough injectives if for each A P ObA, there exists a monomor-
phism A ãÑ I in A with I P ObA injective.

13.5. Projective and injective modules. By a projective (resp., injective) left or right
R-module, we mean a projective or an injective object in R-Mod or Mod-R. In this
subsection, let R be a ring (not necessarily commutative, with identity). For brevity, in
this subsection, we may, unless otherwise stated, write ‘R-module’ or even just ‘module’

40I am not sure you can trust that part of those notes of mine, but this is tag 05PK/Lemma 12.5.14 of
Homological Algebra in the stacks project.
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to mean ‘left R-module’. Further, it will be clear, and understood to be understood, that
analogous results apply to right R-modules.

Proposition 13.19. Let P be a left R-module. Then P is projective if and only if P is a
direct summand of a free left R-module, i.e., F “ P ‘ P 1 for some free left R-module F
and some left R-module P 1.

Proof. “ñ”: If P is projective, choose any surjection F Ñ P , where F is a free left R-
module. That this epimorphism splits implies that F – P ‘ P 1, where P 1 “ kerpF Ñ P q

(use Exercise 13.15).

“ð”: Assume that P is a direct summand of a free left R-module. Let us show that P is
projective.
Case 1. P “ R. Then P is projective, since HomRpR,´q is the forgetful functor R-
Mod ù AbGrp, and is hence exact.
Case 2. P is free. Case 1 and Lemma 13.17 together implies this case.
Case 3. General case. Let F – P ‘ P 1, with F a free left R-module. F is projective by
Case 2, so Lemma 13.17 implies that P is projective. □

Corollary 13.20. R-Mod has enough projectives.

Proof. GivenM , take any surjection 41 F Ñ M with F a free left R-module. F is projective
by Proposition 13.19, and we are done. □

Proposition 13.21. Any projective left R-module is flat, i.e., if P is a projective left
R-module, then ´ bR P :Mod-R ù AbGrp is exact.

Proof. By the right exactness of ´ bR P , it is enough to show that it preserves monomor-
phisms. Since tensor products commute with direct sums, it is easy to see that

À

iMi

is flat if and only if each Mi is flat (i.e., the flat analogue of Lemma 13.17 holds). By
Proposition 13.19, we are therefore reduced to showing that free left R-modules are flat.
This might have been a homework problem, but in any case: another application of the
just-mentioned flat analogue of Lemma 13.17 reduces this to showing that R is a flat left
R-module, which follows from the fact that ´bRR :Mod-R ù AbGrp is just the forgetful
functor, which is exact. □

Exercise 13.22. Thus, we have already seen that

Free ñ projective ñ flat ñ torsion free,

where to make sense of the last implication we assume that R is commutative. Show that
the converse doesn’t hold for any of these implications.
Hint: Among Z{6Z-modules, we have a direct sum decomposition Z{6Z – Z{2Z ‘ Z{3Z,
so the Z{6Z-module Z{2Z is projective, but clearly not free. Q is a flat Z-module but not
projective. An example of a non-flat torsion-free module was a recommended problem in
an earlier homework.

41Of course, we mean surjective homomorphism
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Exercise 13.23. Recall that for finitely generated modules over a PID, torsion-free was
equivalent to free. Using this or otherwise, show that a module over a PID is flat if and
only if it is torsion-free.
Hint: Write a general module M as a direct limit of its finitely generated submodules
Mi, and show that if each Mi is flat then M is flat. It turns out that free and projective
are the same over a PID, and flat and torsion-free are the same over a PID (but free and
projective is not the same as flat and torsion-free).

13.6. Injective modules. The following definition will probably only be used when R is
a PID; otherwise I don’t know if it is standard.

Definition 13.24. Let R be a commutative ring. An R-module M is said to be divisible
if for all nonzerodivisors a P R, the map ˆa :M Ñ M given by m ÞÑ am is surjective.

The strategy to show that R-Mod has enough injectives (R not necessarily commutative)
will have the following two steps:

‚ When R is a (commutative) PID, an R-module is injective if and only if it is
divisible. Moreover, in this case, any R-module can be embedded into an R-module
that is divisible and hence injective.

‚ If every abelian group can be embedded in an injective abelian group (i.e., an
injective Z-module), then for more general (noncommutative, but associative and
with 1) R, every R-module can be embedded in an injective R-module.

Today, we will carry out the second step; the first step will be discussed in Lecture 14.

Lemma 13.25. Let R Ñ S be a homomorphism of (not necessarily commutative) rings.
Then HomRpS,´q : R-Mod ù S-Mod (namely, the functor of “coextension of scalars
from R to S” from Lecture 7) takes injective R-modules to injective S-modules (in other
words, injectivity is preserved under coextension of scalars).

Proof. In Lecture 7, we saw that coextension of scalars is right adjoint to restriction of
scalars:

HomSp´,HomRpS, Iqq – HomRpResSRp´q, Iq.

If I is an injective left R-module, then since ResSRp´q is exact and HomRp´, Iq is exact,
it follows that HomRpResSRp´q, Iq is exact, and hence so is HomSp´,HomRpS, Iqq. Thus,
HomRpS, Iq is an injective S-module. □

Remark 13.26. The above lemma might seem a bit “unintuitive”, since coextension of
scalars feels less intuitive than extension of scalars. It may help psychologically to notice
that projectivity is preserved under extension of scalars.

The above lemma lets us finish step 2, since every ring R admits a ring homomorphism
Z Ñ R:
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Lemma 13.27. Let R be a (not necessarily commutative) ring, and M a left R-module.
Suppose there exists an injective abelian group I containing the additive abelian group
underlying M . Then there exists an injective R-module J containing the R-module M .

Proof. We have injective homomorphisms of R-modules

M ãÑ HomZpR,Mq ãÑ HomZpR, Iq,

where the latter morphism is composition with M ãÑ I and the former is given by m ÞÑ

pr ÞÑ rmq. 42 We are done, since by Lemma 13.25, J :“ HomZpR, Iq is an injective
R-module. □

This completes step 2. We will start Lecture 14 with step 1.

42Check that this is indeed a homomorphism of R-modules, recalling the left R-module structure on
HomZpR,Mq)
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14. Lecture 14 — Derived functors

Today, unless otherwise stated (and we usually won’t state otherwise), A and B will denote
abelian categories, and any functor F : A ù B will be assumed to be additive.

Blah blah. We will usually work with a left exact functor F : A ù B and a right exact
functor G : A ù B. In Lecture 5, F was left adjoint and hence (under mild assumptions)
right exact, and G was right adjoint and hence (under mild assumptions) left exact; so
now the roles have switched. Further, we will switch another aspect of the notation: unlike
the previous lecture, we will now mostly give proofs in the ‘cochain complex/cohomology’
situation and say that the ‘chain complex/homology’ situation is analogous. To avoid
clumsiness of notation, rather than writing A‚

˝ Ñ A‚ Ñ A‚
˝˝ etc., we will start writing

A‚
1 Ñ A‚

2 Ñ A‚
3 etc.

14.1. Continuation of the proof that R-Mod has enough injectives. To prove that
R-Mod has enough injectives, we reduced to the case where R was a PID. For this case,
the key input is the following:

Proposition 14.1. If R is a (commutative) PID, then an R-module M is injective if and
only if it is divisible.

Before proving Proposition 14.1, let us deduce from it that R-Mod has enough injectives.

Proposition 14.2. For any (not necessarily commutative) ring R, R-Mod has enough
injectives.

Proof, assuming Proposition 14.1. In Lecture 13, we reduced this to the case where R “ Z
(see Lemma 13.27). Thus, we may now assume that R is a PID.

Suppose we can show the following: if M is an R-module and m P M , then there exists a
map φm : M Ñ Im, with I a divisible (and hence, by Proposition 14.2, injective) module,
and with φmpmq ‰ 0. If this claim is granted, i.e., given such φm :M Ñ Im for all m P M ,
ś

m φm : M Ñ
ś

m Im is a monomorphism, and
ś

m Im is injective (since a product of
injective modules is injective); therefore we will be done.

Thus, it remains to show the existence of such a φm : M Ñ Im for each m P M . For this,
it is enough to define an R-module injection Rm ãÑ Im for some divisible R-module Im:
then, by the injectivity of Im and the fact that Rm ãÑ M is a monomorphism, Rm ãÑ Im
extends to a map φm :M Ñ Im, which does not vanish at m.

Note that R{m – R{pdq, for some d P R. Let K be the quotient field of R: it is divisble

as an R-module. If d “ 0, we may take φm : Rm Ñ Im to be Rm
–
Ñ R ãÑ K, and we are

done. If d ‰ 0, we consider:

Rm
–
Ñ R{pdq

–
Ñ

p1{dqR

R
ãÑ K{R,

and note that K{R too is divisible, and hence injective. □
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Proof of Proposition 14.1. “ñ”: If M is injective and a P R is a nonzerodivisor, apply
Homp´,Mq to the monomorphism ˆa : R Ñ R, to get that ˆa :M Ñ M is surjective.

“ð”: SupposeM is divisible. It is enough to show that any given injective homomorphism
M ãÑ N of R-modules splits. Consider pairs pN 1, s1q, where N 1 Ă N is an R-module
containing M , and s1 : N 1 Ñ M is a section to M ãÑ N 1. Given two such pairs pN 1, s1q

and pN2, s2q, declare pN 1, s1q ď pN2, s2q if N Ă N2, and s2|N 1 “ s1. The collection of such
pairs is nonempty, since pM, idMq belongs to this collection. Given a chain tpNi, siqiu of
such pairs, it is clear that pN 1 “

Ť

iNi, s
1q is an upper bound for this collection, where

s1 : N 1 Ñ M takes n1 P N 1 to sipniq, for any i such that ni P Ni: this is independent of the
choice of i, by the way we defined “ď”.

Thus, by Zorn’s lemma, this collection has a maximal element, say pN 1, s1q. Suppose
N 1 ‰ N , and let us get a contradiction. Choose x P NzN 1, and set N2 :“ N 1 ` Rx Ă N .
We claim that we can extend the above section s1 from N 1 to N2. Doing so is equivalent to
extending s1|N 1XRx : N

1XRx Ñ M to an R-module homomorphism Rx Ñ M . Equivalently,
consider the preimage I of N 1 X Rx under R Ñ Rx (given by r ÞÑ rx). Then I Ă R is an
ideal, say I “ paq, and we have a composite homomorphism φ : I Ñ N 1 X Rx Ñ M . It is
enough to extend φ : I Ñ M to a homomorphism ψ : R Ñ M , for such a homomorphism
will factor through Rx Ñ M (since I contains AnnRpxq, as a consequence of the fact that
0 P N 1 X Rx), extending N 1 X Rx Ñ M .

This can be done since M is divisible, as follows: if φpaq “ y P M , we have φpxaq “ xy
for all x P R. Choose any z P M such that y “ az, so φpxaq “ xaz for all x P R. Define
ψpxq “ xz for all x P R. □

Exercise 14.3. (i) For the implication “ð” in the above proof, only towards the end
was it used that R is a PID. Use this to see that part of the above proof generalizes
to the following important criterion:
Baer’s criterion: Let R be a (not necessarily commutative) ring. Then a left
R-module M is injective if and only if for all left ideals I Ă R, the restriction
homomorphism HomRpR,Mq Ñ HomRpI,Mq is surjective.
Note: Thus, instead of checking the defining criterion for the injectivity of M on
all monomorphisms N 1 ãÑ N , it is enough to consider the special cases consisting
of injections I ãÑ R, where I Ă R is a left ideal.

(ii) Let R be a PID, p P R a prime element, and n P Ně1. Show, using Baer’s criterion
or otherwise, that R{pn is injective as an R{pn-module.

(iii) Use the above exercise to prove the existence assertion in the structure theorem for
finitely generated modules over a PID in the special case of torsion modules.
Note: Thus, to prove the existence assertion in the structure theorem, here is a
sketch of a strategy, though we haven’t given details for many of these steps:

‚ Show that finitely generated torsion-free modules over a PID R are free. Use
this to reduce to the torsion case.

‚ Use the Chinese remainder theorem to show that M “
À

pM rp8s, and thence

reduce to the case where AnnRpMq “ ppnq for some n.
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‚ Use the above exercise to take care of this case (this will also involve ‘reverse
induction’ on n).

14.2. Injective and projective resolutions. Recall that we wanted to define functors
A ù KcochpAq, and A ù KchpAq.

Definition 14.4. (i) A right resolution of A P ObA, or a resolution of A in CochpAq,
is an exact sequence:

0 Ñ A Ñ K0
Ñ K1

Ñ . . .

We will also abbreviate such a resolution to A Ñ K‚. Sometimes, we will adopt a
related but harmlessly conflicting terminology: we will say that K‚ is a resolution
of A, with the map A ãÑ K0 understood. Thus, a resolution of A can also be
described as a sequence

K‚ : 0 Ñ K0
Ñ K1

Ñ . . .

that vanishes in degrees ă 0 and is exact everywhere except at the 0-th place, but
also given together with an identification H0pK‚q – A.

(ii) An injective resolution of A in A is a right resolution of A by injective objects.
(iii) A left resolution of A P ObA, or a resolution of A in ChpAq, is an exact sequence

¨ ¨ ¨ Ñ L1 Ñ L0 Ñ A Ñ 0,

also written as L‚ Ñ A, or simply taken to be a sequence L‚ P ChpAq vanishing
in degrees ă 0, exact everywhere except in degree 0, and considered along with an
identification H0pL‚q – A.

(iv) A projective resolution of A is a left resolution of A by projective objects.

Lemma 14.5. (i) If A has enough injectives, then every object of A has an injective
resolution.

(ii) If A has enough projectives, then every object of A has a projective resolution.

Proof. We will prove (i); the proof of (ii) is analogous. Given A P ObA, by the existence of
enough injectives, we have a monomorphism A ãÑ I0 in A, with I0 injective. One similarly
has a monomorphism cokerpA Ñ I0q ãÑ I1, with I1 injective. Note that

0 Ñ A Ñ I0 Ñ I1

is exact. Now repeat this with cokerpI0 Ñ I1q ãÑ I2, and continue. 43 □

Clearly, the injective or projective resolutions constructed in Lemma 14.5 are far from
unique. As alluded to in Lecture 13, the best we can hope for is uniqueness up to homotopy
equivalence, i.e., uniqueness up to a unique isomorphism in KcochpAq or KchpAq.

43If I understand Professor Nitin Nitsure right, induction doesn’t give us infinite sequences, but only
arbitrarily long sequences; one needs to combine this with a Zorn’s lemma kind of argument to say that a
sequence of infinite length exists.
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Proposition 14.6. (i) Suppose A,B P ObA, A Ñ K‚ is a (not necessarily injective)
resolution of A, and B Ñ I‚ is an injective resolution of B. Then:
(a) Any morphism α : A Ñ B lifts to a morphism α‚ : K‚ Ñ I‚: this means that

α‚ is a morphism of cochain complexes, and H0pα‚q “ α : H0pK‚q “ A Ñ

B “ H0pI‚q.
(b) Any two lifts α‚, β‚ of α : A Ñ B as above are homotopy equivalent, i.e., α‚

as in (a) is a unique morphism in KcochpAq.
(ii) Suppose A,B P ObA, P‚ Ñ A is a projective resolution of A, and L‚ Ñ B is a

(not necessarily projective) resolution of B. Then:
(a) Any homomorphism α : A Ñ B lifts to a homomorphism α‚ : P‚ Ñ L‚: this

means that α‚ is a morphism of chain complexes, and H0pα‚q “ α.
(b) Any two lifts α‚, β‚ of α : A Ñ B as above are homotopy equivalent, i.e., α‚

as in (a) is a unique morphism in KchpAq.

Proof. We will prove (i); (ii) is analogous.

0 // A //

α
��

K0 //

α0

��

K1 //

α1

��

// K2

α2

��

. . .

0 // B // I0 // I1 // I2 . . .

.

By the injectivity of I0, A Ñ B Ñ I0 extends to some α0 : K0 Ñ I0 (this uses that
A Ñ K0 is a monomorphism). Note that K0 Ñ I0 Ñ I1 vanishes on impA Ñ K0q

(because A Ñ K0 Ñ I0 Ñ I1 “ A Ñ B Ñ I0 Ñ I1 “ 0), and hence factors through
a morphism cokerpA Ñ K0q Ñ I1. Since cokerpA Ñ K0q ãÑ K1 is a monomorphism,
the morphism cokerpA Ñ K0q Ñ I1 extends by the injectivity of I1 to a morphism α1 :
K1 Ñ I1. Now induct: in the next step one notes that K1 Ñ I1 Ñ I2 factors through
cokerpK0 Ñ K1q Ñ I2, which extends to α2 : K2 Ñ I2, and so on. This proves (a).

Let us prove (b). Suppose we are given two liftings α‚, β‚ of α : A Ñ B. Then α‚ ´ β‚

lifts 0 : A Ñ B. Thus, we may replace α‚ by α‚ ´ β‚, assume that α‚ lifts 0 : A Ñ B, and
show that α‚ is null homotopic. Consider

cokerpA Ñ K0q
� � d

0
K //

α0

��

K1
d1K //

α1

��

s1

xx

K2

α2

��

s2

}}
I0

d0I

// I1
d1I

// I2

.

Since α “ 0, α0 factors through cokerpA Ñ K0q, explaining the left vertical arrow. There-
fore, since cokerpA Ñ K0q ãÑ K1 is a monomorphism and since I0 is injective, we get
s1 : K1 Ñ I0 such that α0 “ s1 ˝ d0K .

Now consider α1 ´d0I ˝s1: since pα1 ´d0I ˝s1q ˝d0K “ d0I ˝α0 ´d0I ˝s1 ˝d0K “ 0, so α1 ´d0I ˝s1

factors thorough K1{impd0Kq. Since K1{impd0Kq ãÑ K2 is a monomorphism and since I1 is
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injective, this gives us s2 : K2 Ñ I1 such that s2˝d1K “ α1´d0I ˝s1, i.e., α1 “ s2˝d1K`d0I ˝s1.
And so on. □

Corollary 14.7. (i) Assume that A has enough injectives. Then there is a functor

injres : A ù CochpAq,

sending each A P ObA to some choice of injective resolution I‚ of A, and any
morphism α : A1 Ñ A2 in A to the unique homotopy class of the liftings α‚ : I‚

1 Ñ

I‚
2 lifting α (as given by Proposition 14.6(i)), where I‚

1 and I‚
2 are the ‘chosen’

injective resolutions of A1 and A2.
(ii) Assume that A has enough injectives. Then there is a functor

projres : A ù ChpAq,

sending each A P ObA to some choice of projective resolution P‚ of A, and any
morphism α : A1 Ñ A2 in A to the unique homotopy class of the liftings α‚ : P 1

‚ Ñ

P 2
‚ lifting α (as given by Proposition 14.6(ii)), where P 1

‚ and P 2
‚ are the ‘chosen’

projective resolutions of A1 and A2.

Proof. This is immediate from Proposition 14.6.

Here is a bit more of commentary. Given injective resolutions I‚ and J‚ for the same object
A P A, (i) proposition gives us homotopy classes of morphisms I‚ Ñ J‚ and J‚ Ñ I‚. The
compositions I‚ Ñ J‚ and J‚ Ñ I‚ are, by (i)(b), the homotopy classes of the identity
morphisms I‚ Ñ I‚ and J‚ Ñ J‚. Similarly with projective resolutions. In other words,
injective/projective resolutions, while not physically unique, are by Proposition 14.6 unique
up to a unique isomorphism in KcochpAq{KchpAq. One of course still needs the strong
axiom of choice.

As explained in the statement of the corollary, the same proposition also allows us to
define the functor at the level of morphisms. Compatibility with composition and identity
morphisms is obvious. □

14.3. The definition of derived functors.

Notation 14.8. The following is probably non-standard notation, but I find it very no-
tationally convenient. Please use this notation for understanding this lecture, but be
circumspect in using it outside.

(i) Any (additive by the convention for this lecture) functor F : A ù B determines an
obvious functor CochpAq ù CochpBq, which will sometimes be abusively denoted
by F itself. Thus, given

K‚ : . . .
di´1

Ñ Ki di
Ñ Ki`1 di`1

Ñ . . . P ObCochpAq,

we have

F pK‚
q : . . .

F pdi´1q
Ñ F pKi

q
F pdiq
Ñ F pKi`1

q
F pdi`1q

Ñ . . . P ObCochpBq.
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Note that F pK‚q is indeed a complex, since F pdi`1q˝F pdiq “ F pdi`1˝diq “ F p0q “ 0
for each i (F is additive by convention). It is immediate how this functor is defined
at the level of morphisms.

(ii) If α‚, β‚ : K‚
1 Ñ K‚

2 in CochpAq are homotopy equivalent, so that we have relations
of the form αi´βi “ si`1˝di`di´1˝si, then the relations F pαiq´F pβiq “ F psi`1q˝

F pdiq `F pdi´1q ˝F psiq, a consequence of the additivity of F being assumed, imply
that F pα‚q and F pβ‚q (as made sense of by (i) above) are homotopy equivalent.
Thus, the functor F : CochpAq ù CochpBq of (i) also desends to a functor F :
KcochpAq ù KcochpBq – note that we are denoting this also by F .

(iii) Similarly, any additive functor G : A ù B determines functors G : ChpAq ù

ChpBq and G : KchpAq ù KchpBq.

Now we can define derived functors:

Definition 14.9. (i) Suppose F : A ù B is left exact, and assume that A has
enough injectives. Then for all i P Z, the i-th right derived functor of F is the
functor RiF : A ù B defined as the composite

RiF : A injres
ù KcochpAq

F
ù KcochpBq

Hi

ù B
(Thus, for i ă 0, RiF “ 0; note that we have used Notation 14.8).

(ii) Suppose G : A ù B is right exact, and assume that A has enough projectives.
Then for all i P Z, the i-th left derived functor of G is the functor LiG : A ù B
defined as the composite

LiG : A projres
ù KchpAq

F
ù KchpBq

Hi
ù B

(Thus, for i ă 0, LiF “ 0).

Remark 14.10. (i) Suppose F : A ù B is left exact, and assume that A has enough
injectives. Explicitly, the definition of RiF pAq above translates to the following: if
A Ñ pI‚, d‚q is an injective resolution of A P ObA, then

RiF pAq –
kerpF pI iq

F pdiq
Ñ F pI i`1qq

impF pI i´1q
F pdi´1q

Ñ F pI iqq

,

at the level of objects (its definition at the level of morphisms involves maps of
complexes as justified using Proposition 14.6).

(ii) Further, we claim that R0F “ F . At the level of objects, we have

R0F pAq “
kerpF pI0q Ñ F pI1qq

impF pI´1q “ 0
F pd´1q

Ñ F pI iqq

“ kerpF pI0q Ñ F pI1qq “ F pAq,

since 0 Ñ F pAq Ñ F pI0q Ñ F pI1q is exact by the left exactness of F . It is an easy
exercise to see this holds at the level of morphisms as well (because of the ‘lifting’
of morphisms being in Proposition 14.6).

Note that this agrees with our plans: we wanted to extend F to a cohomological
δ-functor, which will take the form ptRiF ui, tδ

iuq.
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(iii) Similarly, suppose G : A ù B is right exact, and that A has enough projectives.
If pP‚, B‚q Ñ A is a projective resolution of A P ObA, then

LiGpAq –
kerpGpPiq Ñ GpPi´1qq

impGpPi`1q Ñ GpPiqq
,

at the level of objects (its definition at the level of morphisms involves maps of
complexes as justified using Proposition 14.6).

(iv) As with the identity R0F “ F , it is easy to see that L0G “ G.

14.4. The horseshoe lemma. We need one more proposition to extend tRiF ui to a coho-
mological δ-functor ptRiF ui, tδ

iuiq, and tLiGui to a homological δ-functor ptLiGui, tδiuiq:
the following, which is sometimes called the horseshoe lemma (due to the shape of the
diagram in equation (64) below, with I02 removed: or rather, one can view the lemma as
choosing injective resolutions of A1 and A3, and filling in a compatible injective resolution
of A2).

Proposition 14.11. (i) Suppose A has enough injectives. If 0 Ñ A1 Ñ A2 Ñ A3 Ñ 0
is a short exact sequence in A, then there exist injective resolutions I‚

1 , I
‚
2 and I‚

3

of A1, A2 and A3, respectively, and a short exact sequence

0 Ñ I‚
1 Ñ I‚

2 Ñ I‚
3 Ñ 0

in CochpAq lifting 0 Ñ A1 Ñ A2 Ñ A3 Ñ 0. 44

(ii) Suppose A has enough projectives. If 0 Ñ A1 Ñ A2 Ñ A3 Ñ 0 is a short exact
sequence in A, then there exist projective resolutions P 1

‚ , P
2
‚ and P 3

‚ of A1, A2 and
A3, respectively, and a short exact sequence

0 Ñ P 1
‚ Ñ P 2

‚ Ñ P 3
‚ Ñ 0

in ChpAq lifting 0 Ñ A1 Ñ A2 Ñ A3 Ñ 0.

Proof. We will prove (i); (ii) is analogous. Though the proof is simple, or rather because
the proof is simple, we will write it out in detail.

First we claim that it is enough to obtain a commutative diagram of the form:

(64) 0 // A1
//

� _

��

A2
//

� _

��

A3� _

��

// 0

0 // I01 // I02 // I03 // 0

,

where the top row is the given exact sequence, the bottom row is a short exact sequence
with I01 , I

0
2 and I03 injective, and where the vertical arrows are all monomorphisms.

44i.e., I‚
1 Ñ I‚

2 lifts A1 Ñ A2 in the sense mentioned in Proposition 14.6(i), and similarly I‚
2 Ñ I‚

3 lifts
A2 Ñ A3.
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Indeed, if we construct such a diagram, then by the snake lemma and the fact that the
vertical arrow A3 ãÑ I03 is a monomorphism, we would get an exact sequence at the level
of cokernels:

0 Ñ cokerpA1 ãÑ I01 q Ñ cokerpA2 ãÑ I02 q Ñ cokerpA3 ãÑ I03 q Ñ 0.

Recalling that injective resolutions of each Ai are constructed by the inductive procedure
described in Lemma 14.5(i), it is easy to iterate this procedure and get 0 Ñ I‚

1 Ñ I‚
2 Ñ

I‚
3 Ñ 0 as desired.

Thus, let us construct (64). Choose monomorphisms u : A1 ãÑ I01 and w : A3 ãÑ I03 , and
set I02 :“ I01 ‘ I03 , giving us all of the following diagram except its middle vertical arrow:

(65) 0 // A1
//

� _

u
��

A2
//

� _

v:“pu1,w1q

��

A3� _

w
��

// 0

0 // I01 // I02 “ I01 ‘ I03 // I03 // 0

.

Note that I02 is injective, and the bottom row (whose maps are the obvious ones) is exact.
We wish to define a monomorphism v : A2 Ñ I02 such that the entire diagram commutes.

Defining v : A2 Ñ I02 “ I01 ‘ I03 is equivalent to defining u1 : A2 Ñ I01 and w1 : A2 Ñ I03 :
45

‚ Define u1 : A2 Ñ I01 to be an extension of A1 Ñ I01 to a map A2 Ñ I01 : such an
extension exists since I01 is injective, and since A1 ãÑ A2 is a monomorphism.

‚ Define w1 to be A2 Ñ A3 Ñ I03 .

Thus, we get v :“ pv1, w1q : A2 Ñ I02 , as shown in (65). We now handle the remaining
assertions to complete the proof of the proposition:

‚ A2 Ñ I02 is a monomorphism: indeed, ker v “ kerpu1, w1q ãÑ A2 factors through
kerpw1q, is just A1 ãÑ A2. Thus, ker v ãÑ A2 identifies with the kernel of u1 ˝ pA1 ãÑ

A2q “ u, which is 0.
‚ The left square commutes: this is because w1 ˝ pA1 ãÑ A2q is 0.
‚ The right square commutes: this is because A2 ãÑ I02 “ I01 ‘ I03 Ñ I03 is w1, which
by definition equals A2 Ñ A3 Ñ I03 .

□

Let us also record a comment that Rajesh made during the lecture:

Lemma 14.12. Let F : A ù B be left exact and G : A ù B right exact.

(i) If A has enough injectives, then for any injective object I P ObA,

RiF pIq “

#

F pIq, if i “ 0, and

0, if i ą 0.

45We are using notation and language used for R-Mod, but note that this makes sense for an abelian
category: I02 is a product of I01 and I03 , etc.
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(ii) If A has enough projectives, then for any projective object P P ObA,

LiGpP q “

#

GpP q, if i “ 0, and

0, if i ą 0.

Proof. This is because an injective resolution of I can be taken to be 0 Ñ I Ñ 0 Ñ 0 Ñ . . . ,
and a projective resolution of P can be taken to be ¨ ¨ ¨ Ñ 0 Ñ ¨ ¨ ¨ Ñ 0 Ñ P Ñ 0. □

14.5. Derived functors are delta functors. Now we can prove that left/right derived
functors indeed give homological/cohomological δ-functors; but for that, one of the smaller
steps is a general enough fact to be separately given as an exercise:

Exercise 14.13. (i) Given an exact sequence 0 Ñ A1 Ñ A Ñ A2 Ñ 0, show that the
following are equivalent:
(a) The sequence is split exact, i.e., we can identify A with A1 ‘A2 in such a way

that A1 Ñ A “ A1 ‘ A2 and A1 ‘ A2 “ A Ñ A2 become the obvious maps.
(b) The map A1 Ñ A is a split monomorphism, i.e., there exists s : A Ñ A1 such

that A1 Ñ A
s

Ñ A1 “ idA1 .
(c) The map A Ñ A2 is a split epimorphism, i.e., there exists s1 : A2 Ñ A such

that A2 s1

Ñ A Ñ A2 “ idA2 .
(ii) Show that any additive functor A ù B takes a split exact sequence to a split

exact sequence.

Theorem 14.14. (i) Assume that F : A ù B is left exact, and that A has enough in-
jectives. Then the RiF, i ě 0, are part of a cohomological δ-functor, ptRiF ui, tδ

iuiq

(which automatically extends F in the obvious sense, i.e., R0F “ F ).
(ii) Assume that G : A ù B is right exact, and that A has enough projectives. Then

the LiF, i ě 0, are part of a homological δ-functor ptLiF ui, tδiuiq (which automati-
cally extends G in the obvious sense, i.e., L0G “ G).

Proof. We will prove (i); (ii) is analogous.

Given a short exact sequence 0 Ñ A1 Ñ A2 Ñ A3 Ñ 0, we choose a short exact sequence

0 Ñ I‚
1
f‚

Ñ I‚
2
g‚

Ñ I‚
3 Ñ 0 of injective resolutions as in Proposition 14.11.

We claim that

0 Ñ F pI‚
1 q

F pf‚q
Ñ F pI‚

2 q
F pg‚q
Ñ F pI‚

3 q Ñ 0

is exact, where the notation F pI‚
j q is as in Notation 14.8. For this, it is enough to show

that each 0 Ñ F pI i1q Ñ F pI i2q Ñ F pI i3q Ñ 0 is exact.

To see this, note that 0 Ñ I i1 Ñ I i2 Ñ I i3 Ñ 0 is split exact, as a consequence of I i1 being
injective and 0 Ñ I i1 Ñ I i2 being a monomorphism (giving an s : I i2 Ñ I i1 as in Exercise
14.13(i) above). Thus, by Exercise 14.13(ii), 0 Ñ F pI i1q Ñ F pI i2q Ñ F pI i3q Ñ 0 is split
exact, and hence exact. This proves the claim.
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By the first proposition of Lecture 13, namely Proposition 13.3, we get a long exact se-
quence:

0 Ñ H0
pF pI‚

1 qq
H0pF pf‚qq

Ñ H0
pF pI‚

2 qq
H0pF pg‚qq

Ñ H0
pF pI‚

3 qq
δ0
Ñ H1

pF pI‚
1 qq

H1pF pf‚qq
Ñ . . .

. . .
δi´1

Ñ H i
pF pI‚

1 qq
HipF pf‚qq

Ñ H i
pF pI‚

2 qq
HipF pg‚qq

Ñ H i
pF pI‚

3 qq
δi
Ñ H i`1

pF pI‚
1 qq

Hi`1pF pf‚qq
Ñ . . .

This defines the δi (one for each short exact sequence 0 Ñ A1 Ñ A2 Ñ A3 Ñ 0) that will
be part of the cohomological δ-functor ptRiF ui, tδ

iuiq.

By the definition of derived functors (see Definition 14.9), this is the same as:

0 Ñ R0F pA1q
R0F pfq

Ñ R0F pA2q
R0F pgq

Ñ R0F pA3q
δ0
Ñ R1F pA1q Ñ . . .

. . .
δi´1

Ñ RiF pA1q
RiF pfq

Ñ RiF pA2q
RiF pgq

Ñ RiF pA3q
δi
Ñ Ri`1F pA1q

Ri`1F pfq
Ñ . . . .

(the δi’s are just borrowed from the previous equation).

We actually haven’t yet proved that the δi’s are functorial, which is needed to complete
the proof that ptRiF ui, tδ

iuiq is a cohomological δ-functor. I haven’t carefully checked the
following, so be especially careful with what follows.

By the functoriality assertion for the δn of the first proposition of Lecture 13, namely
Proposition 13.3, this follows if we prove that given a morphism between short exact
sequences 0 Ñ A1 Ñ A2 Ñ A3 Ñ 0 and 0 Ñ B1 Ñ B2 Ñ B3 Ñ 0, we have a morphism of
short exact sequences of complexes

0 // I‚
1

//

��

I‚
2

//

��

I‚
3

//

��

0

0 // J‚
1

// J‚
2

// J‚
3

// 0

,

where the top row is associated to 0 Ñ A1 Ñ A2 Ñ A3 Ñ 0 as in Proposition 14.11, the
bottom row is associated similarly to 0 Ñ B1 Ñ B2 Ñ B3 Ñ 0, and each I‚

i Ñ J‚
i lifts

Ai Ñ Bi in the sense mentioned in Proposition 14.6.

We try to ensure this by modifying the construction of Proposition 14.11, associated to
the two given short exact sequences. As in that proposition, it is enough to do the first
step. We first construct I01 , I

0
3 , J

0
1 , J

0
3 , but we additionally impose the following, as we may:

A1 ãÑ I01 is actually a composite A1 ãÑ A2 ãÑ I01 of monomorphisms.

We can clearly ensure that I01 Ñ J0
1 and I03 Ñ J0

3 lift A1 Ñ B1 and A2 Ñ B2 (see the
proof of Proposition 14.6(i)(a)). Examining the construction of A2 Ñ I02 “ I01 ‘ I03 and
B2 Ñ J0

2 “ J0
1 ‘J0

3 found in Proposition 14.6, the only thing needed to ensure that we can
choose a lifting I02 Ñ J0

2 of A2 Ñ B2 that both restricts to I01 Ñ J0
1 and induces I03 Ñ J0

3 ,
is to ensure that the maps A2 Ñ I01 and B2 Ñ J0

1 as in that construction can be chosen to
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fit into a commutative diagram:

A2
//

��

B2

��
I01 // J0

1

.

By the injectivity of J0
1 , this can be ensured if we can ensure that A2 Ñ I01 is a monomor-

phism: but this is okay since we have chosen A1 ãÑ I01 to be a composite A1 ãÑ A2 ãÑ

I01 . □

Remark 14.15. The RiF and the LiG are not merely cohomological and homological
δ-functors, but also ‘universal’ cohomological and homological δ-functors, in a sense that I
hope to discuss in Lecture 15.

14.6. The Ext and the Tor functors.

Definition 14.16. Let R be a (not necessarily commutative) ring.

(i) Let A P ObMod-R be a right R-module, and let B P ObR-Mod be a left R-module.
We define, for i ě 0:
(a) TorRi pA,´q :“ LipA bR ´q : R-Mod ù AbGrp.
(b) torRi p´, Bq :“ Lip´ bR Bq :Mod-R ù AbGrp.
These definitions make sense since we have shown that R-Mod and (similarly)
Mod-R have enough projectives.
When R is commutative, these functors may and shall be viewed as valued in

R-Mod instead of in AbGrp.
(ii) Let A,B P ObR-Mod be left R-modules. We define, for i ě 0:

(a) ExtiRpA,´q :“ RipHomRpA,´qq : R-Mod ù AbGrp.
(b) extiRp´, Bq :“ RipHomRp´, Bqq : R-Modop ù AbGrp.
These definitions make sense since we have shown that R-Mod has enough injec-
tives, and so does R-Modop, because injective objects of R-Modop are simply the
projective objects of R-Mod.

Again, when R is commutative, these functors may and shall be viewed as valued
in R-Mod instead of in AbGrp.

Remark 14.17. (i) The above is nonstandard notation: one knows that tor “ Tor
and ext “ Ext in a suitable sense, so we will soon be writing only Tor and Ext.

(ii) Note that, in keeping with our conventions, the ‘i’ of torRi and TorRi are subscripts,
while the ‘i’ of ExtiR and extiR are superscripts. When i is subscripted R is super-
scripted, and the other way round.

(iii) Thus, if P‚ is a projective resolution of A in Mod-R and Q‚ one of B in R-Mod,
then we have

TorRi pA,Bq “
kerpA bR Qi Ñ A bR Qi´1q

impA bR Qi`1 Ñ A bR Qiq
, torRi pA,Bq “

kerpPi bR B Ñ Pi´1 bR Bq

impPi`1 bR B Ñ Pi bR Bq
.
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(iv) On the other hand, if P‚ is a projective resolution of A in R-Mod, or in other words
an injective resolution of A in R-Modop, and if I‚ is an injective resolution of B in
R-Mod, we have:

ExtiRpA,Bq “
kerpHompA, I iq Ñ HompA, I i`1qq

impHompA, I i´1q Ñ HompA, I iqq
, extiRpA,Bq “

kerpHompPi, Bq Ñ HompPi`1, Bqq

impHompPi´1, Bq Ñ HompPi, Bqq
.

These formulas can sometimes help calculate these objects. We will see some ex-
amples below.

(v) If 0 Ñ N 1 Ñ N Ñ N2 Ñ 0 is an exact sequence of left R-modules, then by Theorem
14.14 we get, for any right R-module M , an exact sequence of abelian groups:

¨ ¨ ¨ Ñ TorRi pM,N 1
q Ñ TorRi pM,Nq Ñ TorRi pM,N2

q
δi
Ñ TorRi´1pM,N 1

q Ñ . . .

¨ ¨ ¨ Ñ TorR1 pM,N2
q
δ1
Ñ M bR N

1
Ñ M bR N Ñ M bR N

2
Ñ 0.

A similar comment applies with tor, withM 1,M,M2 of an exact sequence occuring
in the first argument (and hence, by Theorem 14.18 quoted below, with Tor too).
Often, this sequence too can be used to compute values of Tor.

(vi) If 0 Ñ N 1 Ñ N Ñ N2 Ñ 0 is an exact sequence of left R-modules, then by Theorem
14.14 we get, for any left R-module M , an exact sequence of abelian groups:

0 Ñ HomRpM,N 1
q Ñ HomRpM,Nq Ñ HomRpM,N2

q Ñ Ext1RpM,N 1
q Ñ . . .

¨ ¨ ¨ Ñ ExtiRpM,N2
q
δi
Ñ Exti`1

R pM,N 1
q Ñ Exti`1

R pM,Nq Ñ Exti`1
R pM,N2

q Ñ . . . .

A similar comment applies with ext, and with M 1,M,M2 occuring in the second
argument (and hence, by Theorem 14.18 quoted below, with Ext too). Often, this
sequence too can be used to compute values of Ext.

In the next lecture, I hope to sketch a proof of the following:

Theorem 14.18. Let R be a (not necessarily commutative) ring.

(i) For all A P ObMod-R and B P ObR-Mod, and for all i ě 0, we have an iso-
morphism TorRi pA,Bq – torRi pA,Bq, functorial in A and B, and specializing when
i “ 0 to the identity map A bR B Ñ A bR B.

(ii) For all A,B P ObR-Mod, and for all i ě 0, we have an isomorphism ExtiRpA,Bq –

extiRpA,Bq, functorial in A and B, and specializing when i “ 0 to the identity map
HomRpA,Bq Ñ HomRpA,Bq.

When R is commutative, these are identifications of R-modules.

Some of the examples below will use the following exercise:

Exercise 14.19. Work out or look up a proof of the following: If R is a (commutative)
PID, show that any submodule of a free R-module is free.
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In the following examples, we are distinguishing between Tor and tor, and between Ext
and ext; note however that they are eventually the same by Theorem 14.18 above, so these
examples give more information than what is literally written below.

Example 14.20. (i) Let R be a commutative ring, and let a P R be a nonzero divisor.
We claim that:

(66) TorRi pM,R{paqq –

$

’

&

’

%

M{aM, if i “ 0,

M ras :“ tm P M | am “ 0u, if i “ 1, and

0, otherwise.

Indeed, this is because a projective resolution of R{paq can be taken to be 0 Ñ

R
ˆa
Ñ R Ñ 0, which on tensoring with M becomes

0 Ñ M
ˆa
Ñ M Ñ 0,

whose homology is as claimed. Now applying the long exact sequence for Tor (see
Remark 14.17(v)), we get an exact sequence:

0 Ñ M 1
ras Ñ M ras Ñ M2

ras Ñ M 1
{aM 1

Ñ M{aM Ñ M2
{aM2

Ñ 0,

which was also the topic of Exercise 12.30 from Lecture 12.
Tor1pM,R{aq being the a-torsion of M gives some idea of why the notation ‘Tor’

is used.
(ii) A similar computation shows that if R is a commutative ring and a P R is a

nonzerodivisor, then:

ExtiRpR{a,Mq “

$

’

&

’

%

M ras, if i “ 0,

M{aM, if i “ 1, and

0, if i ą 1.

(iii) If R is a PID, then for all i ě 2, we have TorRi pM,Nq “ torRi pM,Nq “ 0. This
follows from the fact that, by Exercise 14.19 above, any module over a PID has a
free resolution P‚, with Pi “ 0 for i ą 1.

(iv) A similar reasoning gives that if R is a PID, then for all i ě 2, extiRpM,Nq “ 0.
Without appealing to Theorem 14.18 quoted above, we can also see directly that
for all i ě 2, ExtiRpM,Nq “ 0 (with R a PID): this is because if N ãÑ I0 with I0

injective and hence divisible, then I1 :“ I0{N is automatically divisible and hence
injective; therefore 0 Ñ I0 Ñ I1 Ñ 0 Ñ 0 Ñ . . . is an injective resolution of N .

(v) Let R “ krxs{pxnq. Think of k as an R-module, where x acts as 0. We claim that
extiRpk, kq “ k for all i ě 0. For this, note that we have the following projective
resolution for the R-module k:

. . .
¨xn´1

Ñ R
¨x
Ñ R

¨xn´1

Ñ R
¨x
Ñ . . .

¨xn´1

Ñ R
¨x
Ñ R Ñ k Ñ 0.

Now apply Homp´kq, to get:

0 Ñ k
0

Ñ k
0

Ñ k
0

Ñ . . .
0

Ñ k
0

Ñ . . .
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Exercise 14.21. Let R be a commutative ring, and I, J Ă R ideals. Show that:

TorR1 pR{I, R{Jq –
I X J

IJ
.

Thus, to belabour a painfully obvious point, TorR1 pR{I, R{Jq measures how far I X J fails
to be IJ .
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15. Lecture 15 — Acyclic objects, universal δ-functors, more on Ext and
Tor

Unless otherwise stated, A and B will be abelian categories. Any functors F,G : A ù B
will automatically be assumed to be additive; F will often be left exact, while G will often
be right exact.

15.1. A long exact sequence in terms of short exact sequences. Before proceeding,
let us recall/make an observation frequently seen:

Remark 15.1. (i) Any long exact sequence can be broken up into a chain of short
exact sequences: if 0 Ñ K1 Ñ K2 Ñ . . . is a long exact sequence, then setting
Ci “ cokerpKi´1 Ñ Kiq for each i, we get short exact sequences

0 Ñ C0 :“ K0
Ñ K1

Ñ C1
Ñ 0, 0 Ñ C1

Ñ K2
Ñ C2

Ñ 0, . . . .

(ii) Conversely, if we are given short exact sequences 0 Ñ C0 :“ K0 Ñ K1 Ñ C1 Ñ 0,
0 Ñ C1 Ñ K2 Ñ C2 Ñ 0, . . . , then we get by splicing together a long exact
sequence

0 Ñ K0
Ñ K1

Ñ . . . ,

where each Ki Ñ Ki`1 is defined to be Ki Ñ Ci Ñ Ki`1.

There are ‘chain analogues’ of the above, of exact sequences ¨ ¨ ¨ Ñ K1 Ñ K0 Ñ 0.

15.2. Dimension shifting. The following definition will be ad hoc now; it is partially
motivated by Proposition 15.6 below, and further motivated later into this lecture.

Definition 15.2. (i) An additive functor F : A ù B between abelian categories is
said to be effaceable or erasable, if for all A P ObA there exists a monomorphism
A ãÑ K, for some K P ObA such that F pKq “ 0. The condition F pKq “ 0 may
be expressed by saying that K erases F . We may also say that A ãÑ K effaces or
erases A.

(ii) Let T “ ptT nun, tδ
nunq be a cohomological δ-functor between A and B. We say

that T is effaceable, if T i is effaceable for each i ě 1 (but not necessarily for i “ 0).
(iii) An additive functor G : A ù B between abelian categories is said to be coefface-

able or coerasable, if for all A P ObA there exists an epimorphism L ↠ A, for
some L P ObA such that GpLq “ 0. The condition GpLq “ 0 may be expressed by
saying that L erases G. We may also say that L↠ A effaces or erases A.

(iv) A homological δ-functor ptTnun, tδnunq is said to be coeffaceable or coerasable if Tn
is coeffaceable for each i ě 1 (but not necessarily for i “ 0).

Notation 15.3. In Lecture 14, associated to a left exact functor F : A ù B such that
all the right derived functors RnF exist (as per our definition from Lecture 14, that is –
thus, this existence is equivalent to A having enough injectives), we saw a construction of
a cohomological δ-functor ptRnF un, tδ

nunq. We will refer to this δ-functor ptRnF un, tδ
nunq

as the cohomological δ-functor obtained by right deriving F (warning: this terminology
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may be nonstandard). Similarly, we will talk of homological δ-functors ptLnGun, tδnunq

obtained by left deriving G.

Example 15.4. (i) Any δ-functor ptRnF un, tδ
nunq obtained by right deriving F :

A ù B is effaceable: 46 this is because given each A P ObA we have a monomor-
phism A ãÑ I with I injective, and we noticed in Lecture 14 that RnF vanishes on
injective objects for each n ě 1.

(ii) Similarly, δ-functors ptLnGun, tδnunq obtained by left deriving right exact functors
G : A ù B are coeffaceable.

Remark 15.5. To illustrate dimension shifting, consider a cohomological δ-functor ptT nun, tδ
nunq,

together with an exact sequence:

0 Ñ A Ñ K Ñ C Ñ 0,

If K effaces F n for all n ě 1, then we have for all n ě 1 (though not necessarily for n “ 0),
an exact sequence:

0 “ T npKq Ñ T npCq Ñ T n`1
pAq Ñ T n`1

pKq “ 0,

yielding, for each n ě 1:

(67) T npCq – T n`1
pAq.

Thus, we will often be able to reduce the proofs of results about T n`1pAq to those about
T npCq, provided n ě 1.

Thus, one might expect to similarly reduce results about T n`rpAq to those about T npCq

for a different C, and that is what the following proposition says:

Proposition 15.6. (i) Let ptT nun, tδ
nunq be a cohomological δ-functor from A to B.

Let

(68) 0 Ñ A Ñ K0
Ñ K1

Ñ K2
Ñ ¨ ¨ ¨ Ñ Kr´1

Ñ C Ñ 0

be an exact sequence in A, where T npKiq “ 0 for each i and each n ě 1. Then for
all n ě 1 we have

T npCq – T n`r
pAq.

(ii) Let ptTnun, tδnunq be a homological δ-functor from A to B. Let

(69) 0 Ñ C Ñ Lr´1 Ñ ¨ ¨ ¨ Ñ L1 Ñ L0 Ñ A Ñ 0

be an exact sequence in A, where TnpLiq “ 0 for each i, and for each n ě 1. Then
for all n ě 1 we have

TnpCq – Tn`rpAq.

46Thus, we are implicitly assuming here that F is left exact and that A has enough injectives.
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Proof. We will prove (i); (ii) is analogous.

The proof is just an iterated application of the above discussion (see around (67)) together
with breaking up the given exact sequence into short exact sequences as in Remark 15.1(i),
and as represented by the following diagram:
(70)

K0 //

!!

K1 //

!!

. . . //

$$

Kr´1

&&
A “ C´1

::

C0

==

!!

C1

;;

##

Cr´2

::

$$

Cr´1 “ C

$$
0

::

0

==

0

==

0 . . . 0

::

0 0

Applying the discussion of Remark 15.5 to the exact sequences 0 Ñ Ci´1 Ñ Ki Ñ Ci, as
i ranges between 0 and r, we get for each n ě 1:

T npCq “ T npCr´1
q “ T n`1

pCr´2
q “ T n`2

pCr´3
q “ ¨ ¨ ¨ “ T n`r

pC´1
q “ T n`r

pAq,

as desired. □

We close this subsection with some definitions that the above considerations lead to; we
may not use them much in this course but they seem useful even to just understand this
kind of mathematics:

Definition 15.7. (i) Given an exact sequence

0 Ñ A Ñ I1 Ñ I2 Ñ ¨ ¨ ¨ Ñ Ir´1
Ñ C Ñ 0,

with each I i injective, we call C an r-th cosyzygy of A. Thus, by Proposition
15.6(i), whenever A has enough injectives and F : A ù B is left exact, then for
any r-th cosyzygy C of A we have Rn`rF pAq “ RnF pCq for all n ě 1 (each I i

being injective automatically satisfies RnF pIq “ 0 for all n ě 1).
(ii) Given an exact sequence

0 Ñ C Ñ Pr´1 Ñ ¨ ¨ ¨ Ñ P1 Ñ P0 Ñ A Ñ 0,

with each Pi projective, we call C an r-th syzygy of A. Thus, by Proposition
15.6(ii), whenever A has enough projectives and G : A ù B is right exact, then
for any r-th syzygy C of A we have Ln`rGpAq “ LnGpCq for all n ě 1 (each Pi
being projective is automatically satisfies LnGpPiq “ 0 for all n ě 1).

(iii) Let T “ ptT nun, tδ
nunq be a cohomological δ-functor from A to B. We say that

A P ObA has T -dimension ď d, if T npAq “ 0 for all n ě d ` 1. If the right
derived functors of a left exact functor F : A ù B exist, by F -dimension we mean
ptRnF un, tδ

nunq-dimension.
(iv) Let T “ ptTnun, tδnunq be a homological δ-functor from A to B. We say that

A P ObA has T -dimension ď d, if TnpAq “ 0 for all n ě d ` 1. If the left derived
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functors of a right exact functor G : A ù B exist, by G-dimension we mean
ptLnGun, tδnunq-dimension.

15.3. Acyclic objects. The following definitions are closely related to those of the previ-
ous subsection:

Definition 15.8. (i) Let F : A ù B be a left exact functor between abelian cate-
gories, and assume that A has enough injectives. An object A P ObA is said to be
F -acyclic, if RiF pAq “ 0 for all i ě 1 (i.e., if A has F -dimension ď 0).

(ii) Relatedly, if T “ ptT nun, tδ
nunq is a cohomological δ-functor from an abelian cat-

egory A to an abelian category B, an object A P ObA is said to be T -acyclic, if
T ipAq “ 0 for all i ě 1 (i.e., if A has T -dimension ď 0).
Thus, in the situation of (i), A is F -acyclic if and only if it is ptRnF un, tδ

nunq-
acyclic, where ptRnF un, tδ

nunq is the cohomological δ-functor obtained by right
deriving F .

(iii) Similarly, let G : A ù B be a right exact functor between abelian categories, and
assume that A has enough projectives. An object A P ObA is said to be G-acyclic,
if LiGpAq “ 0 for all i ě 1 (i.e., if A has G-dimension ď 0).

(iv) Relatedly, if T “ ptTnun, tδnunq is a homological δ-functor from an abelian category
A to an abelian category B, an object A P ObA is said to be T -acyclic, if TipAq “ 0
for all i ě 1 (i.e., if A has T -dimension ď 0).

Thus, in the situation of (iii), A is G-acyclic if and only if it is ptLnGun, tδnunq-
acyclic, where ptLnGun, tδnunq is the homological δ-functor obtained by left deriving
G.

(v) If F : A ù B is left exact and A has enough injectives, a right resolution A Ñ K‚

of A P ObA is said to be F -acyclic, if each Ki is F -acyclic.
(vi) Similarly, if G : A ù B is right exact and A has enough projectives, a left

resolution L‚ Ñ A is said to be G-acyclic, if each Li is G-acyclic.
(vii) There is a related notion of ‘acyclic’, without any ‘F -acyclic’, which seems to be a

distinct notion. Namely:
We will often also refer to a cochain complex K‚, where Ki “ 0 for all i ă 0, as

acyclic if H ipK‚q “ 0 for all i ą 0. Thus, it is exact everywhere except at 0, but it
may not be exact, because H0pK‚q is allowed to be nonzero. Thus, if A Ñ K‚ is a
right resolution of A, then K‚ is not exact (unless A “ 0), but it is acyclic.

(viii) Similarly we define an acyclic chain complex. If L‚ Ñ A is a left resolution of A,
then L‚ is not exact (unless A “ 0), but it is acyclic.

Remark 15.9. Thus, F -dimension measures how far T is from being F -acyclic, etc.

For various definitions we will encounter along the above lines, there will be three special
cases involving functors that we have studied so far: an ‘injective version’, a ‘projective
version’ and a ‘flat version’: the first two refer to HompA,´q and Homp´, Bq, while the
third will be restricted to module categories, and will involve tensor products.

Example 15.10. Let A be an abelian category.
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(i) Assume that A has enough injectives. If I P ObA is injective, then we have seen in
Lecture 14 that for any left-exact functor F : A ù B, we have RiF pIq “ 0 for all
i ě 1. i.e., I is F -acyclic for any left exact functor F : A ù B. Conversely, we will
see in Exercise 15.25 below that any I P ObA that is acyclic for each HompA,´q,
as A varies over ObA, is injective.

(ii) Assume that A has enough projectives. Projective objects of A are the same as
injective objects of Aop. Thus, (i) translates to the following: any projective object
P P ObA is F -acyclic for any left exact functor F : Aop Ñ B, and conversely,
(we will see in Exercise 15.25 below that) any P P ObA that is acyclic for each
HomAoppA,´q “ HomAp´, Aq, as A varies over ObA, is projective.

(iii) If N P ObR-Mod is flat, then we will (essentially) see that N is pM bR ´q-acyclic
for any M P ObMod-R (similarly with N P ObMod-R and the ´ bR M with
M P ObR-Mod). Rather, the details in the commutative case are left to Exercise
15.25 below, and the general case is similar.

15.4. Derived functors can be computed using acyclic resolutions. Now let us see
that derived functors of F can be computed using F -acyclic resolutions, which can be more
convenient in some situations than injective resolutions:

Theorem 15.11. (i) Suppose F : A ù B is left exact, and that A has enough injec-
tives. If A Ñ K‚ is an F -acyclic resolution of A, then RiF pAq can be computed as
H ipF pK‚qq for each i. More precisely, if K‚ Ñ I‚ is any lift of idA : A Ñ A (see
Proposition 14.6 from Lecture 14), then the induced map

H i
pF pK‚

qq Ñ H i
pF pI‚

qq
recall
“ RiF pAq

is an isomorphism.
(ii) Suppose G : A ù B is right exact, and that A has enough projectives . If L‚ Ñ A

is a G-acyclic resolution of A, then LiGpAq can be computed as HipGpL‚qq for each
i. More precisely, if P ‚ Ñ L‚ is any lift of idA : A Ñ A (see Proposition 14.6 from
Lecture 14), then the induced map

LiGpAq
recall
“ HipGpP‚qq Ñ HipGpL‚qq

is an isomorphism.

The proof will use:

Lemma 15.12. If F : A ù B is left exact and Y ‚ : 0 Ñ Y 0 Ñ Y 1 Ñ . . . is an exact
cochain complex with each Y i F -acyclic, then 0 Ñ F pY 0q Ñ F pY 1q Ñ ¨ ¨ ¨ is exact. A
similar assertion applies to right exact G : A ù B, and chain complexes ¨ ¨ ¨Y1 Ñ Y0 Ñ 0.

This lemma will in turn be a simple consequence of two simple observations, the first of
which is breaking up a long exact sequence into short exact sequences (Remark 15.1 above).
The second simple observation is the following lemma.

Lemma 15.13. Let 0 Ñ A Ñ B Ñ C Ñ 0 be an exact sequence in A.
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(i) If F : A ù B is left exact, A has enough injectives, and A and B are F -cyclic,
then C is F -acyclic as well.

(ii) If G : A ù B is right exact, A has enough projectives, and B and C are G-acyclic,
then A is G-acyclic as well.

Proof. We will prove the first assertion; the second assertion is analogous. For each i ě 1,
the long exact sequence obtained by applying F to 0 Ñ A Ñ B Ñ C Ñ 0 gives that for
all i ě 1:

0 “ RiF pBq Ñ RiF pCq
δ

Ñ Ri`1F pAq “ 0

is exact, so RiF pCq “ 0. □

Proof of Lemma 15.12. We will prove the assertion concerning F ; the assertion concerning
G is analogous. By Remark 15.1(i), we get short exact sequences 0 Ñ Ci Ñ Y i`1 Ñ

Ci`1 Ñ 0 for each i ě 0, where Ci “ cokerpY i´1 Ñ Y iq (thus, C0 “ Y 0). By part (ii) of
the same remark, it is enough to show that each 0 Ñ F pCiq Ñ F pY i`1q Ñ F pCi`1q Ñ 0
is exact.

By the long exact sequence obtained by applying F to 0 Ñ Ci Ñ Y i`1 Ñ Ci`1 Ñ 0, this
follows if we show that R1F pCi`1q “ 0 for each i ě 0. This is because, by Lemma 15.13,
Ci`1 “ cokerpY i Ñ Y i`1q is F -acyclic for each i ě 0. □

Proof of Theorem 15.11. We will prove (i); (ii) is analogous.

Step 1. Choosing I‚. We have the freedom to choose I‚. We claim that we can ensure
that Ki Ñ I i is a monomorphism for each i ě 0. These is a standard ‘pushout + enough
injectives’ argument, which we now recall. For this, first choose the monomorphism A ãÑ I0

to be of the form A Ñ K0 ãÑ I0. Letting C0 “ cokerpA Ñ K0q “ impK0 Ñ K1q ãÑ K1

and D0 “ cokerpA Ñ I0q, form the pushout, the rightmost square in the following diagram:

0 // A // K0 //

��

C0 //

��

K1

��
0 // A // I0 // D0 // E1 � � // I1

.

We choose I0 Ñ I1 to be I0 Ñ D0 Ñ E1 ãÑ I1, where E1 ãÑ I1 is a monomorphism of
E1 into an injective object I1 of A. Now since pushouts preserve monomorphisms (see
Corollary 12.23(ii) from Lecture 12), D0 Ñ E1 is a monomorphism, which implies that
A Ñ I0 Ñ I1 is exact. Now induct: in the next step, one considers cokerpK0 Ñ K1q and
cokerpI0 Ñ I1q in place of C0 and D0. Clearly, K‚ Ñ I‚ then lifts idA : A Ñ A, and
consists of monomorphisms Ki Ñ I i.

Step 2. The complex Y ‚ of acyclics. Let Y i “ cokerpKi Ñ I iq, for each i ě 0. By Lemma
15.13, we get that each Y i is F -acyclic (use that each Ki is F -acyclic, and so is each I i;
each injective object has been observed to be acyclic for each left exact functor). Moreover,
each I i Ñ I i`1 induces Y i Ñ Y i`1.
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Now we have a commutative diagram with exact rows and columns:

0

��

0

��

0

��

. . .

0 // A

id
��

// K0 //

��

K1 //

��

K2 //

��

. . .

0 // A

��

// I0 //

��

I1 //

��

I2 //

��

. . .

0 // Y 0 //

��

Y 1 //

��

Y 2 //

��

. . .

0 0 0

.

Applying F , we get a sequence of chain complexes

0 Ñ F pK‚
q Ñ F pI‚

q Ñ F pY ‚
q Ñ 0

(here K‚ is the complex 0 Ñ K0 Ñ K1 Ñ . . . , and similarly with I‚ and Y ‚). This
complex is exact by Lemma 15.12, since each Y i is F -acyclic.

The long exact sequence for cohomology associated to this sequence contains, for i ě 1, an
exact subsequence

H i´1
pF pY ‚

qq Ñ H i
pF pK‚

qq Ñ H i
pF pI‚

qq Ñ H i
pF pY ‚

qq,

where the map H ipF pK‚qq Ñ H ipF pI‚qq is indeed as in the statement of the theorem.
Since H i´1pF pY ‚qq “ H ipF pY ‚qq “ 0 by Lemma 15.12, this forces the map H ipF pK‚qq Ñ

H ipF pI‚qq “ RipF ‚q to be an isomorphism, as desired. □

15.5. Universal δ-functors. We now study the notion of universality for homological and
cohomological δ-functors, which (as we will see below) are very useful in relating various
derived functors to each other.

Definition 15.14. (i) A morphism between cohomological δ-functors ptT nun, tδ
nunq

and ptSnun, tδ
nunq is a unique sequence of natural transformations tT n Ñ Snuně1

such that for each exact sequence 0 Ñ A1 Ñ A2 Ñ A3 Ñ 0 in A, and each n P N,
the square involving the δn’s in the following diagram commutes:

. . . // T npA1q //

��

T npA2q //

��

T npA3q
δn //

��

T n`1pA1q //

��

. . .

. . . // SnpA1q // SnpA2q // SnpA3q
δn // Sn`1pA1q // . . .

.

Note that this condition in fact gives the commutativity of the the entire diagram
above, because the T n Ñ Sn are natural transformations.

(ii) Similarly, we define a morphism of homological δ-functors.
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(iii) A cohomological δ-functor ptT nun, tδ
nunq is said to be universal if, given any co-

homological δ-functor ptSnun, tδ
nunq and a natural transformation T 0 Ñ S0, there

exists a unique morphism of δ-functors ptT nun, tδ
nunq Ñ ptSnun, tδ

nunq extending,
in an obvious sense, the given natural transformation T 0 Ñ S0.

(iv) A homological δ-functor ptTnun, tδnunq is said to be universal if, given any homo-
logical δ-functor ptSnun, tδnunq and a natural transformation S0 Ñ T0, there exists
a unique morphism of δ-functors ptSnun, tδnunq Ñ ptTnun, tδnunq extending, in an
obvious sense, the given natural transformation S0 Ñ T0.

Theorem 15.15. (i) Any cohomological δ-functor ptRnF un, tδ
nunq obtained by right

deriving a left exact functor F : A ù B is universal.
(ii) Any homological δ-functor ptLnGun, tδnunq obtained by left deriving a right exact

functor G : A ù B is universal.

Corollary 15.16. (i) If α : F1 Ñ F2 is a natural transformation between left exact
functors A ù B, where A and B are abelian categories and A has enough in-
jectives, then it extends to a unique morphism of cohomological δ-functors fα :
ptRnF1un, tδ

nunq Ñ ptRnF2un, tδ
nunq. Moreover, this respects composition: fα˝β “

fα ˝ fβ (when applicable).
(ii) Similarly, if α : G1 Ñ G2 is a natural transformation between right exact functors

A ù B, where A and B are abelian categories and A has enough projectives, then it
extends uniquely to a morphism of homological δ-functors fα : ptLnG1un, tδnunq Ñ

ptLnG2un, tδnunq. Moreover, this respects composition: fα˝β “ fα ˝ fβ.

Proof. The existence and the uniqueness of the fα are immediate from Theorem 15.15.
The uniqueness gives that the fα respect composition. □

Remark 15.17. It is easy to see to describe the morphisms RnF1 Ñ RnF2 given by the
above corollary more concretely: for any A P ObA, say with an injective resolution I‚,
the natural transformation F1 Ñ F2 gives rise to a morphism of complexes η “ “αpI‚q”
: F1pI

‚q Ñ F2pI
‚q, and RnF1pAq Ñ RnF2pAq is given by:

Hn
pηq : RnF1pAq “ Hn

pF1pI
‚
qq Ñ Hn

pF2pI
‚
qq “ RnF2pAq.

Indeed, these morphisms commute with the “δ” (use the functoriality of the long exact
sequence associated to a short exact sequence of complexes), and hence give morphisms of
δ-functors, which by the above corollary is unique.

Similarly with the morphisms LnG1 Ñ LnG2.

Since the ptRnF un, tδ
nunq are effaceable and the ptLnGun, tδnunq are coeffaceable (see Ex-

ample 15.4), Theorem 15.15 follows from the following theorem:

Theorem 15.18 (Grothendieck, published in Tohoku). (i) Any effaceable cohomolog-
ical δ-functor ptT nun, tδ

nunq is universal.
(ii) Any coeffaceable homological δ-functor ptTnun, tδnunq is universal.



192

Proof. The following is much more detailed than what was discussed in the lecture. We
will prove (i); the proof of(ii) is analogous. Assume that these functors are from an abelian
category A to an abelian category B.
We are given a natural transformation f 0 : T 0 Ñ S0; we need to define natural trans-
formations fn : T n Ñ Sn for each n ě 1, such that pfnqně0 is a morphism of δ-functors
ptT nun, tδ

nunq Ñ ptSnun, tδ
nunq.

Step 1: A construction of T 1pAq Ñ S1pAq. The natural transformation f 1 : T 1 Ñ S1 is a
collection of maps f 1 : T 1pAq Ñ S1pAq, as A varies over ObA. The first step is to give a
construction for f 1 : T 1pAq Ñ S1pAq, for a fixed A P ObA.

We are assuming the effaceability of T n for each n ě 1. Use the effaceability of T 1 to erase
A with a monomorphism u : A ãÑ K; thus, T 1pKq “ 0. Let C “ cokerpA Ñ Kq, so we

have an exact sequence 0 Ñ A
u

Ñ K Ñ C Ñ 0.

Thus, we get a commutative diagram with exact rows:

T 0pKq

f0

��

// T 0pCq
δ1T //

f0

��

T 1pAq //

?
��

T 1pKq “ 0

S0pKq // S0pCq
δ1S // S1pAq

.

To prove the existence of the dotted arrow, which will be our f 1 : T 1pAq Ñ S1pAq, thanks
to T 0pCq Ñ T 1pAq being an epimorphism, it is enough to show that kerpδ1T q Ă kerpδ1S ˝f 0q.
47 By the exactness of the top row, this follows if we show that the composite T 0pKq Ñ

T 0pCq Ñ S0pCq Ñ S1pAq is zero, which is the case since it is also the composite T 0pKq Ñ

S0pKq Ñ S0pCq Ñ S1pAq. This defines, depending on u : A ãÑ K, f 1 : T 1pAq Ñ S1pAq

uniquely (uniquely because T 0pCq Ñ T 1pAq is an epimorphism).

Step 2: Well-definedness of f 1 : T 1pAq Ñ S1pAq. Now we show that f 1 : T 1pAq Ñ S1pAq

is independent of the choice of u : A ãÑ K. Suppose u : A ãÑ K and u1 : A ãÑ K 1 are
monomorphisms, with T 1pKq “ T 1pK 1q “ 0.

First assume that u1 factors as A
u

Ñ K ãÑ K 1: though this is a special case, but we
will reduce the general case to this case. K Ñ K 1 induces a map w : C Ñ C 1, where
C “ cokeru and C 1 “ cokeru1. We then get a diagram

T 0pCq

f0
��

T 0pwq
// T 0pC 1q

δT //

f0
��

T 1pAq

f1
��

// 0

S0pCq
S0pwq

// S0pC 1q
δS // S1pAq

,

47more explanation: in our abelian category context, this should of course be interpreted as saying that
ker δ1T ãÑ T 0pCq factors through kerpδ1S ˝ f0q ãÑ T 0pCq, i.e., ker δ1T ãÑ T 0pCq has trivial composite with
δ1S ˝ f0; this will give that δ1S ˝ f0 factors through the cokernel T 0pCq Ñ T 1pAq of ker δ1T ãÑ T 0pCq.
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where the right vertical arrow is defined using u1: this gives the commutativity of the right
square, while the commutativity of the left square follows from T 0 Ñ S0 being a natural
transformation. Therefore, the outer square commutes. The horizontal arrows of the outer
square are δT : T 0pCq Ñ T 1pAq and δS : S0pCq Ñ S1pAq, simply because ptT nun, tδ

nunq

and ptSnun, tδ
nunq are δ-functors. It follows that the right vertical arrow is also the map

T 1pAq Ñ S1pAq defined by u. Thus, u and u1 define the same map T 1pAq Ñ S1pAq, as
needed.

Now consider the general case, where u1 does not factor as A
u

Ñ K ãÑ K 1. To reduce this
case to the case treated earlier, it is enough to show that there exists a monomorphism
u2 : A ãÑ K2, through which both u and u1 factor, and where T 1pK2q “ 0: by the already
treated special case, this will give that the maps T 1pAq Ñ S1pAq defined using u and u1

each coincide with the map T 1pAq Ñ S1pAq defined using u2, and hence agree with each
other (again, this is quite a standard mode of reduction in mathematics: to show that two
choices give the same result, one reduces to the case where there is an inclusion or some
such relation between the choices). To do this, we will use the following standard push-out
argument (this is similar to an argument we saw in the proof of Lemma 15.12; we present
it separately to invoke it for other parts of this proof later).

A push-out argument: Consider

A
u //

u1

��

K

��
K 1 // K

š

AK
1 � � // K2

,

where we have, using the effaceability of T 1, chosen an object K2 P ObA and a monomor-
phism K

š

AK
1 ãÑ K2 such that T 1pK2q “ 0. To finish the proof that u and u1 both

factor through a common monomorphism A ãÑ K2 and hence yield the same morphism
T 1pAq Ñ S1pAq, it is enough to prove that K Ñ K

š

AK
1 and K 1 Ñ K

š

AK
1 are

monomorphisms.

But since the top horizontal arrow and the left vertical arrow are monomorphisms, this
follows from (applying once to each of these arrows) the fact that pushouts preserve
monomorphisms (see Corollary 12.23(ii) from Lecture 12). This completes the proof that
f 1 : T 1pAq Ñ S1pAq is well-defined.

Step 3. The functoriality of T 1pAq Ñ S1pAq in A. So far, we have only defined f 1 :
T 1pAq Ñ S1pAq for each A P ObA. We need to show that f 1 is a natural transformation,
i.e., that for each w : A Ñ B in A, the following diagram commutes:

T 1pAq
T 1pwq

//

f1

��

T 1pBq

f1

��
S1pAq

S1pwq
// S1pBq

.
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We will choose compatible erasing monomorphisms u : A Ñ K and v : B Ñ L, for which
we form a pushout diagram, the first diagram below:

A �
� u //

w

��

K

��
B // B

š

AK
� � // L

ñ A �
� u //

w
��

K

t
��

B �
� v // L

,

where we have, using the effaceability of T 1, chosen an object L P ObA and a monomor-
phism B

š

AK ãÑ L such that T 1pLq “ 0. Then v : B Ñ L is a monomorphism, as
shown in the second square above, since u : A Ñ K is a monomorphism, and because
pushouts preserve monomorphisms as quoted earlier. Let C “ cokerpu : A Ñ Kq, and
D “ cokerpv : B Ñ Lq, so K Ñ L induces a map s : C Ñ D.

Now consider the diagram:

T 0pCq
T 0psq

//

δT $$

f0

��

T 0pDq

δTzz

f0

��

T 1pAq
T 1pwq

//

f1

��

T 1pBq

f1

��
S1pAq

S1pwq
// S1pBq

S0pCq
S0psq

//

δS
::

S0pDq

δS
dd

.

To finish the proof of the functoriality of f 1 : T 1 Ñ S1, in the above diagram, it is enough
to prove the commutativity of the inner square. The outer square commutes, since T 0

is already given as a natural transformation. The top and the bottom trapezia commute
since ptT nun, tδ

nunuq and ptSnun, tδ
nunq are δ-functors. f 1 was defined so as to make the

side trapezia commute. In other words, everything other than the inner square is known
to commute.

This much is not enough to force that the inner square commutes, but (as we will see
below) it turns out to be forced by the additional constraint that δT : T 0pCq Ñ T 1pAq in
the diagram is epimorphism (recall that this epimorphism-ness was seen while constructing
f 1 : T 1pAq Ñ S1pAq, and followed from T 1pKq “ T 1pLq “ 0).

Since δT : T 0pCq Ñ T 1pAq is an epimorphism, it is enough to show that T 0pCq Ñ T 1pAq Ñ

T 1pBq Ñ S1pBq equals T 0pCq Ñ T 1pAq Ñ S1pAq Ñ S1pBq. We proceed using the known
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commutativity of the quadrilaterals other than the inner square, as follows:

pT 0
pCq Ñ T 1

pAq Ñ S1
pAq Ñ S1

pBqq “ pT 0
pCq Ñ S0

pCq Ñ S1
pAq Ñ S1

pBqq

“ pT 0
pCq Ñ S0

pCq Ñ S0
pDq Ñ S1

pBqq “ pT 0
pCq Ñ T 0

pDq Ñ S0
pDq Ñ S1

pBqq

“ pT 0
pCq Ñ T 0

pDq Ñ T 1
pBq Ñ S1

pBqq “ pT 0
pCq Ñ T 1

pAq Ñ T 1
pBq Ñ S1

pBqq

.

This finishes the proof that f 1 is indeed a natural transformation T 1 Ñ S1.

Step 4. The commutativity with δ. To get a morphism of δ-functors, for each exact sequence

0 Ñ A1 Ñ A2 Ñ A3 Ñ 0

in A, we need to establish the commutativity of

(71) T 0pA3q
δT //

f0

��

T 1pA1q

f1

��
S0pA3q

δS // S1pA1q

.

The proof of this will be similar to part of the proof that f 1 : T 1pAq Ñ S1pAq is well-defined.

We choose a monomorphism v : A2 Ñ K such that F pKq “ 0. Then A1 Ñ A2
v

Ñ K
is a monomorphism, and can be used to compute T 1pA1q Ñ S1pA1q. We have a map
w : A3 “ cokerpA1 Ñ A2q Ñ cokerpA1 Ñ Kq “: C, so we have a commutative diagram
with exact rows,

0 // A1
// A2

//

v

��

// A3
//

w

��

0

0 // A1
// K // C // 0

.

We now consider the diagram

T 0pA3q
T 0pwq

//

f0

��

T 0pCq
δT //

f0

��

// T 1pA1q

f1

��
S0pA3q

S0pwq
// S0pCq

δS // S1pA1q

.

The right square is commutative because f 1 : T 1pA1q Ñ S1pA1q was defined so as to
ensure it. The left square is commutative because f 0 : T 0 Ñ S0 is a natural transformation.
Therefore, the outer rectangle is commutative, and it suffices to see that the outer rectangle
is the same as the square (71).

The vertical arrows of both the outer rectangle and the square are already the same. That
the horizontal arrows match follows from the fact that ptT nu, tδnunq and ptSnu, tδnunq are
δ-functors.

Thus, we have defined f 1 : T 1 Ñ S1 using f 0 : T 0 Ñ S0, and shown that it has all the
required properties. Once we have defined fn : T n Ñ Sn as a natural transformation and
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verified its commutativity with δ, a similar argument lets us define fn`1 : T n`1 Ñ Sn`1

and verify its commutativity with δ (we did not use the left exactness of T 0 or S0 anywhere
in the proof). This concludes the proof. □

Exercise 15.19. Formulate and prove an assertion to the effect that the morphism tfnun :
ptT nun, tδnunq Ñ ptSnun, tδ

nunq defined above depends functorially on f 0.
Note: If it is painful or not worth the investment of your time that it demands, you could
consider looking at the remark between Theorem 7.1 and Corollary 7.2 in Serge Lang’s
book.

15.6. The two ways of computing Ext {Tor agree. We go back to a not necessarily
commutative ring R. Recall from Lecture 14 that

TorRi pM,´q “ LipMbR´q : R-Mod ù AbGrp, torRi p´, Nq “ Lip´bRNq :Mod-R ù AbGrp.

We similarly defined ExtiRpM,Nq and extiRpM,Nq, but we might as well define these for a
general abelian category A with enough injectives and projectives:

Notation 15.20. Given any abelian category A with enough injectives and projectives,
the following definitions make sense (and generalize the ExtiR and the extiR from Lecture
14):

ExtiApM,´q “ Ri
pHomApM,´qq : A ù AbGrp, extiAp´, Nq “ Ri

pHomAp´, Nqq : Aop ù AbGrp.

Remark 15.21. This is the notation that is assumed in the following theorems and proofs.
However, when R is commutative, the functors ExtiRpM,´q, extiRp´, Nq, TorRi pM,´q and
torRi p´, Nq can be viewed as functors R-Mod ù R-Mod; it will be implicitly left to the
reader to check that the proofs all adapt to this convention.

As an application of Grothendieck’s theorem that effaceable/coeffaceable δ-functors are
universal, we can formally state and prove the theorem from Lecture 14 (see Theorem 14.18)
which said that we have identifications ExtiRpM,Nq – extiRpM,Nq and TorRi pM,Nq –

torRi pM,Nq,functorially in M and N . For this, we need to first clarify the functoriality:

Notation 15.22. (i) While ExtiApM,Nq is by design functorial in N , we realize it
as functorial in M as well: given a morphism M Ñ M 1 in Aop, i.e., M 1 Ñ M
in A, we have a natural transformation HomApM,´q Ñ HomApM 1,´q defined by
pullback along M 1 Ñ M , and hence by Corollary 15.16, a natural transformation
ExtiApM,´q Ñ ExtiApM 1,´q for each i. Now it is easy to see that each ExtiA is a
functor

Aop
ˆ A ù AbGrp.

(ii) Similarly, we extend our definitions of extiA,Tor
R
i and torRi to be functors:

Aop
ˆA ù AbGrp, Mod-RˆR-Mod ù AbGrp, and Mod-RˆR-Mod ù AbGrp.

Theorem 15.23. (i) Let A be an abelian category with enough injectives and projec-
tives. Then the functors Aop ˆA ù AbGrp given by ExtiA and extiA are naturally
isomorphic.
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(ii) The functors Mod-R ˆ R-Mod ù AbGrp given by TorRi and torRi are naturally
isomorphic.

Further, when R is commutative, the resulting natural isomorphisms ExtiR Ñ extiR and
TorRi Ñ torRi get enhanced to natural isomorphisms of R-Mod-valued functors.

Notation 15.24. Once we prove the theorem, we will denote both Ext and ext by Ext,
and we will denote both Tor and tor by Tor.

Exercise 15.25. Before we prove the theorem, here is an application.

(i) Show that the following are equivalent for each left R-module N3:
(a) N3 is M bR ´-acyclic, for each right R-module M .
(b) Whenever 0 Ñ N1 Ñ N2 Ñ N3 Ñ 0 is an exact sequence of left R-modules

(thus N1 and N2 are varying though N3 is fixed) and M is a right R-module,

0 Ñ M bR N1 Ñ M bR N2 Ñ M bR N3 Ñ 0

is exact.
(c) N3 is flat.
Hint:

‚ By definition, (a) is equivalent to TorRi pM,N3q vanishing for each right R-
module M and each i ě 1.

‚ Using the long exact sequence for TorRi pM,´q, show that (b) is equivalent to
TorR1 pM,N3q vanishing for each right R-module M .

‚ Using the long exact sequence for torRi p´, N3q, show that the condition (c) is
equivalent to torR1 pM,N3q vanishing for each right R-module M .

Now use the theorem: since tor “ Tor, (b) and (c) are equivalent. To see the equiv-
alence of (a) and (b), use dimension shifting (which works because we have a “for
all R-modulesM” within these conditions). Namely, what you need to show is that
if TorR1 pM,N3q vanishes for each right R-moduleM , then TorRi pM,N3q vanishes for
each right R-module M and each i ě 1. Choose a surjection F Ñ M with F a
free right R-module, and let L be its kernel, so that we have an exact sequence
0 Ñ L Ñ F Ñ M Ñ 0. Then the exactness of 0 “ TorR2 pF,N3q “ TorR2 pM,N3q Ñ

TorR1 pL,N3q Ñ TorR1 pF,N3q “ 0 gives TorR2 pM,N3q – TorR1 pL,N3q “ 0.
(ii) Similarly, we have an ‘injective version’: show that in any abelian category A, an

object I is injective if and only if it is HomApA,´q-acyclic, for each A P ObA.
(iii) Similarly, we have a ‘projective version’: show that in any abelian category A, an

object P is projective if and only if it is HomAp´, Aq-acyclic, for each A P ObA.

The first of these exercises shows how Tor lets one deduce the exactness of certain sequences
with just ‘pure thought’, avoiding what might have been more complicated diagram chases.

Proof of Theorem 15.23. We will prove (i); the proof of (ii) is analogous. We will only
prove the AbGrp-valued version dealing with a general abelian category A; the proof of
the R-Mod-valued version dealing with R-Mod for commutative R is analogous. The
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following proof is ultimately unsatisfactory, and also non-standard, but it is kind of ‘soft’
and non-irritating (I think), despite its seeming length.

For fixed M P ObA “ ObAop and varying i, we consider extiApM,´q : N Þ⇝ extiApM,Nq.
Let us prove that these extend to an effaceable δ-functor ptextiApM,´qui, tδ

iuiq.

We have identifications

(72) extiApM,Nq “ H i
pHomApP‚, Nqq “

kerpHomApPi, Nq Ñ HomApPi`1, Nqq

impHomApPi´1, Nq Ñ HomApPi, Nqq
,

where P‚ Ñ M is a projective resolution of M .

Moreover, this identification is functorial in N , by Remark 15.17. Let us write out
concretely what this means: given N Ñ N 1, the identifications of (72) for N and N 1

transport the map extiApM,Nq Ñ extiApM,N 1q given by Corollary 15.16, to the map
H ipHomApP‚, Nqq Ñ H ipHomApP‚, N

1qq obtained by applying H i to the ‘compose with
N Ñ N 1 morphism’ of complexes HomApP‚, Nq Ñ HomApP‚, N

1q.

Given an exact sequence 0 Ñ N1 Ñ N2 Ñ N3 Ñ 0 in A, we get a sequence of complexes

(73) 0 Ñ HomApP‚, N1q Ñ HomApP‚, N2q Ñ HomApP‚, N3q Ñ 0.

In fact, this sequence is exact: it is termwise exact because each HomApPi,´q is exact, Pi
being projective.

The long exact sequence for cohomology associated to this short exact sequence then gives
a long exact sequence:

0 Ñ HomApM,N1q Ñ . . . ... ¨ ¨ ¨ Ñ extiApM,N1q Ñ extiApM,N2q Ñ extiApM,N3q
δi
Ñ exti`1

A pM,N1q Ñ . . . .

Moreover, this long exact sequence is functorial in the short exact sequence 0 Ñ N1 Ñ

N2 Ñ N3 Ñ 0, because the sequence of complexes (73) is.

Thus, we have proved that for fixedM , the extiApM,´q extend to a δ-functor ptextiApM,´qui, tδ
iuiq.

Moreover, this δ-functor is effaceable, because ifN “ I P ObA is injective, then, HomAp´, Iq

being exact, HomApPi´1, Iq Ñ HomApPi, Iq Ñ HomApPi`1, Iq is exact for i ě 1. There-
fore, by Theorem 15.18, this δ-functor is universal. Thus, we now have two universal
δ-functors ptExtiApM,´qui, tδ

iuiq and ptextiApM,´qui, tδ
iuiq. Moreover, they both define

the same functor for i “ 0, namely, HomApM,´q. Thus, by their universality, there ex-
ists an isomorphism between these δ-functors, and in particular, natural isomorphisms
ExtiApM,´q Ñ extiApM,´q for each i. All this holds for each fixed M P ObA.

We now need to show that these isomorphisms are functorial in M . So let M 1 Ñ M be a
morphism in A. Consider the following diagram of δ-functors A Ñ AbGrp:

ptExtiApM,´qui, tδ
iuiq //

��

ptextiApM,´qui, tδ
iuiq

��
ptExtiApM 1,´qui, tδ

iuiq // ptextiApM 1,´qui, tδ
iuiq

,
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where each arrow is obtained from the universality of its source, corresponding to either
HomApM,´q Ñ HomApM,´q or HomApM,´q Ñ HomApM 1,´q in degree 0. The horizon-
tal arrows are then formed of the natural isomorphisms ExtiApM,´q Ñ extiApM,´q and
ExtiApM 1,´q Ñ extipA,´q described above. Note that the left vertical arrow is obtained
by applying Corollary 15.16 to the natural transformation HomApM,´q Ñ HomApM 1,´q.
The right vertical arrow is readily verified to be given by taking the cohomology of a
morphism P 1

‚ Ñ P‚ of projective resolutions lifting M 1 Ñ M : in other words, the isomor-
phisms extiApM,Nq Ñ extAi pM 1, Nq given by it are the same as the ones obtained from the
functoriality of extAi p´, Nq.

Therefore, it is now enough to prove the commutativity of the above diagram. But this fol-
lows from the fact that the compositions ptExtiApM,´qui, tδ

iuiq Ñ ptextiApM,´qui, tδ
iuiq Ñ

ptextiApM 1,´qui, tδ
iuiq and ptExtiApM,´qui, tδ

iuiq Ñ ptExtiApM 1,´qui, tδ
iuiq Ñ ptextiApM 1,´qui, tδ

iuiq

are both morphisms of δ-functors, with the source ptExtiApM,´qui, tδ
iuiq universal, and the

composites are the same in degree 0, namely, HomApM,´q Ñ HomApM 1,´q. □

Remark 15.26. (i) For i “ 0, the isomorphisms yielded by the above proof are just
the identity maps HomApM,Nq Ñ HomApM,Nq.

(ii) The above proof yields something more precise than the statement of the theo-
rem: it extends the extiApM,Nq, i varying over Z, into a cohomological δ-functor
in a particular way, and then gives a unique collection of functorial isomorphisms
ExtiApM,Nq Ñ extiApM,Nq subject to two constraints: the requirement of com-
patibility with the δ-maps, and the requirement of being, in degree 0, the identity
maps HomApM,Nq Ñ HomApM,Nq.

15.7. Applications to Ext and Tor. The following can be proved as an application, but
it is also easy to see it directly (as described below):

Proposition 15.27. (i) Let A be an abelian category. For all collections tMiui of
objects of A, and all N P ObA, we have isomorphisms functorial in the Mi and N :

ExtiA

´

à

i

Mi, N
¯

–
ź

i

ExtiA

´

Mi, N
¯

,

ExtiA

´

N,
ź

i

Mi

¯

–
ź

i

ExtiA

´

Mi, N
¯

.

(ii) For all collections tMiui of right R-modules and all left R-modules N , we have
isomorphisms functorial in the Mi and N :

TorRi

´

à

i

Mi, N
¯

–
à

i

TorRi

´

M,N
¯

,

and an analogous assertion holds with respect to direct sums in the second factor.

Proof. Easy: Use that the homology/cohomology of a direct sum/product of complexes
is the direct sum/product of homologies/cohomologies. Note the source of the appar-
ent asymmetry here: HomAp

À

iMi, Nq –
ś

iHomApMi, Nq and HomApN,
ś

iMiq –
ś

iHomApN,Miq. □
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Proposition 15.28. Assume that R Ñ S is a homomorphism of commutative rings, such
that S{R is flat. Then:

(i) For all i P N, we have, functorially in R-modules M and N :

TorRi pM bR S,N bR Sq – TorRi pM,Nq bR S.

(ii) Assume that R is Noetherian. Then we have, for all i P N, functorially in R-
modules N and finitely generated R-modules M :

ExtiRpM,Nq bR S – ExtiSpM bR S,N bR Sq.

The hard work done earlier regarding the universality of effaceable and coeffaceable δ-
functors reduces (modulo some standard checking) the proofs of various propositions (such
as the above one) to checking them in degree 0. In particular, when one sees a proposition
such as the above, it would be natural to start out by trying out the case where i “ 0,
which involves functors that we are familiar with. For Tor, this is one of the easy properties
of the tensor product, while for Ext, this is the following lemma.

Lemma 15.29. Let R Ñ S be a homomorphism of commutative rings, such that S{R
is flat. Then we have isomorphisms, funtorially in R-modules N and finitely presented
R-modules M :

HomRpM,Nq bR S – HomSpM bR S,N bR Sq.

Proof. The assertion is easy for finitely generated free R-modulesM : ifM – Rn, then both
sides have an obvious isomorphism with pN bR Sqn, and the functoriality in morphisms
of finitely generated free R-modules is easy to check. In general, to say that M is finitely
presented means that M “ cokerpF1 Ñ F0q, for some finitely generated free R-modules F1

and F0. The free case that was just discussed gives the non-dotted vertical arrows in the
following commutative diagram:

0 // HomRpM,Nq bR S //

��

HomRpF0, Nq bR S //

–

��

HomRpF1, Nq bR S

–

��
0 // HomSpM bR S,N bR Sq // HomSpF0 bR S,N bR Sq // HomRpF1 bR S,N bR Sq

.

The above diagram has exact rows, since HomRp´, Nq and HomSp´, NbRSq are left exact
functors, while ´ bR S is exact (because S is assumed to be flat over R). Thus, since the
second and the third vertical arrows are isomorphisms, an isomorphism is induced between
HomRpM,Nq bR S and HomSpM bR S,N bR Sq, as desired. □

Proof of Proposition 15.28. Let us prove the assertion about Ext; the proof of the assertion
about Tor is similar, but easier. Fixing N , we view both sides as functors from the
category ppR-Modqfgqop, which is opposite to the category of finitely generated R-modules,
to the category of S-modules. Since R is Noetherian, ppR-Modqfgqop is an abelian category
(pR-Modqfg being a full additive subcategory ofR-Mod closed under kernels and cokernels).
Clearly, this category has enough projectives.
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Each side represents a collection of functors ppR-Modqfgqop ù S-Mod, indexed by varying
i, that fits into a δ-functor: for the left-hand side, this uses that tensoring with the flat
R-algebra S sends long exact sequences of R-modules to those of S-modules, while for
the right-hand side, this uses that tensoring with the flat R-algebra S sends short exact
sequences of R-modules to those of S-modules. Moreover, each of these δ-functors, in
degrees ě 1, vanishes on injective objects of ppR-Modqfgqop, i.e., on projective R-modules
(for the functors on the right-hand side, note and use that ´ bR S sends projective R-
modules to projective S-modules), so they are effaceable. Hence they are universal by
Grothendieck’s theorem (Theorem 15.18), so to show that they are naturally isomorphic,
it is enough to show that the two sides are naturally isomorphic in degree 0. This is taken
care of by Lemma 15.29.

In the Tor case, the proof is similar, but easier: one does not resrict to finitely generated
R-modules, and in degree 0 one uses

pM bR Nq bR S – pM bR Nq bS pS bS Sq – pM bR Sq bS pN bR Sq.

□

Proposition 15.30. For all i ě 0, we have isomorphisms functorial in right R-modules
M and left R-modules N :

TorRi pM,Nq – TorRi pN,Mq.

Sketch of proof. We will show this for fixed M and varying N ; the general case where M
is allowed to vary can be handled by an argument similar to that seen towards the end of
the proof of Theorem 15.23.

For fixed M and varying N and i, both sides are part of homological δ-functors that are
coeffaceable and hence universal. Thus, we are reduced to showing that they are naturally
isomorphic in degree 0, where we have the isomorphism M bR N – N bRM . □

Remark 15.31. Unlike the tensor product, Tor does not commute with arbitrary colimits.
Indeed, a cokernel is a colimit, but if TorR1 pM1, Nq “ TorR1 pM2, Nq “ 0 (which is true ifM1

and M2 are flat), it does not follow that TorR1 pcokerpM1 Ñ M2q, Nq “ 0 (cokerpM1 Ñ M2q

may not be flat). However, we saw in Proposition 15.27 that Tor does commute with direct
sums, and we will see in Proposition 15.32 below that Tor commutes with directed colimits.

Proposition 15.32. Tor commutes with directed colimits. In other words, let R be a ring,
J a directed set viewed as a category as in Lecture 4 (thus, there is exactly one morphism
i Ñ j if i ď j, and none otherwise), and consider a directed system J ù R-Mod,

written more informally as j Þ⇝Mj. Note that the maps TorRi pMj, Nq Ñ TorRi

´

lim
Ñ
l

Ml, N
¯

(obtained by applying the functoriality of TorRi in the first variable to Mj Ñ lim
Ñ
l

Ml) give

by the definition of directed colimits a map

lim
Ñ
l

TorRi pMl, Nq Ñ TorRi

´

lim
Ñ
l

Ml, N
¯

.



202

This map is an isomorphism.

The proof of Proposition 15.32 will use:

Lemma 15.33. Let J be a directed set viewed as a category. Consider J-indexed directed
systems in R-Mod, namely FunpJ,R-Modq, which is an abelian category. Then ‘taking
directed colimits’ is a functor

FunpJ,R-Modq ù R-Mod

(recall that small colimits exist in R-Mod). This functor is exact.

Remark 15.34. The above result would not be true with R-Mod replaced by some other
category where directed colimits exist. For instance, it is not true for pR-Modqop, because
you can check that inverse limits in R-Mod are not exact.

Proof of Lemma 15.33. In the lecture I gave it as an exercise, here too you can see it
directly, but I will give a proof parts of which are less direct.

If you have difficulty seeing that ‘taking the directed colimit’ is a functor, recall that if a
directed system is given in the more usual notation by ptMjuj, pφji : Mi Ñ Mjqq, then a
directed colimit can be described as

´

à

j

Mj

¯

{SpanRptmi ´ φjipmiq | i ď j,mi P Miuq.

From this, the functoriality is especially easy to see (though one can do this by diagram
chasing, which works in an arbitrary abelian category where directed colimits exist).

Of this, the right exactness is a consequence of some generalities (and holds in a more
general setting than our R-Mod one, one where just the colimits are required to exist):
Let

0 Ñ pLjqj Ñ pMjqj Ñ pNjqj Ñ 0

be an exact sequence of directed systems indexed by J ; we have suppressed the transition
maps from notation for brevity. Since exactness in FunpJ,R-Modq is determined pointwise,
0 Ñ Lj Ñ Mj Ñ Nj Ñ 0 is exact for each j. For the right exactness, it is enough to show
that for each R-module K,

HomR

´

lim
Ñ
j

Nj, K
¯

Ñ HomR

´

lim
Ñ
j

Mj, K
¯

is injective. But by the definition of a colimit (Homp´, Kq converts it into a limit), this
identifies with a map

lim
Ð
j

HomRpNj, Kq Ñ lim
Ð
j

HomRpMj, Kq,

which, by the explicit description of inverse limit in Set, is manifestly injective.

For the left exactness, which is what is special to R-Mod, suppose l in lim
Ñ
Lj maps to 0 in

lim
Ñ
Mj. Then l is the image of some lj P Lj, which maps to say mj P Mj. By assumption,
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mj maps to 0 in some Mk, k ą l. But this means that lj maps to 0 in Lk, since Lk Ñ Mk

is injective. Thus, l “ 0, showing that lim
Ñ
Lj Ñ lim

Ñ
Mj is injective. □

Proof of Proposition 15.32. For a fixed directed system j Þ⇝ Mj with directed colimit M ,
both sides are functors in N . The right-hand side, as i varies, clearly forms a universal
δ-functor. So does the left-hand side: this follows from Lemma 15.33, which implies that
the directed colimit of the directed system, in l P J , of long exact sequences obtained by
applying the TorRi pMl,´q to a short exact sequence 0 Ñ N1 Ñ N2 Ñ N3 Ñ 0 is indeed
long exact. Moreover, both sides are coeffaceable functors, since both sides vanish when
N is projective (or even flat).

Therefore, it suffices to show that the two sides are naturally isomorphic in degree 0, which
follows from the commutativity of tensor product with colimits. □

Corollary 15.35. Over a (commutative) PID R, every torsion-free module M is flat.

Proof. The flatness of M is equivalent to the assertion that TorR1 pM,Nq “ 0 for all R-
modules N (that this is so is an easy consequence of the long exact sequence for Tor, and
is anyway recalled in Proposition 15.36 below). If M is finitely generated, the corollary
follows from the fact that finitely generated torsion-free modules over a PID are free. The
same then follows for any torsion-free M , since any M is a directed colimit of its finitely
generated submodules (take J to be the directed set of finitely generated submodules of
M , partially ordered under inclusion, and set Mj “ j for each j P J), and Tor commutes
with directed colimits. □

Proposition 15.36. If M is a module over a commutative ring R, the following are
equivalent:

(i) M is flat.
(ii) TorRi pM,Nq “ 0 for all i ě 1 and R-modules N .
(iii) TorR1 pM,Nq “ 0 for all R-modules N .
(iv) TorR1 pM,R{Iq “ 0 for all ideals I Ă R.
(v) TorR1 pM,R{Iq “ 0 for all finitely generated ideals I Ă R.

Proof. If M is flat, then by the long exact sequence for Tor associated to some exact
sequence of the form 0 Ñ N 1 Ñ F Ñ N Ñ 0, where F is free, so that TorR1 pM,F q “ 0,
we get TorR1 pM,Nq – kerpM bR N

1 Ñ M bR F q “ 0. Thus, TorR1 pM,Nq “ 0 for all N .
Inductively, if TorRi pM,´q vanishes, then given any R-module N , the same exact sequence
as above gives TorRi pM,Nq – TorRi´1pM,N 1q “ 0. Thus, (i) implies (ii). It is trivial that
(ii) implies (iii).

Suppose (iii) holds. Applying the long exact sequence for Tor to 0 Ñ N1 Ñ N2 Ñ N3 Ñ 0,
and using that TorR1 pM,N3q “ 0, we get that 0 Ñ M bRN1 Ñ M bRN2 Ñ M bRN3 Ñ 0
is exact. Thus, (iii) implies (i). Thus, we conclude that (i), (ii) and (iii) are equivalent.
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It is trivial that (iii) implies (iv). Conversely, suppose (iv) holds. To show that TorR1 pM,Nq “

0 for all R-modules N , the commutativity of Tor with directed colimits (Proposition 15.32)
reduces us to the case where N is finitely generated (as in the proof of Corollary 15.35).

We wish to reduce N further. Now if 0 Ñ N 1 Ñ N Ñ N2 Ñ 0 is exact, the long exact
sequence for Tor gives the exactness of TorR1 pM,N 1q Ñ TorR1 pM,Nq Ñ TorR1 pM,N2q, so
the vanishing of TorR1 pM,Nq follows from that for TorR1 pM,N 1q and TorR1 pM,N2q. Since an
R-module N generated by n elements fits into an exact sequence 0 Ñ N 1 Ñ N Ñ N2 Ñ 0
where each of N 1 and N2 is generated by fewer than n elements, an iterated application of
the preceding statement implies that (iii) is equivalent to the vanishing of TorR1 pM,Nq for
all cyclic (i.e., singly generated) R-modules N , which are precisely those of the form R{I.
Thus, (iv) is equivalent to the conditions that precede it.

Now by the long exact sequence for Tor, this time applied to 0 Ñ I Ñ R Ñ R{I Ñ 0,
we have the formula TorR1 pM,R{Iq – kerpI bRM Ñ Mq. By the commutativity of tensor
products with colimits, I bRM is simply the directed colimit of the I1 bRM as I1 ranges
over the finitely generated ideals contained in I. By the exactness of the “take the directed
colimit” functor (in the context of R-Mod; see Lemma 15.33), if each of these I1bRM Ñ M
is injective, so is I bRM Ñ M . Therefore, we conclude that (v) is equivalent to (iv). □

Exercise 15.37. Rephrase Baer’s criterion for the injectivity of an R-moduleM as follows:
M is injective if and only if Ext1RpR{I,Mq “ 0 for all ideals I Ă R.
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16. Lecture 16 — Composition series, semisimplicity, Jacobson radical

16.1. Composition series and the Jordan-Hölder theorem. Today, unless otherwise
stated, R will denote a ring that is not assumed to be commutative. We will discuss various
results for left R-modules, where R is a ring. It will be implicitly assumed that analogous
results apply to right R-modules.

Many of the following notions (semisimple, Artinian, Noetherian, composition series etc.)
will also apply in the context of an abelian category. For simplicity we will only state them
for modules; when needed you can work out/look up other abelian category versions.

Definition 16.1. A left R-module M is called simple, or in some situations irreducible, if
it is nonzero and has no proper nonzero submodules.

Exercise 16.2. (i) Show that each simple left R-module is of the form R{m for some
maximal left ideal m Ă R, and conversely, that for each maximal left ideal m Ă R,
the left R-module R{m is simple.

(ii) However, it is not the case that isomorphism classes of simple left R-modules are
in bijection with maximal left ideals m Ă R: this is because for distinct maximal
left ideals m1,m2 Ă R, the left R-modules R{m1 and R{m2 can be isomorphic, for
instance if m1 “ m2a for some left and right invertible a P R. 48

Show, nevertheless: there is a bijection between maximal left ideals m Ă R and
isomorphism classes of pairs pM,mq, where M is a simple left R-module, and 0 ‰

m P M (it is your task to make precise what these isomorphism classes mean).
Hint: Send pM,mq to AnnRpmq Ă R, a left ideal. This is motivated by Lemma
16.29 below.

Please keep in mind that if R is not commutative, R{m will not be a ring, and hence not
a field or anything. For instance, see the first example below.

Example 16.3. (i) If R “ Mnpkq with k a field, show as an easy exercise that kn,
viewed as 1ˆn column vectors with the standard (matrix multiplication) action of
R “ Mnpkq, is a simple left R-module. We will hopefully see later that this is only
only simple left R-module up to isomorphism.

(ii) A left ideal I Ă R is a simple R-module if and only if it is a minimal left ideal of
R (by which, we mean minimal among the nonzero left ideals of R).

(iii) If k is a field and G is a finite group, then a representation V of G is irreducible if
and only if, viewed as a krGs-module, V is simple.

Remark 16.4. For those who know the Nullstellensatz: the set of isomorphism classes of
simple modules is thus a noncommutative version of the ‘spectrum’ of a variety.

48This problem does not arise when R is commutative: when R is commutative, R{m determines
AnnRpR{mq “ m, but for more general R, AnnRpR{mq, being a two-sided ideal, is typically smaller than
m. We will use this later in this lecture.
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Definition 16.5. (i) A composition series for a left R-module M is a sequence of
submodules pMiq1ďiďr of M , for which there are inclusions

0 “ M0 Ĺ M1 Ĺ M2 Ĺ ¨ ¨ ¨ Ĺ Mr “ M,

such that each Mi{Mi´1 p1 ď i ď r) is a simple left R-module. We call r the length
of this series.

(ii) Two composition series pMiq1ďiďr and pM 1
iq1ďiďs for M are said to be equivalent if

we have an equality of multisets 49

trM1{M0s, . . . , rMr{Mr´1su “ trM 1
1{M 1

0s, . . . , rM
1
s{M

1
s´1su,

where for each R-module N , we write rN s for the isomorphism class of N .
Equivalently, if r “ s, and there exists a permutation σ P Sr such that for each

1 ď i ď r, Mi{Mi´1 – M 1
σpiq{M

1
σpiq´1.

(iii) A left R-module is said to have finite length if it has a composition series.

Example 16.6. The two composition series of the Z-module Z{6Z, given by

0 Ă 3 ¨ Z{6Z Ă Z{6Z, and 0 Ă 2 ¨ Z{6Z Ă Z{6Z,
are equivalent: the successive quotients for the first series are Z{2Z and Z{3Z (in that
order), while those for the second series are Z{3Z and Z{2Z.

Theorem 16.7 (Jordan-Hölder). If a left R-module M has finite length, then all compo-
sition series for M are equivalent, and in particular have the same length.

Proof. Since this is standard, I am being slightly sloppy. Suppose pMiq
r
i“1 and pM 1

iq
s
i“1 are

two composition series for M . We will use induction on r. If r “ 0 (resp., r “ 1), then M
is zero (resp., M is simple), and the theorem is trivial/easy.

Let 1 ď j ď r be the smallest such that M 1
1 Ă Mj. Then M{M 1

1 has a composition series

0 Ă pM1`M 1
1q{M 1

1 Ĺ ¨ ¨ ¨ Ĺ pMj´2`M 1
1q{M 1

1 Ĺ pMj´1`M 1
1q{M 1

1 “ Mj{M
1
1 Ĺ ¨ ¨ ¨ Ĺ Mr{M

1
1

(if j “ 1, the series begins at 0 “ pM0 ` M 1
1q{M 1

1 “ M1{M1), which has length r ´ 1, as
well as

0 Ĺ M 1
2{M 1

1 Ĺ ¨ ¨ ¨ Ĺ M 1
s{M

1
1,

which has length s´ 1. It is clear that the multisets of successive quotients of each of the
given composition series for M are obtained by taking the union of rM 1

1s “ rMj{Mj´1s

and the corresponding composition series for M{M 1
1. Thus, by induction the theorem

follows. □

Remark 16.8. (i) The proof shows that if pMiq
r
i“1 is a composition series for M ,

then given any sequence 0 “ M 1
0 Ĺ M 1

1 Ĺ M 1
2 Ĺ ¨ ¨ ¨ Ĺ M 1

s “ M of submodules
of M , such that M 1

i{M
1
i´1 is simple for all 1 ď i ď s, we have s ď r, and that

trM 1
i{M

1
i´1 | 1 ď i ď su is a sub-multiset of trMi{Mi´1s | 1 ď i ď ru. In other

49Multisets are “sets where multiplicity is allowed”; since we will only be bothered with finite multisets,
a formal way to describe a multiset of the kind we will care about is as a set X together with a ‘multiplicity
function’ X Ñ Zě0.
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words, one M has a composition series, it has no “infinite length analogue” of a
composition series.

(ii) There is no naive generalization of Theorem 16.7 to infinite length M : The Z-
module Z, which is not of finite length, has “infinite analogues of composition
series”

¨ ¨ ¨ Ĺ q2Z Ĺ qZ Ĺ Z, . . . p2Z Ĺ pZ Ĺ Z,
for any two primes p and q; the simple subquotients associated to these series are
all isomorphic to Z{qZ for the first series and Z{pZ for the second, and thus the
series are not equivalent in any reasonable sense if p ‰ q.

Rishiraj was not happy with the above example since it did not ‘begin anywhere’,
despite ‘decreasing to 0’. This is a valid point, and from quick thought I don’t seem
to have counterexamples that begin at something simple and proceed exhaustingly.

Definition 16.9. If a left R-module M has finite length, we choose a composition series
0 “ M0 Ĺ M1 Ĺ ¨ ¨ ¨ Ĺ Mr “ M for M , and define:

(i) JHpMq, the multiset of composition factors or Jordan-Hölder factors or Jordan-
Hölder constituents of M , to be the multiset trMi{Mi´1s | 1 ď i ď ru

(ii) lpMq, the length of M , to be r.

Then JHpMq and lpMq are independent of the choices of the composition series 0 “ M0 Ĺ

M1 Ĺ ¨ ¨ ¨ Ĺ Mr “ M , by Theorem 16.7. If M does not have a composition series, we set
lpMq “ 8.

The following lemma is immediate from the isomorphism theorems:

Lemma 16.10. If M is an R-module and N Ă M is a submodule, then lpMq ă 8 if and
only if the two conditions lpNq ă 8 and lpM{Nq ă 8 are satisfied. Morever, when these
conditions are satisfied, we have JHpMq “ JHpNq YJHpM{Nq (union as multisets), and
lpMq “ lpNq ` lpM{Nq.

Proof. Easy. □

Example 16.11. (i) lp0q “ 0, and the left R-modules of length 1 are precisely the
simple left R-modules.

(ii) If R “ k is a field, and V is a vector space over k, then lpV q ă 8 if and only if
dimk V ă 8, in which case lpV q “ dimV .

(iii) If R “ Z, show as an easy exercise that lpMq ă 8 if and only if M is a finite
abelian group. In particular lpZq “ 8, which is anyway forced by Remark 16.8(ii).

(iv) Even when M has finite length, JHpMq does not determine M : with R “ Z, we
have JHpZ{4Zq “ JHpZ{2Z‘Z{2Zq. A related observation is that M may not be
a direct sum of its Jordan-Hölder factors, but it is made up from its Jordan-Hölder
factors by extensions that may be nontrivial.

(v) In caseM is known to be a finite direct sum of simple modules, then it is immediate
that JHpMq determines M . This condition on M is that of semisimplicity, which
we will study later.
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(vi) The proof of the Jordan-Hölder theorem, Theorem 16.7, can be adapted to the
setting of finite not necessarily abelian groups G, where a composition series refers
to a chain 0 “ G0 Ĺ G1 Ĺ ¨ ¨ ¨ Ĺ Gr “ G such that each Gi´1 Ă Gi is normal,
and Gi{Gi´1 is simple (a group is said to be simple if it has no nontrivial proper
normal subgroup). The version of the Jordan-Hölder theorem for this setting says
that, while G might have many composition series 0 “ G0 Ĺ G1 Ĺ ¨ ¨ ¨ Ĺ Gr “ G,
they are all equivalent in the sense that trGi{Gi´1s | 1 ď i ď ru is independent of
the chosen series.

Remark 16.12. Here are two applications of the notion of length:

(i) A finite dimensional representation V of a finite group G over a field k, viewed as
a krGs-module, clearly has finite length. It may not be a direct sum of irreducible
representations, but it is built from the irreducible representations that are its
Jordan-Hölder factors, as observed above. In this case, lpV q is the number of
irreducible representations of which G is formed of.

(ii) Intersection multiplicities (this discussion is highly informal). In C2, consider the
intersection of x2 ` y2 “ 1 and x “ 0 – there are two points of intersection, p0, 1q

and p0,´1q. On the other hand, x2 ` y2 “ 1 and x “ 1 have only one intersection,
p1, 0q. We want a degree 2 curve to intersect a degree 1 curve in two points, and
it does seem appropriate to count p1, 0q as having multiplicity 2 in the intersection
between x “ 1 and x2 ` y2 “ 1: after all, when we draw the picture in R2, x “ 1
is a tangent to x2 ` y2 “ 1 at p1, 0q. One way to formalize this is to think of the
intersection of f “ 0 and g “ 0 as defined by the ideal pf, gq generated by f and g:
50 in this case, taking R “ Crx, ys, we have

lRpCrx, ys{px2 ` y2 ´ 1, xqq “ 2 “ lRpCrx, ys{px2 ` y2 ´ 1, x ´ 1qq

(exercise), where lR stands for ‘length as an R-module’. This modification is not
enough when there are ‘intersections at 8’, but that can be solved by projectiviza-
tion, and generalizes to higher degree curves in the form of Bezout’s theorem.

In short, the notion of length is important in describing intersection multiplicities.
More blah blah: By the right exactness of tensor product, we have Crx, ys{pf, gq “

Crx, ys{pfqbCrx,ysCrx, ys{pgq. This corresponds to the fact, in the opposite category
of affine varieties, that the variety tf “ g “ 0u is the fiber product, which in this
case is the intersection, of tf “ 0u and tg “ 0u over C2.

Please keep in mind that the above discussion is crude, and I have not gotten
into the precise definitions of intersection multiplicities, which involve appropriate
localizations. In higher dimensions, there is another problem associated to the
tensor product behaving badly, something which Serre addressed by adding in ‘Tor’
terms that correct for the bad behavior of the tensor product.

We conclude with a definition that one encounters quite often:

50Thus, we are keeping track of the equatiohns themselves, and not just the solutions.
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Definition 16.13. A subquotient of a left R-module M is a quotient module of a sub-
module of M .

Exercise 16.14. If M has finite length, then the simple subquotients of M are precisely
the Jordan-Hölder constituents of M (up to isomorphism).

16.2. Noetherian and Artinian rings and modules.

Definition 16.15. (i) A left R-moduleM is called Artinian if it satisfies the following
equivalent conditions, whose equivalence is left as an exercise:

‚ Every descending chain of submodules M1 Ě M2 Ě . . . of M stabilizes, i.e.,
there exists r P N such that Mr “ Mr`1 “ . . . ; this is often referred to as the
descending chain condition (dcc).

‚ Any collection of submodules of M has a minimal element.
(To show that the first condition implies the second, given a collection Ξ, choose
M1 in it, if it is not minimal, then M2 Ĺ M1 in it, and so on: to justify the ‘so on’,
as per the comment of Professor Nitin Nitsure I told you about a few lectures ago,
one needs the axiom of choice).

(ii) R is called left Artinian if R is Artinian as a left module over itself (by our conven-
tion, we similarly have right Artinian rings etc.).

(iii) Similarly, we define what it means for a left R-module M to be Noetherian, by
imposing an ascending chain condition (acc).

(iv) Similarly, we define what it means for a ring R to be left Noetherian.

When R is commutative, there is no difference between ‘left’ and ‘right’, and hence the
‘left’ or ‘right’ will be dropped. In this case, the Noetherian notions were already defined
in Lecture 1.

Example 16.16. Show the following as easy exercises.

(i) Z as a Z-module is Noetherian, but not Artinian (Z Ľ pZ Ľ p2Z Ľ . . . ).
(ii) If V is a vector space over a field R “ k, then V is Noetherian if and only if it is

Artinian if and only if it is finite dimensional.
(iii) Zrts is Noetherian as a ring (this is a consequence of what is known as the Hilbert

basis theorem, something we will hopefully see later), but it is neither Artinian nor
Noetherian as a Z-module. Similarly, Q{Z is neither Artinian nor Noetherian as a
Z-module.

(iv) Show that pQ{Zqrp8s “ ta{pn | a, n P Zu{Z is Artinian as a Z-module, but not
Noetherian.

(v) Show that the ring

R :“
!

ˆ

a b
0 c

˙

| a, b P R, c P Q
)

Ă M2pRq

is left Artinian and left Noetherian, but neither right Artinian or right Noetherian.
Note: For this, you can use Lemma 16.17 below. Apply it to the exact sequence
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of R-modules:

0 Ñ

ˆ

0 ˚

0 0

˙

X R Ñ R Ñ R ˆ Q Ñ 0,

where the map with target R ˆ Q sends

ˆ

a b
0 c

˙

to pa, cq.

Now RˆQ is both Noetherian and Artinian as an RˆQ-module, so use Lemma
16.17 to reduce to verifying that R is finite dimensional as an R-vector space but
infinite dimensional as a Q-vector space.

Lemma 16.17. Let 0 Ñ M 1 Ñ M Ñ M2 Ñ 0 be an exact sequence of left R-modules.
Then:

(i) M is Artinian if and only if M 1 and M2 are (everything as left R-modules).
(ii) M is Noetherian if and only if M 1 and M2 are.

Proof. Easy exercise. For the implications “ð”, given a chain in M , consider the chain in
M 1 obtained by intersecting with M 1, and the chain in M2 obtained by projecting to M2:
once both chains stabilize, show that the original stabilizes. □

As in the commutative Noetherian case we can use this to prove:

Lemma 16.18. If R is left-Noetherian, then a left R-module M is Noetherian if and only
if it is finitely generated.

Proof. The ascending chain condition easily gives that any Noetherian left R-module is
finitely generated. The converse is easy using Lemma 16.17. □

Lemma 16.19. A left R-module M is of finite length if and only if it is both Artinian and
Noetherian.

Proof. “ñ”: It is immediate that any simple left R-module is both Artinian and Noether-
ian. Inductive applications of Lemma 16.17 then show that any finite length left R-module
is both Artinian and Noetherian.

“ð”: Suppose M is both Artinian and Noetherian. Set M0 “ 0 Ă M . Since M is
Artinian, there exists M1 Ă M that is minimal among the nonzero submodules of M .
Clearly , M1{M0 is simple. If M1 “ M , then we are done, so assume this is not the
case. Again using that M is Artinian, it has a submodule M2 that is minimal among the
nonzero submodules of M properly containing M1. Then M2{M1 is simple: it is nonzero
because M2 properly contains M1, and if it had a proper nonzero submodule, the inverse
image of this submodule in M2 would properly contain M1 and be properly contained
in M2, contradicting the minimality of M2. If M2 “ M , then we are done, since then
0 “ M0 Ĺ M1 Ĺ M2 “ M is the desired composition series, else define M3 similarly.

Continuing in this way, we get Mr “ M for some r: for otherwise, we would get an infinite
strictly ascending chain 0 “ M0 Ĺ M1 Ĺ M2 Ĺ . . . , contradicting the assumption that M
is Noetherian. Thus, we get a composition series 0 “ M0 Ĺ M1 Ĺ ¨ ¨ ¨ Ĺ Mr “ M , so that
lpMq “ r. □
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16.3. Semisimplicity.

Lemma 16.20. For a left R-module M , the following are equivalent.

(SS1) M is a sum of (a family of) simple left R-modules.
(SS2) M is a direct sum of simple left R-modules.
(SS3) For every (left R-)submodule N 1 Ă M , there exists a submodule N Ă M such that

N 1 ‘ N “ M .

Before we prove the lemma, let us assume it to make the following definition:

Definition 16.21. A left R-module M that satisfies the equivalent conditions of Lemma
16.20 will be called semisimple, or completely reducible.

The proof of Lemma 16.20 will use:

Lemma 16.22. If an R-module M satisfies (SS3), then every nonzero submodule of M
contains a simple submodule.

Proof. It is clear that any nonzero submoduleM 1 Ă M ofM satisfies (SS3): for allN 1 Ă M 1

R-submodule, if N 1 ‘ N2 “ M , then it is easy to see that N 1 ‘ pN2 X M 1q “ M 1. Thus,
replacingM by any nonzero cyclic (i.e., singly generated) submodule ofM 1, it is enough to
start with a nonzero cyclic R-moduleM “ Rm satisfying (SS3), and show thatM contains
a nonzero simple submodule.

Now that M “ Rm is cyclic and nonzero, it is easy to see using a Zorn’s lemma argument
that it has a maximal proper left R-submodule N : given a chain of proper submodules
tNiu of M ordered under inclusion, no Ni contains x, so N :“

Ť

iNi does not contain x
either, and is hence proper.

Now let N 1 Ă M be such that M “ N ‘ N 1. Then N 1 ‰ 0, and it is enough to show that
N 1 is simple. If not, N 1 contains a proper nonzero R-submodule N2, and N ‘ N2 would
be a proper submodule of M bigger than N , a contradiction (to put it another, perhaps
better, way, N 1 – M{N is simple by the maximality of N). □

Remark 16.23. The end of the argument of the above lemma in fact shows that any
finitely generated left R-module M has a maximal proper submodule, and hence a simple
quotient. It is (SS3) that allowed us to realize this simple quotient as a simple submodule.

Proof of Lemma 16.20 (some arguments only sketched). (SS1) ñ (SS3): LetM “
ř

iPIMi,
with each Mi a simple left R-module. Let N Ă M , and let us find N 1 Ă M such that
M “ N‘N 1. Consider the collection of subsets J Ă I such that the sum N`

ř

iPJMi Ă M
is direct: explicitly, those J Ă I such that, whenever n P N and pmi P MiqiPJ satisfy
n`

ř

imi “ 0, we have n “ 0, and mi “ 0 for all i P J . A Zorn’s lemma argument, applied
to this collection, partially ordered under inclusion, shows that there is a maximal J Ă M
such that N `

ř

iPJMi “ N ‘ p
À

iPJMiq inside M (this collection is nonempty, because
the empty set belongs to it). It is enough to show that the inclusion N `

ř

iPJMi Ă M is
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an equality. If not, there exists i0 P I such that Mi0 Ę pN `
ř

iPJMiq. Since Mi0 is simple,
it follows that Mi0 X pN `

ř

iPJMiq “ 0. But this implies that the sum N `
ř

iPJYti0u
Mi

is direct. Since clearly i0 R J , this contradicts the maximality of J , giving (SS2).

(SS1) ô (SS2): It is immediate that (SS2) implies (SS1), and the implication (SS1) ñ

(SS2) follows from the exact same argument that was used to prove (SS1) ñ (SS3), but
applied with N “ 0.

(SS3) ñ (SS1): Let N Ă M be the sum of all the simple (left R-)submodules of M . It
is enough to show that N “ M . If not, use (SS3) to get M “ N ‘ N 1 for some left
R-submodule N 1 Ă M . By Lemma 16.22, there exists a simple submodule N2 Ă N 1. But
by the construction of N , we have N2 Ă N , so that N2 Ă N XN 1 “ 0, a contradiction. □

Corollary 16.24. The collection of semisimple left R-modules is closed under taking ar-
bitrary direct sums, quotients and submodules. In particular, if R is semisimple as a left
R-module, then every R-module is semisimple.

Proof. Use the criterion (SS1) to prove the assertions about direct sums and quotients. To
prove the assertion about submodules, use (SS3): it was observed in the proof of Lemma
16.22 that the condition (SS3) passes to each submodule. For the last assertion, use that
every left R-module is a quotient of a free left R-module. □

Theorem 16.25. Given a ring R, the following are equivalent:

(i) Every short exact sequence of left R-modules splits.
(ii) Every left R-module is semisimple.
(iii) Every finitely generated left R-module is semisimple.
(iv) Every cyclic (i.e., singly generated) left R-module is semisimple.
(v) R as a left R-module is semisimple.

Proof. (i) is just the assertion that every left R-module M satisfies the condition (SS3)
from Lemma 16.20. Therefore, that lemma gives (i) ô (ii). The implications (ii) ñ (iii)
ñ (iv) ñ (v) are trivial (each is a special case of the previous), while (v) ñ (ii) follows
from Corollary 16.24. □

Definition 16.26. A left semisimple ring is a ring R that satisfies the equivalent conditions
of Theorem 16.25. As per our conventions, a right semisimple ring is defined analogously.
Later we will hopefully show that, at least in Artinian contexts which will be the ones that
we care about, a left semisimple ring is also right semisimple, keeping which in mind we
will abbreviate left semisimple to semisimple from now on.

Example 16.27. (i) A field is a semisimple ring.
(ii) We claim that so is a division ring D, i.e., a ring R “ D such that each 0 ‰ r P R

is (both left and right) invertible. In this case, a left or right module over D is also
called a left or right D-vector space. D has no proper nonzero left (or right) ideal,
and each cyclic left D-vector space is isomorphic to D as a left module over D (use
Exercise 16.2). This also implies that this D-vector space is simple, and that every
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left vector space over D is a sum of copies of the left D-vector space D, and hence
satisfies (SS1). Since (SS1) is equivalent to (SS2) (Lemma 16.20), we have shown
that every left D-vector space has a basis (is free). Of course, similarly with right
D-vector spaces.

I haven’t addressed the question that was asked about the cardinality of the bases,
but we will only be interested in finite dimensional D-vector spaces, in which case
this cardinality is just the length and hence depends only on the vector space.

(iii) We will hopefully show that if D is a division ring, the matrix algebra MnpDq is
semisimple for each n P Ně1.

Lemma 16.28. (i) A ring R is semisimple if and only if, as a left R-module, R is a
direct sum of finitely many of its minimal left ideals.

(ii) A product of finitely many semisimple rings is semisimple.

Proof. Since minimal left ideals of R are simple modules, and in fact precisely the simple
left R-submodules of R, it follows that R is semisimple if and only if, as a left R-module,
it is a direct sum of its left ideals. It now suffices to show that, given any decomposition
R “

À

iPJ Ii of the left R-module R as a direct sum of nonzero left ideals Ii of R, J is
finite. Indeed, write 1 “

ř

iPJ xi, with xi P Ii for each i. This is supported on a finite set
J0 Ă J , by the definition of a direct sum. Thus, R “ R ¨ 1 “

ř

iPJ0
R ¨ xi Ă

ř

iPJ0
Ij, so

J “ J0 is finite (since each Ii was nonzero by assumption).

This gives (i), of which (ii) is an easy corollary: If R1 “
À

i I1,i and R2 “
À

j I2,j, with
each I1,i Ă R1 and I2,j Ă R2 a minimal left ideal, then note that as a left module over
itself,

R1 ˆ R2 “ R1 ˆ 0 ‘ 0 ˆ R2 “

´

à

i

I1,i ˆ 0
¯

‘

´

à

j

0 ˆ I2,j

¯

,

and note that if I1 Ă R1 and I2 Ă R2 are minimal left ideals, then I1 ˆ 0 and 0 ˆ I2 are
minimal left ideals of R1 ˆR2 (in fact these give all the minimal left ideals of R1 ˆR2, but
we do not need that). □

16.4. Jacobson radical. The Jacobson radical measures one obstruction to R being
semisimple; in fact, in the special case where R is Artinian, we will hopefully see that
this is the only obstruction.

Its definition can be motivated by the following observation: if R is semisimple, then
every x P R that annihilates every simple (and hence every semisimple) left R-module,
annihilates every R-module, and in particular R, and hence vanishes.

On the other hand, we have:

Lemma 16.29. For x P R, the following are equivalent:

(i) x annihilates every simple left R-module.
(ii) x is contained in every maximal left-ideal of R.
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Proof. By Exercise 16.2, though the annihilator of a simple left R-module may be strictly
contained in a maximal left ideal, maximal left ideals are precisely the annihilators of the
various nonzero m P M , as M varies over simple left R-modules and m varies over nonzero
elements of M . Therefore:

č

M simple

AnnRpMq “
č

M simple
0 ‰ m P M

AnnRpmq “
č

m maximal left ideal

m “ radpRq.

□

Definition 16.30. The Jacobson radical of R, denoted radpRq, is the collection of all x P R
satisfying the equivalent conditions of Lemma 16.29. Note that radpRq is a two-sided ideal
of R, since AnnRpMq Ă R is a two-sided ideal for each R-module M (easy exercise).

Example 16.31. radpZq “ 0, radpZpq “ ppq, radpR{pnq “ ppq whenever R is a (commuta-
tive) PID, p P R is prime, and n P Ně1. This is generalized by the observation that if R is
a commutative ring, and is local, i.e., (in the commutative context) has a unique maximal
ideal m, then m is the Jacobson radical of R. More examples can be found in Exercise
16.38 below.

Exercise 16.32. Show that arbitrary ring homomorphisms R Ñ S do not induce homo-
morphisms radpRq Ñ radpSq, but surjective ones do.

Here is another description of radR:

Lemma 16.33. radR “ tx P R | 1 ´ yx is left invertible for all y P Ru.

Remark 16.34. Given the statement of the above lemma, and for later use, let us review
left and right invertibility in a ring.

(i) Note that for a general noncommutative ring R, left and right invertibility are
different: consider the left and right shift operators in the endomorphism ring of
the vector space of all real N-indexed sequences: the left shift operator, which sends
pa0, a1, . . . q to pa1, a2, . . . q, is a left inverse to the right shift operator, which sends
pa0, a1, . . . q to p0, a0, a1, . . . q. But the left shift operator does not have a left inverse.

(ii) If x P R has a left inverse u and a right inverse w, then u “ w, so u “ w is a
two-sided inverse of x: w “ puxqw “ upxwq “ u.

(iii) Further, if x P R has a left inverse u, to show that x also has a right inverse, it is
enough to show that u has a left inverse w. Indeed, this follows from:

w “ wpuxq “ pwuqx “ x,

so that x “ w is also a left inverse of u.

Proof of Lemma 16.33. For x P R and a maximal left ideal m Ă R, note that

x P m ðñ Rx` m ‰ R ðñ 1 R Rx` m ðñ p1 ´Rxq X m “ H ðñ 1 ´Rx Ă Rzm

(for the first and the second steps, use that Rx ` m is a left ideal containing m).
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Therefore, varying m over the maximal left ideals of R, we get

radR “

!

x P R | 1 ´ Rx Ă Rz

˜

ď

m

m

¸

)

.

Now note that Rz
Ť

mm is simply the set of left invertible elements: z P R is left invertible
if and only if it does not belong to any maximal left ideal. □

Lemma 16.35. radR “ tx P R | 1 ´ yxz is both left and right invertible for all y, z P Ru.

Proof. The inclusion “Ą” is immediate from Lemma 16.33. Thus, given x P radR, it is
enough to show that 1´yxz is both left and right invertible for all y P R. Since radpRq is a
two-sided ideal, we may replace x by yxz: thus, it now suffices to show that for x P radpRq,
1 ´ x is both left and right invertible.

By Lemma 16.33, we know that 1 ´ x has a left inverse, say u. To show that 1 ´ x has
a right inverse, it suffices, by Remark 16.34(iii), to show that u has a left inverse w. By
Lemma 16.33 again, this in turn follows if we show that u P 1´ radpRq. For this, note that
up1 ´ xq “ 1, so 1 ´ u “ ´ux P radpRq. □

Recall that the ring Rop opposite to R has pR,`q for its underlying additive abelian group,
but has the multiplication rule switched: the product of x and y in Rop is the product of
y and x in R (in that order).

Corollary 16.36. radpRq “ radpRopq, and radpRq is the intersection of all the maximal
right ideals of R, and

radpRq “ tx P R | 1 ´ xy is right invertible for all y P Ru.

Proof. Use that the condition in Lemma 16.35 is the same for R and Rop, and that maximal
left ideals of R identify with maximal right ideals for Rop. □

Exercise 16.37. Lemma 16.35 might motivate the question: if x, y P R are such that
1 ` xy is invertible, then is 1 ` yx invertible? Prove that this is so.
Hint: First find a fake proof using binomial expansion, and use the fake proof to guess a
recipe for an inverse to 1 ` yx in terms of an inverse to 1 ` xy.

Exercise 16.38. .

(i) If R is the ring of upper triangular matrices in M2pDq, where D is a division
ring, then show as an exercise that radpRq is the ideal of strictly upper triangular
matrices in R.

Hint: Sending

ˆ

a b
0 c

˙

to a or c defines surjective homomorphisms R Ñ D. Thus,

by Exercise 16.32, radpRq is contained in the subgroup of strictly upper triangular
matrices. Now use Lemma 16.35.
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(ii) Show that for any ring R, radpMnpRqq “ MnpradpRqq.
Hint: 51 Given A “ raijs P radpMnpRqq and y P R, left and right multiply it with
various matrices to get a matrix with yaij in a diagonal entry and no other nonzero
entry. Thus 1 ´ yaij is left invertible for all y P radpRq and for all i, j. For the
other direction, it is enough to show that if a P radR and 1 ď i, j ď n, then the
matrix B that is a in the pi, jq-th entry, and 0 elsewhere, belongs to radpMnpRqq.
Moreover, we may assume that i “ j “ 1 (use permutation matrices). Now by
Lemma 16.33, we are reduced to proving that a matrix whose entries differ from
the identity only in the first column, and by elements of radpRq, is left invertible.
Use row operations. (Note that you cannot use determinants for this problem since
R is noncommutative).

51Warning: I haven’t spent time checking the following approach I am proposing, use it at your own
risk.



217

17. Lecture 17 – Artinian rings

17.1. Artinian rings. In Lecture 16, we saw that if R is semisimple, then radpRq “ 0
(see the discussion before Definition 16.30 in Lecture 16). Moreover, if R is semisimple, we
saw that we have a decomposition

R “

n
à

i“1

Ii

of R as a left R-module, where each Ii Ă R is a minimal left ideal. Thus, R is of finite
length as a left R-module, and hence both Artinian and Noetherian as a left R-module.

Theorem 17.1. A ring R is semisimple if and only it is left Artinian and radpRq “ 0.

Proof. As recalled above, we have already seen that if R is semisimple, then radpRq “ 0
and R is left Artinian.

Now assume that R is left Artinian and that radpRq “ 0. Since R is left Artinian, is easy
to see that 0 “ radpRq “

Şn
i“1mi for some maximal ideals m1, . . . ,mn P R: if not, we can

get an infinite descending chain m1 Ľ m1 X m2 Ľ m1 X m2 X m3 Ľ . . . . Then the obvious
map

R Ñ

n
à

i“1

R{mi

of left R-modules (the factors on the right-hand side are not rings) is an inclusion of left
R-modules. Since the target of this inclusion is semisimple (being a direct sum of simple
left R-modules), so is R. □

Thus, if R is left Artinian, then R{ radpRq is semisimple with the same collection of simple
left R-modules as R.

Remark 17.2. One motivation for the following series of exercises comes from representa-
tion theory in bad characteristic: the representations of a finite group G over a finite field
k will not in general be completely reducible if char k|#G. Thus, krGs-modules will not
be semisimple in general. But then we can consider the maximal semisimple submodule
of a given left krGs-module (i.e., the maximal completely reducible subrepresentation of
a representation of G over k), and develop from there into a filtration of the given rep-
resentation, or go the other way round starting from a maximal completely reducible (or
semisimple) quotient. See the following exercise for more details.

Exercise 17.3. For a left R-module M , the radical radpMq of M is defined to be the
intersection of all the maximal proper submodules of M (if M has no maximal proper
submodule, then radpMq “ M).

(i) Suppose M is Artinian. Take ideas from the proof of Theorem 17.1 above to
show that M{ radpMq is the maximal semisimple quotient of M – this means
that M{ radpMq is semisimple, and moreover any quotient map M ↠ N , with N



218

semisimple, factors asM Ñ M{ radpMq Ñ N (in particular, a maximal semisimple
quotient of M exists when M is Artinian, which is not a priori obvious).

In general, the maximal semisimple quotient of M is called the cosocle of M –
it is unique if it exists, but it need not exist outside the case where M is Artinian:
show that the Z-module Z does not have a cosocle.

(ii) Imitate the proof of Theorem 17.1 above to show that the following are equivalent:
(a) M is semisimple and finitely generated.
(b) M is Artinian and radpMq “ 0.
Thus, radpMq measures an obstruction to M being semisimple.

(iii) If the ring R and the left R-moduleM are Artinian, show that radpMq “ radpRq¨M .
Hint: By (i) above, it is enough to show that M{pradpRq ¨ Mq is the maximal
semisimple quotient ofM . M{pradpRq ¨Mq is semisimple because its left R-module
structure is inflated from a left pR{ radpRqq-module structure, and R{ radpRq is a
semisimple ring by Theorem 17.1 above. On the other hand, ifM{N is semisimple,
then radpRq annihilates it, so that N Ą radpRq ¨ M .

(iv) The socle of M , socpMq, is the maximal semisimple submodule of M : it is well-
defined since it is equivalently defined as the sum of all the simple submodules
of M (see the equivalent characterizations of semisimple modules, Lemma 16.20
from Lecture 16). Show that Z as a Z-module has socle 0. Show also that if M is
Artinian, then M has a nonzero socle.

(v) The socle filtration of M is the largest chain of the form 0 Ĺ M1 Ĺ M2 Ĺ . . .
(possibly ending at some Mn), where Mi{Mi´1 is the socle of M{Mi´1 for each
i ě 1, provided M{Mi´1 has a nonzero socle (if socpM{Mi´1q “ 0, the chain
terminates at Mi´1 Ă M).

Show that the socle filtration of Z has only one term, t0u. On the other hand, if
M has finite length, then show that M has a socle filtration 0 Ĺ M1 Ĺ M2 Ĺ ¨ ¨ ¨ Ĺ

Mn “ M , with n ď lpMq.
Note: According to some online dictionary, a socle is “a plain low block or plinth
serving as a support for a column, urn, statue, etc. or as the foundation of a wall”.
The idea seems to be that a general R-module is built somehow from its maximal
semisimple submodule, with nontrivial extensions involved.

(vi) As defined earlier, the cosocle of M is the maximal semisimple quotient of M , if
such a thing exists.

Show that the cosocle of the Artinian Z-module pQ{Zqrp8s is 0, and that the
radical of this module is itself.

(vii) Define what a cosocle filtration M “ M0 Ľ M1 Ľ . . . should mean, and show that
if M has finite length, M has a cosocle filtration M “ M0 Ľ M1 Ľ M2 Ľ ¨ ¨ ¨ Ľ

Mn “ 0.

17.2. The Hopkins-Levitzki theorem. In this subsection, we will prove:

Theorem 17.4 (Hopkins-Levitzki). If R is left Artinian, and M is a finitely generated
left R-module, then M is left Noetherian.
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Before getting to the proof, we will make some preparations, before which, we record the
following obvious corollary.

Corollary 17.5. Any left Artinian ring is left Noetherian.

Example 17.6. The example of the Z-module pQ{Zqrp8s, which is Artinian but not
Noetherian, shows that Theorem 17.4 fails without assuming M to be finitely generated.

Remark 17.7. There is a special case where Theorem 17.4 is trivial. If R is semisimple,
then it is immediate (easy exercise) that a left R-module M is Artinian if and only if it is
of finite length, and that this is so if and only if M is Noetherian. In a sense, the general
case will be reduced to the semisimple case below.

The proof of Theorem 17.4 will use Nakayama’s lemma, Proposition 17.8 below:

Proposition 17.8 (Nakayama’s lemma). Let M be a left R-module, and let I Ă radpRq be
a left ideal, such that IM “ M . Then, under any of the following additional hypotheses,
we have M “ 0:

(i) M is finitely generated.
(ii) I is a nilpotent ideal, in the sense that some finite product I ¨ I ¨ ¨ ¨ ¨ ¨ I “ 0.
(iii) I Ě I2 Ě . . . stabilizes, and M is Artinian.

Before we prove the above lemma, let us note the following corollary:

Corollary 17.9. Assume that we are given a left R-module M , and a left ideal I Ă radpRq

such that the condition (i), (ii) or (iii) of Proposition 17.8 is satisfied. Let N Ă M be a
submodule such that M “ N ` IM . Then N “ M .

Proof. Note that Proposition 17.8 can be applied to M{N . □

Proof of Proposition 17.8. The proof under the assumption (ii) is trivial: M “ IM “

I2M “ . . . .

Let us prove it under the assumption (i). Suppose M is nonzero. Then M has a maximal
proper submodule M0 (this follows from an easy Zorn’s lemma argument, using that M is
finitely generated). Therefore M{M0 is simple, and is hence annihilated by radpRq. Thus,
radpRqM Ă M0, so that M “ IM Ă M0, a contradiction.

Here is a proof of the same assertion whenM is cyclic: in this case, for a generator m P M ,
radpRqm “ radpRqRm “ radpRqM “ M (use that radpRq is a two-sided ideal), so we can
write m “ im with i P radpRq and m P M ; then p1´ iqm “ 0, and since 1´ i is invertible,
we get m “ 0. In the commutative case, this can be made into a proof using a finite set of
generators and determinants, avoiding Zorn’s lemma. But determinants don’t work well
over noncommutative rings.

Now let us prove that M “ 0 if (iii) is satisfied. Suppose not. Replacing I by some
power In such that In “ In`1 “ . . . , we may assume without loss of generality that
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I “ I2 “ . . . . Since M is Artinian and nonzero, there exists M0 Ă M minimal such
that IM0 ‰ 0. Choosing m0 P M0 such that Im0 ‰ 0, we have I ¨ Im0 “ Im0 ‰ 0,
and Im0 is a submodule of M , so the minimality of M0 implies that Im0 “ M0. This
implies that im0 “ m0 for some i P I. Since 1 ´ i is invertible, it follows that m0 “ 0, a
contradiction. □

The following lemma is a very helpful consequence, and is a priori quite nonobvious.

Lemma 17.10. If R is left Artinian, then radpRq is nilpotent.

Proof. Since R is left Artinian, we have radpRqn “ radpRqn`1 “ . . . for some n. Let
M “ radpRqn, and let I “ radpRq. Then I Ă radpRq, IM “ M , and the condition (iii) of
Proposition 17.8 is satisfied. Therefore M “ 0, i.e., radpRqn “ 0. □

Now we can prove the theorem of Hopkins and Levitzki:

Proof of Theorem 17.4. Let J “ radpRq, and use Lemma 17.10 to choose n large enough
such that Jn “ 0. Thus, it is enough to show that each pJ iMq{pJ i`1Mq is Noetherian as
a left R-module, or equivalently, as a left R{J-module (J Ă R is a two-sided ideal, so R{J
is indeed a ring, and J Ă R clearly annihilates pJ iMq{pJ i`1Mq). In what follows, we will
use that R{J is a semisimple ring by Theorem 17.1: to see that this theorem applies, note
that:

‚ R{J is left-Artinian as R is, and that
‚ radpR{Jq is trivial (use that the maximal left ideals of R all contain J and are
hence in bijection with those of R{J).

NowM , being finitely generated as a left module over the Artinian ring R, is easily seen to
be Artinian: use Lemma 16.17 from Lecture 16. Hence, by the same lemma, J iM{pJ i`1Mq

is an Artinian left module over R, and hence over R{J . Therefore, using that R{J is
semisimple, by the already observed semisimple case of the theorem (see Remark 17.7),
we have that J iM{pJ i`1Mq is a Noetherian left module over R{J , and hence over R, as
desired. □

Note that the proof of the above theorem was far from immediate: several distinct ideas
went into it, such as Lemma 17.10 which used Proposition 17.8.

17.3. Locally nilpotent ideals and the Jacobson radical. When R is commutative,
it is easy to see that the set NilpRq of nilpotent elements of R is an ideal. It is called the
nilradical of R.

Lemma 17.11. When R is commutative, NilpRq is the intersection of all prime ideals of
R, and hence is contained in radpRq.
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Proof. If xn “ 0 for some n P N, then for each prime ideal p Ă R, we have xn P p, so x P p.
Thus, NilpRq is contained in the intersection of the prime ideals of R.

To show that the intersection of the prime ideals of R is contained in the nilradical, given
a P R nonnilpotent, it is enough to show that there exists a prime ideal p of R that does
not contain any power of a. Use Zorn’s lemma to show that there exists an ideal p Ă R
that does not contain any power of a (their collection is nonempty since 0 belongs to this
collection – since a is nonnilpotent), and is maximal with respect to this property. If p is
prime we are done, so suppose not, so Dx, y P Rzp such that xy P p. Then p ` pxq and
p` pyq each contains some power of a, so p Ą pp` pxqqpp` pyqq itself contains some power
of a, a contradiction. □

Remark 17.12. Those of you who have seen localization will recognize what is happening
here: if a is nonnilpotent, then the localization Ra of R at the multiplicatively closed
subset t1, a, a2, . . . u is nonzero, and all that we have done is to take the inverse image,
under R Ñ Ra, of a maximal ideal of Ra: a maximal ideal of Ra does not pullback to a
maximal ideal of R, but a prime (and in particular maximal) ideal of Ra does pull back to
a prime ideal of R; it is elementary that that is how ring homomorphisms work.

Definition 17.13. An ideal I Ă R is called locally nilpotent if each element of I is
nilpotent, i.e., for all a P I, Dn P N such that an “ 0.

Lemma 17.14. If I Ă R is a locally nilpotent left ideal, then I Ă radpRq.

Proof. If I is locally nilpotent, then for all x P I and y P R, yx belongs to I and is hence
nilpotent. Therefore 1´ yx is left-invertible (in fact left and right invertible). Since this is
true for all y P R, we get that x P radpRq by Lemma 16.33 from Lecture 16. □

17.4. Artin local rings, modulo lifting of idempotents.

Definition 17.15. A ring is called local if the noninvertible elements in it form a two-sided
ideal.

Exercise 17.16. (This exercise will often be implicitly assumed in what follows, including
in the subsequent lectures). Show that a commutative ring is local if and only if it has a
unique maximal ideal.

Thus, local rings are much simpler than usual rings.

We would like to prove:

Theorem 17.17. A commutative Artin ring is a finite direct product of Artin local rings.

Example 17.18. (i) If n is a natural number, then Z{nZ is an Artinian ring (being
finite), and is local if and only if n is a prime power (very easy exercise). Thus, if
n “

ś

i p
ai
i is the prime factorization of n (so the pi are distinct), then the product
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decomposition given by Theorem 17.17 can be realized using Sunzi’s theorem, i.e.,
the Chinese remainder theorem:

Z{nZ –
ź

i

Z{paii Z.

(ii) For any commutative Noetherian ring R, given a maximal ideal m Ă R and an ideal
q Ă R with mn`1 Ă q Ă mn, R{q is Artin local: prove this as an exercise.
Hint: Any commutative ring with a nilpotent maximal ideal is local, by Lemma
17.11. Secondly, use that if R̄ is Noetherian and m̄n`1 “ 0, then R as an R-module
has a filtration R̄ Ą m̄ Ą m̄2 Ą ¨ ¨ ¨ Ą m̄n`1 “ 0, with each successive quotient being
of the form m̄i{m̄i`1, which is a finitely generated R̄{m̄-module by Noetherianness,
and hence of finite length (R̄{m̄ is a field).

One technical input into the proof of Theorem 17.17 is:

Lemma 17.19. Let R be a (not necessarily commutative) ring, and I Ă R a nilpotent 52

two-sided ideal, so that R{I is a ring.

(i) The reduction map R Ñ R{I induces a surjection

{Idempotents in R} Ñ {Idempotents in R{I}.

(ii) If R is commutative, then the surjection of (i) is a bijection.

Before proving either of Lemma 17.19 or Theorem 17.17, let us discuss the relevance of the
former to the latter.

Definition 17.20. (1) Two central idempotents e, e1 P R are said to be orthogonal
to each other if ee1 “ 0. Note that if e, e1 P R are orthogonal, then e ` e1 is an
idempotent as well.

(2) A collection of mutually orthogonal central idempotents e1, . . . , en P R is said to be
complete if e1 ` ¨ ¨ ¨ ` en “ 1.

Exercise 17.21. Show that for a not necessarily commutative ring R, and a positive
integer n, we have bijections between the following collections of objects:

(i) Decompositions R “ I1 ‘ ¨ ¨ ¨ ‘ In of R as a direct sum of some of its nonzero
two-sided ideals;

(ii) Decompositions R “ R1 ˆ ¨ ¨ ¨ ˆ Rn of R as a product of nonzero rings, up to a
suitable notion of equivalence; and

(iii) Decompositions 1 “ e1 ` ¨ ¨ ¨ ` en of 1 P R as a sum of a complete set of mutually
orthogonal central nonzero idempotents e1, . . . , en,

given as follows:

52this lemma is actually true with ‘nilpotent’ replaced by ‘locally nilpotent’; see Professor Nair’s notes,
or Remark 17.26 below for a discussion.
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‚ Given R “ I1 ‘ ¨ ¨ ¨ ‘ In as in (i), each Ii Ă R, with its induced multiplication, is a
ring with multiplicative identity the image of 1 P R under the projection R Ñ Ii;
writing Ri “ Ii for this ring, this gives homomorphisms R Ñ Ri for 1 ď i ď n, and
an isomorphism R Ñ R1 ˆ ¨ ¨ ¨ ˆ Rn of rings as in (ii).

‚ Given R “ R1ˆ¨ ¨ ¨ˆRn as in (ii), for 1 ď i ď n let ei P R be the unique idempotent
whose image in Rj is 0 if i ‰ j, and 1 if i “ j; then pe1, . . . , enq is as in (iii).

‚ Given pe1, . . . , enq as in (iii), set Ii “ eiR “ Rei Ă R, which can also be viewed
as a ring Ri; then the projection R Ñ Ii is a ring homomorphism R Ñ Ri, and
we get a decomposition R “ I1 ‘ ¨ ¨ ¨ ‘ In as in (i) as well as a decomposition
R “ R1 ˆ ¨ ¨ ¨ ˆRn as in (ii). Note that we can thus also write R “ Re1 ˆ ¨ ¨ ¨ ˆRen.

The above exercise is implicitly used often in representation theory: the set of simple left
modules over R “ R1 ˆ ¨ ¨ ¨ ˆRn is a disjoint union of the sets of simple left modules over
the Ri (a more detailed formulation will be given in an exercise in Lecture 18). Thus,
finding central idempotents in R lets us break down the representation theory of R into
that of ‘smaller’ and hopefully easier rings.

Now let us use Lemma 17.19 to prove Theorem 17.17.

Proof of Theorem 17.17. SinceR is Artinian, there are finitely many maximal idealsm1, . . . ,mn Ă

R such that

radpRq “

n
č

i“1

mi.

Since R{ radpRq is Artinian and semisimple (and commutative), we get by Sunzi’s theorem
a product decomposition

R{ radpRq –

n
ź

i“1

pR{miq.

This decomposition corresponds to a complete set ē1, . . . , ēn P R{ radpRq of pairwise orthog-
onal nonzero idempotents, which by Lemma 17.19(ii) can be lifted to unique idempotents
e1, . . . , en P R: note that Lemma 17.19 applies since radpRq is nilpotent by Lemma 17.10.

We claim that e1, . . . , en is a complete set of pairwise orthogonal idempotents in R. Since
eiej is an idempotent lifting ēiēj “ 0, by Lemma 17.19(ii) we get eiej “ 0 for i ‰ j. This
gives the pairwise orthogonality and also implies that e1 ` ¨ ¨ ¨ ` en is an idempotent; since
this idempotent lifts 1 P R{ radpRq, we get that e1 ` ¨ ¨ ¨ ` en “ 1.

Again by Exercise 17.21, this gives us a decomposition R –
śn

i“1Rei. Clearly each Rei is
Artinian (being a quotient of R), and it remains to show that each Rei is local.

R Ñ R{ radpRq induces a ring homomorphism, Rei Ñ pR{ radpRqqēi – R{mi, which,
viewed as an R-module homomorphism, is also a restriction of R Ñ R{ radpRq. Thus, the
kernel of Rei Ñ pR{ radpRqqēi – R{mi is contained in radR, which is nilpotent (Lemma
17.10). But the image of this ring homomorphism is a field, R{mi. Thus, this kernel is both
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nilpotent and a maximal ideal. But by Lemma 17.14, this kernel is contained in radpReiq,
and hence by maximality also the unique maximal ideal of Rei. Therefore Rei is local. □

Exercise 17.22. (i) In the setting of the above proof, show that each maximal ideal
of R is of the form mi for some 1 ď i ď n. Thus, a commutative Artinian ring has
only finitely many maximal ideals (though a semisimple module that is Artinian
and hence of finite length can have infinitely many maximal proper submodules).

(ii) The above proof simplifies in the case where R is semisimple, since in this case
R “ R{ radpRq – note that, in this case, there is no need for Lemma 17.19. Using
this, show that a commutative ring R is semisimple if and only if it is a direct
product of fields (recall that a semisimple ring is automatically Artinian). Can you
show directly that a product of fields is semisimple?

17.5. Hensel’s lemma and lifting idempotents. To complete the proof of Theorem
17.17, we need to prove the lemma on lifting idempotents, Lemma 17.19. For this, we will
use a very important result called Hensel’s lemma, which is quite widely used in algebraic
number theory and algebraic geometry.

Theorem 17.23 (A variant of Hensel’s lemma). Let R be a commutative ring with a
nilpotent ideal I. Let a ÞÑ ā denote reduction modulo I, at the level of polynomials as well.
Let f be a polynomial in Rrxs such that f̄ P Rrxs{pIRrxsq “ R̄rxs has a root ᾱ P R̄, and
suppose f̄ 1pᾱq P R̄ˆ. Then ᾱ can be lifted to a unique root α P R of f .

The proof of Theorem 17.23 will in turn use the following easy observation:

Lemma 17.24. If R is a commutative ring and I Ă R is a nilpotent ideal, then Rˆ is the
full preimage of pR{Iqˆ under R Ñ R{I.

Proof. It is immediate that Rˆ maps to pR{Iqˆ. On the other hand, if a P R is invertible
modulo I, so that ab P 1 ` I for some b P R, then since 1 ` I consists of units, it follows
that a P Rˆ, as desired. □

Proof of Theorem 17.23. The proof is by Hensel/Newton/... depending on how you inter-
pret it. First we prove the existence. Let α1 P R be any lift of ᾱ. Since f̄pᾱq “ 0, we have
fpα1q P I. Inductively, we will construct α2, α3, . . . , all reducing to ᾱ “ ᾱ1 modulo I, such
that fpαnq P In for each n: this will suffice for the existence assertion, since I is nilpotent.
We already have constructed α1; assume that we have constructed α1, . . . , αn.

Note that f 1pαnq “ f̄ 1pᾱq P pR{Iqˆ. By Lemma 17.24, we have f 1pαnq P Rˆ.

Thus, given β P R such that fpβq P In and f 1pβq P Rˆ, it is enough for the existence

assertion to show that there exists γ P R such that fpγq P In`1. In fact, take γ “ β ´
fpβq

f 1pβq

(see the “Newton” angle here: Newton’s method of locating roots of a polynomial etc.).
Since f is a polynomial, we have

fpx ` hq “ fpxq ` f 1
pxqh ` (higher degree terms in h),
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by the binomial theorem (e.g., see it degree by degree). Apply this with x “ β and
h “ γ ´ β P In. Each higher degree term in h belongs to I2n Ă In`1. Therefore, we get

fpγq “ fpβq ´ fpβq ` In`1
“ In`1,

as desired.

Now we come to the uniqueness. If distinct α, β both lift ᾱ and satisfy fpαq “ fpβq “ 0,
then let n be the unique positive integer such that β ´ α P InzIn`1. Applying the same
Taylor expansion for fpx ` hq as above, this time with x “ α and h “ β ´ α, we get

0 “ fpβq ´ fpαq P f 1
pαqpβ ´ αq ` In`1

fl 0 mod In`1,

a contradiction. □

Exercise 17.25. (i) Extend Theorem 17.23 to the case where R is complete with
respect to I, i.e., where the obvious map

R Ñ lim
Ð
n

R{In,

i.e., the map obtained from the projections R Ñ R{In, is an isomorphism (But of
course without assuming that I is nilpotent).
Hint: This is pretty much all done in the proof of Theorem 17.23: defining αn
for each n exactly as in that proof, we have pαnqn P lim

Ð
n

R{In is a root of f in the

R-algebra lim
Ð
n

R{In.

(ii) Let p be a prime number. Show that Zp is a local ring, and that it contains p ´ 1
pp ´ 1qth roots of unity.
Hint: Fˆ

p contains p ´ 1 pp ´ 1qth roots of unity.

Now we use Theorem 17.23 to prove Lemma 17.19, completing the proof of Theorem 17.17.

Proof of Lemma 17.19. To prove (i), we may replace R with the subring R0 Ă R generated
by the image of Z Ñ R together with any chosen lift of a given idempotent ē in R{I,
and I with I X R0, to assume that R is commutative. Thus, we may assume that R is
commutative, and prove just (ii) of the lemma.

We wish to apply Theorem 17.23 with fpxq “ x2 ´ x. To show that ē has a unique
idempotent lift in R, it is enough to show that f̄ 1pēq P pR{Iqˆ. In other words, it is
enough to show that 2ē ´ 1 is a unit in R̄ :“ R{I. But this follows from the fact that
p2ē ´ 1q2 “ 4ē ´ 4ē ` 1 “ 0.

If squaring 2ē ´ 1 seems unmotivated, note that ē gives a decomposition R̄ “ R̄1 ˆ R̄2,
under which 2ē ´ 1 corresponds to p1,´1q P R̄ˆ

1 ˆ R̄ˆ
2 – R̄ˆ, which has square 1. □

Remark 17.26. To apply Theorem 17.23, we need I to be nilpotent, and not just locally
nilpotent. However, at least if we allow ourselves to use the Hilbert basis theorem, one
can show that after replacing R with R0 and I with I X R0 as above, I becomes finitely
generated; a finitely generated ideal that is locally nilpotent is nilpotent. For the proof of
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uniqueness too, with a bit of work one can pass to the case of I being nilpotent. For a
direct argument which doesn’t need such reductions, see Professor Nair’s notes; I avoided
that argument since I wanted to take this opportunity to introduce Hensel’s lemma.

In any case, for our purposes here, which was for the application of Lemma 17.19 to
Theorem 17.17, it sufficed to work with I nilpotent, since radpRq is nilpotent.
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18. Lecture 18 – Indecomposable modules, the Krull-Schmidt-Remak
theorem, Artin-Wedderburn theorem

18.1. Indecomposable modules and the Krull-Schmidt-Remak theorem.

Definition 18.1. A left R-module M is called indecomposable if it is nonzero and cannot
be written as the direct sum of two of its nonzero submodules.

Remark 18.2. If R is semisimple, then indecomposable modules over R are the same as
the simple modules over R, but not in general.

Exercise 18.3. Let G be a cyclic group of order n, and k an algebraically closed field
of characteristic p. Recall RepkpGq is identified with krGs-Mod. Note that choosing a
generator of G gives an isomorphism krGs – krT s{pT n ´ 1q.

(i) In good characteristic, i.e., when pn, pq “ 1, show that krGs is semisimple. Give a
bijection

! the set of isomorphism classes
of simple (eqiv., indecomposable)

krGs-modules of G

)

Ñ µnpkq,

where µnpkq is the set of n-th roots of unity in k, which are n in number.

(ii) Consider the opposite case, i.e., when n is a p-power. Show that there is only one
simple module of krGs up to isomorphism, given by the trivial representation of
G over k, but that there are still exactly n indecomposable krGs-modules up to
isomorphism, namely the krT s{pTmq with 1 ď m ď n.
Hint: One way to do this is to use the Jordan canonical form, another is to appeal
to HW 1, where you classified indecomposable modules over a PID (which krT s is).

(iii) Combine the two extreme cases to show that, no matter what n is, there are exactly
n indecomposable representations of G up to isomorphism.

Exercise 18.4. Read up about uniserial modules – those for which the successive quotients
of the socle filtration (or, equivalently as it turns out, the cosocle filtration) are actually
simple (and not just semisimple). Using your work for Exercise 18.3 above, show that
that indecomposable representations of finite cyclic groups (in arbitrary characteristic) are
uniserial, something that is not true for more general modules.

The main result we would like to prove regarding indecomposable modules is the Krull-
Schmidt-Remak decomposition:

Theorem 18.5 (Krull-Schmidt-Remak decomposition). (i) If M is a left R-module
of finite length, then it has a direct sum decomposition M “

Àr
i“1 Ui, with each

submodule Ui Ă M an indecomposable left R-module.
(ii) If M “

Àr
i“1 Ui and M “

Às
i“1 Vi are decompositions of M into indecomposable

modules, then r “ s, and after permuting the tViu if necessary we have Ui – Vi for
each i.
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Example 18.6. Over a (commutative) PID R, you proved in HW 1 that the only in-
decomposable modules are R and those of the form R{ppiq, where p P R is prime and
i P Ně1. This used the existence assertion of the structure theorem for modules over a
PID, but not the uniqueness assertion. Combining this with the uniqueness assertion in
the Krull-Schmidt-Remak decomposition (Theorem 18.5(ii)), one can deduce the unique-
ness assertion in the structure theorem for modules over a PID: see the remarks made in
the notes for Lecture 2. Moreover, we can eliminate the dependence on the proof of the
existence assertion given in Lecture 2: one way to prove that every indecomposable torsion
module over the PID R is of the form R{ppiq to use Baer’s criterion, as we saw in Lecture
14.

Remark 18.7. The Krull-Schmidt-Remak theorem seems to be of a very different nature
from observations regarding the socle and the cosocle filtrations. According to an analogy
I saw in the book ‘Local Representation Theory’ by Alperin (assuming I understand it
correctly), if a module is thought of as a cake, the socle/cosocle filtrations can be thought
of as slicing the cake horizontally, while the Krull-Schmidt-Remak theorem is then like
slicing it vertically.

The main input we will use for the proof of Theorem 18.5 is:

Lemma 18.8. For a left R-module M of finite length, the following are equivalent:

(i) M is indecomposable.
(ii) The ring EndRpMq is local (recall that this means that the set of noninvertible

elements in it form a two-sided ideal). 53

Compare the above lemma with the following lemma, Schur’s lemma, which is immediate
(and yet very important):

Lemma 18.9. For a left R-module M , the first of the following two conditions implies the
second:

(i) M is simple.
(ii) The ring EndRpMq is a division ring (which automatically makes it local).

The following lemma is actually much simpler than Lemma 18.8, and yet seems to have
vague parallels with; our awkward statement intends to highlight this parallel.

Lemma 18.10. Let M,N be left modules over R, with M nonzero and N indecomposable.
Then given any a P HomRpM,Nq, there are only the following two possibilities:

‚ a an isomorphism, or
‚ For all s P HomRpN,Mq, s ˝ a P EndRpMq is not an isomorphism.

(This is just a convoluted way of saying that if s ˝ a is an isomorphism, then so is a).

53Recall that invertible means ‘both left and right invertible’, and that if an element of R has both a
left inverse and a right inverse, these inverses coincide.
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Proof. Suppose that a P HomRpM,Nq and s P HomRpN,Mq are such that s˝a P EndRpMq

is an isomorphism. It is enough to show that a is an isomorphism. Changing s if necessary,
we may and do assume that s ˝ a “ idM .

It is easy to see that N – apMq ‘ ker s: the obvious map apMq ‘ ker s Ñ N , given by
addition in N , has a two-sided inverse given by n ÞÑ papspnqq, n ´ apspnqqq.

Since N is indecomposable, and since apMq is nonzero (as it has the left inverse s, and
since M ‰ 0), this forces ker s “ 0, so that a :M Ñ N is an isomorphism as desired.

□

Let us now use Lemma 18.8 to prove Theorem 18.5:

Proof of Theorem 18.5, assuming Lemma 18.8. The existence is immediate from induction
and the finite length assumption. So let us prove the uniqueness, which is the nontrivial
part.

We will show that, after permuting the Vi if necessary, we can ensure that

(74) a1 : U1 ãÑ M “

s
à

i“1

Vi Ñ V1

is an isomorphism. If this is granted, then U1 ãÑ M Ñ M{p
Às

i“2 Viq is an isomorphism,
so M “ U1 ‘ p

Às
i“2 Viq, and it then suffices to apply the induction hypothesis to

M{U1 –

r
à

i“2

Ui –

s
à

i“2

Vi.

Thus, let us prove that after some permutation (if necessary) of the Vi’s, a1 becomes an
isomorphism.

Consider, for each 1 ď i ď s,

ϕi : U1 ãÑ M “

s
à

i“1

Vi Ñ Vi ãÑ M “

r
à

i“1

Ui Ñ U1,

where each map is an obvious inclusion or a projection.

Clearly,
řs
i“1 ϕi “ idU1 P EndRpU1q. Since EndRpU1q is local by Lemma 18.8, it follows that

not all the ϕi can be noninvertible (else so would be their sum, idUi
), so some ϕi : U1 Ñ U1

is an isomorphism. After permuting the Vi, we may and do assume that ϕ1, U1 Ñ V1 Ñ U1,
is an isomorphism.

Therefore, by Lemma 18.10 (using that V1 is indecomposable), U1 Ñ V1 is an isomorphism.
□

The proof of Lemma 18.8 will in turn be based on the following two results:

Lemma 18.11. If all the noninvertible elements of R are nilpotent, then R is local.

Lemma 18.12 (Fitting’s lemma). Let M be a left R-module.
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(i) If M is Artinian, there exists n0 P N such that kerpunq`impunq “ M for all n ą n0.
(ii) If M is Noetherian, there exists n0 P N such that kerpunq X impunq “ 0 for all

n ą n0.
(iii) If M is of finite length (and hence Artinian and Noetherian), there exists n0 P N

such that M “ kerpunq ‘ impunq for all n ą n0.

Let us prove Lemma 18.8 assuming Lemmas 18.11 and 18.12.

Proof of Lemma 18.8. If M is not indecomposable, then EndRpMq has idempotents e1, e2
with e1 ` e2 “ 1, so the noninvertible elements e1, e2 P R cannot both belong to a proper
ideal of R. Thus, it suffices to assume that M is indecomposable, and show EndRpMq to
be local.

Since M is of finite length, Lemma 18.12 implies that given any u P EndRpMq, for large n
we have that M “ kerpunq ‘ impunq. By indecomposability, for large n either kerpunq “ 0
and impunq “ M , or kerpunq “ M and impunq “ 0. In the former case un is invertible and
hence so is u, while in the latter case u is nilpotent. Thus, by Lemma 18.11, EndRpMq is
a local ring, as desired. □

To complete the proof of Lemma 18.8 and hence of Theorem 18.5, it remains to prove
Lemmas 18.11 and Lemma 18.12.

Proof of Lemma 18.11. We claim that the set of noninvertible elements in R is closed under
left and right multiplication. If x P R is noninvertible and hence nilpotent, and y P R,
then for some n we have xn´1 ‰ 0 but xn´1 ¨ xy “ 0 and yx ¨ xn´1 “ 0, so that neither xy
nor yx is invertible.

It now suffices to assume that x, y P R are nilpotent and show that x ` y is nilpotent as
well. Indeed, otherwise there exists r P R with rpx ` yq “ 1, so that ry “ 1 ´ rx is a unit
(since rx is nilpotent by the above paragraph), which contradicts the above paragraph. □

Proof of Lemma 18.12. (iii) follows from (i) and (ii).

For (i), if M is Artinian, then the chain impuq Ě impu2q Ě . . . stabilizes, say at impun0q.
Thus, for m P M and n ą n0, we have u

npmq “ u2npm1q for some m1, so that m´unpm1q P

kerpunq. Thus, M “ kerpunq ` impunq for all n ą n0, as desired.

For (ii), if M is Noetherian, then the chain kerpuq Ď kerpu2q Ď . . . stabilizes, say at
kerpun0q. Thus, if n ą n0 and m P kerpunq X impunq, say m “ unpm1q, then unpmq “

u2npm1q “ 0, so m1 P kerpu2nq “ kerpunq, so m “ unpm1q “ 0, as desired. □

Remark 18.13. (Optional) In a previous lecture, I remarked that a good chunk of what
we are studying currently adapts immediately to a general abelian category. But the Krull-
Schmidt-Remak theorem does not, since the arguments in the proof of Lemma 18.12 are
specific to the category R-Mod (we worked with specific elements of modules), and Lemma
18.12 was in turn crucially used in the proof of the main technical input into the proof of



231

Theorem 18.5, namely, the assertion that a finite length object of R-Mod is indecomposable
if and only if its endomorphism ring is local (i.e., Lemma 18.11).

However, there are abelian categories with additional properties where this can be made to
work, as I now summarize mostly from Professor Nair’s notes, to which I refer for a more
detailed discussion.

‚ One can consider those abelian categories where objects A in an abelian category A
satisfy a certain ‘bi-chain condition’, which ensures that an object is indecomposable
if and only if its endomorphism ring is local (i.e., the analogue of the key Lemma
18.11 holds).

‚ One way to ensure that each object satisfies this bi-chain condition is to consider
what are known as Hom-finite abelian categories: here one considers not just abelian
categories, but k-linear abelian categories A, namely one where the Hom’s are not
just abelian groups, but modules over a commutative ring k; the condition is then
that HomApX, Y q is of finite length as a k-module for each X, Y (in a manner
respecting composition).

‚ One can show that the bi-chain condition is satisfied by any object in the category
of coherent sheaves on a complete variety over an algebraically closed field, and
by any object in the category of coherent analytic sheaves on a compact complex
manifold.

‚ In general, there is also such a thing as a Krull-Schmidt category, a category
where an appropriate analogue of the Krull-Schmidt-Remak theorem holds (e.g.,
see wikipedia). The previous point says that the category of coherent sheaves on a
complete variety over an algebraically closed field is a Krull-Schmidt category, as
is the category of coherent analytic sheaves on a compact complex manifold.

18.2. Another proof of the structure theorem for commutative Artin rings. We
can now get another proof of the assertion that any commutative Artin ring is a product
of Artin local rings:

Another proof of Theorem 17.17 from Lecture 17. R as an R-module is Artinian and Noe-
therian, the latter because of the Hopkins-Levitzki theorem, and is hence of finite length.

Thus, by the Krull-Schmidt-Remak theorem, we can write R “ I1 ‘ ¨ ¨ ¨ ‘ In, with each
Ii Ă R an indecomposable module, i.e., an indecomposable ideal. Recall that each Ri :“ Ii
then is a ring with multiplication obtained by restriction fromR (and multiplicative identity
equal to the projection to Ii “ Ri of 1 P R). Moreover, we have R – R1 ˆ ¨ ¨ ¨ ˆ Rn (since
Ri ¨ Rj “ Ii ¨ Ij Ă Ii X Ij “ 0). Each Ri is Artinian, since each Ii is.

Thus, it is enough to show that each Ri is local: this follows since Ri – Rop
i – EndRi

pRiq “

EndRpRiq (for the equality EndRi
pRiq – Rop

i , see Exercise 18.14 below), which is a local
ring by Lemma 18.8. □

Exercise 18.14. (Very important) Let R be a (not necessarily commutative) ring.
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(i) Show that EndRpRq – Rop. More precisely (make sure you notice that what follows
is a better description, as it gives more information), note that the set-theoretic
map R Ñ EndRpRq, sending a to right multiplication by a, is a ring homomorphism
Rop Ñ EndRpRq; show that this ring homomorphism is an isomorphism.

(ii) If M is a left R-module and n P N, describe a ring isomorphism EndRpM‘nq –

MnpEndRpMqq.
More generally, describe isomorphisms HomRpM‘n,M‘mq – MmˆnpEndRpMqq

of abelian groups as m,n P N vary, in a manner respecting composition.

Hint: Send T to raijs, where aij :M Ñ M is M
j-th copy

ãÑ M‘n Ñ M‘m
i-th copy
↠ M .

(iii) Put the above two exercises together to give, for any n P N, an explicit isomorphism
EndRpRnq Ñ MnpRopq.
Note: Thus, this works exactly as for linear transformations of vector spaces over
fields – we haven’t changed the description of the isomorphism – the only difference
is that we now have to distinguish between R and Rop, which are the same only
when R is commutative.

18.3. The theorem of Artin and Wedderburn – I. Recall that we have been writing
‘semisimple’ for ‘left semisimple’. We will show below, as a consequence of the theorem
of Artin-Wedderburn, as to why ‘left semisimple’ is the same as ‘right semisimple’, so we
temporarily start distinguishing between the two again.

The aim of this subsection is to prove the following theorem:

Theorem 18.15 (Artin-Wedderburn). Let R be a ring.

(i) R is left semisimple if and only if there exists a direct product decomposition (as
rings)

R – Mn1pD1q ˆ ¨ ¨ ¨ ˆ MnrpDrq.

(ii) Given an identification R – Mn1pD1q ˆ ¨ ¨ ¨ ˆMnrpDrq, there are exactly r pairwise
nonisomorphic simple left modules over R, namely the Dni

i , each Dni
i viewed as an

R-module via left-multiplication by the quotient Mni
pDiq of R.

(iii) Given two decompositions

R –

r
ź

i“1

Mni
pDiq “

s
ź

i“1

Mn1
i
pD1

iq,

as rings, we have r “ s, and after a permutation of the Mn1
i
pD1

iq if necessary we
can ensure that Di – D1

i and ni “ n1
i for all i.

Corollary 18.16. R is left semisimple if and only if it is right semisimple.

Proof, assuming Theorem 18.15. By Theorem 18.15(i) and its obvious analogue for right
R-modules, both the left semisimplicty and the right semisimplicity of R are equivalent to
R being isomorphic to a product

śr
i“1Mni

pDiq with each Di a division ring. □
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Now we prove one implication of Theorem 18.15(i) – a proof of one of the two what may
hopefully be called ‘Artin-Wedderburn realizations’ of R:

Proposition 18.17. We can write the left R-module R as

R “

r
à

i“1

Mni
i ,

where tMiu
r
i“1 is a set of representatives for the isomorphism classes of simple submodules

of the left R-module R, so in particular Mi fl Mj if i ‰ j, and where each ni is a pos-
itive integer: note that such a decomposition exists, since R is of semisimple and (being
Artinian) of finite length as a left R-module. For any such decomposition we have

R –

r
ź

i“1

Mni
pDiq,

with each Di the division ring EndRpMiq
op.

Remark 18.18. Though the proof is easy, it seems an important enough theme to sepa-
rately write down the philosophy.

‚ To study an object, study whatever that object acts on: study representations to
study groups, study modules with R-action to study a ring R. Specifically, if R
acts on an S-module M , we get a homomorphism R Ñ EndSpMq.

‚ IfM is a simple S-module, then EndSpMq is a division ring, so R maps to a division
ring.

‚ But this cannot usually be arranged; nevertheless, we can make semisimple R act
on M‘n, where M is a simple S-module for a suitable S. This will give us a
homomorphism R Ñ EndSpM‘nq – MnpEndSpMqq (use Exercise 18.14 for this
latter isomorphism).

‚ How do we get such M and S? R itself is an pR,Rq-bimodule, from which, using
semisimplicity, we can extract M and S as above (S “ R or Rop depending on the
conventions).

In fact, the proof of Proposition 18.17 will go through the introduction of a series of
standard themes which are any way important. One of these is:

Notation 18.19. (i) Let M be a semisimple left module over a ring R, and let M0 be
a simple left R-module. The M0-isotypic component of M is the sum N Ă M of
all submodules of M isomorphic to M0. If M “ N we say that M is M0-isotypic.

(ii) Thus, any semisimple left R-module M can be written as

M “
à

i

Li,
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where each Li Ă M is an isotypic component of M , i.e., is Mi-isotypic for some
simple leftR-moduleMi.

54 This decomposition is called the isotypic decomposition
of M .

Note that this definition can apply in the setting of a more general abelian category.

Exercise 18.20. Let M “
À

i Li be the isotypic decomposition of a semisimple left R-
module M .

(i) Show that each endomorphism of M preserves Li for each i.
(ii) Therefore, restriction to the Li gives us a homomorphism

EndRpMq Ñ
ź

i

EndRpLiq.

Show that this homomorphism is an isomorphism.

Exercise 18.21. Given an identification M –
À

iM
‘ni
i as left R-modules (a finite sum),

where the Mi are simple and pairwise nonisomorphic, then show that any endomorphism
of M restricts to one of each M‘ni

i , giving an isomorphism

EndRpMq –
ź

i

EndRpM‘ni
i q “

ź

i

Mni
pEndRpMiqq.

Hint: Just combine Schur’s lemma, Exercise 18.20, and Exercise 18.14(ii).

Proof of Proposition 18.17. Since R is semisimple as a left module over itself, we have the
isotypic decomposition of this module

R –
à

i

M‘ni
i .

Since R is semisimple and hence of finite length as a left R-module, this decomposition is
finite. Since EndRpRq – Rop, we have

R – EndRpRq
op

– EndR

´

à

i

M‘ni
i

¯op Exercise 18.21
–

´

ź

i

Mni
pEndRpMiqq

¯op D1
i :“ EndRpMiq

“
ź

i

Mni
pD1

iq
op

(we have commuted op with the product). D1
i is a division ring sinceMi is simple. To finish

getting a product decomposition of R, note that MnpD1
iq
op – MnpDiq where Di “ pD1

iq
op:

use A ÞÑ tA. □

Remark 18.22. In the context of the above proof, note that tMiu
r
i“1 is also a set of

representatives for the isomorphism classes of all simple left R-modules: this follows from
the fact that every R-module is a quotient of a free R-module.

54It is bad notation to write Mi for a simple module whose isomorphism class appears in M rather than
for an isotypic component of M . But we continue with this bad notation, because we still prefer to use
Mi for the simple modules in the proofs of the results involving Artin-Wedderburn theorem.
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Exercise 18.23. One disadvantage of the above proof of Proposition 18.17 is that it ‘uses
coordinates’: while the decomposition R –

À

i Li of the left R-module R into isotypic
components is canonical, realizing each Li as M

‘ni
i is far from canonical. So how do we

describe Li – M‘ni
i using Mi and some coordinate free objects? This is what we will look

at in this exercise. So for the first few sub-exercises among the following, go to the more
general setting of M “

À

i Li, where each 0 ‰ Li is Mi-isotypic for a simple left R-module
Mi. Let Di :“ EndRpMiq; it is a division ring, and Mi is also a left module over Di. Please
be especially careful with the following: I didn’t get enough time to do this properly.

(i) Note that the left Di-action on Mi makes HomRpMi,Mq into a right Di-vector
space. If Li – Mni

i , show that this makes Li into an ni-dimensional right Di-vector
space.

(ii) Consider the evaluation map

evi : HomRpMi,Mq ˆ Mi Ñ M,

given by pφ, xq ÞÑ φpxq. Show that evi is Di-middle linear, and thus gives a left
R-module homomorphism

evi : HomRpMi,Mq bDi
Mi Ñ M,

where the left R-module structure on the left-hand side comes from the left R-action
on second factor Mi.

(iii) Show that evi is an isomorphism from its source onto theMi-isotypic subspace Li Ă

M , so that the isotypic decomposition ofM can be given the following ‘coordinate-
free description’: it is an isomorphism

ÿ

i

evi :
à

i

HomRpMi,Mq bDi
M Ñ M

of left R-modules, where tMiui is a set of representatives for the isomorphism classes
of simple left R-modules appearing in M .
Note: Thus, the ‘ni’ in M‘ni

i is more invariantly captured in terms of the ni-
dimensional right Di-vector space HomRpMi,Mq.

(iv) How does EndRpM‘ni
i q – Mni

pEndRpMiqq get captured in this setting? Note that
EndRpLiq, via its action on Li, acts on HomRpMi, Liq “ HomRpMi,Mq by endomor-
phisms which are tautologically Di-linear. Show that this gives us an isomorphism
of rings

EndRpLiq – EndDi
pHomRpMi,Mqq.

(v) Use this to make the proof of Proposition 18.17 coordinate-free: show that in the
above setting we have:

EndRpMq –
ź

i

EndRpLiq –

r
ź

i“1

EndDi
pHomRpMi,Mqq,
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and specializing to the situation where M “ R, we get

Rop
–

r
ź

i“1

EndRpLiq –

r
ź

i“1

EndDi
pHomRpMi, Rqq,

each factor of which is the algebra of endomorphisms of the ni-dimensional right
Di-vector space HomRpMi, Nq.

Notation 18.24. As motivated by Exercise 18.23, HomRpMi,Mq is called the multiplicity
space of Mi in M .

Remark 18.25. Thus, to summarize in English, the above proof of Proposition 18.17
realizes Rop as the product of factors that are in bijection with the simple left R-modules,
where the factor corresponding to the simple left R-moduleMi is the endomorphism algebra
EndDi

pHomRpMi,Mqq – Mni
pDop

i q of the multiplicity space HomRpMi, Rq of Mi in R.

Exercise 18.26. Here is another take on Proposition 18.17. Let tMiu
r
i“1 be the simple left

R-modules up to isomorphism: these are finite in number because these are precisely the
simple left R-modules that appear in R, up to isomorphism (see Remark 18.22). Again,
please be especially careful about this exercise, which I did not get enough time to work
out.

(i) For any ring R, consider the forgetful functor Forget : R-Mod ù AbGrp. Con-
sider the ring EndpForgetq of endomorphisms of Forget, i.e., the ring of natural
transformations from Forget to itself. Every element of R defines such a natural
transformation: r P R defines the endomorphism of ForgetpMq given by multipli-
cation by r. Show that this defines a ring isomorphism

R Ñ EndpForgetq.

Note/Hint: One can do this as in Problem 4, HW 1, but for an alternative
approach note that ForgetpMq “ HomRpR,Mq, so Forget ““” hR, and therefore
by the Yoneda lemma, at least set-theoretically:

EndpForgetq “ NatphR, hRq
Yoneda

“ hRpRq “ Rop

(but this doesn’t respect any ring structure). I should add that here I am using
an abelian group valued version of the Yoneda lemma. But then you will have to
go through the proof of the Yoneda lemma and show that this isomorphism is as
described above.

(ii) On the other hand, giving an element T P EndpForgetq is the same as giving a
self-isomorphism of each abelian group ForgetpMq, respecting morphisms M Ñ N
of R-modules. By semisimplicity, this element T P EndpForgetq is completely
determined by the values it takes on eachMi, which is an endomorphism Ti :Mi Ñ

Mi of the abelian group underlying Mi.
(iii) Show that any Ti as above commutes with Di :“ EndRpMiq, and that, conversely,

given pTi : Mi Ñ Miq
r
i“1 commuting with each Di, ie., given pTi P EndDi

pMiqqri“1,
there exists a unique element of EndpForgetq that on Mi equals Ti.
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(iv) Thus, we get an isomorphism of rings:

R Ñ

r
ź

i“1

EndDi
pMiq.

(v) Show that each Mi is a finite-dimensional Di-vector space.
Hint: If not, choosing an infinite strictly increasing chain of left Di-vector sub-
spaces 0 “ W0 Ĺ W1 Ĺ W2 Ĺ . . . of Mi, we get a strictly decreasing chain of left
ideals EndDi

pMiq “ I0 Ľ I1 Ľ I2 Ľ . . . , where Ij “ tT P EndDi
pMiq | T pWjq “ 0u.

This contradicts the fact that EndDi
pMiq, being a quotient of the left semisimple

ring R, is left-Artinian.

Remark 18.27. Thus, we have obtained two different proof of part of the Artin-Wedderburn
theorem, giving two different what I would like to call ‘Artin-Wedderburn isomorphisms’

R Ñ

r
ź

i“1

EndDi
pViq,

where each Vi is a finite dimensional vector space over a division ring Di, as follows:

‚ In the “first/main” and probably more standard proof of Proposition 18.17, 55 we
really replace R by Rop, and the Vi are not simple left R-modules Mi, but are
the multiplicity spaces of the simple left R-modules Mi in the left R-module R.
The isomorphism involves the obvious action of Rop on the multiplicity spaces (see
Exercise 18.23(iv)). Di is EndRpMiq, and Vi is a right Di-vector space.

‚ In the second (attempted) proof, given in Exercise 18.26, the Vi are the simple left
R-modulesMi, and the map R Ñ EndDi

pMiq is much simpler: it is just the obvious
map with which R acts on the left R-module Mi, namely, the ‘action map’. Di is
again just EndRpMiq, but Vi “ Mi is now a left Di-vector space.

‚ Thus, we seem to have essentially proved an additional result: the dimension of
Mi as a left Di-vector space is the same as the dimension of its multiplicity space
HomRpMi,Mq as a right Di-vector space. Is there a more direct/conceptual proof
of this result, without appealing to the Artin-Wedderburn theorem? I feel there
should be, but for now I don’t see it.

18.4. The theorem of Artin and Wedderburn – II. To go ahead, let us prove that
MnpDq is a left semisimple ring for each natural number n and each division ring D.

Exercise 18.28. Let R “ MnpDq, and let V “ Dn, viewed as a left R-module via left
multiplication.

(i) Show that V is a simple left R-module.

55In fact, I don’t remember seeing the second ‘proof’ anywhere, so be skeptical of my claim here that
it is indeed a proof.
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(ii) (Easy) Let R “ MnpDq. As a left R-module, show that

R “
à

i

Mi,

where V – Mi Ă R is the submodule consisting of matrices vanishing outside
column i. Deduce using (i) above that R “ MnpDq is left semisimple. Thus, these
Mi are minimal left ideals of MnpDq. Similarly, MnpDq is right semisimple.

(iii) Conclude that every simple left R-module is isomorphic to V .
(iv) Show that EndRpV q is isomorphic to Dop.

Hint:
‚ Dop acts on V “ Dn by right multiplication (the ‘op’ ensures that this way,
V becomes a left module over Dop). Clearly, this action commutes with the
R-action on V , so we get Dop ãÑ EndRpV q.

‚ To prove that this is surjective, let e1, . . . , en be the standard basis of Dn, as
a right D-vector space. Show that e1D Ă V is the subspace annihilated by all
the diagp0, a2, . . . , anq in MnpDq. This implies that any element of EndRpV q

stabilizes De1. Conclude from here that any element of EndRpV q acts on
e1D – D by right multiplication by an element of D.

‚ Since V is a simple left R-module, we have V “ Re1. Using this or otherwise,
show that if T P EndRpV q sends e1 to e1x with x P D, then T is given by right
multiplication by x. From this conclude that Dop ãÑ EndRpV q is surjective.

(v) Show that EndRpV ‘kq – MkpDopq.
Combine (iv) with Exercise 18.14(ii) above.

Before generalizing the above exercise to its coordinate-free version, let us define a simple
ring:

Definition 18.29. A ring R is said to be simple if it has no nonzero proper two-sided
ideals.

In this definition I follow Professor Nair’s notes, and he seems to follow Lam and Morel;
not everyone follows it: in Serge Lang’s book, a simple ring is one which is semisimple, and
has only one isomorphism class of simple left modules (or equivalently, one isomorphism
class of simple left ideals – there can be multiple simple left ideals but they all need to be
isomorphic).

These definitions are inequivalent: in the definition that we are following, a simple ring
need not be semisimple (see the example from HW 9, copied from Professor Nair’s notes,
of the ring krx, Bs of polynomial differential operators in one variable), but for Serge Lang,
a simple ring is semisimple by definition.

Exercise 18.30. This exercise contains a coordinate-free version of much of the above
exercise (and slightly more). In place of MnpDq, we consider EndDpV q, where V is a finite
dimensional left vector space (we replace left with right/D with Dop). EndDpV q acts on V
by definition, and this V takes the place of Dn.
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(i) Show that V is an irreducible EndDpV q-module.
(ii) Show that every left ideal in EndDpV q is of the form IW , where

IW “ tT P EndDpV q | T pW q “ 0u.

Hint:
‚ If T, S P EndDpV q and kerS Ă kerT , show that T “ AS for some A P

EndDpV q: for this, if v1, . . . , vr P V are such that Sv1, . . . , Svr is a left D-basis
for SpV q, try to define ApSviq “ Tvi for each i; why can such an A be extended
to an element of EndDpV q?

‚ If S, T P EndDpV q, show that there exist A,B P EndDpV q such that kerpAS `

BT q “ kerS X kerT . Decompose V into four pieces, one of which is kerS X

kerT , and use the above point to dictate what AS and BT have to be on those
pieces.

(iii) Similarly, show that the right ideals in EndDpV q are precisely those of the form JW ,
where W Ă V is a sub-D-vector space, and JW “ tT P EndDpV q | T pV q Ă W u.

(iv) Conclude that EndDpV q has no proper nonzero two-sided ideal, so that it is simple.
(v) Using (ii), show that EndDpV q is a direct sum of finitely many of its simple left

ideals, so that it is left semisimple.
(vi) IfR “ EndDpV q, show that EndRpV q – D (this makes Exercise 18.28(iv) coordinate-

free).

For proving Theorem 18.15, we will use one more exercise:

Exercise 18.31. If R “ R1 ˆ ¨ ¨ ¨ ˆ Rn is a product of rings, then show the following.

(i) For each simple left Ri-module Vi, viewing Vi as a left R-module via R Ñ Ri realizes
Vi as a simple left R-module. Moreover, any simple left R-module arises this way
for a uniquely determined i.

(ii) Generalize this to giving an equivalence of categories R-Mod ù
śn

i“1Ri-Mod.
Thus, giving central idempotents in R gives a product decomposition of R-Mod
into (typically simpler) categories of the same type.

Now that we have studied the algebras MnpDq, we can prove Theorem 18.15:

Proof of Theorem 18.15. The “ñ” assertion in (i) of the theorem has been proved in
Proposition 18.17. For “ð”, we have seen in Exercise 18.28 above that each MnpDq is
left semisimple, and we saw in Lecture 16 that a product of left semisimple rings is left
semisimple. This proves (i).

Exercise 18.31 reduces (ii) to the case where R “ MnpDq, which is handled by Exercise
18.28(iii).

Now suppose R “
śr

i“1Mni
pDiq “

śs
i“1Mn1

i
pD1

iq. By (ii), r “ s is the number of simple
left R-modules of R up to isomorphism, say M1, . . . ,Mr. We may assume after a permuta-
tion of theMni

pDiq and theMn1
i
pD1

iq thatMi is isomorphic to the simple left R-module Dni
i



240

(resp., pD1
iq
n1
i) on which R acts via the composition of R Ñ Mni

pDiq (resp., R Ñ Mn1
i
pD1

iq)
and left multiplication. Thus, by Exercise 18.28(iii),

pD1
iq
op

– EndMn1
i
pD1

iq
pMiq – EndRpMiq – EndMni pDiqpMiq – Dop

i ,

so that Di – D1
i.

□
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19. Lecture 19 – The Jacobson density theorem and consequences

19.1. Some comments on representations of R and those of MnpRq.

19.1.1. Modules over R vs modules over MnpRq. Recall that if M is a left R-module, then
M‘n is a left MnpRq-module: MnpRq acts on M‘n by ‘matrix multiplication’.

The following exercise is a copy of tag 074D of the stacks project:
https://stacks.math.columbia.edu/tag/074D , where you will see a couple of more details
regarding how to prove it.

Exercise 19.1. Let R be a ring and n ě 1. Then:

(i) M Þ⇝ M‘n defines an equivalence of categories R-Mod ù MnpRq-Mod, with a
quasi-inverse given by N Þ⇝ e11N (see the explanation in Remark 19.2 below).

(ii) Any two-sided ideal of MnpRq is of the form MnpIq “ IMnpRq “ MnpRqI, where
I Ă R is a two-sided ideal.

(iii) The center ZpMnpRqq of MnpRq is the center ZpRq of R Ă MnpRq, where R is
viewed as the subring of MnpRq consisting of the scalar matrices.

Remark 19.2. Here is an explanation for what “N Þ⇝ e11N” means in the statement of
the above theorem. e11 P MnpRq stands for the matrix whose p1, 1q-th entry is 1 and all
other entries are 0. e11N Ă N is then not stable under MnpRq, but it is stable under R,
which sits inside MnpRq, as scalar matrices. Thus, e11N is indeed a left R-module.

19.1.2. Realizing abelian categories as module categories, Morita equivalence. (Optional,
but recommended).

In this subsection, my main reference will be the book Categories and Functors by Pareigis.
Except, I might miss some condition written somewhere inside the book, and also I don’t
know if the terminology in the book is what is universally used these days.

We would like to discuss a more general framework that specializes to the equivalence of
categories R-Mod ù MnpRq-Mod. For this, let us state a general theorem that allows
us to realize certain abelian categories as module categories: unlike the Freyd-Mitchell
embedding theorem, this one doesn’t cover all small categories, but it seems to be simpler,
gives an equivalence of categories instead of just an embedding, and is perhaps more often
concretely realizable. We will assume our categories to be locally small.

Let A be an abelian category, and let P P ObA. We make the following observations:

‚ HomApP,´q is a functor A ù AbGrp.
‚ Further, there is an obvious ring that acts on each HomApP,Aq, namely, HomApP, P q

acts on the right of HomApP,Aq by precomposition, so that HomApP,Aq is a left
module over R :“ HomApP, P qop.

‚ Thus, for any P P ObA, we get a functor A ù R-Mod, where R “ HomApP, P qop.
Thus, the question is: what properties of A can ensure that this is an equivalence
of categories A ù R-Mod?
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Example: If we take A “ R-Mod and P “ R, then HomApP,´q is the identity
functor R-Mod ù R-Mod.

‚ An object P P ObA is called a generator, if for all objects A,B P ObA and all
morphisms f, g : A Ñ B in A with f ‰ g, we have a morphism h : P Ñ A with
f ˝ h ‰ g ˝ h: in other words, if HomApP,´q is a faithful functor.

‚ We will be interested in projective objects P P ObA: this is to ensure that
HomApP,´q is exact.

‚ A projective object P P ObA is called finite if HomApP,´q preserves small co-
products (which are not necessarily finite): this means that the compositions
HomApP,Ajq Ñ HomApP,

À

iAiq (as j vary over the relevant indexing set) in-
duce an isomorphism

À

iHomApP,Aiq Ñ HomApP,
À

iAiq: in other words, if P is
‘small enough’ that every morphism from P to

À

iAi factors through the sum of a
finite subcollection of the Ai.
After all, note that HomR-ModpR,´q certainly commutes with small coproducts,

so this is indeed something we might like to impose.
‚ A finite generator in A is called a progenerator.

Let us study the above properties.

Exercise 19.3. (i) If A has small coproducts, show that an object P P ObA is a
generator if and only if for all A P ObA, there is an epimorphism

š

P Ñ A, from
some small coproduct of copies of P to A. This is almost an ‘if and only if’, if we
understand what to replace ‘small’ with.
Hint: Take a coproduct of copies of P indexed by HomApP,Aq.

(ii) Show that a projective left R-module is a generator for R-Mod if and only if there
exists a surjection P‘n Ñ R for some positive integer n, or equivalently, if and only
if R is a direct summand of P‘n for some n.
Thus, for instance, a lot of projective modules one can think of, including nonzero
free left R-modules, are projective generators for R-Mod. However, Z{2Z, despite
being a projective Z{6Z-module, is clearly not a projective generator for Z{6Z-Mod.

(iii) If A “ R-Mod, show that a projective left R-module is a finite object of A if and
only if it is finitely generated.
Hint: To show that a finite projective left R-module P is finitely generated, let
RJ ↠ P , and split it as P Ñ RJ . Apply the coproduct condition with the compo-
nents R of RJ .

Recall that the question is: when is HomApP,´q : A ù R-Mod, whereR : ´HomApP, P qop,
an equivalence of abelian categories?

We state the following theorem without proof: I have copied it from Theorem 1 in Section
4.11 of the book ‘Categories and functors’ by Bodo Pareigis, but I could have made some
careless error in not paying attention to some condition imposed somewhere in the book:

Theorem 19.4. Let A be a locally small abelian category. Then:
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(i) There exists an equivalence of categories E : A ù R-Mod, for some ring R, if and
only if A contains a progenerator P P ObA such that arbitrary small coproducts of
copies of P exist in A.

(ii) Given any equivalence E : A ù R-Mod, we may choose the progenerator P such
that R “ HomApP, P qop, and such that E is naturally isomorphic to HomApP,´q :
A ù R-Mod.

Here are some very brief and impressionistic comments on the proof of the bit that is
of interest to us, that if P P ObA is a progenerator and arbitrary small coproducts of
P exist in A, then HomApP,´q defines an equivalence of categories A Ñ R-Mod, where
R “ HomApP, P qop. In particular, we want to show that for X, Y P ObA, HomApP,´q

induces a bijection

HomApX, Y q Ñ HomRpHomApP,Xq,HomApP, Y qq.

The injectivity is anyway clear from P being a generator (faithfulness). For X “ Y “ P ,
we do get an isomorphism

HomApP, P q Ñ HomRpHomApP, P q,HomApP, P qq

– this is just a consequence of the identification EndRpRq – Rop. From this, we can make
this work in the case where X and Y are small coproducts of copies of P . For the general
case, write X, Y P ObA as cokernels of objects of the form

À

i P and
À

j P , and apply
the given conditions on P . Note that by what we have seen about projective resolutions,
morphisms X Ñ Y can be lifted to morphisms between coproducts of copies of P that
surject to them. This ends the informal sketch of some of the ideas used in the proof of
the above theorem. For a more detailed but succinct proof, you may also see the following
notes: https://math.huji.ac.il/„ayomdin/Notes/Ma120c.pdf

In any case, notice a corollary (use Exercise 19.3 as well):

Corollary 19.5 (Morita). The categories R-Mod and S-Mod are equivalent if and only if
there exists a finitely generated projective generator P for R-Mod such that S – EndRpP qop.

Definition 19.6. Rings R and S are said to be Morita equivalent if R-Mod and S-Mod
are equivalent.

Example 19.7. It is immediate that P :“ Rn is a finitely generated projective generator
for R-Mod, so M Þ⇝ HomRpRn,Mq – M‘n, with each M‘n viewed as a left module over
pEndR-ModpR

nqqop – MnpRq, gives us an equivalence of categories R-Mod ù MnpRq-Mod.

The equivalence of categories R-Mod ù S-Mod given by Corollary 19.5 can be made
more explicit. For this, note the following:

‚ In Corollary 19.5, the fact that S – EndRpP qop also makes P into a right S-
module, and hence in fact an pR, Sq-bimodule (the R-action and the S-action clearly
commute).
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‚ Thus, the S-module structure on HomRpP,Aq is just the S-module structure it gets
from the R-S-bimodule structure on P .

These considerations with some work let us deduce from Theorem 19.4 the following, which
will also be stated without proof (and is copied from Pareigis’ book as well):

Theorem 19.8 (Morita). Let R, S be rings, and let P be an pR, Sq-bimodule. Then the
following are equivalent:

(i) P bS ´ : S-Mod ù R-Mod is an equivalence of categories.
(ii) ´ bR P :Mod-R ù Mod-S is an equivalence of categories.
(iii) HomRpP,´q : R-Mod ù S-Mod is an equivalence of categories.
(iv) HomSpP,´q :Mod-S ù Mod-R is an equivalence of categories.
(v) As a left R-module, P is a progenerator for R-Mod, and the right action of S on

P defines an isomorphism S – EndRpP qop.
(vi) As a right S-module, P is a progenerator for Mod-S, and the left action of R on

P defines an isomorphism R – EndSpP q.

Moreover, such pR, Sq-bimodules exist when R and S are Morita equivalent.

19.2. The setting for the density theorems. Recall that giving a left R-module struc-
ture on M is the same as giving a ring homomorphism R Ñ EndZpMq. Then EndRpMq Ă

EndZpMq is precisely the centralizer of R (i.e., of the image of R in EndZpMq).

Let R1 :“ EndRpMq Ă EndZpMq. Since R1 ãÑ EndZpMq, M has a left R1-module structure
as well: thus, M has the structure of a left R-module and a left R1-module, and these
module structures commute: r ¨ pr1 ¨mq “ r1 ¨ pr ¨mq for all r P R and r1 P R1. Indeed, this
commutativity follows from the fact that the images of R and R1 in EndZpMq commute.

Remark 19.9. (i) Instead, since a left R1-module is equivalent to a right pR1qop-
module, we could also view M as an pR, pR1qopq-bimodule: this is the notation
used in Professor Nair’s notes, and in various other sources such as Morel’s notes.
However, we will follow the convention of Serge Lang, to just treat M as having
two commuting left R-module structures.

(ii) Notice that we have seen this consideration already in the material of the previous
subsection on Morita equivalence: there the left R-module P was viewed as an
pR, Sq-bimodule, where S “ EndRpP qop. We also made a similar consideration in
Lecture 18, in an exercise that attempted to give an alternate take on the proof of
the Artin-Wedderburn theorem.

Coming back to the left R-module M and R1 “ EndRpMq Ă EndZpMq, we claim that M
has an obvious structure of an R bZ R

1-module (we will not need this, but it seems to me
to help conceptual clarity).

Exercise 19.10. Let S1, S2 be R-algebras, where R is a commutative ring. Define ι1 :
S1 Ñ S1 bR S2 and ι2 : S2 Ñ S1 bR S2 by ι1ps1q “ s1 b 1 and ι2ps2q “ 1 b s2. Then, for
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any R-algebra S, p´ ˝ ι1,´ ˝ ι2q induces a bijection:

HomR-AlgpS1 bR S2, Sq
p´˝ι1,´˝ι2q

Ñ

tpf1, f2q P HomR-AlgpS1, Sq ˆ HomR-AlgpS2, Sq | f1pS1q, f2pS2q Ă S commuteu.

Hint: This exercise generalizes the assertion in Lecture 8 that tensor product over R is
a coproduct in the category of commutative R-algebras. The same proof goes through
to prove this more general assertion, with only the requirement that f1pS1q and f2pS2q

commute.

Thus, by Exercise 19.10, one in fact has a left R bZ R
1-module structure on M .

Since any left R-module M gives rise to a left R1-module structure, we can repeat this,
and form

R2 :“ EndR1pMq “ the centralizer of R1 in EndZpMq Ă EndZpMq.

Just as the left R-module M can be viewed as a left R1-module, the left R1-module M can
also be viewed as a left R2-module. Moreover, since ImagepR Ñ EndZpMqq commutes with
R1, ImagepR Ñ EndZpMqq is contained in R2 Ă EndZpMq, giving us a ring homomorphism

‘action map’ : R Ñ R2
Ă EndZpMq.

We call this the action map since it is just R mapping to EndZpMq by its obvious action
on M .

In density theorems, we are interested in the following question: Let M be a left R-
module, form the centralizer R1 of (the image of) R in EndZpMq, and then the centralizer
R2 “ EndR1pMq. When is R Ñ R2 an isomorphism, or at least a surjection? Theorems
that give conditions under which R Ñ R2 is an isomorphism or a surjection are called
double centralizer theorems.

19.3. Jacobson density theorem.

Theorem 19.11 (Jacobson density theorem: Jacobson, Chevalley). Let M be a semisim-
ple left R-module, and let R1 “ EndRpMq and R2 “ EndR1pMq as above. Consider the
morphism R Ñ R2.

(i) The image of R Ñ R2 is dense in the following sense: for all x1, . . . , xn P M ,
D a P R such that a ¨ xi “ u ¨ xi, @ 1 ď i ď n. 56

(ii) If M is finitely generated over R1, then R Ñ R2 is surjective (and hence also
injective if M was a faithful left R-module).

56Thus, ‘density’ in the sense that the action of an element of R2 on any finite collection of elements
can be captured by an element of R on those elements. I am unaware of/haven’t looked up topological
formalizations of this notation of density.
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Remark 19.12. Before proving the theorem, let me ramble about my attempts to make
sense of the theorem, 57 in the special case where we put the following additional assump-
tions on M : M is of finite length over R, and writing M –

À

iM
ni
i with each Mi simple,

eachMi is finite dimensional over Di :“ EndRpMiq. Be especially skeptical of the following.

(i) Since M is semisimple, we have an isotypic decomposition:

M –
à

i

Mni
i –

à

i

HomRpMi,Mq bDi
Mi

from an exercise in the notes for Lecture 18, where Di “ EndRpMiq is a division
ring, and the ni-dimensional right Di-vector space HomRpMi,Mq is the multiplicity
space for Mi in M . Here, HomRpMi,Mq bDi

Mi maps to M via the evaluation map
that sends each φi b xi to φipxiq.

(ii) By an exercise from Lecture 18, then

R1
“ EndRpMq –

ź

i

EndRpM‘ni
i q –

ź

i

EndDi
pHomRpMi,Mqq.

Now when we view M –
À

iHomRpMi,Mq bDi
Mi as a left R1-module, each

HomRpMi,Mq is a simple left module over EndDi
pHomRpMi,Mqq, and now the

Mi take on the role of the multiplicity spaces. We have assumed dimDi
Mi ă 8.

(iii) Therefore, by the same exercise, we should have R2 “
ś

i EndDi
pMiq. Thus, it

seems that the Jacobson density theorem is basically giving the surjectivity of the
action map R Ñ

ś

i EndDi
pMiq, whenever there are only finitely manyMi involved

and each occurs with finite multiplicity. Anyway, we will see this theme in some of
the corollaries to the Jacobson density theorem below.

Note that this is also what our other tentative second take on the Artin-Wedderburn
theorem, from an exercise in Lecture 18, sought to prove, correctly or otherwise.

(iv) Anyway, what I wish to emphasize is the following relationship between how R1 and
R2 act onM (andR – after all, R itself acts throughR2): R1 “

ś

i EndDi
pHomRpMi,Mqq

and R2 “
ś

i EndDi
pMiq are products of simple rings indexed by the same set and

involving the same division algebras Di, and the set up gives us a natural bijection

tSimple left submodules of R1 in Mu Ñ tSimple left submodules of R2 in Mu,

say σi ÞÑ τi, such that as a representation of R1 bZ R
2 we have a decomposition

M “
à

i

σi b τi,

where σi b τi is viewed as a left module over R1 bZ R
2 using the universal property

of the tensor product of algebras discussed in Exercise 19.10 above. This seems
reminiscent of many ‘duality’ type theories in the literature, such as the Schur-
Weyl duality and the Howe duality. So there could be a better way to state this
theorem, but I could be making mistakes here.

Now we move onto the usual proof of the theorem.

57This was not discussed in the lecture, and is very optional.
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Remark 19.13. (i) Notice the difference in emphasis from the approach to the Artin-
Wedderburn theorem: in proving it we made a fixed semisimple ring R act on
various modules, whereas here only the module M is semisimple (and not R), and
we are making different rings act on M .

(ii) To repeat, this is a theorem of the ‘double centralizer’ genre.

Let us rephrase the assertion of (i) of the theorem:

‚ Rephrasing: It says that for all u P R2 and px1, . . . , xnq P M‘n, there exists a P R
such that u ¨ px1, . . . , xnq “ a ¨ px1, . . . , xnq, where

(75) u ¨ px1, . . . , xnq “ pu ¨ x1, . . . , u ¨ xnq, and a ¨ px1, . . . , xnq “ pa ¨ x1, . . . , a ¨ xnq.

‚ Another rephrasing: Make R and R2 act diagonally onM‘n (i.e., as in (75)). Then
every cyclic R-submodule of M‘n is stable under R2.

Thus, the n “ 1 case of (i) of the theorem is a special case of the following lemma:

Lemma 19.14. Let M be a semisimple left R-module, and let R1 “ EndRpMq and R2 “

EndR1pMq as above. Then

tR-submodules of Mu “ tR2-submodules of Mu.

In other words, any R-submodule N Ă M is stabilized by R2.

Proof. Since M is semisimple, we can write M “ N ‘ N 1 as left R-modules. We need to
show that any u P R2 stabilizes N . Write prN :M Ñ N for the unique projection onto N
with N 1 as its kernel. Then clearly prN P R1, so u commutes with prN : u ˝ prN “ prN ˝ u,
so that upNq “ u ˝ prNpMq “ prN ˝ upMq Ă N , as desired. □

Remark 19.15. Thus, the point of the proof seems to be as follows: we want to say that
R2 is not too large, for which we want R1 to be large enough. Since M is semisimple, we
had lots of projections prN , which gave us enough elements in R1 for it to be large enough,
and thus cut R2 down.

Now we can prove the general case of Theorem 19.11:

Proof of Theorem 19.11. First assume (i), and let us show (ii). If M “ R1x1 ` ¨ ¨ ¨ `R1xn,
then any u P R2 “ EndR1pMq is completely determined by u ¨x1, . . . , u ¨xn. Thus, if we get
a P R such that u ¨ xi “ a ¨ xi for each i, then u and the image of a under R Ñ R2 would
agree on each xi, and hence be equal as elements of R2, giving (ii).

Now it suffices to prove (i). As in (75), we make R and R2 act ‘diagonally’ on M‘n. All
we need to show is that R ¨ px1, . . . , xnq Ă M‘n is stable under R2. Since we have treated
the n “ 1 case, this will follow if we show that the action of R2 on M‘n, or rather the
image of R2 Ñ EndZpM‘nq, is contained in the analogue of R2 with M replaced by M‘n:
in other words, it is enough to show that the image of R2 Ñ EndZpM‘nq commutes with
EndRpM‘nq inside the big ring EndZpM‘nq.
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We have, by an exercise from Lecture 18, an identification EndZpM‘nq “ MnpEndZpMqq.
Under this identification:

‚ EndRpM‘nq identifies with MnpEndRpMqq “ MnpR1q Ă MnpEndZpMqq; and
‚ The action of u P R2 Ă EndZpMq identifies with diagpu, ¨ ¨ ¨ , uq P MnpEndZpMqq

(because R2 acts ‘diagonally’ on M‘n).

Thus, it is enough to show that MnpR1q commutes with diagpu, ¨ ¨ ¨ , uq in the big ring
MnpEndZpMqq, which follows from the fact that u P R2 Ă EndZpMq commutes with
R1 Ă EndZpMq. □

19.4. Some examples related to the Jacobson density theorem.

Example 19.16. Only the first of the following examples is an application of the Jacobson
density theorem (that too, only to recover something we already know). The rest are just
illustrations of it being satisfied in relatively more ‘real world’ situations; they are meant
to give an idea of why you should expect to see some double centralizers.

(i) If V is a finite dimensional vector space over a division ring R “ D, then by defi-
nition, R1 “ EndDpV q is the centralizer of D Ă EndZpV q. V is a simple and hence
finitely generated left EndDpV q-module (this simplicity was an exercise in Lecture
18, and is easy to see). Thus, by the Jacobson density theorem, the centralizer R2

of R1 in V is D, something we had seen in an exercise in Lecture 18.
(ii) Let V,W be finite dimensional vector spaces over a field k. A problem from HW 3

asked you to prove that the obvious map EndkpV q bk EndkpW q Ñ EndkpV b W q,
defined simply by the functoriality of the tensor product (i.e., it sends T bS, where
T : V Ñ V and S : W Ñ W , to T b S : V bk W Ñ V bk W ), is an isomorphism
of vector spaces. Clearly, it respects composition and is hence an isomorphism of
k-algebras. One way to see that it is an isomorphism of vector spaces is by showing
that the following diagram is commutative:

EndkpV q bk EndkpW q //

–

��

EndkpV bk W q

pV _ bk V q bk pW_ bk W q
– // pV _ bk W

_q bk pV bk W q
– // pV bk W q_ bk pV bk W q

–

OO
.

This commutativity can be checked, e.g., using basis elements.
In any case, since EndkpV q bk EndkpW q Ñ EndkpV b W q is an isomorphism of

k-algebras, we can consider EndkpV q Ă EndkpV bkW q and EndkpW q Ă EndkpV bk

W q: the former inclusion is given by T ÞÑ T b idW , and the latter by S ÞÑ idV bS.
58

Show as an exercise that inside EndkpV bkW q, EndkpV q and EndkpW q are cen-
tralizers of each other. I don’t see that this is proved by the Jacobson density

58In contrast, note that EndkpV ‘ W q does not have such a nice description in terms of EndkpV q or
EndkpW q.
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theorem, but it is certainly consistent with it: the module V bk W , being finite
dimensional over k, is finitely generated over either of EndkpV q and EndkpW q, and
is also semsimple over these, because EndkpV q and EndkpW q are semisimple rings.

(iii) Let R be a semisimple ring. Think of R as a left R-module, via left multiplication.
Via right multiplication, R is also a right Rop-module. It is clear that in EndZpRq,
R and Rop are the centralizers of each other. Thus, the Jacobson density theorem
is satisfied in this situation.

Here is a slightly more concrete example where one sees this in action. Let D
be a finite dimensional division algebra over k: thus, D is a k-algebra which is a
division ring, and dimkD ă 8. Let A “ MnpDq: then A is also a finite dimensional
k-algebra; it is a simple ring (as we saw in Lecture 18), but not a division ring. We
have a ring homomorphism

A Ñ EndkpAq and Aop Ñ EndkpAq,

the former sending a P A to the left multiplication la : A Ñ A, and the latter
sending a P Aop “ A to the right multiplication ra : A Ñ A.
The images of A and Aop in EndkpAq clearly commute with each other (as left and

right multiplications commute), so by the universal property for tensor products of
algebras, we get a homomorphism

A bk A
op

Ñ EndkpAq.

We will quote later (see Lemma 19.37 below) that AbkA
op is a simple k-algebra, so

the above map is injective. Thus, by dimension considerations, it is surjective (both
sides have dimension pdimk Aq2). Thus, not only are A,Aop Ă EndkpAq centralizers
of each other, they together complementarily constitute EndkpAq in some sense.

19.5. Some corollaries of the Jacobson density theorem. The following corollary is
immediate from the Jacobson density theorem, and describes the images of rings/group
rings under irreducible representations:

Corollary 19.17. (i) Let M be a simple left R-module, so that D :“ R1 “ EndRpMq

is a division ring. Assume that M is of finite dimension n as a left vector space
over D. Then

R Ñ R2
“ EndR1pMq “ EndDpMq – MnpDop

q

is surjective.
(ii) Suppose R is a (possibly infinite dimensional) algebra over a field k, and let M be

a simple left R-module such that dimkM ă 8; 59 note that D :“ R1 “ EndRpMq

is a division ring. Then

R Ñ R2
“ EndR1pMq “ EndDpMq – MnpDop

q

is surjective, where n “ dimDM is (being asserted to be) finite.

59This is automatic if dimk R ă 8, since in this case, for any x P M , r ÞÑ rx defines a surjection
R Ñ M).
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(iii) If G is a (possibly infinite) group and pρ, V q is an irreducible finite dimensional
representation of G over a field k, then the map ρ : krGs Ñ EndkpV q (extended
k-linearly from ρ : G Ñ GLkpV q) has image equal to EndDpV q Ă EndkpV q, where
D is the finite dimensional division k-algebra EndkrGspV q “: EndGpV q.

(iv) (Burnside’s theorem) In the situation of (ii), assume that k “ k̄ is algebraically
closed. Then D equals k, so that the obvious map R Ñ EndkpMq is surjective, i.e.,
we have R↠ R2 “ EndkpMq “ Mnpkopq “ Mnpkq.

(v) In the situation of (iii), assume further that k “ k̄ is algebraically closed. Then
ρ : krGs Ñ EndkpV q is surjective, giving a surjection krGs Ñ EndkpV q – Mnpkq

for some n.

Proof. (i) is an immediate consequence of the Jacobson density theorem, Theorem 19.11(ii).

(ii) follows from (i), since dimDM ď dimkM ă 8.

(iii) is a special case of (ii), where R “ krGs: note that R Ñ R2 Ă EndZpV q, being the
‘action map’, is just ρ : krGs Ñ EndkpV q.

To conclude (iv) from (ii), since the D of (iii) is a finite dimensional k-algebra, it suffices
to show the following: if D is a division algebra over a field k such that dimkD ă 8, and
if k is algebraically closed, then k “ D. This follows from Lemma 19.18 below.

Finally, (v) is a special case of (iv), where R “ krGs. □

Lemma 19.18. If k is an algebraically closed field and D is a finite dimensional division
algebra over k, then D “ k.

Proof. Let α P Dzk, and we will get a contradiction. Since k is in the center of D, krαs Ă D
is a commutative integral domain that is finite dimensional as a k-vector space, and hence
isomorphic to krxs{pfq, where f P krxs is an irreducible polynomial. But this forces krαs

to be a finite field extension of k, which is nontrivial since α R k, contradicting the fact
that k is algebraically closed. □

Remark 19.19. (i) In Corollary 19.17(i), the hypothesis thatM is of finite dimension
as a left vector space over D is not automatic. Indeed, let M “ V be an infinite
dimensional vector space over a field k, viewed as a module over R “ EndkpV q. It
is easy to see that R acts transitively on V zt0u, so that V is a simple R-module,
and that D :“ R1 :“ EndRpV q equals k. But V is not finite dimensional as a left
vector space over k.

(ii) At the risk of repetition, the hypothesis of (i) of Corollary 19.17, namely, that
n “ dimDM ă 8, might seem difficult to ensure, but (iii) gives an important and
commonly seen situation where that hypothesis is automatic.

Corollary 19.17 deals with simple modules; it has an easy generalization that applies to
semisimple modules which satisfy a ‘multiplicity one condition’ for its simple submodules.
To not make our zoo too big, we avoid stating the generalizations of (iv) and (v) of the
corollary.
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Corollary 19.20. (i) Let M “
Àr

i“1Mi be a semisimple left R-module, where each
Mi is a simple left R-module and Mi fl Mj for all i ‰ j, so that Di :“ EndRpMiq

is a division ring for each i. Assume that each Mi is of finite dimension ni as a
vector space over Di. Then the ‘action map’

R Ñ R2
“ EndR1pMq “

r
ź

i“1

EndDi
pMiq –

r
ź

i“1

Mni
pDop

i q

is surjective.
(ii) Suppose R is a (possibly infinite dimensional) algebra over a field k. LetM1, . . . ,Mr

be simple left R-modules, such that Mi fl Mj for all i ‰ j, and such that dimkMi ă

8 for each i. Note that Di :“ EndRpMiq is a division k-algebra for each i. Then
dimkDi ă 8 for each i, and the ‘action map’

R Ñ

r
ź

i“1

EndDi
pMiq

is surjective.
(iii) If G is a (possibly infinite) group and pρ1, V1q, . . . , pρr, Vrq are pairwise non-isomorphic

irreducible finite dimensional representations of G over k, then the map

ρ “

r
ź

i“1

ρi : krGs Ñ

r
ź

i“1

EndDi
pViq

is surjective, where Di is the finite dimensional division k-algebra EndkrGspViq.
(iv) In the situation of (ii), for each 1 ď i ď r there exists ei P R which acts as the

identity on Mi, and which annihilates Mj for i ‰ j.

Proof. Let us prove (i), by appropriately generalizing the proof of (i) of Corollary 19.17.
Let M “

Àr
i“1Mi. By an exercise from Lecture 18, each element of EndRpMq preserves

Mi for each i, and gives an isomorphism

R1 :“ EndRpMq –

R
ź

i“1

EndRpMiq “

r
ź

i“1

Di

(this uses that Mi fl Mj for i ‰ j). Since each Mi is assumed to be a finite dimensional
Di-vector space, it is easy to see that M is a finitely generated R1-module. Therefore,
Jacobson’s density theorem applies, gives us the surjectivity of the action map

R Ñ R2
“ EndR1pMq “

r
ź

i“1

EndDi
pMq,

giving (i).

The proofs of (ii) and (iii) are analogous generalizations of the corresponding assertions
in Corollary 19.17: one again considers M :“

Àr
i“1Mi for the former, and pρ, V q :“

Àr
i“1pρi, Viq for the latter.

(iv) is an immediate consequence of (ii). □
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We get the consequence that the isomorphism class of an irreducible or even semisimple
finite dimensional representation of an arbitrary group, in characteristic zero, is determined
by its character:

Corollary 19.21. Let R be a (possibly infinite dimensional) k-algebra, where k is a field of
characteristic zero. Let M and N be semisimple left R-modules that are finite dimensional
as vector spaces over k. Suppose that for all a P R,

trpa|Mq “ trpa|Nq,

where the left-hand side denotes the trace of pm ÞÑ amq P EndkpMq, and the right-hand
side is similar. Then M and N are isomorphic as left R-modules.

Proof. There exists a finite set L1, . . . , Lr of simple left R-modules, and nonnegative inte-
gers p1, . . . , pr and q1, . . . , qr, such that

M –

r
à

i“1

L‘pi
i , and N –

r
à

i“1

L‘qi
i

(note that we allow some of the pi and the qi to be 0, so we are not assuming that M and
N contain isomorphic simple submodules). Note that dimk Li ă 8 for each i.

It is enough to show that for each 1 ď i ď r, we have pi “ qi. Use Corollary 19.20(iv) to
choose ei P R such that ei acts as the identity on Mi (and hence on Li), and as 0 on Mj

(and hence on Lj) for j ‰ i. Then, in k we have

pi ¨ pdimk Liq “ trpei|Mq “ trpei|Nq “ qi ¨ pdimk Liq.

Since dimk Li ‰ 0 in k 60 we have pi “ qi, as required. □

Remark 19.22. In particular, Corollary 19.21, applied to the group algebra R “ krGs

of a possibly infinite group G, where k is a field of characteristic zero, shows that any
semisimple finite dimensional representation ρ of G is determined by its character, namely
the function G Q g ÞÑ tr ρpgq P k.

Corollary 19.23. Let G be a finite group, and k a field, such that krGs is semisimple. 61

Then there are only finitely many irreducible representations pρ1, V1q, . . . , pρr, Vrq of G up
to isomorphism, and these representations ρi : G Ñ GLkpViq, extended by k-linearity to
krGs Ñ EndkpViq, define an isomorphism

krGs

ś

1ďiďr ρi
Ñ EndDi

pViq –

r
ź

i“1

Mni
pDop

i q,

where Di is the division algebra EndkrGspViq, and ni “ dimDi
Vi pă dimk Vi ă 8q.

60This is because k has characteristic 0.
61In Lecture 20, hopefully we will show that krGs is semisimple if and only if pchar k,#Gq “ 1.
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Proof. We already know that a semisimple ring has only finitely many simple left modules
up to isomorphism, so we let them be pρ1, V1q, . . . , pρr, Vrq. By Corollary 19.20(iii), the
map krGs Ñ EndDi

pViq –
śr

i“1Mni
pDop

i q is surjective.

Since the pρi, Viq exhaust all the simple left modules of krGs, the kernel of this homomor-
phism equals rad krGs, which equals 0 as krGs is assumed to be semisimple. Thus, the
map krGs Ñ EndDi

pViq –
śr

i“1Mni
pDop

i q is an isomorphism, as required. □

Remark 19.24. (i) Thus, to every irreducible finite dimensional representation pρ, V q

of a group G over a field k, a division algebra D is attached:

D :“ EndGpV q :“ EndkrGspV q “ tT : V Ñ V k linear | T pg ¨ vq “ g ¨ T pvq @ g P Gu.

This division algebra has the property that ρpkrGsq Ă EndkpV q equals EndDpV q,
and ρ : G Ñ GLkpV q itself can be factored as a representation

ρ : G Ñ GLDpV q Ă GLkpV q.

This division algebra, being canonically defined, is determined up to isomorphism.
(ii) In Burnside’s theorem – either of (iv) or (v) of Corollary 19.17 – the assumption

that k is algebraically closed is necessary. Indeed, if pρ, V q is an irreducible repre-
sentation of G over a field k, the image of ρ : krGs Ñ EndkpV q is EndDpV q, where
D is the division algebra attached to ρ as above. When k is not algebraically closed,
D can strictly contain k: see Example 19.25(i) below.

Example 19.25. (i) Here is an example of a representation ρ : G Ñ GL2pRq, where
ρpRrGsq is not surjective. Set V “ R2. Let

G “ SO2pRq “

!

g P GL2pRq | g ¨
tg “ 1, det g “ 1

)

“

!

ˆ

cos θ sin θ
´ sin θ cos θ

˙

| θ P R
)

,

and let ρ : G ãÑ GL2pRq be the inclusion. Then it is easy to see that

ρpRrGsq “

!

r ¨

ˆ

cos θ sin θ
´ sin θ cos θ

˙

| r, θ P R
)

“–

!

ˆ

a b
´b a

˙

| a, b P R
)

– C,

using the map that sends

ˆ

a b
´b a

˙

to a ` ib.

Show as an easy exercise that the division algebra D “ EndRrGspV q is isomorphic
to C in this case.
Hint: ρpRrGsq Ă EndRpV q is is isomorphic to C, so as a ρpRrGsq-module, V “ R2

has dimension 1, so EndRrGspV q is isomorphic to C.
(ii) Burnside’s theorem implies that Sp2npCq spansM2npCq: this is because Sp2npCq ãÑ

GL2npCq ýC2n is an irreducible representation, which in turn follows from the
fact that Sp2npCq acts transitively on C2nzt0u (any nonzero vector in C2n can be
extended into a symplectic basis). Slightly modifying this argument, one can see
that OnpCq ãÑ GLnpCq is an irreducible representation as well, so OnpCq spans
MnpCq.
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(iii) In fact, SppV,Bq spans EndkpV q, for any field k and any (finite dimensional) sym-
plectic space pV,Bq over k: to see this, note that the image of krSppV,Bqs Ñ

EndkpV q is EndDpV q for some division algebra D, and it is not hard to see that the
centralizer of SppV,Bq in EndkpV q is just the subring k Ă EndkpV q of scalar linear
transformations. This would not be true with SOpV, qq, as we saw with SOp2,Rq

above.
(iv) We have already found irreducible representations ρ : G Ñ GLRpV q, such that the

associated division R-algebra EndRrGspV q is R or C. Thus, one might ask if we
can find an irreducible representation ρ : G Ñ GLRpV q for which the associated
division algebra EndRrGspV q is the Hamilton quaternions H. We think of H “

R ‘ Ri ‘ Rj ‘ Rk as C ‘ Cj, and consider G :“ Q8 :“ t˘1,˘i,˘j,˘ku, a subset
of H closed under multiplication. We consider the representation

G Ñ GLRpHq – GL4pRq,

sending g P G to left multiplication by g on H. Then ρpRrGsq is the R-span,
in EndRpHq, of left-multiplications by ˘1,˘i,˘j,˘k, namely, the collection of all
left-multiplications by elements of H. Thus, EndRrGspHq is the collection of all right-
multiplications by elements of H, namely, Hop – H (show that a ` bi ` cj ` dk ÞÑ

a ´ bi ´ cj ´ dk defines an isomorphism Hop Ñ H). The irreducibility of this rep-
resentation follows from the isomorphism EndRrGspHq – H and the semisimplicity
of the representation; we will see in Lecture 20 that this semisimplicity follows in
turn from the fact that G is finite and charR “ 0.

As an aside, we now state von Neumann’s double centralizer/bicommutant theorem, though
this probably really belongs to the previous subsection:

Theorem 19.26 (von Neumann). Let BpHq be the ring of bounded linear operators on a
Hilbert space H, and R Ă BpHq a subalgebra that is closed under A ÞÑ A˚. Let R1 Ă BpHq

be the centralizer of R, and R2 Ă BpHq the centralizer of R1, i.e., the double centralizer of
R. Then R is dense in R2, in the sense that R2 is the closure of R under the weak operator
topology on BpHq, and also under the strong operator topology on BpHq.

19.6. Rieffel’s double centralizer theorem and simple rings. The results of this
subsection were only stated in the lecture.

Rieffel’s theorem gives a completely different situation, in comparison with the Jacobson
density theorem, under which R Ñ R2, as in the set up for the density/double centralizer
theorems (see Subsection 19.2), is an isomorphism: it involves a simple ring rather than an
arbitrary ring, and it involves a nonzero (possibly non-semisimple) left ideal rather than
a semisimple module. Neither theorem implies the other, but if I understand Professor
Nair’s notes right, Section XVII.7 of Lang’s book seems to give a common generalization.

After discussing the theorem, we will give conditions under which a simple ring is semisim-
ple. Recall that a simple ring is one that is nonzero and has no proper nonzero two-sided
ideals: it need not be semisimple (Professor Nair’s notes give a simple ring that is not
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semisimple, which is copied into HW 9). Recall also that this notation is different from
that in Lang’s book. The following proof is copied from Professor Nair’s notes.

Theorem 19.27 (Rieffel’s theorem). Let R be a simple ring and I Ă R a nonzero left
ideal. Form R1 “ EndRpIq and R2 “ EndR1pIq. Then R Ñ R2 is an isomorphism.

Proof. The kernel of λ : R Ñ R2 is a proper two-sided ideal, and is hence zero. Therefore,it
is enough to show that R Ñ R2 is surjective.

We claim that λpIq Ă R2 is a left ideal. If this is granted, then we have, using that IR “ R
(since IR Ă R is a nonzero two-sided ideal):

R2
“ R2λpRq “ R2λpIRq “ R2λpIqλpRq “ λpIqλpRq Ă λpRq,

as desired.

To show that λpIq Ă R2 is a left ideal, it is enough to show that for all i P I and r2 P R2,
we have r2λpiq “ λpr2 ¨ iq, where r2 ¨ i is made sense of by using that I is a left R2-module
by the definition of R2 Ă EndZpIq.

For all j P I, viewing right multiplication by j as an endomorphism ρj of I that belongs
to R1, we have

r2λpiqpjq “ r2
pijq “ r2

pρjpiqq “ ρjpr
2
piqq “ r2

piqj “ λpr2
¨ iqpjq,

so that r2λpiq “ λpr2 ¨ iq P λpIq, as desired. □

Theorem 19.28 (Wedderburn). If R is a simple ring, the following are equivalent:

(i) R has a minimal nonzero left ideal.
(ii) R is left Artinian.
(iii) R is semisimple.
(iv) R – MnpDq for some division ring D and a positive integer n.

Proof. (iii) ðñ (iv) follows from the structure theorem for semisimple rings by Artin
and Wedderburn. (iii) ñ (ii) ñ (i) is immediate/seen before. It is now enough to show
that (i) implies (iv), which is what requires Rieffel’s theorem.

Let I Ă R be a minimal nonzero left ideal. By Rieffel’s theorem we have R – EndR1pIq “

EndDpIq, where D “ R1 “ EndRpIq is a division algebra, because I being minimal nonzero
is a simple R-module.

To finish the proof, it is enough to show that I is finite dimensional as a left D-vector
space. But if not, the subset of R “ EndDpIq consisting of finite rank operators would be a
proper nonzero two-sided ideal, contradicting that R is simple. Therefore, dimD I “ n ă 8

for some n, and R – MnpDq. □
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19.7. Central simple algebras and Brauer groups – impressionistic introduction.
On this topic, mostly only definitions were given in the lecture. So the proofs in this section
are optional reads.

Lemma 19.29. Let A be a finite dimensional simple k-algebra. Then

(i) A – MnpDq as a k-algebra, where D is a finite dimensional division k-algebra (i.e.,
dimkD ă 8; it is automatic that k sits inside MnpDq as scalar matrices).

(ii) The center of A is a finite field extension of k contained in D.

Proof. Since dimk A ă 8, A is Artinian in addition to being simple, so by Theorem 19.28,
A is semisimple as well.

Hence by the theorem of Artin and Wedderburn, A “ MnpDq for a division ring D. k
lies in the center of A “ MnpDq, which identifies with the center ZpDq of D (Exercise
19.1(iii)). Since D is a finite dimensional k-algebra, so is ZpDq Ă D. Since it is easy to see
that ZpDqzt0u is closed under x ÞÑ x´1, we have that ZpDq is a finite extension of k. □

Definition 19.30. Let k be a field. A central simple algebra over k is a finite dimensional
k-algebra which is simple, and whose center is k (rather than a proper finite extension of
k; this condition is the ‘central’ of a ‘central simple algebra’).

Remark 19.31. Thus, by Lemma 19.29, we can also define a central simple algebra over
k as a k-algebra isomorphic to MnpDq, where D is a central division algebra over k.

Lemma 19.32. (i) Let A,A1 be two simple k-algebras such that A is finite and central
over k. Then A bk A

1 is simple.
(ii) If A,A1 are central simple algebras over k, then Abk A

1 is a central simple algebra
over k.

Proof. Omitted: see https://stacks.math.columbia.edu/tag/074F for a proof of the first
assertion, and https://stacks.math.columbia.edu/tag/074G for a proof of the second. The
proofs do not need the introduction of new tools, but there is some argument that is to be
made. □

Remark 19.33. Lemma 19.32 shows how important the condition of being ‘central’ is:
for example, C is a finite simple algebra over R, but not central, and C bR C – C ˆ C is
not simple.

We define a ‘multiplication’ on the set of isomorphism classes of central simple algebras
over a field k, by defining the product of A and A1 to be Abk A

1, which is a central simple
algebra over k by Lemma 19.32 above.

It is clear that this multiplication is associative, and has a multiplicative identity, namely
the isomorphism class of the k-algebra k. Thus, the isomorphism classes of central simple
algebras over k form a monoid.

However, this is too large and we would also like a group structure rather than a monoid
structure. So we define:
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Notation 19.34. Given central simple algebras A,A1 over k, define A „ A1 if MmpAq –

MnpA1q for some positive integers m and n. Write rAs for the equivalence class of A.

Exercise 19.35. (i) Show that „ is an equivalence relation, and each equivalence class
contains exactly one division algebra.
Hint: We saw in Lecture 18 that D can be recovered from R “ MnpDq as the
opposite ring of EndRpMq, where M is the unique simple R-module.

(ii) Show that MmpAq bk MnpA1q – MmnpA bk A
1q, and hence show that the multi-

plication defined above descends to one on the set of equivalence classes of central
simple algebras over k.

Notation 19.36. For any field k, the Brauer group Brpkq of k is the monoid of equivalence
classes for „, under the operation rAs ¨ rA1s “ rA bk A

1s (see Exercise 19.35(ii) above). It
follows from Lemma 19.37 below (as explained in Remark 19.38 below) that Brpkq is a
group, and not just a monoid.

Lemma 19.37. If A is a central simple algebra over a field k of dimension n, we have
A bk A

op – EndkpAq – Mnpkq.

Remark 19.38. It follows from Lemma 19.37 that in Brpkq, rAs has an inverse given by
rAops, so that Brpkq is a group and not just a monoid.

Proof of Lemma 19.37. We have morphisms A Ñ EndkpAq and Aop Ñ EndkpAq defined by
left and right multiplications (see Example 19.16(iii)). The images of these maps commute,
so by the universal property of tensor product (see Exercise 19.10), we get a k-algebra
homomorphism A bk A

op Ñ EndkpAq.

We know that AbkA
op is a central simple algebra, by Lemma 19.32 (this was the argument

missing/postponed in Example 19.16(iii)). Therefore, A bk A
op ãÑ EndkpAq is injective.

Since both sides have dimension equal to pdimk Aq2, this map is also surjective. □

Theorem 19.39 (Skolem-Noether). Let A be a central simple algebra over k, let B be a
simple k-algebra, and let f, g : B Ñ A be two nonzero k-algebra homomorphisms. Then
there exists an invertible x P A such that for all b P B, we have fpbq “ xgpbqx´1.

Before proving this result, let us observe a corollary which is not at all obvious, even when
A “ Mnpkq.

Corollary 19.40. Any automorphism of a central simple algebra A is inner, i.e., given by
y ÞÑ xyx´1, for some invertible x P A.

Proof. Take B “ A in Theorem 19.39. □

Proof of Theorem 19.39. Since A is simple and semisimple, it has a unique isomorphism
class of simple left modules. Let M be a simple left A-module, so that D “ EndApMq is a
division algebra over k. It is easy to see that dimkM ă 8, and then that dimkD ă 8.
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Note that M is a left A bk D-module, and hence a left B bk D-module in two different
ways: one via f b idD : B bk D Ñ A bk D, and another via g b idD : B bk D Ñ A bk D.

Since B is a simple nonzero algebra over k, we have by Lemma 19.32 that BbkD is a simple
k-algebra. Since B is simple and f, g : B Ñ A are nonzero, we have dimk B bk D ă 8

as well, so that B bk D is semisimple. Being simple and semisimple B bk D has only one
isomorphism class of simple modules. Thus, the two left B bk D-module structures on M
are isomorphic: B bk D is semisimple, and for either of the two left module structures, M
has length equal to dimkM{ dimkN , where N is any simple left B bk D-module.

Therefore, there exists an automorphism φ : M Ñ M intertwining the two left B bk D-
module structures on M , so that in particular we have:

φpfpbq ¨ d ¨ mq “ gpbq ¨ d ¨ φpmq,

for all b P B, d P D and m P M .

In particular, φ : M Ñ M commutes with the action of D, so by the Jacobson density
theorem and the fact that dimkM ă 8, φ is given by left multiplication by some x P A.
Thus, we have, for all b P B and m P M :

x ¨ fpbq ¨ m “ gpbq ¨ x ¨ m.

Thus, left multiplication by x ¨ fpbq P A and gpbq ¨ x P A define the same endomorphism of
M .

Since A is simple, A Ñ EndkpMq is injective, and therefore we get x ¨ fpbq “ gpbq ¨ x P A.

To conclude, it suffices to show that x is invertible in A. This is because A ãÑ EndkpMq

has image EndDpMq by the Jacobson density theorem, and φ :M Ñ M , which is induced
by left-multiplication by x, is an isomorphism of D-vector spaces. □

There are many more lemmas related to central simple algebras of interest, which unfor-
tunately we don’t have time/space to discuss. We will conclude by giving some examples
without proof. For this we will need the following fact too:

Remark 19.41. IfK{k is a field extension, and A is a central simple algebra over k, one can
show thatAbkK is a central simple algebra overK (see https://stacks.math.columbia.edu/tag/074H).
It is now easy to see that A ÞÑ A bk K induces a group homomorphism Brpkq Ñ BrpKq.

Example 19.42. (i) If k is algebraically closed, Brpkq is trivial: this is because each
equivalence class in Brpkq contains exactly one division algebra, and over an alge-
braically closed field, there is no finite dimensional division algebra of dimension
greater than 1 (Lemma 19.18).

(ii) If k is finite, Brpkq is trivial: this follows from a theorem of Wedderburn, that any
finite division algebra is commutative, and hence a field.

(iii) If k “ R, one can show that Brpkq – Z{2Z: the nontrivial division algebras in
Brpkq “ BrpRq are k “ R itself, and the Hamilton quaternions H.

(iv) If k “ Qp, with p a finite prime, one can show that Brpkq – Q{Z: this involves
local class field theory.
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(v) If k “ Q, then Brpkq “ BrpQq is more complicated: Applying Remark 19.41 to
Q ãÑ R and the inclusions Q ãÑ Qp, one can show that the sequence below is
well-defined:

0 Ñ BrpQq Ñ

´

à

p

BrpQpq

¯

‘ BrpRq –

´

à

p

Q{Z
¯

‘ pp1{2qZq{Z
ř

Ñ Q{Z Ñ 0

(the obvious map is from BrpQq to
ś

pBrpQpq ˆ BrpRq, and the well-definedness

involves checking that this actually lands inside the direct sum). Using class field
theory, one can see that the above sequence is exact, so that BrpQq is a kernel of
a surjective map p

À

Q{Zq ‘ pp1{2qZ{Zq Ñ Q{Z, where
À

Q{Z is an infinite sum.
Again, as with quadratic forms, we see that Q is much more complicated in many

ways than R or the Qp, and that objects associated to Q are often number theoretic
in nature.

There is much more very basic stuff to discuss concerning Brauer groups, for which we don’t
have the space or time. The 10 page pdf at https://stacks.math.columbia.edu/download/brauer.pdf
is a good summary, with proofs, of various basic properties that we haven’t discussed.

Or you can refer to Professor Nair’s notes, which also have lots of lemmas and theorems
about Brauer groups that we haven’t discussed, and also some proofs that we have skipped:
it all takes only four pages in his notes.
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20. Lecture 20 – Representation theory of finite groups – I

In this lecture, unless otherwise mentioned, R denotes a commutative ring. Recall that
RrGs denotes the group ring of G, and that the category RepRpGq of R-modules with a
G-action identifies with the category RrGs-Mod of left RrGs-modules. A representation
of G over R will often simply be referred to as a G-module, and we may write HomG for
HomRrGs.

20.1. Semisimplicity of RepkpGq.

Notation 20.1. (i) Henceforth, we will sometimes also work with a different but
equivalent description of RrGs: identifying

ř

gPG agg with the map G Ñ R given by

g ÞÑ ag, we may think of RrGs as the free R-module of finitely supported functions
G Ñ R. Under this description, the ring multiplication we have already defined on
RrGs (using the ‘group algebra’ description of RrGs) translates to convolution:

pf1 ˚ f2qpgq “
ÿ

g1,g2PG
g1g2“g

f1pg1qf2pg2q.

(ii) The regular representation associated to G over R is the representation of G ˆ G
on RrGs defined by pg1, g2qp

ř

aggq “
ř

g agpg1gg
´1
2 q, or equivalently by ppg1, g2q ¨

fqpgq “ fpg´1
1 gg2q. The left regular representation of G is the restriction of the

regular representation along G – Gˆt1u ãÑ GˆG (thus, defined by g1 ¨ p
ř

g aggq “
ř

g agpg1gq or g1 ¨f “ fpg´1
1 ¨´q), and the right regular representation the restriction

along G – t1u ˆG ãÑ GˆG (thus, defined by p
ř

g aggqg2 “
ř

g agpgg2q or g2 ¨ f “

fp´ ¨ g2q).

Remark 20.2. Pretend for a moment that R “ R or C, so that we can talk of (signed) real
or complex measures on the discrete group G. The group algebra should ‘really’ be viewed
as the space of finitely supported such measures on G, made into a ring via convolution:
the convolution of two measures µ1 and µ2 on (the discrete space) G is the push-forward,
along GˆG Ñ G, of the product measure µ1 ˆµ2 on GˆG. This is more natural because
while functions naturally pull back, measures naturally push forward. When we identify
RrGs with the space of finitely supported functions G Ñ R, as in Notation 20.1(i), we are
really taking the Radon-Nikodym derivative with respect to the counting measure.

A similar comment applies even to more general R: you can imitate measures by thinking
of

ř

gPG agg as the map

{Functions G Ñ k} Ñ k,

sending f to
ř

gPG agfpgq – this is viewed as integrating f against
ř

g agδg, where δg is the
Dirac delta measure at g.

Definition 20.3. For any group G, the map ε : RrGs Ñ R given by
ÿ

gPG

agg ÞÑ
ÿ

gPG

ag,



261

is easily verified to be a homomorphism, and is called the augmentation map. The two-
sided ideal ker ε Ă RrGs is called the augmentation ideal.

When we talk of the augmentation map, the
ř

gPG agg description of RrGs will be more
convenient. Note that the augmentation map intertwines the regular representation of
GˆG on RrGs with the trivial representation of GˆG on R: εppg1, g2q ¨ fq “ εpfq for all
g1, g2 P G. Similarly, it intertwines the left and the right regular representations of G with
the trivial representation of G on R.

Proposition 20.4. Given a nonzero commutative ring R and a group G, the following are
equivalent:

(i) RrGs is semisimple.
(ii) R is semisimple, and the ideal ker ε Ă RrGs has a complementary left ideal, i.e.,

there exists a left ideal J Ă RrGs such that R “ pker εq ‘ J .
(iii) R is semisimple, G is finite, and #G P Rˆ (i.e., the image of #G P Z under Z Ñ R

belongs to Rˆ).

Remark 20.5. Note that the condition (iii) of the proposition translates to the following:
R is a finite product k1 ˆ ¨ ¨ ¨ ˆ kr of fields, and pchar ki,#Gq “ 1 for all 1 ď i ď r.

Corollary 20.6 (Maschke). If G is a finite group and k is a field with pchar k,#Gq “ 1,
then krGs is semisimple.

Proof of Proposition 20.4. It is easy to see that if S1 Ñ S2 is a surjective ring homomor-
phism and S1 is semisimple, then S2 is semisimple as well (if a left S2-module is completely
reducible as a left S1-module, then it is completely reducible as a left S2-module as well).
Applying this to ε : RrGs Ñ R, we conclude that if RrGs is semisimple then so is R. Now it
is immediate that (i) implies (ii): the existence of J is a very special case of semisimplicity
of RrGs.

Now we prove (ii) ñ (iii). Giving RrGs the left regular action of G, ε restricts to a left
RrGs-module isomorphism J Ñ R. It follows that G fixes J Ă RrGs pointwise. But the
only elements

ř

gPG agg P RrGs that can be fixed under left multiplication by G are those

for which ag “ ah for all g, h. Since
ř

gPG agg is a finite sum, and since J is nonzero (as ε

is surjective and R ‰ 0), it follows that G is finite. This also gives that J Ă R ¨ p
ř

gPG gq,

so Rp
ř

gPG gq ` pker εq “ RrGs. Applying ε, we get that p#Gq ¨ R “ R, so that #G P Rˆ.

Now let us prove (iii) ñ (i). It is enough to show that any RrGs-submodule ι : V 1 ãÑ V of a
leftRrGs-module V has a complementary left RrGs-module, or equivalently aG-equivariant
section p : V Ñ V 1. Since R is semisimple, ι has an R-linear section b : V Ñ V 1, and we
wish to replace it with an RrGs-linear section p : V Ñ V 1, one that is R-linear and satisfies
g ¨ p ¨ g´1 “ p for all g P G. We may then take

ppvq “
1

#G

˜

ÿ

gPG

pg ¨ b ¨ g´1
qpvq

¸

.
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It is immediate that p is an RrGs-linear section to ι, as desired. □

Before making several remarks on the proof of Proposition 20.4, let us define some con-
structs:

Notation 20.7. (i) Often, for V P ObRepRpGq “ RrGs-Mod, we will denote by
V G Ă V the R-submodule of G-fixed elements of V .

(ii) If V1, V2 P ObRepRpGq “ RrGs-Mod, then HomRpV1, V2q is a priori an R-module,
but can also be viewed as a leftRrGs-module, where for g P G and φ P HomRpV1, V2q,
g ¨ φ P HomRpV1, V2q is defined by:

pg ¨ φqpv1q “ g ¨ φpg´1
¨ v1q.

Thus, HomRpV1, V2q
G “ HomRrGspV1, V2q Ă HomRpV1, V2q. Note the relevance of

this construction to the proof of (iii) ñ (i) of Proposition 20.4: it helped reduce
the construction of a G-invariant homomorphism to that of a G-invariant element
in a module.

The observartion that HomRpV1, V2q is a G-module can be formalized by saying
that RrGs-Mod has an ‘internal hom’: one can associate to objects X, Y in this
abelian category another object of the same category (rather than a set or an
abelian group) called HompX, Y q, which behaves in some ways like Hom between
X and Y . Please note that HomRrGspV1, V2q is still only an abelian group, and is
much smaller than the left RrGs-module HomRpV1, V2q.

(iii) If V2 “ R is the trivial representation of G, then we denote HomRpV1, V2q – viewed
as a representation of G – by V _

1 , and call it the contragredient representation of
V1.

(iv) As with Hom, so with b: if V1, V2 P ObRepRpGq “ RrGs-Mod, the R-module
V1bRV2 can be upgraded to a left RrGs-module by defining g ¨pv1, v2q “ pg ¨v1, g ¨v2q.

This is essentially what makes RepRpGq “ RrGs-Mod what is called a tensor
category or a monoidal category, something that is related to realizing the ‘internal
hom’s mentioned above (by imposing an ‘internal’ Hom-tensor adjointness).

Remark 20.8. (i) Here is an easy exercise related to the theme of semisimplicity:
show that a ring S is semisimple if and only if every left S-module is projective
(similarly, S is semisimple if and only if every left S-module is injective).

(ii) If R equals R or C, the proposition tells us that for any finite group G, RrGs is
semisimple. In this case, an alternate justification for this fact can be given, as
follows. Choose any inner product (real or complex, as applicable) p¨, ¨q on V , and
replace it with the inner product x¨, ¨y given by

x¨, ¨y “ p#Gq
´1

ÿ

gPG

g ¨ p¨, ¨q,

where of course g ¨ p¨, ¨q “ pg ¨ ´, g ¨ ´q, to get a G-invariant inner product on V .
Since V 1 Ă V is nondegenerate (for an inner product, by positive definiteness all
subspaces are nondegenerate), the orthogonal pV 1qK Ă V is really an orthogonal
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complement, i.e., satisfies V 1 ‘ pV 1qK “ V . It is easy to see from the G-invariance
of the inner product that pV 1qK is stable under G, and thus gives an RrGs-module
complement to V 1.
This proof is particular to R or C, but shows, for instance, that any finite sub-

group of GLnpRq can be conjugated into On Ă GLnpRq, and that any finite sub-
group of GLnpCq can be conjugated into the unitary group Un. Further, this idea
seems to be of importance to functional analysis, where ‘semisimplicity’ seems to
often be ensured using self-adjointness assumptions.

(iii) The idea of Maschke’s proof (namely the proof of (iii) ñ (i) of the proposition)
also adapts to representations of compact topological groups G, where rather than
arbitrary representations one considers appropriately continuous representations.
In this situation, the averaging operation p#Gq´1

ř

gPG can be replaced by the

operation
ş

G
p¨q dg of integrating against the normalized Haar measure on G.

This also applies to the argument of the above point, where one produces G-
invariant inner products, and shows that any compact subgroup of GLnpRq can
be conjugated to one contained in On, and any compact subgroup of GLnpCq can
be conjugated to one contained in Un. Thus, On is the unique conjugacy class of
maximal compact subgroups of GLnpRq, while Un is the unique conjugacy class of
maximal compact subgroups of GLnpCq. In the theory of real reductive groups, one
generalizes this to other ‘reductive’ groups such as symplectic and special orthogonal
groups over R and C.

(iv) We now outline another way of describing Maschke’s proof, assuming for simplicity
that k is a field: pchar k,#Gq “ 1, and we want to show that krGs is semisimple. I
learnt about this sort of a proof from Professor Nair, and while this articulation is
more tedious, here are somethings I like about it:

‚ It seems to give some insight into why (ii) of Proposition 20.4, though a special
case of (i), implies the whole of (i), and as to why the technique of averaging
in (iii), which one might a priori expect to only give sections to V G ãÑ V ,
also gives sections to more general V 1 Ñ V . While it seems trivial to read
and formally verify Maschke’s proof, it seems to have some mystery as to why,
philosophically, a special case implies the general case.

‚ It seems to much better parallel the proof of semisimplicity of representations
of semisimple Lie algebras in characteristic zero – if you don’t appreciate this
now, you can skip this, and come back to it say in a later semester when you
read semisimple Lie algebras.

Here are the steps, written partly as exercises, where we now assume that
pchar k,#Gq “ 1:
(a) It is also enough to a show that any epimorphism V Ñ V 2 in RepkpGq has a

section (to find a complement to the image of ι : V 1 ãÑ V , apply this to the
epimorphism V Ñ V {V 1).

(b) Consider the obvious surjection HomkpV 2, V q Ñ HomkpV 2, V 2q, look at the
preimage of k ¨ idV 2 Ă HomkrGspV

2, V 2q, which is a G-stable subspace of
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HomkpV 2, V q, and use this to reduce the semisimplicity of krGs to the fol-
lowing assertion: any exact sequence

0 Ñ W Ñ V Ñ k Ñ 0

in krGs-Mod, where k is viewed as the trivial representation of G, splits.
(c) Reduce further, using induction, to the case where W is an irreducible repre-

sentation of G.
Hint: If W0 Ĺ W is a proper nonzero G-submodule, we get an exact sequence
0 Ñ W {W0 Ñ V {W0 Ñ k Ñ 0 of G-modules, which splits by induction, giving
an exact sequence 0 Ñ W0 Ñ V 1 Ñ k for some G-stable subspace V 1 of V .

(d) There are now two cases: one where W is the trivial representation of G, and
one where W is nontrivial.

‚ First suppose W is nontrivial. Then c :“ p#Gq´1 ¨ p
ř

gPG gq P RrGs

maps W to WG “ 0, while it acts as the identity on V {W “ k. Thus,
c´1, which is a central element of RrGs, annihilates k but notW , and it
satisfies pc´ 1qV Ă W and c´ 1|W “ ´1. Then kerpc´ 1q is the desired
complement.

‚ If W is trivial, then for all g P G, pg ´ 1q takes W to 0 and V to
W , so pg ´ 1q2 annihilates V . But g#G ´ 1 also annihilates V . Since
x#G´1 and px´ 1q2 are relatively prime in krxs, by the assumption that
pchar k,#Gq “ 1, it follows that g´ 1 annihilates V for all g P G, i.e., V
is the trivial representation. Then, any k-linear splitting will do.

In the Lie algebra case, the role of c ´ 1 seems to be played by the Casimir
element: it is to bring this out that the above was made harder than it should
be, without using that c is an idempotent. Note that c is a central element of
RrGs, and the above proof is a “central character argument”, along the lines of
“eigenspaces corresponding to distinct eigenvalues are linearly independent”.
The argument in the case where W is nontrivial can be articulated in one
sentence if one understands Ext well enough, which formalizes the idea of the
preceding sentence. See Professor Nair’s comments in the proof he gives of the
Lie algebra case.

20.2. The group algebra and matrix algebras of irreducible representations.

Notation 20.9. Whenever ρ : G Ñ GLkpV q is a representation of a group G, with V
finite dimensional over a field k, we will let ρ also stand for the k-algebra homomorphism
ρ : krGs Ñ EndkpV q obtained by k-linearly extending the group homomorphism ρ : G Ñ

GLkpV q.

Theorem 20.10. Let k be a field and G a finite group. Then G has only finitely many
irreducible representations up to isomorphism, say pρ1, V1q, . . . , pρr, Vrq. Moreover:

(i) The map

ρ “

r
ź

i“1

ρi : krGs Ñ

r
ź

i“1

EndkpViq
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induces an isomorphism of k-algebras

krGs{prad krGsq Ñ

r
ź

i“1

EndDi
pViq,

where for 1 ď i ď r, Di “ EndGpViq :“ EndkrGspViq (it is a division algebra over
k).

(ii) There is also an isomorphism

krGs{prad krGsq –

r
ź

i“1

EndDi
pWiq,

where Wi “ HomkrGspVi, krGsq is the multiplicity space of Vi in krGs, on which
Di “ EndkrGspViq operates on the right via its action on Vi (so Wi is a right Di-
vector space).

(iii)
řr
i“1pdimDi

Viq
2 dimkDi “

řr
i“1pdimDi

Wiq
2 dimkDi “ dimpkrGs{ rad krGsq ď #G,

with equality if and only if krGs is semisimple, i.e., if and only if p#G, char kq “ 1.

Proof. Recall that for any left Artinian ring R, radpR{ radpRqq “ 0, and that hence
R{ radpRq is a semisimple ring with the same collection of simple left modules as R.
Thus, simple left modules for krGs{prad krGsq identify with those for krGs. The finite-
ness of the number of isomorphism classes of these modules was (an easy) part of the
Artin-Wedderburn theorem (Lecture 18).

Now (i) is one of the consequences of Jacobson density theorem, that we studied in Lecture
19 – see Corollary 19.23 from Lecture 19 (it might also follow from the exercise in Lecture
18 that attempted an alternate take on the Artin-Wedderburn theorem).

(ii) follows from the isomorphism given by the Artin-Wedderburn structure theorem, pro-
vided we replace krGs{ radpkrGsq with pkrGs{ radpkrGsqqop. Thus, to prove (ii), it is enough
to show that krGs{ radpkrGsq is isomorphic to its own opposite. Since the identification
R Ñ Rop has been seen to preserve the Jacobson radical, it is enough to show that krGs is
isomorphic to krGsop. Indeed, g ÞÑ g´1 defines an isomorphism krGs Ñ krGsop.

(iii) follows from (i). □

Corollary 20.11. Let k “ k̄ be an algebraically closed field and G a finite group. Let
pρ1, V1q, . . . , pρr, Vrq be the finitely many irreducible representations of G up to isomorphism.
Then

śr
i“1 ρi : krGs Ñ

śr
i“1 EndkpViq quotients to an isomorphism

krGs{prad krGsq –

r
ź

i“1

EndkpViq,

so that
r

ÿ

i“1

pdimk Viq
2

“ dimkpkrGs{prad krGsqq ď #G,

with equality if and only if krGs is semisimple, i.e., if and only if p#G, char kq “ 1.
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Proof. Combine Theorem 20.10 with the fact that finite dimensional division k-algebras
are all equal to k when k is algebraically closed – see Lemma 19.18 from Lecture 19. □

Remark 20.12. Note that a one-dimensional representation of G over a field k is a ho-
momorphism ρ : G Ñ GLkpV q “ GL1pkq “ kˆ, where V is a one-dimensional vector space
over k: here the isomorphism GLkpV q Ñ GL1pkq is defined using the choice of a basis for
V , but is easily seen to be independent of the choice of the basis since dimk V “ 1.

20.3. The abelian case.

Corollary 20.13. Let k be a field and G a finite abelian group. Assume notation from
Theorem 20.10.

(i) For each irreducible representation V of G over k, EndGpV q is a finite field exten-
sion of k. In other words, each division k-algebra Di as in Theorem 20.10 is a finite
field extension Ki{k, and each Vi is a one-dimensional Ki-vector space. Note that
while we know that krGs{ radpkrGsq being commutative and semisimple is a finite
product of fields, this gives an explicit such realization:

krGs{ radpkrGsq “

r
ź

i“1

Ki.

(ii) Suppose further that k “ k̄ (and G is still abelian). Then each irreducible repre-
sentation pρ, V q of G over k is one-dimensional, and can hence be thought of as
a homomorphism ρ : G Ñ kˆ (see Remark 20.12). Hence using the notation of
Theorem 20.10 we get an isomorphism

(76) krGs{ radpkrGsq –
ź

χPHompG,kˆq

k,

induced by sending g P G Ă krGs to pχpgqqχ (see Exercise 20.14(ii) below to spell
this map out better).

Proof. Since G is abelian, it is easy to see that krGs is a commutative ring. Hence each
EndDi

pViq – Mni
pDop

i q is abelian, so that Di “ Ki is a field extension of k and ni “

dimDi
Vi “ dimKi

Vi “ 1.

From this (i) follows, and (ii) is an immediate consequence. □

Exercise 20.14. (i) It follows from Corollary 20.13(ii) that if G is finite abelian and
k “ k̄ is an algebraically closed field with p#G, char kq “ 1, then any irreducible
representation of G is one-dimensional. Show this directly using just Schur’s lemma.

(ii) For any finite group G and field k, show that restriction along G ãÑ krGs gives an
isomorphism

Homk-AlgpkrGs, kq Ñ HompG, kˆ
q.
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(iii) (Important for understanding) Make sure you understand the following: the follow-
ing is how you representation-theoretically interpret the simultaneous diagonaliza-
tion of commuting diagonalizable matrices, in the case where they generate a finite
group. Let k “ k̄ be algebraically closed, and let G be a finite abelian group such
that p#G, char kq “ 1.
(a) If pG, V q is any (possibly infinite dimensional) representation of G, since the

irreducible representations of G are one-dimensional and hence (their isomor-
phism classes are) indexed by HompG, kˆq, the decomposition of the (neces-
sarily semisimple) representation V of G into isotypic components takes the
form:

(77) V “
à

χPHompG,kˆq

Vχ,

where Vχ Ă V is the subspace on which G acts by χ´1 (make sure you know
what ‘acts by χ´1’ means).

(b) Recall that a module V over the product ring krGs “
ś

χPHompG,kˆq
k is a direct

sum

(78) V “
à

χPHompG,kˆq

Vχ,

where each Vχ0 is a module over
ś

χ k on which
ś

χ k acts through the pro-

jection
ś

χ k Ñ k onto the χ0-th component. Then (78) is the same as (77)

(that the latter had χ´1 rather than χ is something we will revisit in Lectures
21 and 22).

(c) What is the decomposition (77) or equivalently (78) when k “ krGs (for sim-
plicity, I will exchange χ with χ´1)? Show that the χ P HompG, kˆq Ă krGs

give direct sum decomposition:

(79) krGs “
à

χPHompG,kˆq

k ¨ χ.

Thus, HompG, kˆq Ă krGs is a k-vector space basis, different from G Ă krGs:
it is basis that diagonalizes the action of G on krGs. Moreover, (79) is the
isotypic decomposition of krGs for the left regular action of G (resp., the right-
regular action of G; resp., the regular action of G ˆ G), with the k-span
k ¨ χ Ă krGs of χ P HompG, kˆq Ă krGs the isotypic component corresponding
to the representation χ´1 of G (resp., the representation χ of G; resp., the
representation χ´1 b χ of G ˆ G given by pg1, g2q ÞÑ χpg´1

1 g2q).
In other words, an irreducible representation of a not necessarily abelian group

G is the generalization, from the finite abelian algebraically closed case, of ‘simul-
taneous diagonalization’: an irreducible representation generalizes ‘simultaneous
eigenvalues’, and hence sometimes the word ‘spectrum’ gets used to describe the
set of isomorphism classes of irreducible representations.



268

Remark 20.15. Here is some comment on how we will continue on this theme in Lecture
21. Assume that pchar k,Gq “ 1. The χ P HompG, kˆq when G is abelian should also
remind you of the functions z ÞÑ zn on S1 or x ÞÑ eixy on R that you see in Fourier
expansion: more on that in Lecture 21. In fact, the ‘action map’ G Ñ

śr
i“1 EndDi

pViq can
be thought of as a Fourier transform (and note that it takes convolution to multiplication,
like a classical Fourier transform does), and the above exercise raises the question of how
to ‘Fourier invert’ the isomorphism krGs Ñ

śr
i“1 EndDi

pViq from Theorem 20.10. At least
when k is algebraically closed, we will hopefully discuss this in Lectures 21 and 22.

20.4. Irreducible representations and conjugacy classes.

Lemma 20.16. Let k be a field. The center ZpkrGsq of krGs equals
!

ÿ

g

agg | ag “ ahgh´1 @h, g P G
)

,

so that dimk ZpkrGsq is the number of conjugacy classes of G.

Proof. Since krGs is generated as a ring by k and G Ă krGsˆ, the center of krGs is precisely
the subspace fixed by the Inth, as h varies over G. □

Proposition 20.17. Assume that k is algebraically closed and that pchar k,#Gq “ 1.
Then the number of irreducible representations of G up to isomorphism is the number of
conjugacy classes in G.

Proof. Since each EndkpV q has center k, this follows from Lemma 20.16 and the isomor-
phism

krGs –

r
ź

i“1

EndkpViq

– we have k instead of Di since k is algebraically closed. □

Remark 20.18. (i) The proof shows that if k is algebraically closed of characteristic
p, and pchar k,#Gq ą 1, then the number of irreducible representations is at most
the number of conjugacy classes of G. A theorem of R. Brauer says that the number
of irreducible representations of G up to isomorphism is the number of p-regular
conjugacy classes of G, i.e., the number of conjugacy classes of G consisting of
elements whose order is relatively prime to p.

(ii) On the other hand, in good characteristic, i.e., when pchar k,#Gq “ 1, but where
we do not assume that k is algebraically closed, the above proof shows that the
number of irreducible representations of G is at most the number of conjugacy
classes of G.

Exercise 20.19. Prove the aforementioned result of Brauer (mentioned in Remark 20.18(i))
in the case where G is abelian.
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20.5. Some examples. First we show that irreducible representations of p-groups are
trivial in characteristic p.

Proposition 20.20. Suppose k is a field of characteristic p ą 0, and that G is a p-group.
Then every irreducible representation of G on a k-vector space is trivial.

Proof. In the case where G is abelian and k is algebraically closed, we know that each
irreducible representation of G is given by a character χ : G Ñ kˆ, which is trivial as k
has only one p-th root of unity. When k is algebraically closed, the general case is easy to
deduce inductively from this, using that a p-group being nilpotent has a nontrivial center.

We now sketch an argument that does not need k to be algebraically closed, and directly
takes care of a general (not necessarily abelian) p-group G. It is enough to show that each
irreducible representation pρ, V q of G contains a nonzero G-fixed vector. This immediately
lets us reduce to the case where k “ Fp (k contains a copy of Fp, so consider the span
over FprGs Ă krGs of any nonzero vector in the representation). The G-orbits of non-fixed
vectors all have cardinalities that are multiples of p. The cardinality of the vector space is
also a multiple of p. So the set of G-fixed vectors should also have cardinality that is also
a multiple of p, and cannot consist only of 0. □

Example 20.21. Let us study the irreducible representations of G “ S3 over any field k,
which is not necessarily algebraically closed. Consider the representations pρ1, V1q, pρ2, V2q
and pρ3, V3q of G, where:

‚ pρ1, V1q is the trivial representation of G,
‚ pρ2, V2q is the ‘sign character’ sgn : S3 Ñ t˘1u that sends a permutation to its sign
(i.e., the determinant of the permutation matrix that represents this permutation
and has only 0’s and 1’s as entries), and

‚ V3 “ tpa1, a2, a3q P k3 | a1 ` a2 ` a3 “ 0u and the action of S3, via ρ3, on V3 Ă k3 is
by the obvious permutation of the coordinates.

Thus, dimk V1 “ dimk V2 “ 1 and dimk V3 “ 2. Note the following:

‚ ρ1, ρ2 and ρ3 are distinct if char k ‰ 2, while ρ1 – ρ2 if char k “ 2; and
‚ ρ1 and ρ2 are clearly irreducible, while it is easy (exercise) to see that ρ3 is irreducible
if and only if char k ‰ 3.

From this, we conclude the following:

(i) Suppose pchar k,#S3q “ 1, i.e., char k ‰ 2, 3. Then ρ1, ρ2 and ρ3 are irreducible and
pairwise distinct. Since S3 has exactly three conjugacy classes, it follows from Re-
mark 20.18(ii) (or Proposition 20.17 if k is algebraically closed) that pρ1, V1q, pρ2, V2q
and pρ3, V3q are exactly the irreducible representations of G up to isomorphism.

(ii) Suppose char k “ 2. Then pρ1, V1q and pρ3, V3q are distinct irreducible representa-
tions of G (though ρ1 – ρ2), so we have a surjection

ρ1 ˆ ρ3 : krGs{prad krGsq↠ EndkpV1q ˆ EndkpV3q.



270

Since the right-hand side has dimension 5 and the left-hand side has dimension
strictly less than 6, we conclude that the above map is an isomorphism, so pρ1, V1q

and pρ3, V3q are exactly the irreducible representations of G over k up to isomor-
phism.

(iii) Suppose char k “ 3. In this case, the normal subgroup A3 Ă S3 of order 3 fixes a
nonzero vector in every irreducible representation of G by Proposition 20.20, and
hence by normality acts trivially on every irreducible representation of G (please
make sure you understand this deduction). Thus, the irreducible representations of
S3 over k identify with those of S3{A3 – Z{2Z, and hence are just the representa-
tions pρ1, V1q and pρ2, V2q (which are distinct since char k ‰ 2).

Exercise 20.22. Prove that the irreducible representations of Z{nZ over an arbitrary field
k are obtained as follows.

(i) If m is the largest factor of n such that the char k ∤ m, then show that pull-back
under Z{nZ Ñ Z{mZ defines a bijection from the set of isomorphism classes of
irreducible representations of Z{mZ over k to the set of isomorphism classes of
irreducible representations of Z{nZ over k.

(ii) Thus, assume that pn, char kq “ 1. Let f1, . . . , fr be the irreducible factors of
xn ´ 1. For 1 ď i ď r, let Ki “ krxs{pfiq, and let αi P Ki be the image of x; it
is an n-th root of 1 in the field Ki. Define a rKi : kis-dimensional representation
pρi, Viq of G “ Z{nZ as follows: Vi “ Ki, viewed as a vector space over k, and
ρi : G Ñ GLkpViq “ GLkpKiq is the unique map that sends the generator 1̄ P Z{nZ
to multiplication by αi (which is a Ki-linear, and hence k-linear, automorphism of
Ki). Show that

pρ1, V1q, . . . , pρr, Vrq

are the irreducible representations of G over k, up to isomorphism.
Possible hint: See Exercise 18.3 from Lecture 18.
Note: This again illustrates that irreducible representations of an abelian group
over a non-algebraically closed field need not be 1-dimensional.

20.6. The definition of the representation ring.

Definition 20.23. (i) Suppose A is an abelian category such that the isomorphism
classes of finite length objects of A form a set. Then the Grothendieck group of
A is the quotient of the free abelian group F pAq of the set of isomorphism classes
of finite length objects of A, by the submodule generated by the rV s ´ rV 1s ´ rV 2s

whenever we have an exact sequence 0 Ñ V 1 Ñ V Ñ V 2 Ñ 0 in A. Denote it by
KpAq.

(ii) The representation ring of a finite group G over a field k is the Grothendieck group
of RepkpGq, but made into a ring under the tensor product of representations
(Notation 20.7(iv)). Note that the class of the trivial representation of G is the
multiplicative identity of this ring. Denote the representation ring of G by RkpGq.
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RkpGq is generated as an abelian group by the rV s as V runs over the irreducible repre-
sentations of G (even in bad characteristic), and a typical element of it may be written as
ř

i niVi instead of as
ř

i nirVis.

20.7. Induced and coinduced representations. In this subsection, k can be any com-
mutative ring, and will often be implicitly assumed to be fixed. We have already defined
induced and coinduced representations in the context of subgroups, but the same definition
applies to any homomorphism H Ñ G of groups (though we will mostly only be interested
in the subgroup case):

Definition 20.24. Let H Ñ G be a homomorphism of groups.

(i) IndGH is the extension of scalars along krHs Ñ krGs, i.e., krGsbkrHs´ : RepkpHq ù

RepkpGq.
(ii) coIndGH is the coextension of scalars along krHs Ñ krGs, i.e., HomkrHspkrGs,´q :

RepkpHq ù RepkpGq.
(iii) ResGH : RepkpGq ù RepkpHq is the restriction of scalars along krHs Ñ krGs.

The following proposition is an immediate application of Hom-tensor adjointness, exactly
as in Lecture 8, though one of the assertions in (ii) of the proposition uses Proposition 20.4
– I leave it to you to review/work out the details:

Proposition 20.25. (i) (Frobenius reciprocity) pIndGH ,Res
G
H , coInd

G
Hq is an adjoint triple

of functors between RepkpHq and RepkpGq: IndGH is left-adjoint to ResGH , and
coIndGH is right-adjoint to ResGH .
In fact, there are ‘obvious maps’ σ ÞÑ ResGH IndGH σ “: IndGH σ|H and coIndGH σ|H Ñ

σ, compositions with which realize the adjunction isomorphisms

HomGpIndGH σ, τq Ñ HomHpσ, τ |Hq and HomGpσ, coIndGH τq Ñ HomHpσ|H , τq.

(ii) IndGH is right exact and coIndGH is left exact. Both are exact when krGs is projective
over krHs, which is the case when H Ă G, as well as when k is semisimple, H is
finite, and #H P kˆ.

Remark 20.26. When H ãÑ G, the description of coinduction from Lecture 8 can be
combined with Problem 1 from HW 4 to describe induction as well, giving the following
descriptions of these functors:

(i) coIndGHpρ,W q is the right-regular action of G on the space

tf : G Ñ W | fphxq “ hfpxq @h P H, g P Gu.

(ii) IndGHpρ,W q is the right-regular action of G on the space

tf : G Ñ W | fphxq “ hfpxq @h P H, g P G, f is finitely supported on finitely many H-cosetsu.62

62the way induction and coinduction are defined, it only makes sense to impose the support condition
on the set of H-cosets.
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From the perspective of this description, the map IndGHW ãÑ coIndGHW has the obvious
description, and is immediately seen to be functorial in W . This also makes obvious the
natural isomorphism, when H Ă G and rG : Hs is finite, of the functors IndGH and coIndGH .

Exercise 20.27. From the perspective of the above description, show that the map W Ñ

IndGHW (used in describing the adjunction between IndGH and ResGH) sends w P W to the
map f : G Ñ W that is supported on H and sends h P H to h ¨ w. Further, the map
coIndGHW Ñ W simply sends f to fp1q.

Exercise 20.28. Let H Ă G. Prove the following alternative description for IndGHpρ,W q

stated in Lecture 8. Namely, IndGHpρ,W q is also a representation pπ, V q of G, uniquely
characterized up to isomorphism by the following properties:

(i) pπ, V q|H contains a subspace isomorphic to pρ,W q; and
(ii) V is the direct sum of the translates giW of W , as tgiui ranges over any set of

representatives for G{H.

More precisely, given such a pπ, V q, pρ,W q ãÑ pπ, V q|H gives via Frobenius reciprocity a
unique isomorphism IndGHpρ,W q Ñ pπ, V q, whose composite with pρ,W q Ñ IndGHpρ,W q|H
equals pρ,W q ãÑ pπ, V q|H .

Exercise 20.29. Show that whenever H Ă G and rG : Hs is finite, IndGH , coInd
G
H define

group homomorphisms:

IndGH : RkpHq Ñ RkpGq, coIndGH : RkpHq Ñ RkpGq.

The point is that in these cases, finite length representations are taken to finite length rep-
resentations. But these are not ring homomorphisms, as they don’t send the multiplicativce
identity to the multiplicative identity, much less do they respect the tensor product.

Proposition 20.30. Let H Ă G be a subgroup of finite index. For all representations
W of H and V of G over k, we have an isomorphism, in fact a functorial one, of G-
representations

IndGHpW bk Res
G
H V q – IndGHpW q bk V.

Proof. From W ãÑ IndGHpW q, we get an injection W bk V ãÑ IndGHpW q bk V of krHs-
modules: although k is not a field, the injection W ãÑ IndGHpW q of k-modules is split, and
hence tensoring over k preserves injectivity.

Thus, by Exercise 20.28, it is enough to show that IndGHpW q bk V is the direct sum of
tgiui-translates of W bk V , as tgiui ranges over a set of representatives for G{H. This
immediately follows from the fact that IndGHpW q is the direct sum of tgiui translates of
W . □

Corollary 20.31. For H Ă G of finite index, and k a field (so that we have defined RkpHq

and RkpGq as rings) the image of the map RkpHq Ñ RkpGq induced by IndGH (see Exercise
20.29) is an ideal of RkpGq.
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Proof. This is immediate from Proposition 20.30. □

According to Professor Nair’s notes, Proposition 20.30 is an additional property of the
adjunction between IndGH and ResGH .

Exercise 20.32. Make the isomorphism IndGHpW bkRes
G
H V q – IndGHpW qbkV of Proposi-

tion 20.30 explicit, in terms of the description of induced representations given in Remark
20.26.
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21. Lecture 21 – Representation theory of finite groups – II

21.1. Mackey’s formula. Assume that G is finite, and that k is a field with char k ∤ #G.
63 Write Int g for h ÞÑ ghg´1, and gρ for the representation ρ ˝ Int g´1 of gHg´1. Note
that g ‘acts on the left’ of the pair pH, ρq to give the pair pgHg´1, gρq, which is why we
write g on the top left of ρ.

Theorem 21.1 (Mackey’s formula). Let H,K Ă G be subgroups, and pρ, V q a representa-
tion of H. Then

ResGK IndGH ρ –
à

gPrKzG{Hs

IndKKXgHg´1 Res
gHg´1

KXgHg´1
gρ,

where rKzG{Hs is a set of representatives for KzG{H.

Proof. Recall a description of the induced representation from Lecture 20 (Exercise 20.28):
IndGH V is the unique (up to an appropriately unique isomorphism) representation W of
G such that W |H contains (a copy of) the representation V of H, and whose underlying
vector space W is the sum of the g-translates of V as g ranges over any set rG{Hs of
representatives for G{H: as vector spaces,

IndGH V “ W “
à

sPrG{Hs

s ¨ V.

To compute its restriction to K, one breaks up the sum on the right-hand side above into
K-orbits, getting

IndGH V |K “
à

gPrKzG{Hs

Kg ¨ V

as representations of K. Therefore, it suffices to show that, as a representation of K,

IndGH V |K Ą Kg ¨ V – IndKKXgHg´1 Res
gHg´1

KXgHg´1
gρ.

Now consider g ¨ V . As a representation of gHg´1, it is clearly isomorphic to gρ. Thus,
ResKKXgHg´1pKg ¨ V q contains a copy of gρ|KXgHg´1 . Moreover, it is clear that, as vector

spaces, letting rK{pK X gHg´1qs be a set of representatives for K{pK X gHg´1q, we have

Kg ¨ V “
à

aPrK{pKXgHg´1qs

a ¨ gV

(since gHg´1 is the stabilizer of g ¨ V in G, K X gHg´1 is the stabilizer of g ¨ V in K).
Therefore, by the description of induced representations described above, we have Kg ¨V –

IndKKXgHg´1 Res
gHg´1

KXgHg´1
gρ, as desired. □

63I don’t see that these conditions are used anywhere, and hence they may not be needed.
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21.2. Mackey’s theorem via equivariant sheaves. We will now describe a proof of
Mackey’s theorem, Theorem 21.1, by means of ‘equivariant sheaves’. For us, this will be
an inefficient route to it, but this seems to make the proof more natural, and the equivariant
sheaves we will see are a toy model for some of the objects one sees in more sophisticated
mathematics. You can consider this subsection optional. For this proof I will follow some
lecture notes of Dmitry Gourevitch, sometimes closely. In what follows, a ‘sheaf’ will refer
to a ‘sheaf of vector spaces over k’, where k is the field that we have fixed.

Remark 21.2. For the proof that we are going to see, it will help to know that coIndGH
can also be realized as

tf : G Ñ V | fpghq “ h´1fpgq @h P H, g P Gu,

with the left-regular action of G: pg ¨ fqphq “ fpg´1hq. Indeed, this description is obtained
from the description given in Lecture 20, Remark 20.26, by applying the change of variables
g ÞÑ g´1, which switches the left and right actions. A similar comment applies to IndGH V ,
where one considers those f that are finitely supported modulo H.

Motivation for sheaves: One source for representations of G is as follows: let X be a set on
which G acts, let krXs be the space of functions X Ñ k, and let G act on krXs according
to the left-regular action, pg ¨ fqpxq “ fpg´1xq.

One can think of krXs as follows: krXs identifies with the set of sections to the obvious
map

Ů

xPX k Ñ X. If one takes instead disjoint union over vector spaces that are allowed
to depend on x P X, we get a sheaf:

Definition 21.3. (i) A sheaf V (of k-vector spaces) on a set X is the datum of a k-
vector space Vx for each x P X. It is clear how to define morphisms between sheaves
on X, so we now have a category ShpXq of sheaves on X. It is an abelian category,
being the category FunpXdisc, V eckq of functors from Xdisc to V eck, where Xdisc is
the discrete category built from X (with ObXdisc “ X, and the only morphisms
being the identity morphisms).

(ii) For U Ă X and V P ObShpXq, define the space of sections of V over U to be

VpUq :“ ts : U Ñ
ğ

xPU

Vx | spxq P Vx @x P Uu.

Clearly, VpUq is a vector space that identifies with
À

xPU Vx.
The space VpXq of sections of V over X is called the space of global sections

of X, and is denoted by ΓpVq. Similarly, we may define the spaces VcpUq and
VcpXq “ ΓcpVq of finitely supported sections (c for ‘compact’).

(iii) For V P ObShpXq, define the total space T pVq of V to be
Ů

xPX Vx, so we have a
map T pVq Ñ X whose fibers are the various Vx.

(iv) Now assume that X is a G-set for a group G, and let V P ObShpXq. A G-
equivariant structure on V is an action of G on T pVq compatible with the action
of G on X, and respecting the vector space structures: in other words, G acts on
T pVq in such a way that for all g P G and x P X, the action of g restricts to an
isomorphism of vector spaces Vx Ñ Vgx.
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(v) Let X be a G-set. A G-equivariant sheaf on X is a sheaf V P ObShpXq, together
with a G-equivariant structure on it. It is clear how to define morphisms of G-
equivariant sheaves, so we now have a category ShGpXq of G-equivariant sheaves
on X.

Example 21.4. If t˚u is a singleton set with the only possible G-action on it, then ShGp˚q

is equivalent to RepkpGq.

Remark 21.5. (i) Let X be a G-set, let V P ObShGpXq, and let U Ă X. The action
of g P G then defines an isomorphism VpUq Ñ VpgUq, mapping s P VpUq to the
element of VpgUq defined by

gU
g´1¨´
Ñ U

s
Ñ

ğ

xPU

Vx
g

Ñ
ğ

xPU

Vgx “
ğ

yPgU

Vy.

In other words, if s : U Ñ T pVq is a section, then g ¨ s : gU Ñ T pVq takes
y “ g ¨ x P gU to g ¨ spxq P g ¨ Vx “ Vgx.

If U is invariant under G, this action defines a representation of G on VpgUq. In
particular:

‚ For each x P X, Vx is a representation of the isotropy group Gx :“ tg P G |

g ¨ x “ xu of x in G.
‚ ΓpXq “ VpXq and ΓcpXq “ VcpXq are representations of G.

Exercise 21.6. Let K be a group. If X “
Ů

iXi as K-sets, then show that ShKpXq has
an obvious equivalence with the product category

ś

i ShKpXiq (if we haven’t seen what
this product category means, make sense of it). Moreover, if V P ObShKpXq corresponds
to pViqi P Ob

ś

i ShKpXiq under this equivalence, show that we have identifications

ΓpVq “
ź

i

ΓpViq, and ΓcpVq “
à

i

ΓcpViq

in RepkpKq.

Exercise 21.7. (i) If ν : X Ñ Y is a map of sets, define what the functor ν˚ :
ShpXq ù ShpY q of pushforward with respect to ν, and the functor ν˚ : ShpY q ù

ShpXq of pullback with respect to ν, should mean. These should satisfy, for all
V P ObShpXq and W P ObShpY q, and all subsets U Ă Y and elements x P X,

ν˚pVqpUq “ Vpν´1
pUqq, and pν˚

pWqqx “ Wνpxq.

(ii) Now assume that X Ñ Y is a map of G-sets. Show that ν˚ and ν˚ extend to
functors ν˚ : ShGpXq ù ShGpY q and ν˚ : ShGpY q ù ShGpXq.

(iii) (Taken from Gourevitch’s notes) Show that each of the following is an equivalent
way to give a G-equivariant structure on a V P ObShpXq:
(a) The datum, for any x P X and g P G, of a k-linear map tg,x : Vx Ñ Vgx, such

that for all x P X and g1, g2 P G, we have tg1g2,x “ tg1,g2¨x ˝ tg2,x.
(b) An isomorphism of sheaves α : a˚pVq Ñ p˚pVq, where a : G ˆ X Ñ X is the

action map pg, xq ÞÑ g ¨ x and p : G ˆ X Ñ X is the projection, satisfying the
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following condition:
Writing q, b : GˆGˆX Ñ X for the morphisms defined by qpg1, g2, xq “ x and
bpg1, g2, xq “ pg1g2 ¨ xq, the morphisms β, γ : q˚pVq Ñ b˚pVq in ShpGˆGˆXq

induced by α (applied twice) are equal to each other.
Hint: Given a G-equivariant sheaf V , define tg,x : Vx Ñ Vgx to be simply given by
the action of G on V . On the other hand, define α : a˚pVq Ñ p˚pVq to be such that

pa˚
pVqqpg,xq “ Vg¨x

g´1¨
Ñ Vx “ pp˚

pVqqpg,xq.

The ‘cocycle condition’ β “ γ is just saying that pg1g2q
´1 : Vg1g2x Ñ Vx is the

composite pVg2x Ñ Vxq ˝ pVg1g2x Ñ Vg2xq.
Note: The point is that on more sophisticated mathematical objects, where sheaves
are parameterized by more ‘continuous’ objects like topological spaces or algebraic
varieties rather than ‘discrete sets’, the naive definition of a G-equivariant sheaf
given in Definition 21.3 above will not work since we cannot work ‘point by point’,
but this particular “a˚pVq – p˚pVq” definition adapts to such more general situa-
tions.

The following lemma describes induction and coinduction of representations in terms of
equivariant sheaves:

Lemma 21.8. (i) Let H Ă G be a subgroup, and view G{H as a G-set. Then the
functor ShGpG{Hq ù RepkpHq defined by V Þ⇝ VeH , where eH is the identity
coset in G{H and VeH gets the obvious action of the isotropy group GeH “ H of
eH P G{H in G (see Remark 21.5) 64 is an equivalence of categories.

(ii) If the above functor is denoted by V Þ⇝ V, then coIndGH identifies with the functor

RepkpHq ù ShGpG{Hq ù RepkpGq, given by V Þ⇝ V Þ⇝ ΓpVq,

and IndGH identifies with the analogously defined functor where one uses ΓcpVq in
place of ΓpVq. Again, we refer to Remark 21.5 for how to view ΓpVq and ΓcpVq as
representations of G.

Sketch of the proof. Let us consider (i) first. I will only partly define a functor in the other
direction, and leave it as an exercise to check that it works and is indeed a quasi-inverse.

If V is a representation of H (on a k-vector space), define T pVq (the total space of the
sheaf V that we will assign to V ) to be the set of H-orbits pGˆV q{H, where H is made to
act on Gˆ V by h ¨ pg, vq “ pgh´1, hvq. Note that the projection map Gˆ V Ñ G induces
a map T pVq Ñ G{H, and that each fiber of this map canonically has the structure of a
vector space: the fiber over gH P G{H is the image of tgu ˆ V ãÑ G ˆ V Ñ pG ˆ V q{H;
this vector space structure is independent of the choice of g in its H-coset gH, since for
each h P H we have a bijection tgu ˆ V Ñ tghu ˆ V given by pg, vq ÞÑ pgh, h´1vq, and
since v ÞÑ h´1v is a vector space isomorphism. Now check that this defines a G-equivariant

64As usual, we are leaving it implicit as to how to define this functor at the level of morphisms.
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sheaf V , that this assignment V Þ⇝ V is functorial, and that this functor is a quasi-inverse
to the one given in the statement of the lemma.

For (ii), the point is to observe that sections to pG ˆ V q{H Ñ G{H identify with maps
G Ñ V such that fpghq “ h´1fpvq: associate to each s P ΓpVq the unique map fs : G Ñ V
such that for all g P G, spgHq P pG ˆ V q{H is the image of pg, fspgqq:

G

��

Q g � //
_

��

pg, fspgqq
_

��

P G ˆ V

��
G{H Q gH � // spgHq P pG ˆ V q{H

.

Check that s ÞÑ fs defines isomorphisms of representations of G, ΓpVq Ñ coIndGHpV q and
ΓcpVq Ñ IndGHpV q. □

Remark 21.9. (i) Suppose G acts on X transitively, and that V P ObShGpXq. Then
it follows from Lemma 21.8 that for any x P X, ΓpVq P ObRepkpGq identifies with
coIndGGx

Vx, and ΓcpVq P ObRepkpGq identifies with IndGGx
Vx.

(ii) If V P ObShGpXq, where X is a G-set, g P G and x P X, then g defines an
isomorphism Vx Ñ Vgx. Vx is a representation of Gx (as in Remark 21.5), say ρGx ,
and Vgx is a representation of Ggx “ gGxg

´1, say ρGgx . Show as an exercise that
g : Vx Ñ Vgx relates the representations pρgx,Vgxq of Ggx “ gGxg

´1 and pρx,Vxq of
Gx as ρgx – ρx ˝ Int g´1, i.e., ρgx – gρx.
More precisely, Ggx acts on Vgx by ρgx and on Vx via gρx, and the vector space
isomorphism g : Vx Ñ Vgx is also an isomorphism of representations p gρx,Vxq Ñ

pρgx,Vgxq of the group Ggx.

Proof of Theorem 21.1. By Lemma 21.8, ρ corresponds to a G-equivariant sheaf Vρ on
X :“ G{H, and we have IndGH ρ – ΓcpVρq as a representation of G.

For ResGK IndGH ρ, view the G-equivariant sheaf Vρ as a K-equivariant sheaf (tautologically),
and compute the K-action on ΓcpVρq: the resulting representation is clearly ResGK IndGH ρ.

LetX “
Ů

iK ¨xi be the decomposition ofX intoK-orbits. Thus, we can write xi “ gi¨peHq

for each i, and then tgiui is a set of representatives for KzG{H. Accordingly, we can write
Vρ “ pVρ,iqi as in Exercise 21.6 (the Vρ,i are K-equivariant sheaves, though of course not
G-equivariant). Thus, in ShKpXq, we have by Exercise 21.6,

ΓcpVρq –
à

i

ΓcpVρ,iq,

as representations of K. By Remark 21.9(i), the K-representation ΓcpVρ,iq identifies with
IndKKxi

Vρ,i,xi . Since xi “ gxi, we have Kxi “ K X giHg
´1
i . Moreover, by Remark 21.9(ii),

Vρ,i,xi “ Vρ,gi¨peHq identifies with giVρ,eH as a representation of giHg
´1
i . Thus, ΓcpVρ,iq

identifies with IndK
KXgiHg

´1
i

Res
giHg

´1
i

KXgiHg
´1
i

giVρ,eH “ IndK
KXgiHg

´1
i

Res
giHg

´1
i

KXgiHg
´1
i

giρ, as desired.

□
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21.3. Mackey’s criterion for irreducibility. This is a criterion for answering: when is
IndGH V irreducible?

Theorem 21.10 (Mackey’s criterion). Let k “ k̄ be an algebraically closed field, and
let G be a finite group such that char k ∤ #G. Let H Ă G be a subgroup, and pρ, V q a
representation of H. For all g P G{H, let gH “ gHg´1 X H (strange notation alert).
Then IndGH ρ “ IndGH V is irreducible if and only if both the following hold:

(i) V is irreducible; and

(ii) For all g P G{H, gρ| gH “ ResgHg
´1

gH pρ ˝ Int g´1q and ResHgH ρ have no irreducible
gH-summand in common (up to isomorphism).

Proof. It is immediate that V needs to be irreducible for IndGH V to be irreducible, so we
assume without loss of generality that V is irreducible.

Since k is algebraically closed and char k ∤ #G (so that krGs is semisimple), IndGH V is
irreducible if and only if dimk EndkrGspInd

G
H ρq “ k.

We have, using Mackey’s formula once (in the second step below) and Frobenius reciprocity
twice (for induction in the first step and for coinduction in the third):

EndGpIndGH ρ, Ind
G
H ρq – HomHpρ,ResGH IndGH ρq

– HomH

´

ρ,
à

gPrHzG{Hs

IndHgH
gρ| gH

¯

–
à

gPrHzG{Hs

Hom gHpρ| gH ,
gρ| gHq,

where the last isomorphism uses that IndGH and coIndGH identify with each other as functors,
since rG : Hs is finite.

Of the above sum, the term corresponding to the identity coset HeH “ H is HomHpρ, ρq,
which is one-dimensional by the irreducibility of ρ. Therefore, IndGH ρ is irreducible if and
only if for all g P GzH, Hom gHpρ| gH ,

gρ| gHq “ 0, which (by semisimplicity) is to say, ρ| gH

and gρ| gH have no factors in common. □

Remark 21.11. Since this proof computes the dimension over k of the endomorphism
algebra of the induced representation, it also gives us more information about the number
of irreducible components (though we might not be able to calculate the exact number).
There is a variant formula that helps us calculate the exact number: there is a formula for
the endomorphism algebra rather than just for its dimension as a vector space over k:

EndGpIndGHpρ, V qq – tf : G Ñ EndkpV q | @h1, h2 P H and g P G, fph1gh2q “ ρph1qfpgqρph2qu,

where the right-hand side is viewed as an algebra under convolution (with respect to a
suitable multiple of the counting measure).
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If π1 “ IndGH1
pρ1, V1q and π2 “ IndGH2

pρ2, V2q, one can get a vector space isomorphism

HomGpIndGH1
ρ1, Ind

G
H2
ρ2q –

tf : G Ñ HomkpV1, V2q | fph2gh1q “ ρ2ph2qfpgqρ1ph1q @ g P G, h1 P H1, and h2 P H2u.

We have stated these formulas without proof, though the proof is not difficult. If you would
like to see a proof but don’t want to work it out, see, e.g., Amritanshu Prasad’s notes at
http://www.imsc.res.in/„amri/html notes/notesch1.html#x4-70001.4 .

Example 21.12. Assume that G is finite and that pchar k,#Gq “ 1.

(i) It follows from Theorem 21.10 that if H is a normal subgroup of G, then IndGH ρ is
irreducible if and only if ρ is irreducible and ρ ˝ Int g fl ρ for all g P GzH. Thus, if
D2n “ Cn¸Z{2Z is a dihedral group of order 2n, with Cn a cyclic group of order n,
and χ : Cn Ñ Cˆ is a character, i.e., a homomorphism viewed as a one-dimensional
representation, then it follows that the two-dimensional representation IndD2n

Cn
χ is

irreducible if χ2 is nontrivial, and reducible if χ2 is trivial.
(ii) If H is a proper subgroup of G, it follows from Theorem 21.10 that IndGH 1 is never

irreducible, where 1 is the trivial representation of H over k.
(iii) If G “ H˙A for subgroups H and A of G, with A Ă G an abelian normal subgroup,

the Mackey criterion allows us to describe all the irreducible complex representa-
tions of G using irreducible representations of A and irreducible representations of
various subgroups of H; see HW 10 for more details.

21.4. Representations of a product of groups. Here I will follow Professor Nair’s
notes. All representations in this subsection will be over a fixed field k.

If V1, V2 are representations of groups G1, G2 over k, V1 bk V2 can be viewed as a repre-
sentation of G1 ˆ G2: using the universal property of the tensor product, show that there
exists a unique representation of G1 ˆ G2 on V1 bk V2 which satisfies the property that
pg1, g2q ¨ pv1 b v2q “ gv1 b gv2.

How does this generalize to the level of algebras? If R1 and R2 are k-algebras, and ρ1 :
R1 Ñ EndkpV1q and ρ2 : R2 Ñ EndkpV2q are homomorphisms, the universal property of
the tensor product of algebras (Exercise 19.10 from Lecture 19) gives us a homomorphism:

ρ “ ρ1 bk ρ2 : R1 bk R2 Ñ EndkpV1q bk EndkpV2q Ñ EndkpV1 bk V2q

(the latter map is just from the functoriality of the tensor product, as observed in HW 3).

To relate this to the tensor product of representations of groups, note that krG1s ãÑ

krG1ˆG2s and krG2s ãÑ krG1ˆG2s, obtained from the inclusions G1 – G1ˆt1u ãÑ G1ˆG2

and G2 – t1u ˆ G2 ãÑ G1 ˆ G2, give us by the universal property of tensor products of
algebras a homomorphism krG1s bk krG2s Ñ krG1 ˆG2s, which is readily checked to be an
isomorphism: both sides have k-bases indexed by G1 ˆG2, which the above map respects.

It is then easy to see that the identification of RepkpGq with krGs-Mod for G “ G1, G2, G1ˆ

G2 ‘transport the definition of tensor product for representations of groups to the definition
of tensor product for representations of algebras’.
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Remark 21.13. Earlier, we defined a slightly different notion of tensor product for repre-
sentations: if pρ1, V1q and pρ2, V2q are representations of G, we defined the representation
pρ1 bk ρ2, V1 bkV2q of G (see Lecture 20, Notation 20.7??). This ‘internal’ tensor product is
related to the above ‘external’ tensor product as follows: if you form the ‘external’ tensor
product ρ1 bk ρ2 : G ˆ G Ñ GLkpV1 bk V2q of G ˆ G as defined in the above discussion,
then composing it with the diagonal map ∆ : G Ñ G ˆ G given by g ÞÑ pg, gq gives the
‘internal’ tensor product G Ñ GLpV1 bk V2q.

Proposition 21.14. Let G1, G2 be finite groups, and k “ k̄ an algebraically closed field.

(i) If Vi is an irreducible representation of Gi for i “ 1, 2, then V1bkV2 is an irreducible
representation of G1 ˆ G2.

(ii) Any irreducible representation of G1 ˆG2 is isomorphic to V1 bk V2, where V1 and
V2 are respectively irreducible representations of G1 and G2.

Proof. We will identify krG1 ˆ G2s with krG1s bk krG2s as explained in the discussion
preceding the proposition.

Let us prove (i). By Burnside’s theorem (which uses that k is algebraically closed),
krG1s Ñ EndkpV1q and krG2s Ñ EndkpV2q are surjective, and hence so is krG1s bk krG2s Ñ

EndkpV1q bk EndkpV2q, by the right-exactness of the tensor product. Our identifications
krG1s bk krG2s Ñ krG1 ˆ G2s and EndkpV1q bk EndkpV2q Ñ EndkpV1 bk V2q now give a
surjective morphism krG1 ˆG2s Ñ EndkpV1 bk V2q, and this morphism is clearly associated
to V1 bk V2. Since V1 bk V2 is a simple module over EndkpV1 bk V2q, this gives (i).

We now come to (ii). Let R1, R2 be finite dimensional k-algebras. Assume that we are
given an irreducible left R-module V , where R “ R1 bk R2. For i “ 1, 2, we will view a
left R1 bk R2-module also as a left Ri-module, via Ri ãÑ R1 bk R2.

65 It is enough to show
that there exist an irreducible left R1-module V1 and an irreducible left R2-module V2 such
that V – V1 bk V2 as R1 bk R2-modules.

First assume that R1 and R2 are semisimple. Let V1 be an irreducible left R1-module
contained in V |R1 . Since V is an irreducible left R1 bk R2-module, V is the sum of R2-
translates of V1. Each such R2-translate is a left R1-module that is a homomorphic image of
the simple R1-module V1, and is hence isomorphic to either 0 or V1. Therefore, V |R1 breaks
up as a direct sum of copies of V1 (this uses the semisimplicity of R1). Similarly, V |R2 breaks
up as a direct sum of copies of a simple left R2-module V2. This implies that R1 Ñ EndkpV q

and R2 Ñ EndkpV q factor through R1 ↠ EndkpV1q and R2 ↠ EndkpV2q (the two ‘↠’s are
by Burnside’s theorem, because Vi is a simple left Ri-module for i “ 1, 2). Therefore,
R1 bk R2 Ñ EndkpV q is trivial on the kernel of R1 bk R2 Ñ EndkpV1q bk EndkpV2q –

EndkpV1 bk V2q.
66 Because R1 bk R2 Ñ EndkpV1q bk EndkpV2q – EndkpV1 bk V2q is a

surjection, R1 bk R2 Ñ EndkpV q factors through it. Thus, the left R-module structure
on V is obtained by pulling back a left EndkpV1 bk V2q-module structure on V under

65This is injective since anything over a field is flat.
66Check using vector space bases that this kernel is just kerpR1 Ñ EndkpV1qq b R2 ` R1 b kerpR2 Ñ

EndkpV2qq).
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R1 bk R2 Ñ EndkpV1q bk EndkpV2q – EndkpV1 bk V2q. Since EndkpV1 bk V2q has a unique
simple left module up to isomorphism, namely V1 bk V2, it follows that V – V1 bk V2 as a
module over EndkpV1 bk V2q, and hence as a module over R “ R1 bk R2.

Now we come to the general case, where R1 and R2 are not semisimple. Let R̄1 “

R1{ radpR1q and R̄2 “ R2{ radpR2q. Since k “ k̄, it is easy to see that R̄1 bk R̄2 is a
semisimple k-algebra: by the Artin-Wedderburn theorem, and the fact that there is no
finite dimensional division algebra over k (since k is algebraically closed), this reduces to
showing that eachMn1pkqbkMn2pkq is a semisimple k-algebra, which it is, being isomorphic
to Mn1n2pkq.

We claim that R1 bk R2 Ñ R̄1 bk R̄2 is the maximal semisimple quotient of R1 bk R2, i.e.,
R̄1 bk R̄2 – pR1 bk R2q{ radpR1 bk R2q. Since R̄1 bk R̄2 is semisimple, this follows if we
show that

kerpR1 bk R2 Ñ R̄1 bk R̄2q “ radpR1q bk R2 ` R1 bk radpR2q

is contained in radpR1 bkR2q. This in turn follows from the fact that radpR1q and radpR2q

are nilpotent (which they are, R1 and R2 being Artin rings – see Lemma 17.10 from Lecture
17), so that radpR1q bkR2 `R1 bk radpR2q is nilpotent as well, and the fact that nilpotent
left ideals in an Artin ring are contained in its Jacobson radical (see Lemma 17.14 from
Lecture 17).

This proves the claim that R1 bk R2 Ñ R̄1 bk R̄2 is a maximal semisimple quotient.
Hence irreducible representations of R1 bk R2, R1 and R2 identify respectively with those
of R̄1 bk R̄2, R̄1 and R̄2, and we are reduced to the case where R1 and R2 are semisimple,
which has already been taken care of. □

Remark 21.15. (i) In the above proposition, the condition that k is algebraically
closed cannot be dropped: show that the ‘rotation by 90˝’ action of Z{4Z on V “ R2

satisfies that V is an irreducible representation of Z{4Z, but that V bk V is a
reducible representation of Z{4Z.
Hint: Make use of the fact that C bR C – C ˆ C.

(ii) Here is a more ‘abstract’ reason why k being algebraically closed cannot be dropped.
If V is an irreducible representation of G over k, then it is easy to check (from
semisimplicity) that so is V _, so it suffices to explain why EndkpV q “ V _bkV is not
in general semisimple for the action of GˆG on EndkpV q transferred from V _ bk V
(work this action out as an easy exercise). But this is because if D “ EndGpV q

is the associated division algebra, then EndDpV q Ă EndkpV q is a G ˆ G-invariant
subspace that is proper whenever D ‰ k.

21.5. The Schur orthogonality relations – the abelian case. In this subsection, we
will deal with a finite group G, and a field k. Eventually we will impose two conditions: the
good characteristic condition that p#G, char kq “ 1, and also that k “ k̄ is algebraically
closed.

Recall that krGs can be thought of as the ring of formal linear combinations
ř

gPG agg
with each ag P k, and also as the space of functions G Ñ k under convolution. Today,
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we will take the latter perspective on krGs, and view it as also a representation of GˆG:
pg1, g2q ¨ fpgq “ fpg´1

1 gg2q: the first copy of G acts by the left-regular representation, and
the second copy of G acts by the right-regular representation. This representation of GˆG
on krGs is called the regular representation.

Let pρ1, V1q, . . . , pρr, Vrq be the irreducible representations of G over k up to isomorphism.
Recall that the action map

(80) krGs Ñ

r
ź

i“1

EndkpViq

quotients to an isomorphism of rings

(81) krGs{pradpkrGsqq Ñ

r
ź

i“1

EndDi
pViq,

where Di “ EndGpViq is the division algebra associated to the representation ρi.

(81) is a form of the Fourier transform, in good characteristic (see the discussion on L2pS1q

below). It can be written as

(82) pf : G Ñ kq ÞÑ

´

ÿ

gPG

fpgqρipgq

¯

i
“

´

ż

gPG

fpgqρipgq dg
¯

i
.

The fact that (81) converts convolution in krGs to multiplication in
śr

i“1 EndDi
pViq is a

general property of Fourier transforms, which we see in the classical situations as well.

Note that in good characteristic and when k is algebraically closed, (80) itself is an iso-
morphism of rings. Therefore, we would like to invert it explicitly.

In the rest of this lecture, we will work out a formula for this ‘Fourier inversion’ in the
special case where G is abelian as well, through a series of exercises.

Before the series of exercises, let us describe its setting. Assume that G is finite abelian,
p#G, char kq “ 1, and that k “ k̄ is algebraically closed. Recall that in this case, the set of
irreducible representations of G on k-vector spaces, up to isomorphism, can be identified
with Homk-AlgpkrGs, kq, which further by restriction along G ãÑ krGsˆ identifies with
HompG, kˆq.

Let us write (81) as:

(83) f ÞÑ

´

ÿ

gPG

fpgqχpgq

¯

χ
“

´

ż

gPG

fpgqχpgq dg
¯

χ
.

Remark 21.16. When G is abelian, k is algebraically closed and p#G, kˆq “ 1, it is an

easy exercise to see that Ĝ :“ HompG, kˆq has the same cardinality as G (e.g., use the
structure theorem for abelian groups). Thus, this abelian (good characteristic algebraically
closed) case has the particular property that the set IrrpGq of irreducible representations

of G up to isomorphism, itself has the structure of a group, namely Ĝ “ HompG, kˆq. Note
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that we then have an obvious map G Ñ
ˆ̂
G, which is readily verified to be an isomorphism.

This is one of the most basic variants of Pontrjagin duality.

Exercise 21.17. (Simple once you do and absorb it, and very important). Assume that
G is abelian, k is algebraically closed, and pchar k,#Gq “ 1.

(i) Prove the following ‘Schur orthogonality relations’:

(a) Schur orthogonality for characters: If χ1, χ2 P Ĝ “ HompG, kˆq then

(84)
1

#G

ÿ

gPG

χ1pg
´1

qχ2pgq “

#

1, if χ1 “ χ2, and

0, otherwise.

In other words, we have found an inverse image to the Dirac delta at each
χ P HompG, kˆq under (83): it is the map G Ñ k given by:

1

#G

ÿ

gPG

χpg´1
qg.

(b) Schur orthogonality for conjugacy classes: if a, b P G, then

(85)
1

#G

ÿ

χPHompG,kˆq

χ´1
pbqχpaq “

#

1, if a “ b, and

0, otherwise.

This gives an explicit description of the Dirac delta function at b P G in krGs

as a linear combination of the χ P HompG, kˆq Ă krGs: namely,

1

#G

ÿ

χPHompG,kˆq

χ´1
pbqχ P krGs.

(ii) Using these relations or otherwise, prove that the isomorphism

krGs Ñ
ź

χPHompG,kˆq

k

from (83) has the following inverse:
(86)

c “ pχ ÞÑ cpχqqχPHompG,kˆq ÞÑ p#Gq
´1

¨
ÿ

χPHompG,kˆq

cpχq ¨ χ´1
“

ż

χPHompG,kˆq

cpχq ¨ χ´1 dχ

(note that χ´1 P HompG, kˆq Ă krGs for each χ), where dχ is p#Gq´1 times the

counting measure on the ‘Pontrjagin dual’ group Ĝ “ HompG, kˆq. This measure
can be thought of as dual to the counting measure on G.

(iii) Show that the isomorphism

krGs Ñ
à

χPHompG,kˆq

k,
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where we now write
À

instead of
ś

as we wish to ignore the ring structures,
transports the symmetric nondegenerate bilinear form

xf1, f2y “
1

#G

ÿ

gPG

f1pg
´1

qf2pgq

on the left-hand side to the symmetric nondegenerate bilinear form

xc1, c2y “
ÿ

χPHompG,Cˆq

c1pχqc2pχq.

(iv) When k “ C in addition, state the Schur orthogonality relations for characters can
be stated in terms of an inner product, and prove them.

(v) Read and make sense of the following statements. k ¨ χ Ă krGs is the pχ´1, χq-
isotypic component of the regular representation of G ˆ G on krGs, and thus

krGs –
à

χPHompG,kˆq

k ¨ χ

is the decomposition of krGs into isotypic subspaces for the regular representation.
Note that this takes the form

pkrGs, regular representationq –
à

pρ,V q

V _
bk V,

where pρ, V q ranges over the set of irreducible representations of G up to isomor-
phism. Relatedly, the above decomposition is the simultaneous diagonalization of
the regular action of G ˆ G on krGs. Similar assertions apply with the regular
representation replaced by the left regular and the right regular representations.
Thus, decomposition into isotypic components is (in some ways) a generalization
of simultaneous diagonalization, and irreducible representations are like ‘families of
eigenvalues’.

(vi) (Fourier expansion) Make sense of the following related point as well: since HompG, kˆq Ă

krGs is a particularly nice ‘eigen’ basis, we might like to express a function f P krGs

in terms of this ‘eigen’ basis HompG, kˆq. Together, (83) and (86) let us expand
each f P krGs as

f “
ÿ

χPHompG,kˆq

aχχ,

where pcχqχ is the image of f under (83), and (by (86)) aχ “ p#Gq´1cχ´1 . Thus,
Fourier expansion is analogous to expressing a vector in terms of an eigenbasis for
a family of operators.

Example 21.18. (i) The considerations of Exercise 21.17 can be adapted to compact
abelian Lie groups, as we outline in special cases without any formal justifications.
Consider the compact but infinite group G “ S1. In this case, one analogue of
krGs is L2pS1q, whose elements can be thought of as periodic functions on R with

period 1. In this case, the analogue of Ĝ “ HompG, kˆq is HomctspS
1,Cˆq “

HomctspS
1, S1q, which can be identified with Z (thought of as a discrete topological
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group): n P Z identifies with χn : z ÞÑ zn on S1, which corresponds to the periodic
function x ÞÑ e2πinx. The analogue of (83) is:

f ÞÑ

´

f̂ : n ÞÑ

ż

S1

fpzqχnpzq dz
¯

“

ż 1

0

ppf ˝ e2πiqpxqqe2πinx dx. 67

The analogue of (86) is:

g ÞÑ

´

z ÞÑ
ÿ

nPZ

gp´nqzn
¯

(interpret it at the level of periodic functions for a more classical formulation).
(ii) Suppose G “ R, k “ C. In this case, again we consider L2pGq in place of krGs. The

analogue of Ĝ that is relevant to us here turns out to be not HomctspR,Cˆq but:

HomctspR, S1
q “ texppiy´q | y P Ru.

The analogue of (83) is:

f ÞÑ

´

f̂ : x ÞÑ

ż

R
fpxqeixy dy

¯

,

and the analogue of (86) is:

g ÞÑ
1

2π

´

x ÞÑ

ż

R
gpyqe´iyx dy

¯

.

Now we discuss two examples of applications of Fourier inversion:

Example 21.19. (i) Let k “ C, G “ Z{aZ. Let us recall why
ř

pp1{pq, where p ranges
over the prime numbers, diverges. In this example, any sum or product over ‘n’
will be over the positive integers, and any sum or product over ‘p’ will be over the
prime numbers. Using the product expansion

ζpsq “

8
ÿ

n“1

1

ns
“

ź

p

´

1 ´
1

ps

¯´1

,

for Repsq ą 1, and the expansion for logp1 ` xq, it is easy to see that as s Ñ 1`,

log ζpsq “
ÿ

p

1

ps
` (something bounded as s Ñ 1`).

This gives that limsÑ1`

ř

p p
´s “ 8, so

ř

pp1{pq diverges. If one refines this argu-
ment, one can get the prime number theorem.

Now, we crudely outline how Dirichlet proved his famous theorem on primes
in arithmetic progressions – that

ř

p”b pmod aq
p´s, where pa, bq “ 1, diverges at 1.

Problem: considering
ř

n”b pmod aq
n´s does not help: it does not have a product

expansion, and does not seem related to
ř

p”b pmod aq
p´s.

67As one of you pointed out, many if not all classical definitions have e´2πinx instead of e2πinx: this
difference is not essential for our purposes.
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Dirichlet had the idea of Fourier-inverting the situation. He noticed that:
ÿ

p”b pmod aq

p´s
“ p#pZ{aZq

ˆ
q

´1
¨
ÿ

p

ÿ

χPHompZ{NZ,Cˆq

χpbq´1
¨
χppq

ps

(formally, this follows from (86)). Here, each χ : pZ{aZqˆ Ñ Cˆ is viewed as a
function χ : Z Ñ C that vanishes at integers that are not relatively prime to a.

The point is that,
ř

p χppqp´s is a good thing: because χ : Z Ñ Cˆ is multiplica-

tive, it is easy to see that on setting Lps, χq “
ř

ně1 χpnqn´s as the ‘χ-analogue of
ζpsq’, we have that as s Ñ 1`,

logLps, χq “
ÿ

p

χppq

ps
` (something bounded as s Ñ 1`).

One can show that Lps, χq stays away from 0 and 8 near s “ 1 as long as
χ : pZ{aZqˆ Ñ Cˆ is not trivial (justification for this is one of the important
technical inputs into the proof), and hence logLps, χq makes sense and remains
bounded near s “ 1 for nontrivial χ. This implies that as s Ñ 1`,

ÿ

p”b pmod aq

p´s

has the same asymptotics as p#pZ{aZqˆq´1 ¨
ř

p p
´s. This gives the infiniteness of

such p, and also shows that as b varies over numbers relatively prime to a, they all
occur with similar asymptotics to each other.

(ii) Polya’s inequality; I will be extra crude here. If χ is a primitive Dirichlet character
modulo k (i.e., χ : pZ{kZqˆ Ñ Cˆ does not factor through pZ{kZqˆ Ñ pZ{lZqˆ for
any proper factor l of k), then for all x ě 1 we have:

ˇ

ˇ

ˇ

ÿ

nďx

χpnq

ˇ

ˇ

ˇ
ă

?
k log k.

The proof involves taking the Fourier expansion of χ, viewed as a function Z{kZ Ñ

C (note that on Z{kZ, as opposed to on pZ{kZqˆ, χ is not a homomorphism or
anything). Why Z{kZ? Because, crudely speaking, χ is being summed and not
multiplied; we are almost integrating it against the trivial character of Z{kZ. By
Schur orthogonality, only the trivial ‘Fourier coefficient’ of χ contributes, and this
(it turns out) reduces us to estimating the

ÿ

mďx

e´2πimn{k 1 ď n ď k ´ 1.

Let me repeat the above explanation. We are adding the χpnq, but χ is a char-
acter of pZ{kZqˆ and not of Z{kZ. Characters ψ of Z{kZ are the ones for which
estimating sums like

ř

nďx ψpxq is easy, since addition is the operation in Z{kZ
unlike in pZ{kZqˆ, and hence Schur orthogonality relations for pZ{kZq help. Thus,
one expresses χ in terms of additive characters of Z{kZ, which one can by Fourier-
expanding χ, viewed as a function on Z{kZ.
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22. Lecture 22 – Schur orthogonality relations and Fourier inversion

We begin by setting some conventions and stating the informal goal for today’s lec-
ture. Throughout this lecture, G will be a finite group, and k will be a field such that
pchar k,#Gq “ 1, and any representation will be finite dimensional and over k – sometimes
we will mention this hypothesis explicitly, but even if we do not do so, it will be assumed
to hold. We will occasionally, but not always, assume that k is algebraically closed. If we
talk of pρ1, V1q, . . . , pρr, Vrq without defining these, then they will be understood to be the
irreducible representations of G up to isomorphism.

Recall that we have an isomorphism of rings:

(87)
r

ź

i“1

ρi : krGs Ñ

r
ź

i“1

EndDi
pViq,

where Di :“ EndGpViq :“ EndkrGspV iq is the division algebra associated to ρi.

Thus, one would like to invert this map.

What we will do today: When k “ k̄, we will construct an inverse explicitly, but without us-
ing the theorems of Artin-Wedderburn, Jacobson, Burnside etc. In particular, we will avoid
making use of any prior knowledge that

śr
i“1 ρi is an isomorphism, but instead rederive

it by constructing an inverse. To do this, we will prove and use the Schur orthogonality
relations (whose abelian version was given as Exercise 21.17 in Lecture 21).

Notation 22.1. Throughout this lecture, we will view krGs as a representation of GˆG
via the regular representation: pg1, g2q ¨ fpgq “ fpg´1

1 gg2q.

22.1. The matrix coefficient map. We will think of the two sides of (87) as represen-
tations of G ˆ G rather than as rings, for which we need to define how G ˆ G acts on
EndkpViq. Unfortunately, there are two such actions of relevance to us, slightly different
from each other:

Notation 22.2. Let pρ, V q be a representation of G.

(i) The first action of G ˆ G on EndkpV q that we will consider is given by:

(88) pg1, g2q ¨ A “ ρpg1qAρpg2q
´1.

Note the relevance of this action: with this action, the map (87) is a homomorphism
of representations of G ˆ G.

(ii) The second action of G ˆ G on EndkpV q that we will consider is given by:

(89) pg1, g2q ¨ A “ ρpg2qAρpg1q
´1.

The relevance of this is that it will make the ‘matrix coefficient map’ that we will
define below, in the ‘opposite direction’, a map of representations of G ˆ G.
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Note that the usual structure of a representation of G on EndkpV q “ HomkpV, V q is the
restriction of either of the actions along the diagonal map ∆ : G ãÑ G ˆ G. We will refer
to these actions as the ‘first action’ and the ‘second action’ of G ˆ G on EndkpV q, but to
avoid confusion, each time we do so we will link to the appropriate equation, (88) or (89).

Since we are thinking of (87) as a map of G ˆ G-representations rather than of rings, we
replace the ‘

ś

’ in it with ‘
À

’, to write it as a map of representations of G ˆ G,

(90) krGs Ñ

r
à

i“1

EndkpViq Ñ

r
à

i“1

pV _
i bk Viq,

where we give each EndkpViq the first action (88) of G ˆ G, and where the isomorphism
V _
i bk Vi Ñ EndkpViq was described in HW 3 (it is partially reviewed in Notation 22.3

below). The resulting action on V _
i bk Vi is not the usual one, so for now we ignore it.

For now, we only assume that pchar k,#Gq “ 1, so (90) may not be an isomorphism.

22.2. Matrix coefficients and the matrix coefficient map. In this section, we define
a map in the opposite direction of (90) (but not quite inverse to it).

Notation 22.3. Let V be a finite dimensional vector space over k. The image of u b v P

V _ bk V under the isomorphism V _ bk V Ñ EndkpV q (of HW 3) will be denoted by Au,v.
Thus, for all u P V _ and v P V , Au,v P EndkpV q is the rank one operator defined by:

(91) Au,vpv
1
q “ xu, v1

y ¨ v.

Remark 22.4. Later, we will use that trpAu,vq “ xu, vy: this has been seen in HW 3 as
the commutativity of the following diagram:

V _ bk V

ev
##

– // EndkpV q

tr
{{

k

,

where ev : V _ bk V Ñ k is the evaluation map, induced by the universal property of tensor
product from the tautological bilinear pairing V _ ˆ V Ñ k.

Remark 22.5. Recall from Lecture 21 that if pρ, V q is a representation of G, then V _ bV
is a representation of G ˆ G: for all pg1, g2q P G ˆ G, u P V and v P V _, we have

(92) pg1, g2q ¨ pu b vq “ pg1 ¨ u, g2 ¨ vq “ pu ˝ pg´1
1 ¨ ´q, g2 ¨ vq.

Via the isomorphism V _ bk V Ñ EndkpV q, this makes EndkpV q into a representation of
GˆG as well; since Au˝ρpg´1

1 q,ρpg2q˝v “ ρpg2q˝Au,v ˝ρpg1q
´1, this action of GˆG on EndkpV q

is the second action from Notation 22.2, i.e., given by (89), which we repeat as:

pg1, g2q ¨ A “ ρpg2q ˝ A ˝ ρpg´1
1 q.
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We will now define maps in the opposite direction to (90): these will not be inverses to
(90) even when k is algebraically closed, but composites each way will be simple enough
that we will be able to define the inverses easily.

If pρ, V q is a representation of G, how can we define elements of krGs using it? One way is
to think of ρ : G Ñ GLkpV q as ρ : G Ñ GLnpkq using a basis e1, . . . , en of V , and for any
1 ď i, j ď n define:

sijpgq “ pi, jq-th matrix entry of ρpgq “ xe_
i , ρpgqejy.

While this depends on the basis, the latter expression above tells us how to get a coordinate-
free version:

Definition 22.6. (i) Let ρ : G Ñ GLkpV q be a finite dimensional representation. If
u P V _ and v P V , the element the matrix coefficient of ρ associated to u and v is
defined to be:

cu,v : pg ÞÑ xu, ρpgqvyq P krGs.

(ii) Since pu, vq ÞÑ cu,v P krGs is bilinear, we get a map

EndkpV q “ V _
bk V Ñ krGs

characterized by the property that ubv ÞÑ cu,v. This is called the matrix coefficient
map associated to pρ, V q. In Exercise 22.7(i) below, you will verify that, as a map
EndkpV q Ñ krGs, it is given by A ÞÑ pg ÞÑ trpρpgqAqq.

(iii) This gives us our ‘map in the other direction’, the matrix coefficient map for G,
obtained by adding up the matrix coefficient maps associated to the irreducible
representations pρ1, V1q, . . . , pρr, Vrq of G up to isomorphism. Explicitly, it is given
by:

(93)
r

à

i“1

EndkpViq Ñ krGs, pAiqi ÞÑ

´

g ÞÑ

r
ÿ

i“1

trpρipgqAiq
¯

.

Exercise 22.7. Let pρ, V q be a finite dimensional representation of G.

(i) Show that in terms of EndkpV q as opposed to V _ bk V , the matrix coefficient map
EndkpV q Ñ krGs is given by A ÞÑ pg ÞÑ trpρpgqAqq.

(ii) Verify that the matrix coefficient map V _ bk V Ñ krGs is a map of G ˆ G-
representations, where G ˆ G acts on V _ bk V as in Remark 22.5, and on krGs of
course by the regular representation.

(iii) Conclude (e.g., possibly using Remark 22.5) that the map EndkpV q Ñ krGs is also
G ˆ G-equivariant, provided we use the second action of G ˆ G on EndkpV q, (89)
(i.e., pg1, g2q ¨ A “ ρpg2qAρpg1q

´1). But verify this directly as well.
(iv) In contrast, verify (a previous claim from this lecture) that the ‘action map’ krGs Ñ

Àr
i“1 EndkpViq is only G ˆ G-equivariant if we give the first action of of G ˆ G on

EndkpV q (i.e., pg1, g2q ¨ A “ ρpg1qAρpg2q
´1). Deduce that for ‘most’ G (find what

the ‘most’ here is) the ‘matrix coefficient’ map (93) cannot possibly be in general
an inverse to (90).
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(v) Note that EndkpV q Ñ krGs sends the identity matrix to some f P krGs such that
fp1q “ dimV . Use this to give a different deduction, for nonabelian groups G, that
the ‘matrix coefficient’ map (93) is not a ring homomorphism and hence cannot
possibly be in general an inverse to (90).

Example 22.8. Suppose pρ, V q is a one-dimensional representation of G. Then we can
think of ρ as a character χ : G Ñ kˆ, such that ρpgq ¨ v “ χpgqv for each v P V . In this
case, each matrix coefficient cu,v is a multiple of χ:

cu,v “ xu, vy ¨ χ.

Thus, the matrix coefficients play a role that elements of HompG, kˆq played in the abelian
case, and are particularly nice elements in krGs. We will develop on this theme further in
this lecture.

22.3. The surjectivity of the matrix coefficient map. The surjectivity does not need
k to be algebraically closed, but of course needs that pchar k,#Gq “ 1:

Lemma 22.9. Assume that pchar k,#Gq “ 1. Let pρ1, V1q, . . . , pρr, Vrq be the irreducible
representations of G up to isomorphism. Then the matrix coefficient map of (93),

r
ź

i“1

EndkpViq Ñ krGs,

is surjective.

Proof. Note that if pσ,W q and pσ1,W 1q are two representations of G, then we have an
identification pW ‘ W 1q_ – W_ ‘ pW 1q_, and it is easy to verify that the image of the
matrix coefficient map associated to σ‘σ1 is the sum of the images of the matrix coefficient
maps associated to σ and σ1 (if you like matrices, then the matrix of pσ ‘ σ1qpgq can be
chosen to be ‘block’ diagonal with respect to a suitable basis, and trppσ ‘ σ1qpgq ¨ Aq “

trpσpgq ¨A1q ` trpσ1pgq ¨A2q, where A1 is the top left pdimW ˆ dimW q-block of A and A2

is the bottom right pdimW 1 ˆ dimW 1q-block of A).

Therefore, it is enough to find a single finite dimensional representation pρ, V q of G such
that the matrix coefficient map V _bkV – EndkpV q Ñ krGs is surjective. Let pρ, V “ krGsq

be the right regular representation ofG on krGs: pg1¨fqpgq “ fpgg1q. To show that f P krGs

lies in the image of the matrix coefficient map associated to ρ, take v “ f P V “ krGs and
u “ (evaluation at e) P V _. Then the image of u b v under the matrix coefficient map is:

g ÞÑ xu, g ¨ vy “ pρpgqfqpeq “ fpgq,

or in other words, f . □

Now we give another proof for Lemma 22.9, because it gives some motivation for the
definition of the matrix coefficient map:
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Alternate proof for Lemma 22.9. Since the matrix coefficient map is equivariant under Gˆ

G Ą t1u ˆ G, it is enough to show that, giving krGs the right regular action, the isotypic
component of each irreducible pρ, V q in it, call it krGsρ, is contained in the image of the
matrix coefficient map. Recall that by semisimplicity (which holds as pchar k,#Gq “ 1)
we have a surjective evaluation map

evρ : HomGpV, krGsq bk V ↠ krGsρ,

sending each φ b v to φpvq; HomGpV, krGsq is the ‘multiplicity space’ for V in krGs. 68

Note that we have an identification pkrGs, right regularq “ coIndGteu k, so by Frobenius
reciprocity for coinduction, we have an identification HomGpV, krGsq – HomteupV, kq “ V _,
so that evρ identifies with a map (still called evρ)

evρ : V
_

bk V Ñ krGsρ.

Check that evρ is just the matrix coefficient map for pV, ρq, which is surjective as evρ is.
This also gives us a conceptual reason for why we should expect the multiplicity space’
HomGpV, krGsq for V to be V _, motivating the “V _ bk V ” in the aimed-for decomposition
of krGs in its own terms without involving EndkpV q. □

In contrast, when k is not algebraically closed, the matrix coefficient map is usually not
injective. Even in the algebraically closed case, we saw in (iv) and (v) of Exercise 22.7
that the matrix coefficient map (93) is not an inverse to (87). Thus, we need to modify
the latter map appropriately to get an inverse.

22.4. The averaging map.

Notation 22.10. If V is a representation of G (over k, as usual), and p#G, char kq “ 1, we
will denote by AvG : V Ñ V G the linear map v ÞÑ p#Gq´1

ř

gPG g ¨ v (recall that V G Ă V

is the subspace of elements of V fixed by G). Note that it is a projection from V onto V G.

Recall the key property of irreducible representations over algebraically closed fields: if k
is algebraically closed and pρ, V q is irreducible, then EndGpV q “ k. Rather than k being
algebraically closed, this is the only property that we will mostly need:

Definition 22.11. A representation pρ, V q of G over k is said to be absolutely irreducible
if its endomorphism algebra consists of just the scalars, i.e., k ãÑ EndkrGspV q is an isomor-
phism.

Exercise 22.12. Show that a representation pρ, V q of G over k is absolutely irreducible
if and only if for some, or equivalently any, algebraically closed field L containing k, “ρ
remains irreducible after base-change to L”, i.e., the composite

G
ρ

Ñ GLkpV q
T ÞÑTbidL

Ñ GLLpV bk Lq

68This is slightly different from the earlier evρ, though: this one factors through the earlier one, which
was an isomorphism HomGpV, krGsq bD V Ñ krGsρ, where D is the division algebra EndGpV q.
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is an irreducible representation of G over L.
Hint: Tensoring with L over k preserves the endomorphism algebra, since we are looking
at the solution space to some linear equations over k.

Example 22.13. (i) Clearly, an absolutely irreducible representation is irreducible,
but the converse is not true (see (ii) below).

(ii) Clearly, a representation of a finite abelian group is absolutely irreducible if and
only if it is one dimensional. Thus, for instance, the ‘rotation’ representations of
Z{3Z and Z{4Z on R2 are not absolutely irreducible.

(iii) On the other hand, in Example 20.21 from Lecture 20, we studied the irreducible
representations of S3 over an arbitrary field. It is immediate from the classifica-
tion there that any irreducible representation of S3 over any field k is absolutely
irreducible.

While the proof of Fourier inversion can at first glance seem like unpleasant book-keeping,
the key innovation involved is Schur’s lemma packaged into the following simpler result.

Proposition 22.14. (i) If V is an absolutely irreducible representation of G, then
dimV ‰ 0 in k (i.e., dimV is not divisible by char k).

(ii) For two irreducible representations V,W of G, and A P HomkpV,W q, we have:

AvGpAq “

#

0, if V fl W , and
trA

dimV
¨ Id, if V “ W is an absolutely irreducible representation

.

Here, AvG is being applied to the representation HomkpV,W q of G, and no asser-
tion is made about the case where V “ W is not absolutely irreducible (for more
information on that case see Proposition 22.41).

Proof. We will prove both parts of the proposition simultaneously. If V fl W , then
AvGpAq P HomkpV,W qG “ HomGpV,W q “ 0, so there is nothing to prove.

So assume that V “ W and that V is an absolutely irreducible representation. Then
AvGpAq P EndkpV qG “ k¨IdV , this last equality holding because V is absolutely irreducible.
Hence AvGpAq “ a ¨ Id for some scalar a P k. But since the averaging process respects
trace, we get:

trA “ trpa ¨ Idq “ a ¨ dimV.

Choosing some A so that trA ‰ 0, we get dimV ‰ 0, and now both (i) and (ii) follow for
general A. □

22.5. Fourier inversion. Now we state and prove Fourier inversion for finite nonabelian
groups:

Proposition 22.15. Assume that each irreducible representation of G is absolutely irre-
ducible (which is automatic if k is algebraically closed), and that pchar k,#Gq “ 1. Then
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the map
Àr

i“1 EndkpViq Ñ krGs, that sends each Aj P EndkpVjq Ă
Àr

i“1 EndkpViq to

g ÞÑ
dimVj
#G

trpρjpg
´1

qAjq,

is a two-sided inverse to krGs Ñ
Àr

i“1 EndkpViq. This recovers that (87) is an isomor-
phism of rings krGs Ñ

śr
i“1 EndkpViq, and also proves it to be an isomorphism of GˆG-

representations krGs Ñ
Àr

i“1 EndkpViq.

Notation 22.16. By the Fourier inversion map for G, we mean the map
Àr

i“1 EndkpViq Ñ

krGs described in the proposition. Explicitly, it is:

(94) pAiq
r
i“1 ÞÑ

´

g ÞÑ

r
ÿ

i“1

dimVi
#G

trpρipg
´1

qAiq
¯

.

The assertion of Proposition 22.15 is that the Fourier inversion map, (94), is a two-sided
inverse to (90).

Remark 22.17. Note that above map corrects for the failure of the ‘matrix coefficient’
map (93) to be an inverse to the Fourier transform map (90) in the following two ways:

(i) By replacing the trpρpgqAq of the matrix coefficient map with trpρpg´1qAq, it fixes
the problem mentioned in Exercise 22.7(iv), since g ÞÑ g´1 replaces the pg1, g2q-
action on krGs with the pg2, g1q-action. Note that such an ‘inverse’ was also seen in
the abelian case of Fourier inversion: see Exercise ?? of Lecture 20, especially (86)
there.

(ii) By adding in the factor pdimVjq
´1, it fixes the problem mentioned in Exercise

22.7(v). Note that this factor did not show up in the abelian (algebraically closed)
case, as there each dimVj was equal to 1.

(iii) We have, as vector space maps
Àr

i“1 EndkpViq Ñ krGs,

(95) (The Fourier inversion map) “ ι ˝ (the matrix coefficient map) ˝ T ,

where ι : krGs Ñ krGs is composition with g ÞÑ g´1, and T :
À

i EndkpViq Ñ
À

i EndkpViq sends pAiqi to
´

dimVi
#G

¨ Ai

¯

i
. Since ι and T are clearly isomorphisms

(use that each dimVi ‰ 0 by Proposition 22.14 and the assumption of absolute irre-
ducibility), it follows that the Fourier inversion map (94) is injective/surjective/bijective
if and only if the matrix coefficient map (93) is.

(iv) Using (iii) and the fact that the matrix coefficient map is surjective (Lemma 22.9),
it follows that the Fourier inversion map is surjective as well.

Proof of Proposition 22.15. It is enough to show that the composite EndkpVjq Ñ krGs Ñ

EndkpVj1q (where the first map is as given in the proposition, and the second map is
ρ1
j) is 0 if j ‰ j1, and the identity if j “ j1: while this much only gives a left-inverse

to
Àr

i“1 EndkpViq Ñ krGs, this suffices by the surjectivity of the Fourier inversion map
(Remark 22.17(iv)).
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This translates to proving that for each 1 ď j, j1 ď r, and each A P EndkpVjq, we have an
equality in EndkpV 1

j q:

1

#G

ÿ

gPG

trpρjpg
´1

qAqρj1pgq “

#

0, if j ‰ j1, and
1

dimVj
A, if j “ j1

.

(pdimVjq
´1 makes sense by Proposition 22.14, since ρj is absolutely irreducible). This is

proved in the following lemma. □

Lemma 22.18. Assume that pchar k,#Gq “ 1. Then for irreducible representations pρ, V q

and pρ1, V 1q of G, we have:

(96)
1

#G

ÿ

gPG

trpρpg´1
qAqρ1

pgq “

#

0, if ρ fl ρ1, and
1

dimV
A, if pρ, V q “ pρ1, V 1q is absolutely irreducible.

.

Proof. Again, in the second case, pdimV q´1 makes sense in k by Proposition 22.14 and
absolute irreducibility. It is enough to prove the claimed equality when A “ Au,v with
u P V _ and v P V arbitrary, since such Au,v span EndkpV q. Since ρpg´1qAu,v “ Au,ρpg´1qv,
this is equivalent to showing that for all u P V _, v P V and v1 P V we have:

1

#G

ÿ

gPG

xu, ρpg´1
qvyρ1

pgqv1
“

#

0, if ρ fl ρ1, and
1

dimV
xu, v1yv, if pρ, V q “ pρ1, V 1q is absolutely irreducible.

For fixed u, v1 and varying v P V , view both sides as a map V Ñ V 1. The left-hand side is
AvGpAu,v1q, while the right-hand side is 0 or pdimV q´1xu, v1y ¨ Id “ pdimV q´1 trpAu,v1q ¨ Id
(use Remark 22.4), so we are done by Proposition 22.14(ii). □

Corollary 22.19. The matrix coefficient map (93) defines an isomorphism of G ˆ G-
representations

r
à

i“1

EndkpViq –

r
à

i“1

V _
i bk Vi Ñ krGs,

where EndkpViq is given the second action of G ˆ G, (89).

Proof. We are given a G ˆ G-map from the left-hand side to the right-hand side, and it
is enough to prove that it is a vector space isomorphism. Since we know the analogous
result for the Fourier inversion map (Proposition 22.15), the same follows for the matrix
coefficient map, by Remark 22.17(iii). □

As we said, the above proof doesn’t use Burnside’s theorem, so we get an alternate proof
for it.

Corollary 22.20. (i) If ρ : G Ñ GLkpV q is an absolutely irreducible representation
of G, then ρ : krGs Ñ EndkpV q is surjective.

(ii) If pρ1, V1q and pρ2, V2q are irreducible representations of G1 and G2, then pρ1 bk

ρ2, V1 bk V2q is irreducible.
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Proof. The map krGs Ñ EndkpV q is surjective, since Proposition 22.15 gives an explicit
section to it. We saw in Lecture 21 that the second assertion follows from the first (see
the proof of Proposition 21.14). Note that this deduction does use ring theory, but not the
results of Artin-Wedderburn, Jacobson or Burnside. □

Corollary 22.21. Assume that each irreducible representation of G is absolutely irreducible
(which is automatic if k is algebraically closed), and that pchar k,#Gq “ 1. Then either
of the Fourier inversion map or the matrix coefficient map gives a decomposition of the
regular representation of G ˆ G into irreducible representations, as:

(97) krGs –

r
à

i“1

EndkpViq –

r
à

i“1

V _
i bk Vi.

In particular, each of these irreducible components appears with multiplicity 1.

Moreover, the left regular representation of krGs and the right-regular representation of
krGs each have the following decomposition in terms of irreducible representations:

krGs “

r
à

i“1

V dimVi
i .

We also recover the formula #G “
řr
i“1pdimViq

2.

Proof. By Proposition 22.15 and Corollary 22.19, all we need to show is that each EndkpViq –

V _
i bkVi is irreducible as a representation of GˆG, which follows from Corollary 22.20. □

22.6. Digesting Fourier inversion a bit more. The Fourier transform is an isomor-
phism of rings, and (appropriately interpreted) of GˆG-representations. We will now show
the algebraic Plancherel formula for finite nonabelian groups, that the Fourier transform
respects certain natural bilinear forms on either side. When k “ C, this bilinear form will
turn out to have a sesquilinear variant, an inner product, more reminiscent of the usual
Plancherel formula.

Notation 22.22. (i) For f1, f2 P krGs, define

xf1, f2y “ p#Gq ¨
ÿ

gPG

f1pg
´1

qf2pgq.

Note that x¨, ¨y is a symmetric nondegenerate bilinear form on krGs.
(ii) If pρ, V q is any absolutely irreducible representation of G, define pA,Bq “ pdimV q ¨

trpABq. Thus, under the assumption that each pρi, Viq is absolutely irreducible,
this also defines a symmetric nondegenerate bilinear form on

Àr
i“1 EndkpViq:

ppAiqi, pBiqiq “

r
ÿ

i“1

pdimViq ¨ trpAiBiq.

We write down some formulas that the proof of Proposition 22.15 gives, for pρ, V q, pρ1, V 1q

irreducible representations of G with V absolutely irreducible:
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Corollary 22.23. Assume that pchar k,#Gq “ 1. Let pρ, V q and pρ1, V 1q be irreducible
representations of G over k.

(i) For all A,B P EndkpV q, we have:

1

#G

ÿ

gPG

trpρpgq
´1Aq trpρ1

pgqBq “

#

0, if ρ fl ρ1, and

pdimV q´1 trpABq, if pρ, V q “ pρ1, V 1q is absolutely irreducible.

(ii) (Schur orthogonality for matrix coefficients) For all u P V _, v P V, u1 P V 1_ and
v1 P V 1_,

1

#G

ÿ

gPG

cu,vpg
´1

qcu1,v1pgq “

#

0, if ρ fl ρ1, and

pdimV q´1 ¨ xu1, vyxu, v1y, if pρ, V q “ pρ1, V 1q is absolutely irreducible.

(iii) If pρ1, V1q, . . . , pρr, Vrq are all absolutely irreducible, the Fourier inversion isomor-
phism,

Àr
i“1 EndkpViq Ñ krGs,

pAiqi ÞÑ

´

g ÞÑ

r
ÿ

i“1

dimVi
#G

trpρipg
´1

qAiq
¯

transports the form p¨, ¨q on
Àr

i“1 EndkpViq to the form x¨, ¨y on krGs.
(iv) (Plancherel formula) Equivalently (looking in the opposite direction), if

pρ1, V1q, . . . , pρr, Vrq are absolutely irreducible, the action map krGs Ñ
Àr

i“1 EndkpViq
transports the form x¨, ¨y on krGs to the form p¨, ¨q on

Àr
i“1 EndkpViq: for all

f1, f2 P krGs we have:

p#Gq ¨
ÿ

gPG

f1pg
´1

qf2pgq “

r
ÿ

i“1

pdimViq ¨ trpρipf1qρipf2qq.

(Note also that ρipf1qρipf2q “ ρipf1 ˚ f2q).

Proof. For (i), multiply the formula of Lemma 22.18 (see (96)) by B, and apply tr.

For (ii), since cu,vpgq “ trpρpgqAu,vq and similarly with cu1,v1 , we can simply apply (i) with
A “ Au,v and B “ Au1,v1 , and note that when pρ, V q “ pρ1, V 1q,

trpABq “ trpAu,vAu1,v1q “ xu1, vy trpAu,v1q “ xu1, vyxu, v1
y,

where we used the equality Au,v ˝ Au1,v1 “ xu1, vyAu,v1 , which is justified as follows:

Au,vpAu1,v1pwqq “ xu,Au1,v1wyv “ xu, xu1, wyv1
yv “ xu1, wyxu, v1

yv “ xu, v1
yAu1,vpwq.

For (iii), note that x¨, ¨y applied to the images of pAiqi and pBiqi equals:

p#Gq
ÿ

gPG

´

r
ÿ

i“1

dimVi
#G

trpρipgqAiq
¯´

r
ÿ

i“1

dimVi
#G

trpρipg
´1

qBiq

¯

,
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which by the first case of (i) equals

p#Gq
ÿ

gPG

´

r
ÿ

i“1

pdimViq
2

p#Gq2
trpρipg

´1
qBiq trpρipgqAiq

¯

,

which in turn, by the second case of (i), equals

r
ÿ

i“1

pdimViq trpBiAiq “

r
ÿ

i“1

pdimViq trpAiBiq “ ppAiqi, pBiqiq.

This gives (iii).

Finally, (iv) is an immediate consequence of (iii): if an isomorphism of vector spaces
transports a bilinear form B1 to a bilinear form B2, its inverse transports B2 to B1. □

Remark 22.24. Schur orthogonality for matrix coefficients, namely Corollary 22.23(ii),
gives us a nice basis of functions for krGs that behaves well with respect to the form x¨, ¨y:
for 1 ď i ď r, if ei,1, . . . , ei,ni

is a basis of Vi and e
_
i,1, . . . , e

_
i,ni

is the dual basis of V _
i , then

pci,p,q :“ cei,p,ei,qq1ďiďr,1ďp,qďni
is a basis for krGs, which by Corollary 22.23(ii) satisfies:

xci,p,q, ci1,p1,q1y “

#

0, if i ‰ i1, or if i “ i1 and pp, qq ‰ pq1, p1q, and
p#Gq2

dimVi
, otherwise

.

Thus, these don’t form an orthogonal basis, but almost, in that ci,p,q pairs only with ci,q,p.
Recall that when G was abelian and k was algebraically closed (with pchar k,#Gq “ 1),
we got an extremely nice basis for krGs, namely HompG, kˆq Ă krGs. The above ci,p,q is
pretty much the best substitute we can have in the nonabelian case. Note that for a fixed
i, Spanptci,p,q | 1 ď p, q ď niuq Ă krGs is an irreducible pGˆGq-subrepresentation, and also
the ρ_

i b ρi-isotypic component. It is also the ρ_
i -isotypic component for the left regular

representation, which is the ρi-isotypic component for the right regular representation.

22.7. Inner product versions over the complex numbers. This is optional, but I
recommend that you at least quickly glance through it.

Proposition 22.25. Let k “ C. Give G measure dg equal to p#Gq´1 times the counting
measure, and consider L2pGq.

(i) (Orthonormal basis for CrGs) For each of the irreducible representations pρ1, V1q, . . . , pρr, Vrq
of G, choose a G-invariant inner product on V by averaging, and let vi,1, . . . , vi,ni

be
an orthonormal basis of Vi for this inner product. For 1 ď i ď r and 1 ď p, q ď ni,
set ci,p,qpgq “

?
dimV xvi,p, ρpgqvi,qy. Then tci,p,q | 1 ď i ď r, 1 ď p, q ď niu is an

orthonormal basis for L2pG, dgq.
(ii) (Plancherel formula) Make each EndCpViq into a Hilbert space by giving it dimVi

times the Hilbert-Schmidt norm }¨}HS, where }Ai}HS “ trpA˚
iAiq “

ř

1ďp,qďni
xAiei,p, Aiei,qy
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for any orthonormal basis tei,1, . . . , ei,ni
u of Vi. Then the normalized Fourier trans-

form map

L2
pGq “ CrGs Ñ

r
à

i“1

EndCpViq,
´

f ÞÑ pp#Gq
´1ρipfqq

r
i“1 “

´ 1

#G

ÿ

gPG

fpgqρipgq

¯r

i“1

¯

(i.e., we multiplied the usual Fourier transform by p#Gq´1 to account for our change
of measure on G), is a Hilbert space isomorphism.

Proof. First we prove (i). Note that xvi,p,´y P V _
i for each i and p, so each ci,p,q is a matrix

coefficient for pρi, Viq. Now we have, by Corollary 22.23(iii),

1

#G

ÿ

gPG

p
a

dimVici,p,qpg
´1

qqp
a

dimVjci,p1,q1pgqq “

#

0, if i ‰ j, and

xvi,p, vi,q1yxvi,p1 , vi,qy, otherwise.
.

Now (i) follows on noting that, since the action of g´1 on Vi is unitary, we have

ci,p,qpg
´1

q “
a

dimVixvi,p, g
´1

¨vi,qy “
a

dimVixg¨vi,p, vi,qy “
a

dimVixvi,q, g ¨ vi,py “ ci,q,ppgq.

For (ii), we apply Corollary 22.23(iv), replacing f1pgq with f1pg´1q. Then p#Gqρpf1q “
ř

gPG f1pgqρpgq gets replaced with
ÿ

gPG

f1pg´1qρpgq “
ÿ

gPG

f1pgqρpg´1
q “

ÿ

gPG

f1pgqρpgq
˚

“ p#Gqpρ1pfqq
˚,

and then the equality given by Corollary 22.23(iv) becomes simply the one given by (ii)
(up to a factor of p#Gq2 on both sides). □

Exercise 22.26. Work out how the constructs defined in Proposition 22.25 change when
we change the choice of the inner products on the Vi (exercise: they are well-defined up to
positive scalars), and explicate how the validity of the proposition remains unaffected by
these changes.

Remark 22.27. Proposition 22.25 generalizes to compact (Hausdorff) topological groups,
with some obvious modifications. The following will skip most details and likely mess
up the rest, especially the constants, but for a mistake-free version with more details
you can see https://terrytao.wordpress.com/2011/01/23/the-peter-weyl-theorem-and-non-
abelian-fourier-analysis-on-compact-groups/ .

One gets, with µG the normalized Haar measure on G:

L2
pG, µGq –

ˆà

V PIrrpGq
pEndkpV q, pdimV q ¨ } ¨ }HSq “

ˆà

V PIrrpGq
pV _

b V, pdimV q ¨ } ¨ }q,

where one identifies V _ bV with “V̄ bC V ”, V̄ “ CbC V where C is viewed as a C-algebra
via complex conjugation, and uses on V _ bC V the product of dimV and an ‘obvious’
inner product. Moreover, IrrpGq denotes the set of continuous (topologically) irreducible
representations of G on Hilbert spaces up to isomorphism, though they can all be shown
to be finite dimensional and hence abstractly irreducible. Note the use of the “completed
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Hilbert space direct sum” ˆÀ, since the direct sum of infinitely many Hilbert spaces is not a
Hilbert space, and only becomes one on completion (this matters since IrrpGq is typically
infinite even when G is compact). In contrast, we don’t need to put a V _b̂CV , since each
V that occurs above can be shown to be finite dimensional.

In the proof of this result, the analogue of the proof of Proposition 22.15 works out pretty
much analogously, but more care is needed for the analogue of Lemma 22.9. The proof
of Lemma 22.9 does adapt to show that if a function f : G Ñ C belongs to a finite
subrepresentation of the right-regular representation, then f is a span of matrix coefficients,
but the problem is to show that such f are actually dense in L2pGq. The idea is then to
use the left regular action of some φ : G Ñ C to construct a compact self-adjoint operator
on L2pGq that commutes with the right regular action, and use the fact that such an
operator has finite dimensional nonzero eigenspaces (the spectral theorem for compact
self-adjoint operators), giving a good supply of finite dimensional subspaces of the right
regular representation. This could be considered one form of the Peter-Weyl theorem.

One can also show that the span of the matrix coefficients (each of which can be shown
to be continuous – even smooth if G is a Lie group – without much difficulty) is dense in
the Banach space CpGq of continuous functions on G with respect to the supremum norm:
this seems to be what is more commonly referred to as the Peter-Weyl theorem.

Remark 22.28. In Remark 22.24, I did not do a good job of justifying that the matrix
coefficients ci,p,q are a very nice basis for krGs, other than that in the abelian case they are
multiplicative functions on G. But the complex case can give some hints as to why. I will
give some vague explanations in this remark. While I haven’t read/worked out the details,
I would like to quote and partially make the case that, when G is a compact Lie group,
the matrix coefficients are solutions of suitable differential equations. As I said above, the
matrix coefficients are smooth, so differential operators can be applied to them. The point
is that while G itself may not have much of a center, there are always numerous differential
operators that commute with the action of G, and hence by Schur’s lemma act by scalar
multiplication on irreducible representations and hence on matrix coefficients! Here, one
uses that due to finite dimensionality, irreducible representations consist of ‘smooth vectors’
that can be differentiated.

As examples, look at the Fourier series and the Fourier transform. The x ÞÑ einx and the
x ÞÑ eiyx are eigenfunctions for d{dx, with eigenvalues in and iy, respectively. This is
precisely because in each case the differential operator id{dx or d{dx was an ‘infinitesimal
version’ of the group action, and commuted with the action of G because (in this case)
G itself was abelian. Thus, in a sense, Schur’s lemma is sort of responsible for why the
classical Fourier transform involves eigenfunctions for d{dx. Apparently many ‘special
functions’ can be explained this way. Another example consists of ‘spherical harmonics’,
which are matrix coefficients for the compact group SO3 associated to its left regular action
on L2pS2q “ L2pSO3{SO2q.

22.8. Schur orthogonality relations for characters and for conjugacy classes.
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Definition 22.29. Henceforth, if pρ, V q is a (finite dimensional) representation of G, χρ “

χV P krGs will denote the map G Ñ k such that for all g P G,

χρpgq “ χV pgq “ tr ρpgq.

χρ will be called the character of pρ, V q. When we write pρ1, V1q, . . . , pρr, Vrq for the irre-
ducible representations of G up to isomorphism, we may write χi for χρi .

Corollary 22.30 (Schur orthogonality for characters). (i) If V,W are irreducible rep-
resentations of k, then

xχV , χW y “

#

0, if V fl W , and

1, if V “ W is an absolutely irreducible representation
.

(ii) Suppose that k “ k̄. Then for any two representations V,W of G, xχV , χW y “

dimHomGpV,W q in k (note that this may involve loss of information when char k ‰

0).

Proof. The first assertion follows from Corollary 22.23(i) by taking A “ IdV and B “ IdW .

The second assertion follows from the first: use that both sides are additive by semisim-
plicity, and that irreducible is the same as absolutely irreducible when k is algebraically
closed.

However, these special cases of Fourier inversion are also easy to handle without going
through all that went into Corollary 22.23 (and hence in many sources they directly go to
characters without involving the matrix coefficients), so let us see them directly. Show as
an easy exercise that χV _pgq “ χV pg´1q for each g P G. We get:

1

#G

ÿ

gPG

χV pg´1
qχW pgq “

1

#G

ÿ

gPG

χV _pgqχW pgq “
1

#G

ÿ

gPG

χV _bW pgq

“
1

#G

ÿ

gPG

χHompV,W qpgq “ trpAvG|HomkpV,W qq “ dimGHomGpV,W q,

since AvG on HomkpV,W q is a projection onto HomGpV,W q Ă HomkpV,W q.

The above computation used the implicit assumption that either V is absolutely irreducible
or k is algebraically closed, depending on which assertion one wants to prove. □

Notation 22.31. Given g P G, ZGpgq will denote the centralizer of g and Cpgq its conju-
gacy class.

Theorem 22.32 (Schur orthogonality relations for conjugacy classes). Assume that each
irreducible representation of G is absolutely irreducible. If g, h P G, then

ÿ

χPIrrpGq

χpg´1
qχphq “

#

0, if g, h are not G-conjugate, and

#ZGpgq, otherwise.
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The proof of this theorem will use the following observation, which will be useful elsewhere
as well:

Lemma 22.33. Let f “ 1C Ă ZpkrGsq, where C Ă G is a conjugacy class. Then for any
absolutely irreducible representation pρ, V q of G, ρpfq P EndkpV q is multiplication by the
scalar

λ “
#Cg
dimV

¨ χρpgq.

Proof. Since f is conjugation invariant, ρpfq˝ρpgq “ ρpgq˝ρpfq for all g P G, and hence we
indeed have f P ZpkrGsq. By Schur’s lemma, f acts on V by a scalar λ (this uses absolute
irreducibility). If χ “ χρ, by taking traces, we get:

pdimk V q ¨ λ “
ÿ

hPG

1Cgphq tr ρphq “
ÿ

hPCg

χρphq “ #Cg ¨ χρpgq,

using the conjugation invariance of trace, from which the lemma follows. □

Proof of Theorem 22.32. The idea is to use Corollary 22.23(iv), taking f1 to be the charac-
teristic function 1Cg´1 of the conjugacy class of g´1, and f2 to be the characteristic function

1Ch
of the conjugacy class of h.

By Lemma 22.33, for each i, ρpf1q and ρpf2q are scalar multiplications on Vi respectively
by #Cpg´1qpdimViq

´1χipg
´1q “ #CpgqpdimViq

´1χipg
´1q and #CphqpdimViqχiphq. Hence

the right-hand side of the equality given by Corollary 22.23(iv) is:

r
ÿ

i“1

pdimViq trpρipf1qρipf2qq “ #Cpgq¨#Cphq¨

r
ÿ

i“1

tr
´ 1

dimVi
χipg

´1
qχiphq¨Id

¯

“ #Cpgq¨#Cphq¨

r
ÿ

i“1

χipg
´1

qχiphq.

Thus, we conclude that

#Cpgq¨#Cphq

r
ÿ

i“1

χipg
´1

qχiphq “ p#Gq

´

ÿ

gPG

f1pg´1
qf2pgq “

#

0, if Cg ‰ Ch, and

p#Gq ¨ p#Cpgqq, otherwise.
.

From this, the lemma follows, since #ZGpgq “ p#Gq{p#Cpgqq.

□

Recall from Lecture 21 that ZpkrGsq Ă krGs is the subspace – indeed, subalgebra – of class
functions. Under the isomorphism krGs Ñ

śr
i“1 EndDi

pViq, it maps to
śr

i“1Ki, where Ki

is the center of Di.

Proposition 22.34. (i) If either char k “ 0 or k is algebraically closed, χV1 , . . . , χVr
are linearly independent.

(ii) Assume that k “ k̄ is algebraically closed. Then χV1 , . . . , χVr is a basis for ZpkrGsq.
(iii) Assume that k “ k̄ is algebraically closed. Then the number of irreducible characters

equals the number of conjugacy classes.
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Proof. In the case where k is algebraically closed, it is easy to see (i) from Corollary 22.30.
If char k “ 0, then base-changing to an algebraic closure k̄ of k (we can base-change to
compute the trace), Corollary 22.30(ii) gives:

1

#G

ÿ

gPG

χρpg
´1

qχρpg
1
q “

#

0, if ρ fl ρ1, and

dimk HomGpVk̄, Vk̄q ‰ 0, if pρ, V q “ pρ1, V 1q.

From this, (i) is easy to see for this case (characteristic zero) as well.

Now assume that k is algebraically closed. Though (ii) follows from (i), let us prove it
directly. Taking A “ IdVi in Lemma 22.18, we see that under the action map, g ÞÑ

p#Gq´1χipg
´1q annihilates all the Vj with j ‰ i, and acts as pdimk Viq

´1 on Vi. Thus,
using that the action map is an isomorphism krGs Ñ

śr
i“1 EndkpViq, which restricts to an

isomorphism from the centre ZpkrGsq Ă krGs consisting of the class functions to
śr

i“1 k Ă
śr

i“1 EndkpViq, it follows that the g ÞÑ p#Gq´1χipg
´1q form a basis for the class functions,

and hence so do the g ÞÑ χipgq.

Finally, (iii) follows from the observation, proved in Lecture 21, that ZpkrGsq has a basis
consisting of the characteristic functions of the conjugacy classes. □

22.9. Dimensions of irreducible representations divide the order of the group.

Notation 22.35. Henceforth, we will also write IrrpGq in place of pρ1, V1q, . . . , pρr, Vrq for
a set of representatives for the isomorphism classes of irreducible representations of G.

Definition 22.36. Let k be a field of characteristic zero. An element α P k is said to be
an algebraic integer if it satisfies the following equivalent conditions:

(i) α satisfies a monic polynomial xn `
řn
i“1 aix

n´i, where ai P Z for all i.
(ii) Zrαs Ă k is a finitely generated module over Z.
(iii) Zrαs Ă k is contained in a finitely generated module over Z.

The equivalence of the three conditions is easy, and is given in Lemma 22.37 below.

Lemma 22.37. The three conditions in Definition 22.36 are equivalent.

Proof. If (i) is satisfied, then t1, α, . . . , αn´1u Z-spans Zrαs, and (ii) follows. If (ii) is
satisfied, then any given finite set of generators for Zrαs is contained in the span of some
t1, α, . . . , αn´1u, so that αn can be written as a Z-linear combination of 1, α, . . . , αn´1,
giving (i). Thus, (i) and (ii) are equivalent.

(ii) trivially implies (iii), and the converse follows from the fact that Z is Noetherian. □

Now assume char k “ 0. We have a natural basis for ZpkrGsq, namely, the 1C as C varies
over the conjugacy class of G.

Lemma 22.38. ZpkrGsq0 :“ SpanZpt1CuCq is closed under multiplication (i.e., convolu-
tion), and is hence a subring of ZpkrGsq which is finitely generated as a Z-module.
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Proof. On choosing gpC2q P C2 for each conjugacy class C2 Ă G, this follows from the
easily verified formula:

1C ¨ 1C1 “
ÿ

C2

p#tg P C, g1
P C 1

| gg1
“ gpC2

quq ¨ 1C2

(because this expression is independent of the choice of the gpC2q). □

Corollary 22.39. If f “
řn
i“1 αi1Ci

, where each αi P k is an algebraic integer and each
Ci Ă G is a conjugacy class, then f acts on each absolutely irreducible representation pρ, V q

of G by an algebraic integer.

Proof. For 1 ď i ď n, since αi satisfies a monic polynomial with coefficients in Z Ă

Zrα1, . . . , αi´1s, we conclude that Zrα1, . . . , αis is a finitely generated module over Zrα1, . . . , αi´1s.
Applying this inductively, each Zrα1, . . . , αis is a finitely generated module over Z, and in
particular so is A :“ Zrα1, . . . , αns. It follows from Lemma 22.38 that ZpkrGsq0,A :“
SpanApt1CuCq is a subring of ZpkrGsq, and clearly it is a finitely generated Z-module.

If pρ, V q is an absolutely irreducible representation of G, then each element f 1 P ZpkrGsq0,A
acts on V as a scalar λpf 1q. f 1 ÞÑ λpf 1q is a homomorphism λ : ZpkrGsq0,A Ñ k, whose
image is a subring of k which is a finitely generated Z-module, and hence consists of
algebraic integers. Thus, each f 1 P ZpkrGs0,Aq acts on V by an algebraic integer λpf 1q, and
in particular the same applies to f . □

Proposition 22.40 (Frobenius). Suppose k “ k̄ is algebraically closed, and k has charac-
teristic zero. Then for each irreducible representation pρ, V q of G, dimV divides #G.

Proof. The trick is to construct an element of R “
ř

i αi1Ci
P krGs, where each αi is an

algebraic integer, that acts on Vi by p#GqpdimViq
´1 for each 1 ď i ď r.

Let C1, . . . , Cr be the conjugacy classes of G (there are r of them, by Proposition 22.34(iii)),
and let gi P Ci for each i. Set R “

řr
j“1 χVipg

´1
j q1Cj

. Then by Lemma 22.33, R acts on Vi
by the scalar

1

dimVi

r
ÿ

j“1

#Cj ¨ χVipg
´1
j qχVipgjq “

1

dimVi

ÿ

gPG

χVipg
´1

qχVipgq “
#G

dimVi
,

where we also used the Schur orthogonality for characters. It follows from Lemma 22.39
that p#Gq{pdimViq is an algebraic integer, and it is easy to see that any rational number
which is an algebraic integer is an integer (here, we are implicitly using that Q embeds
into k, which is true because k has characteristic zero). Therefore, p#Gq{pdimViq is an
integer, as desired. □

22.10. Appendix: orthogonality relations in the non-algebraically closed case.
This subsection is optional, and was not discussed in the lecture. These results (or rather
their corrected versions) are certainly there somewhere in the literature, but I don’t re-
member seeing them anywhere. So be careful believing anything here.
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We continue to assume that pchar k,#Gq “ 1, but do not assume that k is algebraically
closed, or that the representations of interest are absolutely irreducible.

First we generalize Proposition 22.14 to the present case.

Proposition 22.41. Let V be an irreducible representation of G over k. Let D “ EndGpV q

be the associated division algebra, and K Ą k the center of D.

(i) dimK V ‰ 0.
(ii) For all A P EndDpV q, we have AvGpAq “

trK A
dimK V

¨ Id.

Proof, modulo a nontrivial fact. We will assume the following nontrivial fact from the the-
ory of central simple algebras: D, being a central simple algebra over the bigger field K,
has a maximal subfield L, with the property that rD : Ks “ rL : Ks2.

Note that V is naturally a vector space over D “ EndGpV q, and hence has compatible
vector space structures over L,K and k. Thus, dimK V “ pdimL V q¨rL : Ks, but dimL V “

rL : Ks dimD V , so to prove (i) it suffices to show that dimL V ‰ 0. Since the action of G
commutes with D Ą L, ρ can be thought of as a representation G Ñ GLLpV q Ă GLDpV q.

Since the commutant of krGs in EndkpV q is D, the commutant of LrGs in EndLpV q is
contained in the centralizer of L in D, which is L itself (since L Ă D is a maximal
subfield). Thus, G Ñ GLLpV q is an absolutely irreducible representation of G over L, and
therefore dimL V ‰ 0 by Proposition 22.14(i), giving (i).

Now suppose A P EndDpV q. Then AvGpAq P EndDpV q, since each ρpgq commutes with
D. Moreover, AvGpAq commutes with each ρpgq, and hence with ρpkrGsq “ EndDpV q.
Therefore, there exists a P K such that AvGpAq “ a ¨ Id. Now take trK (i.e., trace of both
sides as K-vector space maps):

trKpAq “ a ¨ dimK V,

so a “ pdimK V q´1 trKpAq. □

Proposition 22.42. Let pρ, V q and pρ1, V 1q be irreducible representations of G over k.
Associate to V the division algebra D “ EndGpV q, and the finite extension K “ ZpDq of
k. Thus, D is a central division algebra over K. We have for all A P EndDpV q Ă EndkpV q:

1

#G

ÿ

gPG

trpρpg´1Aqqρ1
pgq “

#

0, if ρ fl ρ1, and
1

dimD V
A, if pρ, V q “ pρ1, V 1q.

Proof, modulo two standard facts from field theory. If ρ fl ρ1, the proof is the same as be-
fore, so we assume that pρ, V q “ pρ1, V 1q. Consider EndDpV q. Since each ρpgq P GLDpV q,

A ÞÑ
1

#G

ÿ

gPG

trpρpg´1Aqqρ1
pgq “

1

#G

ÿ

gPG

trpρpg´1Aqqρpgq

is an endomorphism of EndDpV q, which is further verified to be G ˆ G-equivariant. Now
we use the Jacobson density theorem (which we managed to not use in the absolutely
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irreducible case), that ρpkrGsq “ EndDpV q. Therefore, the above morphism is EndDpV q ˆ

EndDpV q-equivariant, and since EndDpV q is a simple ring, it is immediately seen to be
given by A ÞÑ aA, where a P ZpEndDpV qq “ K, i.e., it is given by multiplication by some
a P K in V , which is a vector space over D and hence over K.

Let k̄ be an algebraic closure of k. SinceKbk k̄ Ă ZpEndDpV qbk k̄q Ă k̄rGs –
śr1

i“1Mni
pk̄iq

for some of r1, ni etc., it follows that that Kbk k̄ is reduced. This implies, by a general fact
from field theory, that K{k is separable. Another fact that we will assume is that, in this
case, the k-bilinear form trK{k : KˆK Ñ k, given by px, yq ÞÑ trK{kpxyq, is nondegenerate.

For all b P K, consider the map EndDpGq Ñ EndDpGq, given by

Tb : A ÞÑ
1

#G

ÿ

gPG

trpρpg´1
qbAqρpgq,

so that TbpAq “ abA.

Take A “ Id to be the identity, so trpTbpAqq “ trkpv ÞÑ abvq “ pdimK V q ¨ trK{kpabq. Then

pdimK V q¨trK{kpabq “ trpTbpIdqq “
1

#G

ÿ

gPG

trpρpg´1bqq trpρpgqq “
1

#G
trK{k

´

trKpρpg´1bqq trKpρpgqq

¯

.

Hence

pdimK V q ¨ trK{kpabq “ trK{k

´

b ¨
1

#G

ÿ

gPG

trKpρ_
pgq b ρpgqq

¯

“ trK{k

´

b ¨ trK

´ 1

#G

ÿ

gPG

´

A ÞÑ ρpgqAρpg´1
q

¯

|EndKpV q

¯¯

“ trK{kpb ¨ trKpAvG|EndKpV qqq.

On EndKpV q, AvG is a projection to EndKrGspV q – D, so we get

pdimK V q¨trK{kpabq “ trK{kpb¨trKpAvGpEndKpV qqqq “ trK{kpb dimK Dq “ pdimK Dq¨trK{kpbq.

Therefore, using that dimK V ‰ 0 in K (Proposition 22.41), and that trK{k is a nondegen-
erate bilinear form K ˆ K Ñ k, we get that a “ pdimK V q´1 dimK D “ pdimD V q´1. □

Now we give a strategy for a possible alternate proof that (hopefully) works at least in
characteristic zero; I haven’t tried to simplify the exposition, so it is likely extra painful to
read, but this proof follows an approach that tells us how representations reduce when we
base-change to an algebraic closure.

Strategy for an alternate proof for Proposition 22.42, char k “ 0 for simplicity. It is given
that EndGpV q “ D. Base-changing to an algebraic closure k̄ of k, we get a (usually
reducible) representation pρ bk k̄, V bk k̄q. To see how this representation reduces, let
D bk k̄ “ Mdpk̄q, so that dimkD “ d2. Note that

EndGpV bk k̄q “ Dbk k̄ “ DbK pKbk k̄q – DbK

´

ź

σPHomk-AlgpK,k̄q

k̄
¯

–
ź

σPHomk-AlgpK,k̄q

Mdpk̄q.
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This implies, applying semisimplicity over k̄, that

ρ bk k̄ –
à

σPHomk-AlgpK,k̄q

ρ‘d
σ ,

where the ρσ are pairwise nonisomorphic.

Therefore, on each copy of ρτ inside ρ we have:

1

#G

ÿ

gPG

trpρpg´1Aqqρpgq “
1

#G

ÿ

σPHomk-AlgpK,k̄q

pd trk̄ ρσpg´1Aqqρτ pgq “ d
1

dimk̄ ρτ
¨ A,

using Schur orthogonality for ρτ and the fact that consequently the above sum vanishes
unless σ “ τ . We also used that A induces a well-defined automorphism of each ρσ, since
A P EndDpV q (rather than just A P EndkpV q).

On the other hand, ρσ’s all have the same dimension independent of σ, and rK : ks ¨

d ¨ dimk̄ ρτ “ dimk̄pV bk k̄q “ dimk V “ rK : ksd2 dimD V . Therefore d{pdimk̄ ρτ q “

pdimD V q´1 (here we used that char k “ 0, to ensure that rK : ks ‰ 0), and the lemma
follows. □

Remark 22.43. (i) Now following the proof of Corollary 22.23, etc., one can get a full-
fledged ‘Fourier inversion package’ in the non-algebraically closed case; the main
point seems to be to replace each dimk Vi with dimDi

Vi.
(ii) The latter sketch of proof shows that there are two factors contributing to pρ bk

k̄, V bk k̄q reducing: the nontriviality of rK : ks, and the nontriviality of the d
such that dimkD “ d2. The former is responsible for there being exactly rK : ks-
many pairwise nonisomorphic irreducible representations in ρ bk k̄, whereas the
latter ‘contributes multiplicities of d’ to each of these. Only the former occurs
for Z{3Z acting by rotation on R2 (which becomes two distinct representations on
base-changing to C), and only the latter occurs for the finite quaternion group Q8

acting on H (which becomes a sum of two copies of the same representation on
base-changing to C).
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23. Lecture 23 – Burnside’s theorem and Brauer’s theorem

23.1. Burnside’s theorem. In this subsection, we will only consider representations of
groups over k “ C. All representations will be finite dimensional unless otherwise stated.

Theorem 23.1 (Burnside, 1904). Any group of order paqb, where p and q are prime
numbers, is solvable.

Remark 23.2. While groups of order pqr with p, q and r distinct primes can be shown
to be solvable (exercise), A5 is a group of order 60 “ 22 ¨ 3 ¨ 5 which is simple and hence
not solvable. As the example of S3 shows, one cannot replace ‘solvable’ with ‘nilpotent’ in
Burnside’s theorem.

While standard proofs of Sylow’s theorems are based on studying groups acting on sets,
the proof of Burnside’s theorem uses groups acting on vector spaces, i.e., representation
theory. Here is one way representations can give us normal subgroups:

Notation 23.3. If pρ, V q is a representation of G over C, we set

ZpV q “ ρ´1
pZpGLCpV qqq “ tg P G | ρpgq “ λ ¨ IdV for some λ P Cu.

Clearly, ZpV q Ă G is a normal subgroup.

A key input into the proof of Burnside’s theorem is:

Proposition 23.4. Suppose a finite group G has a conjugacy class C ‰ t1u of prime power
cardinality pc, p prime and c ě 0. Then there exists a nontrivial irreducible representation
V of G with ZpV q Ą C ‰ t1u.

Proof of Burnside’s theorem, assuming Proposition 23.4. By induction, we assume that any
group H of cardinality strictly dividing paqb is solvable. Therefore, by induction, it is
enough to show that G has a nontrivial proper normal subgroup. In particular, we may
and do assume that ZpGq “ 1 – otherwise, either ZpGq Ă G is proper and is the desired
normal subgroup, or G “ ZpGq is abelian and we are done.

Let Q Ă G be a q-Sylow subgroup. Since Q is a q-group and hence nilpotent, there exists
1 ‰ g P Q which centralizes Q (these two are standard facts about nilpotent groups: if you
are not comfortable with nilpotent groups, their definition and these two facts are recalled
in Remark 23.5 below).

Since g centralizes Q, the cardinality of Cpgq is a power of p, and we have g ‰ 1. Hence
by Proposition 23.4, there exists a nontrivial irreducible representation pρ, V q of G with
ZpV q ‰ t1u. If pρ, V q is not faithful, there is nothing to prove, since ker ρ is then a proper
(by the nontriviality of ρ) and nontrivial subgroup of G.

Thus, assume that ρ is faithful. Then ZpV q the desired nontrivial normal subgroup: note
that it is not all of G, since otherwise ρ would inject G into the center of GLpV q, forcing
G to be abelian, contradicting that ZpGq “ t1u. □
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Remark 23.5. For those who are not comfortable with nilpotent groups:

(i) A group G is nilpotent if there exists a chain

t1u “ G0 Ĺ G1 Ĺ ¨ ¨ ¨ Ĺ Gn “ G

of subgroups of G such that for each 1 ď i ď n, the commutator rG,Gis of G
and Gi is contained in Gi´1. Note that such a group has a nontrivial center: since
rG,G1s Ă G0 “ t1u, we have that ZpGq Ą G1 Ľ G0 “ t1u is nontrivial.

(ii) In the above proof, we used that the group Q, being a q-group, is nilpotent and
hence has a nontrivial center. Why is every q-group Q nilpotent? If we show that
the center ZpQq of Q is nontrivial, then we can take Q1 “ ZpQq Ľ t1u, and induct
with Q{Q1, which is again a q-group. To show that ZpQq ‰ t1u, use the action of
Q on itself by conjugation. All the orbits (i.e., the conjugacy classes) that are not
singleton have cardinality a mulitple of q, so, since Q is a q-group, the number of
singleton conjugacy classes is a multiple of q. Thus, #ZpQq is a multiple of q. But
#ZpQq ě 1, since 1 P ZpQq, so ZpQq must have at least q elements, and is hence
nontrivial.

Now we need to prove Proposition 23.4, for which, in turn, the crucial inputs are the
following two lemmas:

Lemma 23.6. Let G be a finite group. Let C Ă G be a conjugacy class, and pρ, V q an
irreducible representation G, such that p#C, dimV q “ 1. Then either χρpgq “ 0 for g P C,
or C Ă ZpV q.

Lemma 23.7. If G is a finite group with a conjugacy class C ‰ t1u, and p is a prime
number, then there exists a nontrivial irreducible representation pρ, V q of G such that p ∤
dimV , and such that χρpgq ‰ 0 for g P C.

Proof of Proposition 23.4, assuming Lemmas 23.6 and 23.7. Lemma 23.7 gives us a non-
trivial irreducible representation pρ, V q of G such that p ∤ dimV , and such that χρpgq ‰ 0
for g P C. Note that p#C, dimV q “ ppc, dimV q “ 1, so Lemma 23.6 applies to this
representation pρ, V q and, since χρpgq ‰ 0 for g P C, forces C to be contained in ZpV q. □

It remains to prove Lemmas 23.6 and 23.7. We prove the latter first:

Proof of Lemma 23.7. In this proof, when we write
ř

V , it will be understood that the
sum is over the set of irreducible representations of G up to isomorphism, and

ř

V ‰triv will
denote the sub-sum consisting of nontrivial representations. By the Schur orthogonality
relations for conjugacy classes, using that C ‰ t1u, we have:

0 “
ÿ

V

χV p1´1
qχV pgq “

ÿ

V

pdimV qχV pgq.
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Therefore, transferring the contribution of the trivial representation to the other side and
dividing by p, we get:

ÿ

V ‰triv

dimV

p
¨ χV pgq “ ´

1

p
.

Therefore, the left-hand side is not an integer, and hence not an algebraic integer. Since
each χV pgq, being a sum of its eigenvalues which are p#Gq-th roots of unity (since g#G “ 1q,
is an algebraic integer, it follows that there exists a nontrivial irreducible representation V
of G such that p ∤ dimV , and χV pgq ‰ 0. □

To complete the proof of Burnside’s theorem (Theorem 23.1), it remains to prove Lemma
23.6. This will in turn need the following input:

Lemma 23.8. Suppose ε1, . . . , εn are roots of unity, such that

ε1 ` ¨ ¨ ¨ ` εn
n

is an algebraic integer. Then either ε1 ` ¨ ¨ ¨ ` εn “ 0, or ε1 “ ¨ ¨ ¨ “ εn.

Let us prove Lemma 23.6 assuming Lemma 23.8:

Proof of Lemma 23.6, assuming Lemma 23.8. Recall from Lecture 22 that 1C acts on V
by an algebraic integer. We also did the following computation in Lecture 22: tr ρp1Cq “

#C ¨ χρpgq, where g is any element of C, so this algebraic integer is:

#C ¨
χρpgq

dimV
.

But the following is also an algebraic integer:

χρpgq “ pdimV q ¨
χρpgq

dimV
.

Since #C and dimV are relatively prime, we can take an integral linear combination of

the above two algebraic integers, to get that χρpgq

dimV
is an algebraic integer.

But if n “ dimV and ε1, . . . , εn are the eigenvalues of ρpgq, then pε1 ` ¨ ¨ ¨ ` εnq{n “

pχρpgqq{pdimV q is an algebraic integer, so by Lemma 23.8, we have either ε1 ` ¨ ¨ ¨ ` εn “ 0
or ε1 “ ¨ ¨ ¨ “ εn. In the former case, χρpgq “ 0 for all g P C, while in the latter case, ρpgq

is a scalar matrix (explanation: since g#G “ 1, and since x#G ´ 1 has distinct roots in C,
the minimal polynomial of ρpgq has distinct roots, so that ρpgq is diagonalizable over C;
being diagonalizable with equal eigenvalues, ρpgq is a scalar matrix) so that g P ZpV q. □

Proof of Lemma 23.8. This needs some very basic Galois theory, which we will assume,
though we have not discussed it yet. Assume that ε1 ` ¨ ¨ ¨ ` εn ‰ 0, and that not all the
εi are equal (to get a contradiction). Then |pε1 ` ¨ ¨ ¨ ` εnq{n| ă 1 by the Cauchy-Schwarz
inequality. Let f be the minimal monic polynomial inQrxs satisfied by α :“ pε1`¨ ¨ ¨`εnq{n.
By Galois theory, fpxq “

ś

βPIpx´βq, where I is the set of all GalpK{Qq-conjugates of α,
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withK{Q being any Galois extension containing ε1, . . . , εn. Each β P I, being a GalpK{Qq-
conjugate of α, is an algebraic integer, so fp0q “ ˘

ś

βPI β, being both an algebraic integer

and a rational number, is an integer (the same in fact applies to each coefficient of f , so
that f P Zrxs).

Thus, fp0q P Z. Since α is nonzero, each β P I is nonzero, so that fp0q “ ˘
ś

βPI β ‰ 0.

Therefore, to get a contradiction, it suffices to show that |fp0q| ă 1. In turn, this follows
if we show that |β| ă 1 for each β P I. But this is because each such |β| is of the form

|σpαq| “ |σpε1q ` ¨ ¨ ¨ ` σpεnq|{n ă 1

for some σ P GalpK{Qq; σpε1q, . . . , σpεnq are also roots of unity, not all equal. □

23.2. Artin’s theorem. In this subsection, we will again work with representations of a
finite group G over k “ C (except in Theorem 23.13, where we will allow k to be arbitrary).

Recall that by the complete reducibility of representations of finite groups over C, any
element of the representation ring RCpGq of G (made from RepCpGq) is uniquely a Z-linear
combination

ř

i nirπis, where rπis is the image in RCpGq of an irreducible representation πi
of G over C. We will abbreviate RCpGq to RpGq. Recall that for each subgroup H Ă G,
the induction functor IndGH induces an additive map RpHq Ñ RpGq, whose image is an
ideal of RpGq (see Corollary 20.31 from Lecture 20).

The aim of this subsection is to prove

Theorem 23.9 (Artin). If π is a representation of G, then there exist n1, . . . , nr P Z and
irreducible representations π1, . . . , πr of cyclic subgroups H1, . . . , Hr of G (over C) such
that, in RpGq we have:

p#Gq ¨ rπs “
ÿ

i

ni Ind
G
Hi

rπis.

In other words, we have

p#Gq ¨ RpGq “
ÿ

HĂG
H cyclic

IndGHpRpHqq.

Let us prepare for the proof of this theorem by some general observations concerning the
representation ring.

Notation 23.10. Let CpGq denote the ring of class functions G Ñ C (i.e., conjugation
invariant maps G Ñ C), but with its multiplication given by pointwise multiplication
rather than convolution.

Consider the assignment, to each finite dimensional representation ρ of G, of its character
χρ P CpGq. We have:

(i) χρ depends only on the isomorphism class of ρ.
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(ii) For any exact sequence

0 Ñ pρ1, V 1
q Ñ pρ, V q Ñ pρ2, V 2

q Ñ 0

of representations of G, we have χρ “ χρ1 ` χρ2 (if 0 Ñ V 1 Ñ V Ñ V 2 Ñ 0
is an exact sequence of vector spaces over k, and if A P EndkpV q restricts to
A1 P EndkpV 1q and induces A2 P EndkpV 2q, we have trA “ trA1 ` trA2).

(iii) If ρ is the trivial representation, χρ is the identity element of CpGq (since the
multiplication on CpGq is given by pointwise multiplication).

(iv) We have χρbρ1 “ χρχρ1 (if A P EndkpV q and B P EndkpW q, then AbB P EndkpV b

W q satisfies detpA b Bq “ pdetAqpdetBq).

These properties imply that ρ ÞÑ χρ induces a ring homomorphism RpGq Ñ CpGq.

Lemma 23.11. This ring homomorphism RpGq Ñ CpGq is an injection, and induces an
isomorphism RpGq bZ C Ñ CpGq.

Proof. Since we have seen that the irreducible characters χρ P CpGq of G are linearly inde-
pendent, where ‘irreducible character’ means ‘character of an irreducible representation’,
it follows that RpGq Ñ CpGq is injective. Since the χρ are a C-basis for CpGq, it follows
that RpGq bZ C Ñ CpGq is a ring isomorphism. □

Notation 23.12. In what follows, we will often identify RpGq with its image in CpGq

under the map induced by ρ ÞÑ χρ, and thus also think of CpGq as RpGq bZ C.

One of the results we will need for the proof is Mackey’s formula for the induced character:

Theorem 23.13. For this theorem, let k be any field with p#G, char kq “ 1, and pρ, V q an
irreducible representation, over k, of a subgroup H of a finite group G. Then for all g P G:

(98) χIndGH V pgq “
1

#H

ÿ

sPG
s´1gsPH

χV ps´1gsq.

Remark 23.14. (i) The formula shows that χIndGH V pgq vanishes unless g is conjugate
to an element of H.

(ii) Suppose G is in addition abelian, and that pρ, V q is given by a homomorphism
χ : H Ñ Cˆ. In this case the formula says:

χIndGH V pgq “

#

#G
#H

¨ χpgq, if g P H, and

0, otherwise.
.

Here is a sketch of another way to see it: not necessarily shorter, but probably
useful for the picture it conveys. Verify that in this case IndGH χ decomposes as
À

χ1, where χ1 runs over the set X1 of characters G Ñ Cˆ extending χ. Fixing
one such character χ1,0, χ1 ÞÑ χ1χ

´1
1,0 is a bijection X1 Ñ HompG{H,Cˆq. Now the

formula reduces to the fact that the sum of all the homomorphisms G{H Ñ Cˆ is
the function on G{H that equals p#G{#Hq at the identity, and 0 elsewhere.
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Proof of Theorem 23.13. Recall a description of the induced representation from Lecture
20 (Exercise 20.28): IndGH V is the unique representation of G that contains (a copy of) the
representation V of H, and whose underlying vector space is the sum of the g-translates
of V as g ranges over any set rG{Hs of representatives for G{H: as vector spaces,

IndGH V “
à

sPrG{Hs

s ¨ V.

Clearly, the action of g P G permutes the above summands. Hence, if we compute the
trace using a basis for IndGH V formed of the bases for the s ¨ V , we get:

χIndGH V pgq “
ÿ

ts|g¨sH“sHu

trpg; s ¨ V q “
ÿ

tsPG|s´1gsPHu{H

trpg; s ¨ V q “
1

#H

ÿ

sPG
s´1gsPH

trpg; s ¨ V q.

Now it suffices to observe that trpg; s¨V q “ trps´1gs;V q, as one sees from the commutativity
of the following diagram, all whose arrows are vector space isomorphisms:

V
s // s ¨ V

V

s´1gs

OO

s // s ¨ V

g

OO .

□

Notation 23.15. We have viewed IndGH as a functor IndGH : RepCpHq ù RepCpGq as well
as an additive map IndGH : RpHq Ñ RpGq.

In addition to these two uses of IndGH , we will now add a third: we will also view it as an
additive map

CpHq – RpHq bZ C Ñ RpGq bZ C – CpGq.

This map then sends each χρ to χIndGH ρ, and hence at the level of functions H Ñ C and

G Ñ C is explicitly given by Mackey’s formula, (98) from the statement of Theorem 23.13.
It restricts to the map IndGH : RpHq Ñ RpGq.

Proof of Artin’s theorem. We identify RpGq with a subspace of CpGq via rπs ÞÑ χπ, as in
Notation 23.12. Similarly with each RpHq.

In this proof, when we write
ř

H , the sum will be over the set of cyclic subgroups of G.

Since
ř

H IndGH RpHq is an ideal of RpGq, it is enough to show that it contains #G times
the trivial representation, namely the constant function g ÞÑ #G in CpGq.

For each cyclic subgroup H Ă G, define χH : H Ñ C by letting χHphq equal #H if xhy “ H
(i.e., if h generates H), and 0 otherwise.

This will follow if we prove the following two statements:

(i) Each χH belongs to RpHq; and
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(ii)
ř

HĂG IndGHpχHq P RpGq, viewed as an element of CpGq, is the constant function
G Ñ C with value #G.

Let us prove the first of these assertions. By induction, we may assume that χK P RpKq

for each proper subgroup K Ĺ H. Therefore, IndHK χK P RpHq. It follows from Mackey’s
formula for induced character (as we saw in Remark 23.14(ii)) that, if h P H and if K Ă H
is a subgroup, then

IndHK χKphq “

#

0, if x R K, and
#H
#K

¨ χK , otherwise
“

#

#H, if xhy “ K, and

0, otherwise.

From this, it is easy to see that

χH “ #H ´
ÿ

KĹH
subgroup

IndHK χK ,

which belongs to RpHq as we have observed that each IndHK χK belongs to RpHq (note that
#H also belongs to RpHq: it is #H times the class of the trivial representation of H).

Now let us prove the second of the two assertions above: that
ř

HĂG IndGHpχHq is the
constant function with value G. Using Mackey’s formula for the induced character, we get

ÿ

HĂG

IndGH χHpgq “
ÿ

HĂG

1

#H

ÿ

sPG
s´1gsPH

χHps´1gsq “
ÿ

HĂG

ÿ

sPG
xs´1gsy“H

1,

which equals
ÿ

sPG

ÿ

HĂG
xs´1gsy“H

1 “
ÿ

sPG

1 “ #G,

as desired. □

23.3. Brauer’s theorem – statement and applications. Unless otherwise stated, all
representations in this subsection will be of finite groups on vector spaces over C.

Definition 23.16. A subgroup H Ă G is called p-elementary if it is a direct product
CˆP , where C Ă G is a cyclic group, and P Ă G is a p-group. Then H has a unique such
decomposition provided we impose the further condition that C has order prime to p.

Theorem 23.17 (Brauer’s theorem). We have

RpGq “
ÿ

HĂG
H p-elementary

IndGH RpHq.

In other words, the image of any finite dimensional representation of G in the representa-
tion ring of G is a Z-linear combination of (the images of) representations induced from
representations of p-elementary subgroups of G.
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This theorem has an important corollary, whose importance we will indicate afterwards in
the last two subsections of this lecture.

Corollary 23.18. For any finite dimensional representation π of G, the image rπs of π
in RpGq can be written as an integral linear combination

ř

i nirInd
G
Ki
ψis, where each Ki

is a subgroup of G and each ψi : Ki Ñ Cˆ is a homomorphism, i.e., a one-dimensional
representation.

Corollary 23.18 will be an immediate consequence of Theorem 23.17, once we prove that
each representation of a nilpotent group H is ‘monomial’, i.e., given such a representation
ρ, there exists a subgroup K Ă H and a one-dimensional representation ψ : K Ñ Cˆ

such that ρ “ IndHK ψ. Indeed, combine this fact with the transitivity of induction, i.e.,
the natural isomorphism between IndGK “ CrGs bCrKs ´ and IndGH ˝ IndHK “ CrGs bCrHs

pCrHs bCrKs ´q.

Changing notation H ù G, we will prove that this is true more generally for supersolvable
groups:

Definition 23.19. A finite group G is said to be supersolvable if there exists a chain

t1u “ G0 Ĺ G1 Ĺ ¨ ¨ ¨ Ĺ Gn

of subgroups of G such that each Gi is normal in G, and such that each Gi{Gi´1 is cyclic
(exercise: if this is satisfied we may further assume that each Gi{Gi´1 is cyclic of prime
order).

Note that

tp-elementary groupsu Ă tnilpotent groupsu Ă tsupersolvable groupsu Ă tsolvable groupsu.

Now given Theorem 23.17, Corollary 23.18 will follow from:

Proposition 23.20. If G is supersolvable, then any irreducible representation π of G over
C is monomial, i.e., there exists a subgroup H Ă G and a character ψ : H Ñ Cˆ such that
π – IndGH ψ.

Sketch of proof. Any quotient of G is supersolvable, so by induction, it is easy to reduce
to the case where π is faithful. Again, the case where G is abelian is immediate, so assume
that G is not abelian.

Since G is supersolvable, it has a normal abelian subgroup A which is not contained in
ZpGq: to see this note that Ḡ :“ G{ZpGq is supersolvable as well, and one can simply take
A to be the inverse image of a normal cyclic subgroup of Ḡ.

Since π is faithful, and A is not contained in the center of G, πpAq is not contained in
the center of πpGq, so that π|A is not χ-isotypic for any character χ : A Ñ Cˆ. Let
χ : A Ñ Cˆ be a character that is contained in π|A, and let Vχ Ă V be the χ-isotypic
subspace of pπ|A, V q. Since π|A is not χ-isotypic, the stabilizer H of Vχ in G is a proper
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subgroup of G. Note that ρpHq preserves Vχ, i.e., ρ restricts to a representation of Vχ on
H.

Moreover, it is clear that π, being irreducible, is a sum of the g-translates of the Vχ as g
ranges over a set rG{Hs of representatives of H in G. It is easy to see that this sum is
a direct sum (the translates land in spaces where A acts by distinct characters), so by a
description of induced representations given in Lecture 19 (Exercise 20.28), it follows that
IndGH Vχ “ π. Although Vχ may not be one-dimensional, we are done because we can apply
induction to the irreducible representation Vχ of H – Vχ is an irreducible representation
of H IndGH Vχ “ π is. Here, we used that H is supersolvable, and also that it is a proper
subgroup of G, so that induction can indeed apply to H. □

23.4. Application of Brauer’s theorem to field of definition. Notice that if ρ : G Ñ

GLkpV q is a representation of G over a field k, then for any field extension K{k, we get a
representation

G
ρ

Ñ GLkpV q
T ÞÑTbidK

Ñ GLKpV bk Kq

of G on the K-vector space V bk K. This representation will be denoted ρ bk K.

Definition 23.21. Let K be a field. We say that a representation ρ̃ : G Ñ GLKpṼ q of a
finite group G over K can be realized over a subfield k Ă K, if there exists a representation
pρ, V q of G on a vector space V over k, such that the representation pρ bk K,V bk Kq of
G on the K-vector space V bk K is isomorphic to pρ̃, Ṽ q.

Equivalently, ρ̃ : G Ñ GLKpṼ q can be realized over the subfield k Ă K if and only if
there exists a k-vector subspace V Ă Ṽ , which is G-stable (i.e., ρ̃pGq-stable) and satisfies
that the obvious map V bk K Ñ Ṽ (obtained from the bilinear scalar multiplication map
V ˆ K Ñ Ṽ ) is an isomorphism.

Corollary 23.22. Suppose that m is an exponent of the finite group G, i.e., gm “ 1 for
all g P G. Then:

(i) The obvious homomorphism RQpζmqpGq Ñ RCpGq, sending the image rπs of a rep-
resentation π over Qpζmq to rπ bQpζmq Cs, is an isomorphism.

(ii) Every representation of G over C can be realized over Qpζmq.

To deduce (ii) of the corollary from (i) of the corollary, we will use:

Proposition 23.23. Suppose ρ1 : G Ñ GLpV1q and ρ2 : G Ñ GLpV2q are nonisomorphic
irreducible representations of G over k. Then for any field extension K of k, no irreducible
subrepresentation of pρ1 bk K,V1 bk Kq is isomorphic to an irreducible subrepresentation
of pρ2 bk K,V2 bk Kq.

Proof. Extend pρ1, V1q, pρ2, V2q to a sequence pρ1, V1q, . . . , pρr, Vrq of irreducible represen-
tations of G over k, up to isomorphism. Then we have a ring isomorphism given by the
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action map,

(99)
r

ź

i“1

ρi : krGs Ñ

r
ź

i“1

EndDi
pViq,

where Di “ EndGpViq, and this is the decomposition of krGs into simple rings. Note
that this is also G ˆ G-equivariant, if we let the action of ph, gq send A P EndDi

pViq to
ρiphqAρipgq´1.

Tensoring over K, we get a ring isomorphism

KrGs Ñ

r
ź

i“1

pEndDi
pViq bk Kq,

again given by an action map (but the rings on the right-hand side are no longer necessarily
simple). Therefore, viewing the isomorphism for KrGs analogous to (99) as an identifica-
tion, in terms of simple rings, we conclude that pEndD1pV1q bk Kq and pEndD2pV2q bk Kq

each identify with products of the form
ś

i EndD1,i
pV1,iq and

ś

j EndD2,j
pV2,jq, where the

V1,i and the V2,i are irreducible representations of G over K.

Clearly, no V1,i is isomorphic to any V2,j. It therefore suffices to observe that the V1,i
are precisely the irreducible components of V1 bk K, and that the V2,j are precisely the
irreducible components of V2 bkK: this follows from the fact that each EndDi

pViq bkK, as
a representation of G – G ˆ t1u acting via g ¨ A “ g ˝ A (which is what makes the action
map G ˆ t1u-equivariant), is a sum of copies of Vi bk K. □

Proof of Corollary 23.22, assuming Theorem 23.17. By Corollary 23.18, (i) will follow if
we show that for each subgroup H Ă G and each homomorphism ψ : H Ñ Cˆ, ψ can
be defined over Qpζmq. But this is the case because H has m as an exponent, so that
ψpHq Ă Qpζmq, proving (i).

Let us deduce (ii). We will use the following notation: for each representation ρ of G over
Qpζmq, we will abbreviate ρbQpζmq C to ρC, and given a P RQpζmqpGq, we will write rasC for
its image in RCpGq.

It suffices to show that any irreducible representation ρ̃ of G over C such that rρ̃s P RCpGq

lies in the image of RQpζmqpGq Ñ RCpGq, is of the form ρC for some (necessarily irreducible)
representation ρ of G over Qpζmq.

Since rρ̃s is in the image of RQpζmqpGq, we can write rρ̃s “
ř

i nirρisC, where each ni is
an integer and each ρi is an irreducible representation of G over Qpζmq. It suffices to
show that each ni is nonnegative: that would imply that, setting ρ :“

À

i ρ
‘ni
i , we have

rρCs “
ř

i nirρisC “ rρ̃s, so that χρ̃ “ χρC , from which it follows that ρ̃ – ρC, as desired.

Suppose for contradiction that some ni0 is nonnegative. Write pρiqC “
À

j ρ̃
mi,j

i,j , with each

ρ̃i,j irreducible. Then in RCpGq, we can write rρ̃s “
ř

i,j nimi,jrρ̃i,js. By Proposition 23.23,

ρ̃i0,j fl ρ̃i1,j1 for any i1, j1 with i1 ‰ i0, so that in the expansion rρ̃s “
ř

i,j nimi,jrρ̃i,js,

ni0mi0,j ă 0 for all the pi0, jq that occur (which is a nonempty set), giving the desired
contradiction. □
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23.5. Motivation for Brauer’s theorem from number theory. This subsection is
optional, but recommended to skim over.

Now let us explain what is probably the main number-theoretic motivation for Brauer’s
theorem, very informally. Recall that the holomorphy at s “ 1 of the Dirichlet L-functions
Lps, χq, associated to Dirichlet characters χ : pZ{NZqˆ Ñ Cˆ “ GL1pCq (with N varying)
was crucial in the proof of Dirichlet’s theorem on arithmetic progressions.

Now a Dirichlet character χ : pZ{NZqˆ Ñ Cˆ can be viewed as a special case of a
representation of GalpQ̄{Qq: if ζN is a primitive N -th root of unity, then one can show
that QpζNq{Q is Galois, and that sending σ P GalpQ̄{Qq to the uniquely defined l P Z{NZ
such that σpζNq “ ζ lN , defines an isomorphism

(100) GalpQpζNq{Qq Ñ pZ{NZq
ˆ,

giving a ‘Galois representation’ (by which we mean the composite)

GalpQ̄{Qq Ñ GalpQpζNq{Qq Ñ pZ{NZq
ˆ χ

Ñ Cˆ.

Note that the isomorphism (100) does not depend on the choice of ζN , since any two choices
of ζN are powers of each other. The main point of the proof of (100) is the irreducibility
of the cyclotomic polynomial associated to N over Q.

Artin’s L-function is defined in such a way that if ρ is a one-dimensional representation
associated to a Dirichlet character χ as above, then Lps, ρq “ Lps, χq.

The precise definition of Lps, ρq, for a representation GalpQ̄{Qq Ñ GalpK{Qq Ñ GLNpCq

with K{Q finite Galois, involves number theory, and is only given as an Euler product over
primes, that converges in some Re s " 0.

Question: How do we complete this definition by at least continuing Lps, ρq meromorphi-
cally (in the complex variable s) to C?
This was perhaps Artin’s main motivation. We will explain more below.

In fact, to generalize the result that Lps, χq is holomorphic on C for nontrivial χ, Artin
conjectured:

Conjecture 23.24. If ρ : GalpQ̄{Qq Ñ GLmpCq is an irreducible Galois representation
factoring through GalpK{Qq for some finite Galois extension K{Q, and if ρ is nontrivial,
then Lps, ρq analytically continues to a holomorphic function on C.

But how does one either prove such a result or answer the question mentioned above (about
meromorphic continuation), especially when Lps, ρq is only defined in some ‘sufficiently
right’ half plane as an Euler product?

We already know that the conjecture is true for those ρ associated to a Dirichlet character
χ. This takes care of the case where ρ is one-dimensional. This can be pushed a bit
further, and one can show the following: if ρ : GalpQ̄{Qq Ñ GLmpCq factors through

ρ̄ : GalpK{Qq Ñ GLmpCq, and if ρ̄ is of the form Ind
GalpK{Qq

GalpK{K0q
ξ, where ξ : GalpK{K0q Ñ Cˆ

is a homomorphism, then one can show that the conjecture is true for ρ, i.e., Lps, ρq extends
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to an analytic function on C. Namely, this involves a slight generalization of the definition
of Lps, χq with Q replaced by the number field K0, where in place of of a Dirichlet character
one considers its generalization called a Hecke character, associated to ξ : GalpK{Qq Ñ Cˆ

using class field theory ((100) is also part of class field theory, and is being generalized here).

WriteG “ GalpK{Qq, and consider Lps, ρq, where ρ varies over representations of GalpK{Qq,
attached to ρ (pulled back to GalpQ̄{Qq). The above discussion says that we know the an-
alytic continuation for Lps, ρq when ρ is of the form IndGH ξ, where H Ă G, and ξ : H Ñ Cˆ

is a character.

Moreover, the definition of Lps, ρq is such that Lps, ρ1 ‘ ρ2q “ Lps, ρ1qLps, ρ2q. Thus, one
can get meromorphic continuation for Lps, ρq if one knows that

ρ “
à

i

ρ‘ni
i ,

where each ρi is of the form IndGHi
ξi, and each ni P Z (since the meromorphic continuation

is known for each Lps, ρiq). This is precisely what Brauer’s theorem does. This completes
our description of the number theoretic motivation for Brauer’s theorem.

Note that this only gives meromorphic continuation, and does not imply that Lps, ρq is
analytic for nontrivial irreducible ρ. In fact, this assertion is still open; many special
cases that have been proved are spectacular results, but these in a sense constitute a
tiny proportion of the total number of cases. It seems to be generally understood that
to prove such an analyticity, like in the dimension one case, one will need to attach to
ρ : GalpK{Qq Ñ GLmpCq an object generalizing a Dirichlet character.

(Lots of caveats apply to all of the following). When m “ 2 an object of this sort is a
modular form, for larger m such an object is what is known as an automorphic representa-
tion, etc. The point is: though a modular form might appear complicated, one can attach
an L-function to a modular form (just like to a Dirichlet character), and prove its analytic
continuation, which is very difficult to do for Artin’s Lps, ρq.

Thus, one wants to see if one can get a ‘correspondence’ between ‘Galois representations’
and ‘automorphic representations’. This is the subject of study of an important and influ-
ential area of mathematics called the Langlands program, named after Robert Langlands.
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24. Lecture 24 – Algebraic closure, separable extensions

Today, unless otherwise specified, k,K,L etc. will denote fields.

24.1. Existence of algebraic closure. Recall that a field extension of a field k is a k-
algebra that is a field; e.g., kptq Ñ kptq, t ÞÑ t2, is a field extension. Recall that any
homomorphism of fields is injective. We will use the following facts from field theory, so
we leave them as exercises (similar but more basic facts may be implicitly assumed):

Exercise 24.1. (i) If K{k is an algebraic field extension, then any k-algebra homo-
morphism K Ñ K is an isomorphism.
Hint/note: This is immediate if K is generated by a single element over k (i.e.,
as a k-algebra). The general case can be reduced easily to this. See Lemma 2.1,
Chapter V (Algebraic extensions) of Serge Lang’s book.

(ii) A splitting field of any finite family tfj | j P Ju Ă krxs of polynomials in krxs

is unique up to a usually non-unique isomorphism, and embeds into any other
extension in which f splits into linear factors (the infinite case will be considered
below).

Remark 24.2. The zero ring is a k-algebra. It is the unique final object in the category
of k-algebras, k being the unique initial object.

We first prove Artin’s theorem that any field k has an algebraic closure:

Theorem 24.3. Any field k has an algebraic closure, i.e., there exists an extension k ãÑ L
such that L{k is algebraic, and such that L is algebraically closed.

Proposition 24.4. If k is a field and I Ă krxs is an arbitrary family of polynomials in
krxs, then this family is split by some field: there exists a field extension L{k such that each
f P I splits into linear factors in Lrxs (constant polynomials are assumed by convention to
be already split into linear factors).

Proof that Proposition 24.4 implies Theorem 24.3. Let I “ krxs, and choose L as in Propo-
sition 24.4. The set of elements of L that are algebraic over k form a subfield L0 Ă L, and
all polynomials in krxs clearly split completely in L0, so we may replace L with L0 and
assume that L is algebraic over k. It is enough to prove that L is algebraically closed.

If not, it has a finite nontrivial algebraic extension Lrαs. Then α is algebraic over L and
hence over k, and is therefore a root of an irreducible polynomial f P krxs. However, since
L splits f , this forces α P L, a contradiction to Lrαs{L being nontrivial. □

Proof of Proposition 24.4. The main ideas in the two proofs of this theorem that we will
outline/discuss seem to be:

(i) Any finite collection of polynomials in krxs has a splitting field; and
(ii) Using Zorn’s lemma, this can be extended to infinite collections.
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A crude outline of one proof is as follows: any algebraic extension of k can be shown
to have cardinality at most maxpℵ0, |k|q, where ℵ0 is the cardinality of the set of nat-
ural numbers, so choose a set S of bigger cardinality, and consider the collection of
all algebraic extensions k ãÑ K such that the underlying set of K is a subset of S.
These form a set, and one can use a Zorn’s lemma argument. For more details, see
https://stacks.math.columbia.edu/tag/09GP

Now we discuss another proof, which I have taken from a post by Tom Leinster in n-
category cafe ( https://golem.ph.utexas.edu/category/2021/04/algebraic closure.html ),
which is based on a proof expounded by Keith Conrad, in turn based on an argument
by Zorn in the paper where he first introduced Zorn’s lemma.

It is enough to show that there exists a nonzero k-algebra k ãÑ S, such that each polynomial
in I splits into linear factors in S. Indeed, given such an S, let m Ă S be a maximal ideal,
and set L :“ S{m (note that the existence of such an m depends on Zorn’s lemma). Then
k Ñ L is an algebraic extension in which each element of I splits into linear factors.

Now let us construct such an S. For each f P krxs of degree at least 1, we can not only
construct a canonical field extension containing a root of f , but also a “splitting ring
extension” that splits f completely:

SRkpfq “ krαf,1, . . . , αf,deg f s{Jf ,

where krαf,1, . . . , αf,deg f s is a polynomial ring in deg f -many variables, and Jf Ă krαf,1, . . . , αf,deg f s

is the ideal generated by the coefficients of:

fpxq ´ a
deg f
ź

i“1

px ´ αf,iq,

where a is the leading coefficient of f . If f is constant, set SRkpfq “ k.

One can similarly define SRkpI 1q for each subset I 1 Ă krxs:

(101) SRkpI 1
q “ krtαf,i | f P I 1, 1 ď i ď deg fus{JI 1 ,

where JI 1 is the ideal generated by the Jf as f varies over I 1 (note that when I 1 is finite,
SRkpI 1q is the coproduct of the SRkpfq as f varies over I 1, in the category of commutative
k-algebras). Here, for those f P I 1 which are constant, by convention there are no αf,i, and
no contribution to JI 1 .

We would be done if we could show that SRkpIq is nonzero, but this does not seem easy.
However, it is easy to see that SRkpI 1q is nonzero for each finite subset I 1 Ă krxs: this is
because there is a finite extension K{k in which each f P I 1 splits into linear factors, and
then the map krtαf,i | f P I 1, 1 ď i ď deg fus Ñ K sending, for each f P I 1, αf,1, . . . , αf,deg f
to the roots of f in K arranged in some order, vanishes on JI 1 . Hence it factors through a
ring homomorphism SRkpI 1q Ñ K that sends 1 to 1, and is hence nonzero (since 1 ‰ 0 in
K), forcing SRkpI 1q ‰ 0.

One now considers the collection of finite subsets I 1 Ă krxs, and make them into a directed
set pI,ďq under inclusion. There is an obvious map SRkpI 1q Ñ SRkpI2q whenever I Ă I 1,
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induced by sending each αf,i to αf,i, and this gives a directed system of rings indexed by
I. Set:

S :“ lim
Ñ
I 1

SRkpI 1
q.

The point is that S is a directed colimit of nonzero rings, and is hence nonzero: this is
because otherwise we get 0 “ 1 in S, which would force the same to be the case in SRKpI 1q

for some finite set I 1, a contradiction. Clearly any nonconstant polynomial in krxs factors
into linear polynomials in S, as desired. □

Proposition 24.5. Let K{k be an algebraic extension.

(i) If k ãÑ L is any field extension with L an algebraically closed field, there exists a
k-algebra embedding K ãÑ L.

(ii) In the situation of (i), if further K is algebraically closed and L is an algebraic
extension of K, then any embedding σ : K ãÑ L as in (i) is an isomorphism.

(iii) An algebraic closure of k is unique up to an isomorphism (though usually not up to
a unique isomorphism).

Proof. First let us sketch a proof of (i). If K “ krαs, where the minimal polynomial of α is
f , then we can map α P K to any root of f in L. The general case of (i) is an easy Zorn’s
lemma argument based on this; see Theorem 2.8 in Serge Lang’s book.

In the situation of (ii), note that σ is automatically injective (being a homomorphism of
fields), but also surjective since σpKq is algebraically closed and L is algebraic over σpKq.
(iii) follows from (ii). □

Now let us study the non-uniqueness of the isomorphism up to which an algebraic closure
is unique:

Lemma 24.6. Let Fld be the category of fields, AlgClosF ld the full subcategory of alge-
braically closed fields, and G : AlgClosF ld ù Fld the obvious inclusion functor.

(i) Algebraic closure cannot be defined functorially, i.e., there is no functor F : Fld ù

AlgClosF ld together with a natural transformation ϵ : idFld ù G ˝ F , with the
property that for all fields k, ϵpkq : k Ñ G ˝ F pkq is an algebraic closure of k.

(ii) The subcategory AlgClosF ld of Fld is not a reflective subcategory, i.e., there is no
left adjoint F : Fld ù AlgClosF ld to G : AlgClosF ld ù Fld.

Remark 24.7. The condition in (i) of the lemma is exactly the functoriality of the algebraic
closure: the datum of an algebraic closure of k is not just an algebraically closed field k̄, but
comes with the datum of a field extension k ãÑ k̄ as well. The functoriality of the algebraic
closure refers to defining the algebraic closure at the level of morphisms as well, in such a
manner that k ãÑ k̄ is functorial in k; in otherwords, it includes a natural transformation
from the identity functor idFld : k Þ⇝ k to the putative algebraic closure functor k Þ⇝ k̄.
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Proof of Lemma 24.6. Let us prove (i). The reason for the failure of the condition in (i)
will turn out to be the fact that an algebraic closure typically has nontrivial automorphisms
over the base field, so fix any pair pι : k ãÑ L, σq consisting of an algebraic closure ι : k ãÑ L
of a field k, and a nontrivial k-algebra automorphism σ : L Ñ L. For instance ι : k ãÑ L
could be the inclusion R ãÑ C, and σ could be the complex conjugation.

If such a functor F existed, we would then get a commutative diagram as follows:

L

σ

��

ϵpLq
// F pLq – L

F pσq

��

k

ι

]]

ι
��

ϵpkq
// F pkq – L

F pιq
88

F pιq &&
L

ϵpLq
// F pLq – L

.

Here, the commutativity of the rectangle and the two trapezia is a consequence of the
naturality of ϵ. Note that, by definition, each horizontal arrow in the above diagram is
an algebraic closure. The commutativity of the rectangle in the above diagram, together
with the fact that σ is nontrivial, would force F pσq to not be the identity map F pLq Ñ

F pLq, while the commutativity of the right triangle would force F pσq to be the identity, a
contradiction.

This proves (i), and we come to (ii). If such a left-adjoint F existed, then since G is fully
faithful, problem 1 of HW 3 would imply that the counit of an adjunction between F and
G would be a natural isomorphism ϵ : F ˝G ù id. In particular, F pLq “ F ˝GpLq would
be isomorphic to L if L is algebraically closed. Now consider, for a finite field Fq and an
algebraic closure Fq ãÑ F̄q of it, the chain of bijections:

HomFldpFq, F̄qq
via F̄q – GpF̄qq

Ñ HomFldpFq, GpF̄qqq Ñ HomFldpF pFqq, F̄qq.

The left-hand side is clearly finite, since any homomorphism Fq ãÑ F̄q has image in the
copy of Fq inside F̄q (since this copy is defined by xq “ x), while it is easy to see that
F pFqq, being an algebraically closed field contained in F pF̄qq – F̄q, is isomorphic to F̄q, so
the right-hand side is not finite. □

Remark 24.8. The condition defining a reflective subcategory, that of its inclusion having
a left adjoint, is something we have seen often: AbGrp is a reflective subcategory of Grp,
since the inclusion functor AbGrp ù Grp has abelianization as a left adjoint. Another
example is the inclusion of the category of compact Hausdorff topological spaces in the
category of all topological spaces, which has the Stone-Čech compactification as a left
adjoint.

24.2. Separable degree. The uniqueness of algebraic closure, even though up to a non-
unique isomorphism, allows us to define the notion of separable degree.
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Corollary 24.9. If K{k is an algebraic extension, then for any two algebraically closed
field extensions L1, L2 of k, there is a bijection

Homk-AlgpK,L1q Ñ Homk-AlgpK,L2q.

Proof. Without loss of generality, we may and do assume that L1 is an algebraic closure
of k. Then by Proposition 24.5(i), there exists a k-algebra embedding σ : L1 ãÑ L2. Now
σpL1q Ă L2 is an algebraically closed field containing k, so any k-algebra homomorphism
K Ñ L2 factors through σpL1q, and hence through L1. Therefore, composing with σ gives
the required bijection. □

We would like to study k-Algfc, the category of finite commutative k-algebras, where finite
means finite dimensional as a vector space over k (and in particular Artinian). Since we
are going to frequently encounter the following notation, we state it separately:

Notation 24.10. We will frequently use the following notation.

(i) If A P Ob k-Algfc, then by the structure theory for commutative Artinian rings, we
have a decomposition

A “

r
ź

i“1

Ai,

with each Ai Artinian local.
(ii) Note that each Ai as above has an obvious structure of a k-algebra: k Ñ A Ñ Ai,

something that will be used without mention from now on.
(iii) For 1 ď i ď r, if mi “ radpAiq is the radical – or in other words the unique

maximal ideal – of the Artin local ring Ai, then mi Ă Ai is nilpotent (the radical
of an Artinian ring being nilpotent), and the residue field Ki :“ Ai{mi is a finite
extension of k, via

k ãÑ Ai Ñ Ai{mi “ Ki.

Exercise 24.11. Show that, in the setting of Notation 24.10, the map A Ñ
śr

i“1Ai Ñ
śr

i“1Ki induces isomorphisms

A{ radpAq Ñ

r
ź

i“1

pAi{ radpAiqq “

r
ź

i“1

pAi{miq Ñ

r
ź

i“1

Ki.

In what follows, we will use this frequently as well.

Remark 24.12. If k is algebraically closed, each inclusion k ãÑ Ki is an isomorphism
(since dimkKi ă 8), and hence

(102) A{ radpAq –

r
ź

i“1

Ki –

r
ź

i“1

k

is a product of copies of k. This will be used often in what follows as well.
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Corollary 24.13. If A is a finite commutative k-algebra, then there exists a unique natural
number rA : kss such that for any k-algebra k ãÑ L with L an algebraically closed field,

rA : kss “ #Homk-AlgpA,Lq.

Proof. For any two algebraically closed field extensions L1, L2 of k, the proof of Corollary
24.9 goes through to give a bijection Homk-AlgpA,L1q Ñ Homk-AlgpA,L2q – use that the
image of any k-algebra homomorphism A Ñ L2 is an integral domain (being contained in
L2) which is finite dimensional over k (since dimk A ă 8), and is hence a field. Therefore,
the right-hand side is independent of the choice of L.

It remains to see that it is finite; let us do it in a manner that will also give us a picture
of how elements of Homk-AlgpA,Lq look like. Associate to A the Ai and the Ki, 1 ď i ď r,
as in the above discussion. Then each k-algebra homomorphism A Ñ L factors through
A Ñ Ai for a unique 1 ď i ď r (use that AiAj “ 0 in A for i ‰ j), and then through
A Ñ Ki (since mi “ radpAiq is nilpotent), giving us a bijection

Homk-AlgpA,Lq Ñ

r
ğ

i“1

Homk-AlgpKi, Lq.

Now note that for each 1 ď i ď r, Homk-AlgpKi, Lq is finite as dimkKi ď dimk Ai ď

dimk A ă 8. □

Definition 24.14. (i) For a finite commutative k-algebra A, the number rA : kss as
in Corollary 24.13 will be called the separable degree of A over k.

(ii) For each algebraic (possibly infinite) field extension K of k, we similarly have rK :
kss :“ #Homk-AlgpK,Lq P Ně1 Y t8u independent of the choice of an algebraically
closed field L containing k. Since K{k may be finite, we are allowing the possibility
rK : kss “ 8.

Remark 24.15. It is possible that a more correct approach would be to unify the above
two definitions by defining rA : kss for a class of A that includes both finite commutative k-
algebras and possibly infinite algebraic field extensions. Possibly, the ‘correct category’ to
look at is that of k-algebras A that are directed colimits of finite commutative k-algebras.
However, right now I don’t have the time to figure out the correct thing.

Notation 24.16. For a finite commutative k-algebra A, we will write rA : ks for dimk A.
Thus, rA : ks generalizes the notion of the degree of a field extension. (Like with fields, we
will see that we have rA : kss ď rA : ks, with equality defining the notion of separability.)
Similarly, we have rK : ks “ dimkK P Ně1 Y t8u for an algebraic field extension K{k.

Example 24.17. If k is algebraically closed, and A “
śr

i“1Ai is a finite commutative
k-algebra, with each Ai local, then we claim:

rA : kss “ dimk A{pradAq “ r ď dimk A “ rA : ks.
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This follows from the fact that, by Remark 24.12, we have for any algebraically closed field
L containing k (please work out all the steps below as an exercise):

rA : kss “ #Homk-AlgpA,Lq “ #Homk-AlgpA{ radpAq, Lq “ #Homk-Alg

´

r
ź

i“1

k, L
¯

“ r ď dimk A “ rA : ks.

Proposition 24.18. If K{E{k is a chain of field extensions, then (with the understanding
that n ¨ 8 “ 8 ¨ n “ 8 for all n P Ně1 Y t8u):

rK : kss “ rK : Ess ¨ rE : kss.

Proof. Let k ãÑ L be a k-algebra with L an algebraically closed field. By Proposition
24.5(i), restriction from K to E induces a surjection

Homk-AlgpK,Lq Ñ Homk-AlgpE,Lq.

Since these sets have cardinalities rK : kss and rE : kss, it is enough to show that the fiber
of the above map over each φ P Homk-AlgpE,Lq has cardinality rK : Ess. But this is so
by the definition of rK : Ess, because this fiber is precisely HomE-AlgpK,Lq, where L is
thought of as an E-algebra via φ : E ãÑ L (thus, the point is that this fiber has cardinality
rK : Ess independently of φ : E ãÑ L, by Corollary 24.9). □

Exercise 24.19. Formulate an analogue of Proposition 24.18 that applies with K and
E replaced by finite commutative k-algebras A and A1. Note that the formulation will
necessarily be less simple than in the proposition.

One motivation for studying separable degree is the following easy lemma:

Lemma 24.20. If K “ krαs is a finite algebraic field extension of k generated by a single
element α with minimal polynomial, say f P krxs, then for any algebraically closed field L
containing k, rK : kss is the number of distinct roots of f in L.

Proof. Immediate from basic field theory. □

The assertion in the following exercise, or equivalently (103), will be used often in what
follows.

Exercise 24.21. If R Ñ S is a morphism of rings, recall the Hom-tensor adjointness
isomorphism

HomSpS bRM,Nq Ñ HomRpM,Nq,

for all left R-modules M and left S-modules N , given by composition with the map M Ñ

SbRM sending each m to 1bm. When R and S are commutative, M is an R-algebra and
N is an S-algebra, verify that the above adjunction isomorphism restricts to a bijection:

(103) HomS-AlgpS bRM,Nq Ñ HomR-AlgpM,Nq.

In particular, the extension of scalars functor S bR ´ : R-Alg ù S-Alg is left adjoint to
the restriction of scalars functor S-Alg ù R-Alg.
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Proposition 24.22. (i) If A{k is a finite commutative k-algebra, and F {k is a (not
necessarily algebraic) field extension, then rA : kss “ rF bk A : F ss (sanity check:
F bk A is a finite commutative F -algebra).

(ii) If k is algebraically closed, then rA : kss “ rA{ radpAq : ks ď rA : ks.
(iii) We have rA : kss ď rA : ks :“ dimk A. Similarly, rK : kss ď rK : ks for any

algebraic field extension K{k.

Remark 24.23. An assertion like (i) seems difficult to formulate if we work with only
field extensions and not finite commutative k-algebras; this is because fields are not closed
under tensor product. Thus, working with finite commutative k-algebras seems to give us
better flexibility.

Proof of Proposition 24.22. For (i), let L{F be an extension with L algebraically closed,
so we have k ãÑ F ãÑ L, which we use to compute rA : kss. Then by (103), with k, F,A
and L in place of R, S,M and N , we have a bijection

Homk-AlgpA,Lq Ñ HomF -AlgpA bk F,Lq,

which gives rA : kss “ rA bk F : F ss. Thus, (i) holds.

(ii) has already been worked out in Example 24.17. To see (iii) for finite commutative k-
algebras – we leave it as an exercise to deduce the field extension case from there – letting
L be an algebraic closure of k, we have

rA : kss
(i)
“ rA bk L : Lss

(ii)

ď rA bk L : Ls “ rA : ks.

□

24.3. Separable algebras.

Definition 24.24. (i) A finite commutative k-algebra A is said to be separable or
étale over k if the inequality rA : kss ď rA : ks from Proposition 24.22(iii) is an
equality.

(ii) If K{k is a field extension and α P K is algebraic over k, we say that α is separable
over k if krαs{k is a separable field extension.

(iii) If K{k is an infinite algebraic field extension, we say that K{k is separable if each
finite subextension of K{k is. Note that, a priori, this definition applies only to
infinite extensions. Though this is unsatisfactory in that the definitions for finite
and infinite extensions seem very different from each other, it will follow from
Corollary 24.33 below (see Remark 24.34) that an equivalent finiteness-agnostic
definition for separability of field extensions can be given.

(iv) A finite extension K{k of fields is called purely inseparable if rK : kss “ 1. An infi-
nite extension K{k of fields is called purely inseparable if every finite subextension
of K{k is purely inseparable.

(v) If R Ñ S is a homomorphism of commutative rings, such that S is a finite free
R-module, we will write trS{R : S Ñ R (resp., NS{R : S Ñ R) for the map that
sends each a P S to the trace (resp., the determinant) of the ‘multiplication by a’
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map pa ÞÑ saq P EndRpSq. (Exercise: make sense of trS{R when S is only finite
projective over R). Note that trS{R : S Ñ R is a homomorphism of additive groups,
while NS{R : S Ñ R is a homomorphism of multiplicative monoids.

(vi) Further, if R and S are as above, we use the same notation trS{R to also denote the
(clearly symmetric) bilinear form:

trS{R : S ˆ S Ñ S,

that sends pa, bq P S ˆ S to trS{Rpabq.
The definition of trS{R will be of interest to us mainly when R is a field k and A

is a finite commutative algebra over it.

The following lemma gives us a feel for separability of elements:

Lemma 24.25. If K{k is a field extension and α P Kzt0u is algebraic over k, then the
following are equivalent:

(i) α is separable over k.
(ii) The minimal polynomial f P krxs of α is separable, i.e., f has distinct roots in L

for some or equivalently any algebraically closed field L containing k.
(iii) f 1 ‰ 0.

These conditions are violated if and only if the following hold: char k is some p ą 0, and
we can write fpxq “ gpxpq for some g P krxs.

Proof. The equivalence of (i) and (ii) is an immediate consequence of the definition and
Lemma 24.20. Let us show that (ii) is equivalent to (iii). f has a repeated root if and
only if α itself is a repeated root of f , which is the case if and only if f 1pαq “ 0: use
Leibniz’ product rule, which gives that if fpxq “ px ´ α1q . . . px ´ αrq with α “ α1, then
f 1pαq “

ś

pα´α2q . . . pα´αrq. Since f is a minimal polynomial for α and deg f 1 ă deg f ,
this is the case if and only if f 1 “ 0; in other words, we have (ii) ðñ (iii).

For the last assertion, note that f 1 never vanishes in characteristic zero (the minimal
polynomial of α P Kzt0u is nonconstant), and that when char k “ p ą 0, f 1 vanishes if and
only if f is a polynomial in xp, i.e., if and only if fpxq “ gpxpq for some g P krxs. □

Example 24.26. Thus, it follows that if k is of characteristic zero, any algebraic field
extension of k is separable. On the other hand, if k is a field of characteristic p and if there
exists a P kˆzpkˆqp, then fpxq “ xp ´ a is irreducible, and adjoining a root α of f gives an
extension krαs{k which is purely inseparable, since f is a polynomial in xp.

In particular, when char k “ p ą 0, the extension kptq Ñ kptq given by t ÞÑ tp is not
separable (this example recalls that field extensions are really homomorphisms and not
necessarily “physical inclusions”).

Example 24.27. Assume that k is algebraically closed, and that A{k is a finite commu-
tative k-algebra. We claim that the following are equivalent:

(i) A is separable over k.
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(ii) A is reduced, i.e., radpAq “ 0.
(iii) A is a product of copies of k.

Indeed, the equivalence of the first two conditions follows from Proposition 24.22(ii), and
the equivalence of the second and the third conditions follows from (102).

Proposition 24.28. Given any finite commutative algebra A over a field F , and any field
extension F {k (not necessarily algebraic), A is separable over k if and only if A bk F is
separable over F .

Proof. This is immediate from the equality rA : kss “ rF bkA : F ss (Proposition 24.22(i)).
□

Proposition 24.29. For a finite commutative k-algebra A and an algebraically closed field
L containing k, the following are equivalent and independent of L:

(i) A is separable over k, i.e., #Homk-AlgpA,Lq “ rA : ks.
(ii) For some or equivalently any algebraically closed field L containing k, A bk L is

reduced, i.e., semisimple; equivalently, A is ‘absolutely semisimple’ or ‘geometrically
semisimple’, or ‘geometrically reduced.

(iii) A bk L is a product of copies of L.
(iv) A bk K is reduced for any field extension K{k.
(v) The symmetric bilinear form tr “ trA{k : A ˆ A Ñ k is nondegenerate.
(vi) Homk-AlgpA,Lq Ă HomkpA,Lq is an L-vector space basis for HomkpA,Lq.

Slogan: Separable = ‘absolutely semisimple’ = ‘geometrically semisimple’ = ‘geometrically
reduced’.

Exercise 24.30. Example/exercise: Assuming Proposition 24.29, show that if V is a
finite dimensional vector space over k, and T P EndkpV q, then T is semisimple over V –
i.e., diagonalizable over some algebraic closure of k – if and only if the k-algebra krT s Ă

EndkpV q is separable.

Remark 24.31. It seems instructive to note that each of the conditions in Proposition
24.29 is invariant under replacing A and k by AbkL and L. 69 This claim is enough to see
for the conditions (i), (iv), (v) and (vi). In the case of (i), this follows from Proposition
24.28. In the case of (iv), this follows from the fact that any field is contained in an
algebraically closed field, and tensoring with a field extension does not kill any element,
and in particular preserves nilpotents. In the case of (v), this follows from the fact that
the nondegeneracy of a bilinear form can be detected by its determinant, which may be
computed after a base-change. For the condition (vi), this follows from the identities
Homk-AlgpA,Lq – Homk-AlgpAbk L,Lq and HomkpA,Lq – HomLpAbk L,Lq, which follow
from Hom-tensor adjointness.

69And indeed, the proof will show how things simplify when we can base-change to an algebraically
closed field. Again, this illustrates the flexibility involved in considering algebras, where we can take tensor
products.
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Proof of Proposition 24.29. Once we prove the equivalence of the conditions, it will follow
that they are independent of L, since (i) is. Further, by Remark 24.31, we may replace
A with A bk L and assume without loss of generality that k “ L is algebraically closed
(though this assumption will not be used when we deal with (vi)).

The equivalence of the first three conditions follows from Example 24.27. Since (i) is
independent of L, it follows that so is (ii). Since every field is contained in an algebraically
closed field, it is now easy to see that (ii) is equivalent to (iv). I am tempted to call this
as “separable = universally reduced”, but that is probably bad terminology.

Now let us prove the equivalence of these conditions with (v). If A “
śr

i“1Ai with each Ai
local, it is immediate that the bilinear form trA{k is the orthogonal sum of the trAi{k, and
that A{k is separable if and only if each Ai{k is (because both rA : ks and rA : kss respect
product decompositions in A). So we may and do assume that A is Artin local over k “ L.

In this case, if A is separable, then A “ L (the equivalence of (i) and (iii)), and trA{L “ trA{k

simply takes pa, bq to ab, which is clearly nondegenerate. On the other hand, if A is not
separable, we know from the equivalence of (i) and (ii) that A contains a nonzero nilpotent
element a P A, which is clearly in the radical of trA{k: for all b P B, ab P A is nilpotent, so
mab : A Ñ A, being a nilpotent linear operator, has trace zero.

The equivalence between (i) and (vi) follows because HomkpA,Lq is an L-vector space
of dimension rA : ks, and the elements of Homk-AlgpA,Lq are linearly independent by
Dedekind’s linear independence of characters, Theorem 24.32 below, and hence span a
subspace of dimension rA : kss. □

Theorem 24.32. Let G be a monoid, and K a field. Let χ1, . . . , χr be distinct characters
(i.e., monoid homomorphisms, which by definition are required to take 1 to 1) 70 G Ñ K.
Then χ1, . . . , χr are linearly independent elements of the K-vector space MapspG,Kq of
maps G Ñ K.

Proof. If r “ 1, there is nothing to prove, since χ1 ‰ 0 (since it sends 1 P G to 1 P K).

Now suppose r ą 1 and that χ1, . . . , χr is a minimal collection of linearly dependent
characters, and say

(104)
r

ÿ

i“1

aiχi “ 0

for some a1, . . . , ar P K, not all zero – in fact, each nonzero by minimality. Since χ1 ‰ χ2,
let z P G be such that χ1pzq ‰ χ2pzq. Then, since the above equation remains true after
replacing each χi by pg ÞÑ χipzgqq “ χipzqχ, we get

(105)
r

ÿ

i“1

aiχipzqχi “ 0.

70In fact, it seems that we can do with much weaker assumptions: G just needs to have some binary
operation, and the χi just need to each intertwine the operation on G with multiplication in K, each be
nonzero, and be pairwise distinct.
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Multiplying (104) by χ1pzq and subtracting (105), we get
r

ÿ

i“2

aipχipzq ´ χ1pzqqχi “ 0,

which is a nontrivial relation as χ2pzq ‰ χ1pzq and a2 is nonzero. This contradicts the
minimality of r. □

Corollary 24.33. (i) Subalgebras, quotients (i.e., by an ideal), products and tensor
products of finite separable algebras over k are separable (thus, being a quotient,
the image of any finite separable k-algebra under a k-algebra homomorphism is
separable too).

(ii) If tAiui is a collection of separable algebras contained in a finite commutative k-
algebra A, then the subalgebra of A generated by the Ai’s is separable.

(iii) If A is a finite commutative algebra over k, then there is a k-subalgebra As of A
such that As is separable over k, and such that any other separable k-subalgebra B
of A is contained in As.

(iv) An algebraic field extension K{k is separable if and only if K is generated over k
generated by a family of elements that are separable over k, and equivalently if and
only if it is generated by a family of subextensions that are separable over k.

(v) If K{k is an algebraic field extension, E,F Ă K are subextensions of K{k, and
E{k is separable, then so is EF {F .

(vi) If K{E{k is a chain of field extensions with K{k algebraic, then K{k is separable
if and only if K{E and E{k are.

Remark 24.34. Once we prove (i) of the proposition, it follows that a commutative finite
k-algebra is separable if and only if each finite k-subalgebra of it is, so that the definition
of separability for infinite field extensions given in Definition 24.24 can also be applied to
finite field extensions. Please keep this in mind while reading the following proof.

Proof of Corollary 24.33. In (i), the assertion about subalgebras and products follows from
the characterization of separable algebras (among commutative finite k-algebras) as the
ones that remain reduced on tensoring with an algebraically closed field (the condition in
(ii) of Proposition 24.29). The assertion about quotients and tensor products is easy to
see from the condition (iii) of the same proposition (use that a quotient of a product of
copies of L is a product of copies of L, and that taking products of algebras commutes
with taking their tensor product with a fixed algebra). This proves (i).

For (ii), the subalgebra of A generated by the Ai’s is, by finite dimensionality, generated
by some finite subcollection Ai1 , . . . , Ain of them, and is hence the image of the obvious
homomorphism Ai1 bk b ¨ ¨ ¨ bk Ain Ñ A. Therefore, its separability follows from (i).

For (iii), consider the subalgebra of A generated by all its separable subalgebras, and apply
(ii).

Now we come to (iv). Suppose K{k is an algebraic field extension that is generated by
a family tKi{kui of separable subextensions. Without loss of generality, each Ki{k is a
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finite separable extension. We need to see that each finite subextension K 1{k of K{k is
separable, which follows because K 1 is contained in the subfield of K generated by finitely
many of finite subextensions of the Ki’s (and then (ii) applies). On the other hand, if K
is generated over k by elements α that are separable over k, then K is generated by the
various krαs{k, each of which is separable. This completes the proof of (iv).

Now let us prove (v). When E{k is finite, E bk F is separable over F by Proposition
24.22(i), and then the separability of EF {F follows from applying the assertion about
images in (i) to the multiplication map E bk F Ñ EF of F -algebras. The general case
then easily follows using (iv).

When K{k is finite, (vi) follows from the multiplicativity of the separable degree (Propo-
sition 24.18). We leave the general case as an exercise – there is a little bit of work to do
(or see Theorem 4.5 of Chapter V of Serge Lang’s book). □

Exercise 24.35. Let A “
śr

i“1Ai be a finite commutative algebra over k, with each Ai
local. Let Ki “ Ai{ radpAiq for each i, so we have an isomorphism A{ radpAq Ñ

śr
i“1Ki.

Show that A is separable over k if and only if for each i, Ai equals Ki and is a separable
field extension of k. Thus, finite separable algebras are the same as finite products of
separable extensions of k.

24.4. Some more characterizations of separable algebras. The following proposition
is pilfered from Qiaochu Yuan’s blog (link given below), except that we have added in our
restrictive assumptions regarding commutativity and finiteness.

Proposition 24.36. If A{k is a finite commutative k-algebra, then the following are equiv-
alent:

(i) A is separable.
(ii) A bk A is reduced.
(iii) A is projective as an pA,Aq-bimodule (i.e., as a module over A bk A

op “ A bk A).
(iv) There is a decomposition A bk A – A ˆ A1 of rings, under which (viewed as an

identification) m : A bk A Ñ A becomes the projection A ˆ A1 Ñ A1 (the idem-
potent implicated in this decomposition, associated to A, is called the separability
idempotent).

Remark 24.37. (ii) of the proposition implies that, to check if a finite extension K{k
is separable, one does not need to compute K bk L for an algebraically closed field L
containing k; just computing K bk K is enough.

Proof of Proposition 24.36. If A is separable, then Abk A is separable by Corollary 24.33,
and in particular reduced. Thus, (i) implies (ii).

If (ii) is satisfied, then AbkA, being Artinian and reduced, is a product of fields and hence
semisimple. Since every module over a semisimple ring is projective, A is projective as an
pA,Aq-bimodule, giving (iii). Thus, we have proved (ii) ñ (iii).
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Now assume (iii). Since m : A bk A Ñ A is surjective, the projectivity of A lets us write
A bk A as I ‘ I 1, where m restricts to an isomorphism I Ñ A, and I 1 is a complement.
But then I and I 1 are rings in their own right with multiplication inherited from A bk A,
so calling these rings A and A1, we get the decomposition Abk A “ AˆA1. Thus, (iii) ñ

(iv).

Note that this argument can be reversed, so the projectivity of A is equivalent to m having
a section; so in fact we have (iii) ðñ (iv).

Finally, let us prove (iv) ñ (i). If A is projective as an pA,Aq-bimodule, or equivalently as
an AbkA-module (recall that A “ Aop by commutativity), then AL :“ AbkL is projective
as an AL bLAL bimodule. Thus, to prove that A is separable we reduce to the case where
k “ L is algebraically closed. It is easy to further reduce this to the case where A is Artin
local. But since k “ L is algebraically closed, it is easy to check that if A is Artin local,
then so is A bk A, so if m : A bk A Ñ A induces a decomposition A bk A – A ˆ A1, then
m : Abk A Ñ A is an isomorphism. Comparing dimensions, we conclude that A “ k, and
hence A is reduced over the algebraically closed field L “ k, and hence separable. This
proves (iv) ñ (i), as desired. □

Remark 24.38. Later, if we get time, we might in a future lecture relate the conditions
above involving m : AbkA Ñ A to a different criterion for separability, in terms of Kähler
differentials vanishing. But it looks like we may not get time for that.

The above proposition applies even when k is a commutative ring and A is a possibly non-
commutative k-algebra. See https://qchu.wordpress.com/2016/03/27/separable-algebras/
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25. Lecture 25 – Finite Galois theory, classical proof

In this lecture, we will define Galois extensions, and prove a classical form of the Galois
correspondence (for finite Galois groups), (proving and) using the primitive element the-
orem. This is different from Artin’s proof in his Notredame lectures, which will be taken
up in Lecture 26 – I find that proof more enlightening, but I hadn’t absorbed and framed
it to my taste when I actually gave Lecture 25.

25.1. Separable closure, the category of finite separable k-algebras.

Definition 25.1. (i) A field k is called separably closed if it has no finite separable
field extension K{k.

(ii) A field extension k ãÑ K is said to be a separable closure of k if K{k is algebraic
and K is separably closed.

Remark 25.2. It is clear that every algebraically closed field is separably closed, but the
converse is not true. Indeed, if k “ F ptq, where F is any field of charcteristic p, then
xp ´ t P krxs does not have a root in a separable closure of k, so a separable closure of k
cannot be algebraically closed.

Lemma 25.3. (i) Every field k has a separable closure. In fact, if k ãÑ L is an
algebraic closure, and K “ tα P L | α is separable over ku, then K is a separable
closure of k.

(ii) If k ãÑ K is a separable closure, every separable polynomial in krxs splits completely
in K. Moreover, K is a splitting field of the family of all irreducible separable
polynomials in krxs.

(iii) If k ãÑ K is a separable closure, K ãÑ L any field extension, and E{k is a separable
algebraic field extension, then every k-algebra homomorphism E Ñ L has image in
K. We have rE : kss “ #Homk-AlgpE, k

sq.
(iv) Conversely to (i), given a separable closure K{k, and any algebraic closure K ãÑ L

of K, the composite k ãÑ K ãÑ L is also an algebraic closure, and we have K “

tα P L | α is separable over ku.
(v) If k ãÑ K is a separable closure and E{k is a separable algebraic extension, then

there exists a k-algebra embedding E ãÑ K.
(vi) A separable closure of k is unique up to a nonunique isomorphism.

Proof. Let us prove (i) (so assume its setting). Clearly K{k is algebraic. If K were not
separably closed, it would have a nontrivial separable (algebraic) extension K ãÑ K1, and
then since L is algebraically closed we would get a K-algebra homomorphism σ : K1 ãÑ L,
with σpK1q Ľ K. Then, given any α P σpK1qzK, since Krαs{K and K{k are separable, we
would get that Krαs{k is separable (the tower property, Corollary 24.33(vi) from Lecture
24), so that α P L would be separable over k, so α P K, a contradiction. This proves (i).

(ii) is an easy consequence of (i) and (iii) is an easy consequence of (ii), so we come
to (iv). Clearly L{k is algebraic, and hence k ãÑ L is an algebraic closure. By (i),
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K 1 :“ tα P L | α is separable over ku is a separable closure of k, which contains K. But
this implies that K 1{K is separable. Since K is separably closed, we conclude that K “ K 1.

Let us prove (v). Choosing an algebraic closure K ãÑ L as in (iv), we know that there is a
k-algebra embedding E ãÑ L, which has image in K by (iii). This proves (v), and (vi) is
immediate from (v). □

Notation 25.4. (i) In what follows, given a field k, when we write ks, it will be un-
derstood that a separable closure k ãÑ ks has been chosen, with ks as its underlying
field.

(ii) We will write Galpks{kq for the group Autk-Algpk
sq of k-algebra automorphisms of

ks.
(iii) Let f étk denote the category of finite commutative k-algebras which are separable

over k (of course, with morphisms being k-algebra homomorphisms). To explain
the notation, a finite separable k-algebra is the same as what is called a finite étale
k-algebra.

Already we can see an advantage that the separable closure has, which the algebraic closure
does not:

Corollary 25.5. The inclusion k ãÑ pksqGalpks{kq is an isomorphism.

Proof. If on the contrary rpksqGalpks{kq : ks “ rpksqGalpks{kq : kss ą 1, then by the equality
rpksqGalpks{kq : kss “ #Homk-AlgppksqGalpks{kq, ksq (Lemma 25.3(iii)), there exists a k-algebra
embedding pksqGalpks{kq ãÑ ks that is different from the inclusion. Therefore, by Lemma
25.3(v), it extends to a k-algebra embedding ks Ñ ks, which is automatically an isomor-
phism (see the first exercise of Lecture 24), and is non-identity. In other words, we get an
element of Galpks{kq that is not the identity on pksqGalpks{kq, a contradiction. □

25.2. The category of finite split k-algebras.

Definition 25.6. By a finite split k-algebra, we mean a finite product of copies of k,
each such product k ˆ ¨ ¨ ¨ ˆ k being viewed as a k-algebra by the ‘diagonal’ embedding.
Let psplpkqqf denote the category of finite split k-algebras (and k-algebra homomorphisms
between them).

Lemma 25.7. If k is separably closed, then a finite commutative k-algebra A is separable
over k if and only if A is finite split. Thus, when k is separably closed, the inclusion of the
full subcategory psplpkqqf into f étk is an equivalence (even an isomorphism).

Proof. We saw in Lecture 24 (Exercise 24.35) that a finite commutative k-algebra A is sep-
arable over k if and only if A is a finite product

śr
i“1Ki of finite separable field extensions

Ki of k. When k is separably closed, this is by definition equivalent to A being a finite
product of copies of k. □
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Remark 25.8. Lemma 25.7 gives a different, and perhaps better, proof of Lemma 25.3(v)
when E{k is finite. Namely, if E{k is finitely generated, then E bk K, being separable
over K (see Proposition 24.28 from Lecture 24), is a product of copies of K by Lemma
25.7. This implies that there exists a ring homomorphism E bk K Ñ K, and hence a ring
homomorphism E ãÑ E bk K Ñ K, which is the desired embedding. The general case
can be deduced using a colimit argument, but we skip the details. Probably some other
assertions of Lemma 25.3 can also be proved in analogous ways, but I have not thought
about it.

Exercise 25.9. (i) (Simple, but important). Show that splpkq
op
f is equivalent to the

category FinSet of finite sets: in fact, we have a functor FinSet ù splpkqop

given by X ÞÑ MapspX, kq, and a functor splpkq
op
f ù FinSet given by A ÞÑ

XA :“ Homk-AlgpA, kq; show that these are mutually quasi-inverse equivalences of
categories.

(ii) Conclude from your proof of (i) that “any finite split k-algebra is canonically split”:
if A P Ob splpkq

op
f , then we have an isomorphism of k-algebras

(106) Gelf :“
ź

σPHomk-AlgpA,kq

σ : A Ñ
ź

σPHomk-AlgpA,kq

k “ MapspXA, kq,

where XA :“ Homk-AlgpA, kq.
Here, the notation ‘Gelf ’ is used because we may think of (106) as a Gelfand

transform: it is obtained from the tautological evaluation pairing:

A ˆ Homk-AlgpA, kq Ñ k,

and is a very trivial analogue of the Gelfand transform for commutative C˚-algebras,
where the analogue of XA “ Homk-AlgpA, kq is the compact Hausdorff space of
nonzero ˚-homomorphisms from A to C.

Note that for more general finite commutative k-algebras A, the map of (106)
will not be called Gelfand transform, and we will not denote it by Gelf .

25.3. Another property of finite split k-algebras.

Proposition 25.10. Let A be a finite commutative k-algebra. Then

(i) A{k is separable (or equivalently A P Ob f étk) if and only if A bk k
s is a product

of copies of ks.
(ii) When the equivalent conditions of (i) hold, Abk k

s is canonically a product of finite
copies of ks, via the isomorphism:

(107) Gelf : A bk k
s –

Ñ
ź

σPHomk-AlgpA,ksq

ks,

whose σ-component is the map A bk k
s Ñ ks that sends a b b to σpaqb, for each

a P A and b P ks. 71

71One can’t of course, technically, define it this way: rather, one either uses the universal property
of the tensor product to define it from the k-bilinear pairing A ˆ ks Ñ ks given by pa, bq ÞÑ σpaqb, and
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Proof. For (i), use that A is separable over k if and only if Abk k
s is separable over ks (use

Proposition 24.28 from Lecture 24), and apply Lemma 25.7. Given this, (ii) follows from
Exercise 25.9(ii), and the identification Homk-AlgpA, k

sq Ñ Homks-AlgpAbk k
s, ksq given by

Hom-tensor adjointness (see Exercise 24.21 from Lecture 24). □

Notation 25.11. (i) We make Galpks{kq act on A bk k
s and XA :“ Homk-AlgpA, k

sq

in the obvious fashion (i.e., using its action on ks).
(ii) Further, we will view MapspXA, k

sq as a k-algebra under pointwise addition and
multiplication, and make Galpks{kq act on it by σ ¨ fpxq “ σpfpσ´1pxqqq – this
is the obvious way, given a group G acting on sets X and Y , to make G act on
MapspX, Y q. Note that (107) can be written:

(108) Gelf : A bk k
s –

Ñ MapspXA, k
s
q,

and verify that (108) is Galpks{kq-equivariant – we will use this in what follows.

Proposition 25.12. Let A{k be a finite separable k-algebra. Consider XA “ Homk-AlgpA, k
sq

with its obvious Galpks{kq-action. Let MapspXA, k
sqGalpks{kq “ MapsGalpks{kqpXA, k

sq be the
algebra of Galpks{kq-equivariant maps XA Ñ ks, with pointwise addition and multiplica-
tion. Then we have the following isomorphism of k-algebras generalizing (106):

(109) Gelf : A Ñ MapsGalpks{kqpXA, k
s
q,

given by

A Q a ÞÑ pf ÞÑ fpaqq.

Note how this isomorphism is obtained from the evaluation pairing

A ˆ XA “ A ˆ Homk-AlgpA, k
s
q Ñ ks.

Proof. Proposition 25.10 gave us an isomorphism of ks-algebras

A bk k
s

Ñ MapspXA, k
s
q.

We have noticed that this map respects the actions of Galpks{kq defined in Notation 25.11.
Therefore, it restricts to an isomorphism

A “ pA bk k
s
q
Galpks{kq

Ñ MapsGalpks{kqpXA, k
s
q,

where the first equality is an immediate consequence of Corollary 25.5. □

25.4. Galois correspondence – informal motivation. In Exercise 25.9, we saw that
finite split k-algebras have a nice description, as equivalent to the category of finite sets.
In Galois theory, one sort of extends that to k-algebras that are finite separable, but not
necessarily split (rather, they are just “ks-split”). Please compare the constructions below
to their analogues in Exercise 25.9.

checks that it is a morphism of algebras, or uses that the tensor product is a coproduct in the category of
commutative k-algebras, to define it from the k-algebra homomorphisms σ : A Ñ ks and id : ks Ñ ks.
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Notation 25.13. (i) We will write FinSet for the category of finite sets (and set-
theoretic maps between them). If G is a group, G-FinSet will denote the category
of finite sets with a G-action (and G-equivariant morphisms between them).

(ii) We have a functor

(110) F : pf étkq
op ù Galpks{kq-FinSet, A Þ⇝ XA “ Homk-AlgpA, k

s
q

(where XA is viewed together with the Galpks{kq-action on it from Notation 25.11).
Note that the ‘op’ is necessary to get the arrows in the correct direction.

(iii) In the opposite direction, we have a functor

(111) G : Galpks{kq-FinSet Ñ pf étkq
op, X Þ⇝ AX :“ MapsGalpks{kqpX, k

s
q.

Note that since AX is contained in a finite product of copies of ks (namely, in
pksq#X), it is separable over k. There is in fact some work to be done to show
that AX is indeed finite over k, but we will omit it since this subsection is informal
motivation. 72.

(iv) There are obvious natural transformations η : idpfétkqop Ñ G˝F and ϵ : idGalpks{kq-FinSet Ñ

G ˝ F : if A is a finitely generated k-algebra, then:
‚ ηA : A Ñ GpFpAqq “ MapsGalpks{kqpXA, k

sq is given by a ÞÑ pf ÞÑ fpaqq, and is
hence exactly the isomorphism of Proposition 25.12.

‚ ϵX : X Ñ FpGpXqq “ Homk-AlgpAX , k
sq “ Homk-AlgpMapsGalpks{kqpX, k

sq, ksq
is given by x ÞÑ pa ÞÑ apxqq.

Thus, ηA and ϵA are both obtained from the obvious evaluation pairings.

However, unfortunately, unlike with Exercise 25.9, the functor F of Notation 25.4(ii) is not
an equivalence of categories, since it (can be shown that it) is not essentially surjective.
While η is a natural isomorphism by Proposition 25.12, ϵ is not. F can be shown to be fully
faithful, and this together with the fact that η : idk-Alg ù G ˝F is a natural isomorphism
is arguably the “easy half” of Galois theory. To prove the other half, or even to motivate
its formulation, we will (probably) need to work with finite Galois extensions, a notion we
will soon define.

The following is an informal statement of the Galois correspondence in this setting.

Theorem 25.14. There is a topology on Galpks{kq such that the functors F and G from
(110) and (111) of Notation 25.13 define mutually quasi-inverse equivalences of categories

pf étkq
op ù pGalpks{kq-FinSetqcts,

where the right hand side is the category of finite sets with a continuous Galpks{kq-action.

72Here is a sketch of how you can show it using material we will see later in this lecture. We immediately
reduce to the case where X “ Galpks{kq{H for some finite index subgroup H Ă Galpks{kq. It is enough
to show that pksqH is finite over k. Replacing H by a finite index subgroup that is normal in Galpks{kq,
we may and do assume that H Ă Galpks{kq is normal. Then ppksqHqGalpks

{kq{H “ k by Corollary 25.5,
and Lemma 25.30 below shows that pksqH is a finite extension of k
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We will come discuss the topology alluded to in the above theorem, Krull topology, only
in Lecture 26. Meanwhile, let us informally discuss some of the motivation for it.

Remark 25.15. (i) One ‘analogy-based’ motivation-of-sorts for considering the func-
tor F of (110) can be given as follows. Recall that if A is an abelian category, and
if A satisfies certain conditions including the existence of a projective generator
P , we had asserted without proof that A can be realized as a module category
(see the discussion on Morita equivalence in Lecture 19): sending A P ObA to
HomApP,Aq, viewed as a module over R :“ EndApP qop, defines an equivalence of
categories A ù R-Mod. Clearly, (110) is an analogue, where we have a G-set
instead of an R-module because the category involved is not abelian. Thus, just as
one might wish to study various abelian categories as module categories, it could
be simplifying to study the seemingly lawless category f étk as a category of G-sets.
However, there are some differences even excluding abelianness: e.g., ks is not an
object of f étk, since k

s{k is not finite (rather, it is an ‘Ind-object’ of the category,
for those who are interested).

(ii) Another way to motivate this is that on splpkq
op
f , the functor F of (110) restricts

to the equivalence of categories splpfq
op
k ù FinSet in Exercise 25.9(i), and on

the subcategory of finite Galpks{kq-sets consisting of sets with trivial action, the
functor G of (111) restricts to the quasi-inverse equivalence of categories FinSet ù

splpfq
op
k from Exercise 25.9(i).

(iii) Let us expand on the above point. Recall that if A “ krx1, . . . , xns{pg1, . . . , gmq is
a finitely generated k-algebra, then A can be thought of as a system of equations,
whose solutions with entries in a k-algebra R are given by:

XpRq :“ tpa1, . . . , anq P Rn
| gipa1, . . . , anq “ 0 @ 1 ď i ď mu.

Here, we may think of R Þ⇝ XpRq, viewed as a functor X : k-Alg ù Set, as the
‘variety of solutions to the system of equations A’. Thus, the ‘solutions’ functor
associated to a k-algebra A is just Homk-AlgpA,´q. Therefore, Exercise 25.9 says
that a split k-algebra is completely determined by the value of the solutions functor
at the k-algebra k. This is not true if A properly contains k: e.g., Homk-AlgpA, kq “

H if A is a finite separable field extension of k. In Proposition 25.10, we observe
that when A{k is finite separable, Abk k

s is entirely captured by Homk-AlgpA, k
sq,

which is the solution functor evaluated at the k-algebra ks. If we want to capture A
itself, and not just Abk k

s, the point is that we need to take care of the Galpks{kq-
action on Abk k

s, and recover A as the set of Galpks{kq-fixed points in Abk k
s: in

other words, we are still looking at the solution functor Xpksq :“ Homk-AlgpA, k
sq

evaluated at ks, but in the process also keeping track of the action on Xpksq by
Autk-Algpk

sq “ Galpks{kq.
(iv) Then, of course, there is the mandatory analogy with covering spaces. Since we

are considering pf étqopk , a k-algebra A would be viewed as a map SpecA Ñ Spec k,
where SpecA and Spec k are just A and k, viewed as objects in the opposite cate-
gory. The isomorphism Abkk

s Ñ
ś

σ k
s from Proposition 25.10 could be thought of
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as saying that SpecA Ñ Spec k is a ‘covering map’, that becomes a trivial covering
when pulled back to the ‘universal cover Spec ks Ñ Spec k’.
Thus, the equivalence of categories in Theorem 25.14 is analogous to how the

category of coverings of a topological space X is equivalent to the category of finite
sets with a π1pX, xq-action, where π1pX, xq is the fundamental group of X at some
base point x.
In fact, there is a common description that can capture both these theories,

involving the notion of ‘Galois categories’ of Grothendieck. I planned to discuss it
in Lecture 26, but could not. If I get time I might write something about it in the
notes for Lecture 26.

25.5. Normal extensions.

Theorem 25.16. Let K{k be an algebraic (but not necessarily finite) extension of k,
contained in an algebraic closure L of k. The following are equivalent:

(NOR 1) σpKq “ K for all σ P Homk-AlgpK,Lq.
(NOR 2) K is a splitting field of a family of polynomials in krxs.
(NOR 3) Every irreducible polynomial in krxs which has a root in K, splits into linear factors

in Krxs.

Proof. (NOR3) ñ (NOR 2) is immediate, since one can take a family of polynomials as in
(NOR 2) to be the family of all irreducible polynomials in krxs with a root in K. (NOR2)
ñ (NOR1) follows from the fact that a family of polynomials in krxs has a unique splitting
field within a given algebraically closed field L, and that any σ P Homk-AlgpK,Lq clearly
necessarily takes a splitting field of a family of polynomials to a splitting field of the same
family.

Now let us prove (NOR1) ñ (NOR3). If f P krxs is irreducible and has a root α in K,
but does not split into linear factors in K, then f has a root α1 P LzK. We have an
isomorphism of k-algebras krαs Ñ krα1s ãÑ L sending α to α1, extending which to K we
get a k-algebra embedding σ : K ãÑ L that sends α to α1, and hence does not satisfy
σpKq “ K. □

Definition 25.17. (i) An algebraic field extension K{k that satisfies the equivalent
conditions of Theorem 25.16 is said to be a normal extension.

(ii) An algebraic extensionK{k is said to be Galois if it is both normal and separable. If
K{k is Galois, we will write GalpK{kq for Autk-AlgpKq (this agrees with the notation
Galpks{kq defined earlier in Notation 25.4, as xample 25.18(ii) below shows).

(iii) If f P krxs is a separable polynomial, so that any splitting field kf of f is Galois
over k, we define the Galois group of f over k to be Galpkf{kq. Note that it is
unique up to isomorphism.

Example 25.18. .

(i) Any quadratic extension K{k is normal, but it may or may not be separable. When
char k ‰ 2, any quadratic extension K{k is immediately seen to be of the form
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K “ kr
?
δs for some δ P k, and since irreducible polynomials of the form x2 ´ δ

are clearly separable when char k ‰ 2, it follows that any quadratic extension is
separable and hence also Galois in this case.

Now assume that char k “ 2. Then a quadratic extension K{k may or may not
be separable: if K “ kr

?
δs for some δ P k, K{k is not separable (as is the case for

the extension F2ptq ãÑ F2ptq given by t ÞÑ t2), but if the quadratic extension K{k
is obtained by adjoining a root of an irreducible polynomial x2 ` ax ` b, then it is
clearly separable and hence Galois as long as a ‰ 0 (i.e., as long as the derivative
of x2 ` ax ` b does not vanish).

(ii) If k ãÑ ks is a separable closure and k ãÑ L is an algebraic closure, then ks{k and
L{k are normal. ks{k is Galois, while L{k is Galois if and only if L{k is a separable
closure. Thus, Galpks{kq agrees with what we defined it to be in Notation 25.4.

Proposition 25.19. (i) If K{E{k are field extensions and K{k is normal, then K{E
is normal.

(ii) If E,F are fields containing a field k and contained in a field K, and E{k is a nor-
mal extension, then EF {F is a normal extension (here EF Ă K is the compositum
of E and F in K, i.e., the subfield of K generated by E and F ).

(iii) If E,F are fields containing a field k and contained in a field K, and if E{k and
F {k are normal extensions, so are EF {k and pE X F q{k.

Proof. Easy exercise. □

Lemma 25.20. If K{k is a normal extension, k Ă E Ă K is an intermediate subextension,
and L is an algebraically closed field containing K, then we have maps (with the marked
descriptions and properties):

Autk-AlgpKq
restriction

surjection
//

pKãÑLq˝´ bijection

��

Homk-AlgpE,Kq

pKãÑLq˝´bijection

��
Homk-AlgpK,Lq

restriction

surjection
// Homk-AlgpE,Lq.

Proof. The vertical arrows are clearly injections. That the left vertical arrow is a bijection
follows from “(NOR 1)” in the definition of a normal extension. The bottom horizontal
arrow is a surjection since L is algebraically closed.

Thus, Autk-AlgpKq Ñ Homk-AlgpK,Lq Ñ Homk-AlgpE,Lq is surjective, forcing the right ver-
tical arrow to be surjective as well, and hence (being injective) bijective. Since the vertical
arrows are bijective and the bottom horizontal arrow is surjective, the top horizontal arrow
is surjective. □

Corollary 25.21. In the setting of Lemma 25.20, if E{k is a normal extension as well,
then Autk-AlgpKq Ñ Autk-AlgpEq is surjective, with kernel AutE-AlgpKq.

Proof. Immediate. □
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Example 25.22. However, unlike with separable extensions, normal extensions do not
have the ‘tower property’: if E{F {k are field extensions, and if E{F and F {k are normal,
E{k may not be normal. For instance, Qr

4
?
2s{Qr

?
2s and Qr

?
2s{Q are normal (being

quadratic), but Qr
4

?
2s{Q is not normal.

Proposition 25.23. . Let K{k be a Galois extension. For any subextension E{k of K{k,
K{E is is Galois (so we can talk about GalpK{Eq, as we will do below).

Proof. K{E is separable since K{k is (the tower property for separable extensions), and
K{E is normal by Proposition 25.19. □

Lemma 25.24. For any finite field extension K{k, setting G “ Autk-AlgpK{kq, the fol-
lowing are equivalent:

(i) K{k is Galois.
(ii) #G “ rK : ks.

Proof. Let L be an algebraically closed field containing K. We have

#G “ #Autk-AlgpKq ď #Homk-AlgpK,Lq “ rK : kss ď rK : ks.

The first inequality is an equality if and only if K{k is normal, and the second inequality
is an equality if and only if K{k is separable. Thus, the two conditions are equivalent. □

25.6. Easy(?) half of finite Galois theory, classical version. Here is the classical
version of one (easier?) half of Galois theory:

Theorem 25.25. (i) Let K{k be an arbitrary (not necessarily finite) Galois extension,
and let G “ GalpK{kq. Consider the map

(112)
!

Subextensions E{k of K{k
)

Ñ

!

Subgroups of GalpK{kq

)

, E ÞÑ HE :“ FixGpEq “ GalpK{Eq

(where FixGpEq is the subgroup of G that fixes the elements of E pointwise), and
in the inverse direction,

(113) H ÞÑ KH .

Then (112) is injective (and in particular a bijection onto its image), and (113) is a
left-inverse to it, i.e., for any subextension E{k of K{k, KHE “ E (more precisely,
the obvious inclusion E ãÑ KHE is an isomorphism).

(ii) Given a subextension E{k of K{k, E{k is Galois if and only if GalpK{Eq Ă

GalpK{kq is a normal subgroup, in which case restriction induces a well-defined map
GalpK{kq Ñ GalpE{kq, which quotients to an isomorphism GalpK{kq{GalpK{Eq Ñ

GalpE{kq.

Remark 25.26. If K{k is finite, then (112) is in fact bijective with (113) as a two-sided
inverse: this is the other half of Galois theory for finite extensions, proved in Theorem
25.29 below.
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The following lemma is a special case of the theorem, but also summarizes the non-
formal/non-book-keeping ‘Galois theory’ input into the proof of the theorem:

Lemma 25.27. If K{k is a Galois extension, then k “ KGalpK{kq.

Proof. Let K ãÑ ks be a separable closure. Since K{k is separable algebraic, k ãÑ K is a
separable closure as well.

Since the restriction of any element of Galpks{kq to K is an element of GalpK{kq by the
normality of K{k, we have

k ãÑ KGalpK{kq ãÑ pksqGalpks{kq
“ k

by Corollary 25.5 (and the fact that the Galpks{kq in it has been observed to agree with
the definition in Definition 25.17). Thus, the lemma follows. □

Proof of Theorem 25.25. For (i), it is enough to prove that the obvious inclusion E ãÑ KHE

is an equality. But since HE “ GalpK{Eq, this follows from Lemma 25.27.

Now we come to (ii). E{k is automatically separable by the tower property for separable
extensions, and hence it is Galois if and only if it is normal.

Given σ P GalpK{kq, since (112) is injective by (i), it follows that σpEq “ E if and only
if, inside GalpK{kq, the subgroups GalpK{Eq and GalpK{σpEqq, the latter of which is
immediately verified to be σGalpK{Eqσ´1, are equal. Varying σ over GalpK{kq, we see
that GalpK{Eq Ă GalpK{kq is a normal subgroup if and only if E Ă K is stabilized by
GalpK{kq. It is an easy exercise to see using Lemma 25.20 that the latter condition is
equivalent to E{k being normal.

Assuming that this condition holds, i.e., E{k is normal, the rest of (ii) follows from Corol-
lary 25.21. □

25.7. Primitive element theorem and the other half. Right now, for the other half
of finite Galois theory, we will use the primitive element theorem (and seems to be vaguely
sort of equivalent to it). In Lecture 26 another (hopefully better) approach, involving
Galois descent, will be discussed.

Theorem 25.28. If K{k is a finite separable field extension, there exists α P K such that
K “ krαs.

Proof. If k is finite, so that K is finite as well, any generator α of the multiplicative group
Kˆ will do: it is well-known that any finite subgroup of the multiplicative group of units
of a field is cyclic. Thus, let us assume that k is infinite.

By induction, it suffices to show that if α, β P K, then kpα, βq Ă K is generated by a
single element. Fix an algebraically closed field L containing K, and write σ1, . . . , σn for
the collection of k-algebra embeddings kpα, βq Ñ L. Since kpα, βq{k is separable, we have
n “ rkpα, βq : ks. It suffices to find γ P kpα, βq such that σipγq ‰ σjpγq for all 1 ď i ă j ď n:
that will give rkpγq : ks ě rkpγqs : ks ě n “ rkpα, βq : ks, so that kpγq “ kpα, βq.
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Consider the polynomial

P pxq :“
ź

1ďiăjďn

pσipαq ` xσipβq ´ σjpαq ´ xσjpβqq.

For all 1 ď i ă j ď n, we have either σipαq ‰ σjpαq or σipβq ‰ σjpβq. From this, it is
easy to see that P is not the zero polynomial. Since k is not finite, there exists c P k such
that P pcq ‰ 0, which translates to

ś

1ďiăjďnpσipα` cβq ´ σjpα` cβqq ‰ 0. Hence, we can
simply take γ “ α ` cβ. □

Now we can prove the (remaining half of the) main theorem of Galois theory, in the case
of finite extensions:

Theorem 25.29. Let K{k be a finite Galois extension, and let G “ GalpK{kq.

(i) We have a bijection
(114)
!

Subextensions E{k of K{k
)

Ñ

!

Subgroups of GalpK{kq

)

, E ÞÑ HE :“ FixGpEq “ GalpK{Eq,

with a two-sided inverse

(115) H ÞÑ KH .

Thus, the obvious inclusions E ãÑ KHE and H ãÑ HKH “ FixGpKHq are equalities,
for any finite extension E{k of k in K and any finite subgroup H Ă G.

(ii) [This is just meant to be a copy of Theorem 25.25(ii)].

The following special case of Theorem 25.29 will constitute the non-formal input into its
proof, just as Lemma 25.27 did for Theorem 25.25.

Lemma 25.30. Let G be a finite group of automorphisms of a field K, and let k “

KG Ă K be the subfield of K fixed by G. Then K{k is Galois, and the obvious inclusion
G Ñ Autk-AlgpKq “ GalpK{kq is an isomorphism.

Proof. We first consider the case where K{k is finite. Then by the primitive element
theorem, there exists α P K such that K “ krαs. If H Ă G is the stabilizer of α, set

fpxq “
ź

σPrG{Hs

px ´ σpαqq P Krxs,

where rG{Hs Ă G is a set of representatives for G{H. It is easy to see that tσpαq | σ P

rG{Hsu is stable under G, so we have fpxq P pKrxsqG “ krxs. K is clearly the splitting
field of f over k, and is hence normal over k. Since f is clearly separable (the σpαq being
pairwise distinct), K{k is separable as well, and hence Galois.

Since deg f “ #pG{Hq, we have

#G ď Autk-AlgpKq “ #GalpK{kq ď rK : kss ď rK : ks ď #pG{Hq,

forcing #G “ #GalpK{kq, so that the obviously injective map G Ñ Autk-AlgpKq “

GalpK{kq is surjective as well.
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This proves the theorem when K{k is finite. To finish the proof, it suffices to show that
this is the only case that arises, which will follow if we show that any finite subextension
k Ă E Ă K satisfies rE : ks ď #G. Replacing E by the compositum in K of the σpEq as
σ varies over G (these are finitely many finite extensions, and hence their compositum in
K is finite over k), we may and do assume that the action of G on K restricts to one on
E. We then have k “ EḠ, where Ḡ is the image of G in Autk-AlgpEq. Therefore, by the
case already handled, we have rE : ks “ #Ḡ ď #G, as desired. □

Proof of Theorem 25.29. (ii) is just a repeat of Theorem 25.25(ii), so it is enough to prove
(i).

Given Theorem 25.25, this follows if we show that (114) is a left-inverse to (115) as well, i.e.,
that given any subgroup H Ă G, the inclusion H ãÑ FixGpKHq is an equality. However,
this is immediate from Lemma 25.30. □

25.8. Some examples. Our examples will mostly be taken from Serge Lang’s book. For
more examples, look for Keith Conrad’s notes. Before we start, some generalities:

Lemma 25.31. Let k be a field. Let f P krxs be a separable polynomial of degree n, with
a (necessarily Galois) splitting field kf , say with (distinct) roots α1, . . . , αn P kf .

(i) If f is irreducible, then rkf : ks “ #Galpkf{kq is a multiple of n.
(ii) For each σ P Galpkf{kq, there is a unique permutation aσ P Sn such that σpαiq “

αaσpiq for 1 ď i ď n. Moreover, sending σ to aσ defines an injective homomorphism
Galpkf{kq ãÑ Sn, so that rkf : ks divides n!.

Proof. Since rkf : ks “ rkf : krα1ssrkrα1s : ks “ nrkf : krα1ss, #Galpkf{kq “ rkf : ks is a
multiple of n, giving the first assertion. The second assertion is immediate. □

25.8.1. A trivial situation. What are the field extensions between k “ Q andK “ Qr
?
3,

?
7s?

To compute this directly with elements of K may not be very pleasant, but Galois the-
ory gives us an easy way out: it is easy to see that K{k is Galois with GalpK{kq –

pZ{2ZqˆpZ{2Zq, say generated by σ and τ with σp
?
3q “

?
3, σp

?
7q “ ´

?
7, τp

?
3q “ ´

?
3

and τp
?
7q “

?
7.

The main theorem of Galois theory (Theorem 25.29) tells us that the intermediate fields
are in bijection with subgroups of GalpK{kq – pZ{2ZqˆpZ{2Zq. There are three nontrivial
proper subgroups among these, namely those generated by σ, τ and στ . It is easy to see
thatKσ “ Qr

?
3s, Kτ “ Qr

?
7s andKστ “ Qr

?
21s, so it follows that the only intermediate

fields between Q and Qr
?
3,

?
7s that are neither Q nor Qr

?
3,

?
7s are Qr

?
3s,Qr

?
7s and

Qr
?
21s.

In fact, the ‘easy’ half, Theorem 25.25, sufficed for the above computation.
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25.8.2. The case of finite fields. Recall that any finite field has characteristic p ą 0 for
some prime p, and then, being a vector space over Fp, has cardinality pn for some n. Such
a field is then a splitting field of xp

n´1 ´ 1 “ 0 over Fp, and hence its isomorphism class
depends only on its cardinality. Therefore, we may and do denote it by Fpn .

Lemma 25.32. There exists a homomorphism Fpm Ñ Fpn (tautologically a homomorphism
of Fp-algebras) if and only if m|n.

Proof. For “ñ”, use that such a homomorphism would make Fpn an Fpm-vector space. “ð”
follows from the fact that if m divides n, then pm ´ 1 divides pn ´ 1, and hence xp

m´1 ´ 1
divides xp

n´1 ´ 1. □

Lemma 25.33. Each extension of finite fields is Galois.

Proof. Easy exercise using that Fpn is a splitting field for xp
n´1 ´ 1 over any subfield.

Alternatively, this is a special case of Lemma 25.34 below. □

Lemma 25.34. Any extension K{k of finite fields is cyclic, with Galois group cyclic of
order rK : ks, generated by Frobk : x ÞÑ x#k.

Proof. It is easy to see that Frobk belongs to Autk-AlgpK{kq and has finite order. Further,
the subfield of K fixed by xFrobky consists of solutions to x#k ´ x “ 0, and can hence
be no larger than k. Therefore, it follows from Lemma 25.30 that K{k is Galois, with
GalpK{kq “ xFrobky (we leave a more ‘elementary’ proof avoiding the use of Lemma 25.30
as an easy exercise). □

Exercise 25.35. If k is a finite field and k ãÑ k̄ is an algebraic closure, show that there
exists an isomorphism Galpk̄{kq Ñ Ẑ, whose inverse sends 1 P Z Ă Ẑ to Frobk : x ÞÑ x#k.

25.8.3. The Galois group of cubic polynomials (over characteristic ‰ 2, 3). Let us compute
Galpkf{kq, where k is a field of characteristic different from 2 and 3, and kf is the splitting
field of an irreducible cubic polynomial f P krxs. Since char k ‰ 3, it is easy to see that f
is automatically separable.

Since char k ‰ 3, we can, up to a linear change of coordinates (which does not change the
Galois group), write any cubic polybomial f P krxs as fpxq “ x3 ` ax ` b. By Lemma
25.31, rkf : ks equals 3 or 6; more precisely, the same lemma tells us that Galpkf{kq equals
either the alternating group A3 or the symmetric group S3 on 3 letters.

Lemma 25.36. Let ∆ “ ´4a3 ´ 27b2. Then

Galpkf{kq –

#

A3, if ∆ is a square in k, and

S3, if ∆ is not a square in k
.

Example 25.37. Let k “ Q and fpxq “ x3 ´ x ´ 1. It is easy to check that f is
irreducible over Q (else by Gauss’s lemma, it would have a root over Z, which by prime
factor considerations would be ˘1), and that ∆ “ ´23, so by the above lemma, we have
Galpkf{kq – S3.
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On the other hand, suppose k “ Q and fpxq “ x3 ´ 3x ` 1. Again using Gauss’s lemma,
one sees that f is irreducible. We have ∆ “ 81, so by the above lemma, so Galpkf{kq – A3.

Proof of Lemma 25.36. We will use (exercise!) the computation that, if α1, α2, α3 P kf are
the roots of f , then setting δ “ pα1 ´ α2qpα2 ´ α3qpα3 ´ α1q, we have δ2 “ ∆.

Use the injection G :“ Galpkf{kq ãÑ S3 from the proof of Lemma 25.31, to view Galpkf{kq

as a subgroup of S3. Since 3 is prime, the lemma shows that the image of Galpkf{kq

contains A3. The description of the injection Galpkf{kq ãÑ S3 makes it clear that σ P G

maps to an element of S3zA3 if and only if σpδq “ ´δ. Since k
Galpkf {kq

f “ k, it follows that
G – S3 if and only if δ R k, i.e., if and only if ∆ is not a square in k. □

25.8.4. The Galois group of the polynomial fpxq “ x4 ´ 2 over Q. We let k “ Q and
fpxq “ x4´2. By Eisenstein’s criterion for irreducibility, f is irreducible. Since charQ “ 0,
f is automatically separable, and hence kf{k is Galois. We can write kf “ Qr˘

4
?
2, is, where

4
?
2 is some choice of 4-th root of 2, 73 and i is some choice of square-root of ´1.

Now we have the following diagram of field extensions, where each line between fields is
marked with the degree of that extension:

kf “ Qr
4
?
2, is

Qr
4
?
2s

2

Qris

4

Q
4 2

.

To computeG :“ Galpkf{Qq, one studies the two obvious subgroups that the above diagram
shows us, namely, Galpkf{Qrisq and Galpkf{Qr

4
?
2sq.

It is easy to compute that Galpkf{Qrisq Ă Galpkf{Qq is cyclic of order 4, generated
by a unique element σ with σp

4
?
2q “

4
?
2i. On the other hand, it is easy to see that

Galpkf{Qr
4

?
2sq is cyclic of order 2, generated by a unique element τ with τpiq “ ´i. Note

that τστ´1 maps 4
?
2 to ´

4
?
2i, and i to i. Therefore, τστ´1 “ σ3 “ σ´1.

Since it is easy to see that xσy X xτy “ t1u inside G, we have #pxσ, τyq “ 8 “ rkf : Qs,
forcing xσ, τy “ G as well as that G “ xσ, τy is the dihedral group with eight elements
(since σ4 “ τ 2 “ 1 and τστ´1 “ σ´1). (We will typically denote this group by D8, though
some sources also write D4 for it).

Exercise 25.38. Write down all the subgroups H Ă D8 “ GalpQr
4

?
2, is{Qq, and compute

the corresponding intermediate field extensions.

73It is not natural to consider the ‘positive’ fourth root of 2 here; this computation has nothing to do
with R.
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25.8.5. ‘Elementary symmetric rational functions’. Let F be a field, and letK “ F pt1, . . . , tnq,
the field of rational functions in n variables t1, . . . , tn over F (which is the quotient field
of the polynomial ring F rt1, . . . , tns). Let s1, . . . , sn P F rt1, . . . , tns Ă K be the elementary
symmetric polynomials, so that

si “
ÿ

1ďj1ăj2ă¨¨¨ăjiďn

tj1tj2 . . . tji .

Set k “ F ps1, . . . , snq Ă K.

Note that G “ Sn acts on K, fixing F pointwise and with σ sending ti to tσpiq for each i.

Lemma 25.39. k “ KG, so that K{k is Galois with Galois group isomorphic to Sn.

Proof. Clearly k Ă KG. By Lemma 25.30, we have

n! “ #G “ rK : KG
s ď rK : ks.

Therefore, it suffices to show that rK : ks ď n!. Note that t1, . . . , tn are roots of the
polynomial f P krxs, where fpxq “ xn `

řn
i“1p´1qisix

n´i. Since f is separable, K{k is
Galois. By Lemma 25.31, rK : ks “ #GalpK{kq divides n!, as desired. □

From this, it follows that any f P krt1, . . . , tns that is invariant under the action of G
belongs to kps1, . . . , snq X krt1, . . . , tns. In fact, it follows from some standard facts that
kps1, . . . , snq X krt1, . . . , tns “ krs1, . . . , sns. Thus, one can show that any polynomial in
krt1, . . . , tns invariant under the action of Sn is a polynomial in the elementary symmetric
polynomials, s1, . . . , sn.

Exercise 25.40. Use the above lemma to show that given any finite group G, there is a
Galois extension K{k of fields such that GalpK{kq – G. However, it is an open problem
as to whether there exists such an extension with k “ Q.

25.8.6. A Galois-theoretic proof of the fundamental theorem of algebra.

Theorem 25.41. C is algebraically closed.

Proof. Suppose C is not algebraically closed. Then R has a Galois extension K properly
containing C. Let G “ GalpK{Rq. Let H Ă G be a 2-Sylow subgroup. By the main
theorem of Galois theory (Theorem 25.29), there exists an intermediate field extension
R Ă F Ă K such that GalpK{F q – H. But this implies that rF : Rs “ #pG{Hq is odd.

We claim that F “ R. Suppose not. Then there exists α P F zR such that the minimal
polynomial of α over R has odd degree. Since such a minimal polynomial being irreducible
over R has no root in R, this contradicts the fact that any odd degree polynomial f P Rrxs

has a root in R (proof without using fundamental theorem of algebra: w.l.o.g. f is monic,
so fpxq Ñ ´8 as x Ñ ´8 and fpxq Ñ 8 as x Ñ 8, so f has a real root by the
intermediate value theorem). This contradiction proves that F “ R.
Therefore, rK : Rs is a power of two, and hence so is rK : Cs. Since K{R is Galois, so is
K{C. It is enough to show that K “ C. Suppose not.
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Since any 2-group is nilpotent, it is easy to see that there is a surjection GalpK{Cq Ñ Z{2Z,
which gives a nontrivial quadratic extension of C (again, use the main theorem of Galois
theory, Theorem 25.29). However, any quadratic extension of C is obtained by adjoining
a root of an irreducible quadratic polynomial to C. This is a contradiction, since by the
quadratic formula, any quadratic polynomial over C is reducible. □

Remark 25.42. According to Serge Lang’s book, the ideas in the proof above were already
there in the work of Gauss, but Artin made it efficient using Sylow subgroups etc.

25.8.7. Finding a polynomial in Qrxs with Galois group S5.

Lemma 25.43. Let p be a prime number, and let f P Qrxs be irreducible of degree p.
Assume that f has precisely two non-real roots in C. Then GalpQf{Qq – Sp, where Qf is
a splitting field of Q.

Proof. Fix a Q-algebra embedding Qf ãÑ C, and think of it as an inclusion. Lemma 25.31
gives an embedding G ãÑ Sp, with G acting by permuting the roots of f in Qf Ă C.
Complex conjugation preserves Qf Ă C (since Qf is a splitting field of f in C), and gives
an element of G whose image in Sp permutes the two non-real roots of f in C and fixes
the rest. Thus, the image of G in Sp contains a p-cycle and a transposition, and is hence
the whole of Sp (since any p-cycle and any transposition together generate Sp). □

Example 25.44. Consider f P Qrxs given by fpxq “ x5 ´4x`2. By Eisenstein’s criterion
for irreducibility, f is irreducible. We claim that the Galois group of f is isomorphic to
S5. By Lemma 25.43 above, this follows if we show that f has exactly two non-real roots,
which we claim to be the case.

Since f 1pxq “ 4px4 ´ 1q, f is increasing in p´8,´1s Y r1,8q and decreasing in r´1, 1s.
Since fp´1q ą 0 and fp1q ă 0, it follows that f has exactly one root each in each of
p´8,´1q, p´1, 1q and p1,8q. Thus, f has exactly two non-real roots, as desired.
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26. Lecture 26 – Galois theory

Note: This lecture was the most experimental of the lecture series, and hence the notes
for this lecture are much more likely to have serious errors than the notes for other lecture.

In Lecture 25 we saw a classical proof of the main theorem of Galois theory for finite
Galois extensions – in its the classical ‘bijection’ version rather than the ‘equivalence of
categories’ version. Today, we will, among other things, discuss what I believe Artin
was getting at in the proof he gave in his Notredame lectures on Galois theory, namely,
Galois theory via Galois descent. Thus, rather than proving Galois theory and using it to
prove Galois descent, we will prove Galois descent and use it to prove an ‘equivalence of
categories’ version of the Galois correspondence. For this, though, will assume the ‘easy
half’ of Galois theory, which says that if K{k is a (possibly infinite) Galois extension, then
KGalpK{kq “ k – see Lemma 25.27 from Lecture 25. This half only used basic facts about
separability and about extending homomorphisms into an algebraically closed field, and
did not use the primitive element theorem. We will also discuss another take on the main
theorem of Galois theory, this time for finite extensions, which again avoids the use of
primitive element theorem, and then the infinite Galois correspondence.

26.1. Galois descent. First, some very informal motivation. Given a vector space VR
over R, we have a vector space VC :“ C bR VR over C: this is base-change/extension of
scalars. We have an inclusion VR ãÑ VC that sends each w to 1 b w, letting us view VR as
an R-subspace of VC.

How does one go in the opposite direction, to recover VR fromVC (plus extra data)? Note
that there is an R-linear operator v ÞÑ v̄ on VC, sending a b w to ā b w for each w P VR
and a P C, where ā is the complex conjugate of a. It is clear that VR Ă VC is simply the
subspace fixed by v ÞÑ v̄. In other words, GalpC{Rq acts on C bR VR “ VC through its

action on C, and VR “ V
GalpC{Rq

C is the fixed subspace. Note that this action is not C-linear,
but is R-linear, and is in fact what one calls C-semilinear: a ¨ v “ ā ¨ v for all a P C and
v P VC.

To summarize, VR determines both VC and a semilinear GalpC{Rq-action v ÞÑ v̄ on VC, and
these two data together get us VR back. Something similar can be done with C{R replaced
by any Galois extension (with extra care in the case of infinite Galois extensions), and this
is what Galois descent is.

Definition 26.1. Let K{k be an arbitrary Galois extension, and let G “ GalpK{kq. A
k-linear action of G on a K-vector space V is said to be:

(i) (K-)semilinear, if σpa ¨vq “ σpaq ¨σpvq for all a P K and v P V (thus, such an action
is not K-linear); and

(ii) continuous, if for all v P V , there exists a finite subextension F {k of K{k such that
GalpK{F q Ă GalpK{kq fixes v; in other words,

(116) V “
ď

H

V H ,
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where H runs over the GalpK{F q as F runs over the finite extensions of k contained
in K.

Remark 26.2. In Exercise 26.27 below, we will see that this notion of continuity is equiv-
alent to the continuity of the action map GalpK{kqˆV Ñ V , where V is given the discrete
topology, and GalpK{kq is given the Krull topology defined in Definition 26.25 below.

Example 26.3. If Vk is a vector space over K, then G “ GalpK{kq acts on V :“ K bk Vk
such that σpab vq “ σpaq b v for all σ P G, a P K and v P Vk. This action is easily checked
to be both semilinear and continuous – continuous because each a P Kzk, being algebraic
over k, is contained in a finite subextension F {k of K{k, and is hence fixed by GalpK{F q.

Theorem 26.4. Let K{k be Galois, and let G :“ GalpK{kq. Sending Vk P ObV eck to
V :“ K bk Vk, viewed with the obvious semilinear G-action on it (Example 26.3), induces
an equivalence of categories: 74

(117) V eck ù tVector spaces over K + continuous semilinear G-actionu.

It has a quasi-inverse that sends V to the k-vector space V G (and restriction to V G at the
level of morphisms).

Exercise 26.5. Check that the functor described in Theorem 26.4 is fully faithful. (We
will not need this exercise, but it is still good to see this directly).
Hint: This is very easy: it just says (the infinite dimensional version of): if a matrix with
entries in K is fixed by G, then it has entries in k.

Proof of Theorem 26.4. Note that the G-action on Kbk Vk is indeed continuous and semi-
linear as discussed in Example 26.3.

Using a k-basis for Vk, and the fact that the inclusion k ãÑ KGalpK{kq is an equality
(Lemma 25.27 from Lecture 25), it is easy to see that pK bk VkqGalpK{kq is simply the k-
subspace Vk – t1u bk Vk Ă K bk Vk.

75 From this, it is immediate that the composite
pV Þ⇝ V Gq ˝ pVk Þ⇝ K bk Vkq is naturally isomorphic to the identity functor on V eck, via
the natural isomorphism (pVk Ñ t1u b VkqVk given on each Vk by w ÞÑ 1 b w.

In the other direction, there is a natural transformation from pVk Þ⇝ K bk Vkq ˝ pV Þ⇝ V Gq

to the identity functor, namely the obvious map

(118) K bk V
G

Ñ V

(i.e., with the property that abw ÞÑ aw, namely, induced from the bilinear map pa, wq ÞÑ

aw; also, please make sure to check that these maps constitute a natural transformation).
Thus, it remains to show that (118) is an isomorphism for every vector space V overK with
a continuous semi-linear action of G. This is outsourced to Proposition 26.6 below. □

74As usual, fill it in at the level of morphisms.
75In more detail: if w1, . . . , wn P Vk are linearly independent, a1, . . . , an P K and p

ř

ai b wiq P pK bk

VkqGalpK{kq, then for each σ P GalpK{kq, we have
ř

σpaiq bwi “
ř

ai bwi, so σpaiq “ ai for each i, using
the fact that 1 b w1, . . . , 1 b wn are linearly independent in K bk Vk.
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Proposition 26.6. Let K{k be Galois, and let G :“ GalpK{kq. If V {K is a vector space
equipped with a continuous semilinear action of GalpK{kq, then the map

K bk V
G

Ñ V

is an isomorphism of vector spaces.

The injectivity assertion in the proposition will be an easy consequence of the following
lemma; it follows Theorem 14 of Artin’s Notredame lecture notes on Galois theory, and is
used in standard references on Galois descent. 76

Lemma 26.7. Let G be a (not necessarily finite) group acting by automorphisms on a
field k, and let k “ KG be the fixed field. Let Vk be a vector space over k. Consider the
K-vector space V “ K bk Vk, on which G acts via its action on K. Suppose W Ă V is a
nonzero G-invariant subspace. Then the k-vector space WG Ă W is nonzero.

Proof. SupposeWG ‰ 0. Write a nonzero element ofWG as w “
řr
i“1 aivi, with v1, . . . , vr P

Vk linearly independent and a1, . . . , ar P K, where we may and do assume that r is minimal
possible as w and its expansions as above are allowed to vary.

Without loss of generality, we may assume that a1 “ 1. We claim that r “ 1 and that
hence w “ v1 is the required vector. Suppose not. If all the ai belong to k, then w P Vk
and hence r “ 1. So assume without loss of generality that a2 R k. There exists σ P G
such that σpa2q ‰ a2. Since W is G-invariant, it also contains σpwq “

řr
i“1 σpaiqvi. Then

0 ‰ σpwq ´w P W is a K-linear combination of v2, . . . , vr, contradicting the minimality of
r. □

Proof of Proposition 26.6. Injectivity. Let W “ kerpK bk V
G Ñ V q. If W ‰ 0, Lemma

26.7 shows that WG ‰ 0. However, WG “ W X pK bk V
GqG is contained in V G, on which

Kbk V
G Ñ V simply restricts to the inclusion V G ãÑ V , forcingWG Ă kerpV G ãÑ V q “ 0,

a contradiction.

Surjectivity, when K{k is finite. This argument seems similar to that in Theorem 13 of
Artin’s Notredame notes. Suppose K bk V

G Ñ V is not surjective, i.e., the inclusion
SpanKpV Gq Ă V is proper. Then there exists a K-linear functional λ : V Ñ K such that
λpV Gq “ 0. Fix v P V such that λpvq ‰ 0.

Since K{k is finite, #G ď rK : kss ă 8. Consider the map K Ñ K given by

K Q a ÞÑ λ
´

ÿ

σPG

σpavq

¯

“
ÿ

σPG

λpσpavqq “
ÿ

σPG

λpσpaqσpvqq “
ÿ

σPG

λpσpvqq ¨ σpaq P K.

76Two key theorems in Artin’s notes are Theorems 13 and 14 – Theorem 13 is where he uses the linear
independence of characters, while in Theorem 14 he crucially uses that the collection of automorphisms
being considered in that theorem form a group, something that is therefore nontrivially used in the proof of
Lemma 26.7 as well. Theorem 14 looks like an injectivity assertion and Theorem 13 looks like a surjectivity
assertion.



353

This map is a K-linear combination of the various σ P G. This linear combination is
nontrivial, because λpvq ‰ 0. Therefore, by the linear independence of characters, this
map is nonzero. Hence, for some a P K, λ does not vanish on

ř

σPG σpavq P V G, a
contradiction.

Surjectivity, general case. This time the continuity becomes relevant. By the definition of
continuity (specifically, use (116)), it is enough to show that the image of K bk V

G Ñ V
contains V H whenever H “ GalpK{F q for some finite extension F {k inside K. Without
loss of generality, we may assume that F {k is normal and hence Galois (replace F with
the splitting field of the collection of minimal polynomials of the elements from some set
of generators of F over k). Note that V H is a vector space over F (by the semilinearity
assumption), and gets a semilinear action of GalpK{kq{GalpK{F q – GalpF {kq.

Moreover, pV HqGalpF {kq “ V G, and the map K bk V
G Ñ V restricts to the analogous

map F bk pV HqGalpF {kq Ñ V H . Therefore, the image of K bk V
G contains that of F bk

pV HqGalpF {kq, which is V H by the finite case that has already been handled. □

Corollary 26.8. (Galois descent for algebras). Let K{k be Galois, and let G :“ GalpK{kq.
Sending Ak P Ob k-Alg to A :“ K bk Ak, viewed with the obvious semilinear G-action on
it, induces an equivalence of categories:

(119) k-Alg ù tK-algebras + continuous semilinear G-actionu.

It has a quasi-inverse that sends A to the k-algebra space AG (and restriction to AG at
the level of morphisms). All this holds upon adding the adjectives ‘commutative’, ‘finite’
and/or ‘finite commutative’.

Proof. Just as in the proof of Theorem 26.4, we have the obvious map Ak Ñ pK bk AkqG

of k-algebras and the obvious map K bk A
G Ñ A of K-algebras. It is enough to show

that these maps are isomorphisms, which follows if we show that they are isomorphisms of
vector spaces over k or K. This has been done in Proposition 26.6. □

Remark 26.9. Perhaps some might find it more natural, and others more pretentious,
to deduce the descent for algebras from that for vector spaces by observing that the pre-
scription for vector spaces respects the additional structure involved in the definition of an
algebra A, namely, the multiplication map AbA Ñ A, together with the associativity and
the existence of an identity element. Of course, one needs to carefully make sense of such
structures in the presence of semilinear actions, but all that is ultimately easy.

26.2. An equivalence of categories version of the Galois correspondence.

Definition 26.10. (i) Let K{k be a field extension. A finite commutative k-algebra
A{k is said to split over K, or K-split, if A bk K is a product of copies of K. Let
splKpkqf denote the category of finite commutative k-algebras that split over K,
and k-algebra homomorphisms between them. 77 If we say ‘finite split’, we will
mean ‘finite split commutative’.

77I understand that the notation splKpkqf sits in less than desirable level of harmony with the notation
splpkqf from Lecture 25, and regret that.
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(ii) LetK{k be a Galois extension. The action of G “ GalpK{kq on a finite set (or more
generally a discrete topological space) X is said to be continuous if the stabilizer
of each x P X contains GalpK{F q Ă GalpK{kq for a finite subextension F {k of
K{k. In this case, we will write pG-FinSetqcts for the category of finite sets with a
continuous G-action.

(iii) For eachA P Ob splKpkqf ,XA :“ Homk-AlgpA,Kq will be viewed as aG-set, whereG
acts (on the left) via its action on K. It is immediate that this action is continuous,
and we get a functor splKpkqf ù pG-FinSetqcts, which we will denote by A Þ⇝ XA.

(iv) For a finite set X with a continuous G-action, we will, like in Lecture 25, view the
K-algebra MapspX,Kq as having the action of G given by σ ¨ φ “ σ ˝ φ ˝ σ´1.
We get a functor pG-FinSetqcts ù k-Alg, given by X Þ⇝ AX :“ MapsGpX,Kq :“
MapspX,KqG. It is an easy exercise to see that each AX is finite commutative. It
will be a consequence of Theorem 26.12 below that this functor is actually valued
in splKpkqf .

Lemma 26.11. If A P Obpk-Algqfc splits over some field extension K{k, then A is sepa-
rable over k, i.e., A P Ob fétk. It follows that splKpkqf is a (full by definition) subcategory
of fétk.

Proof. We saw in Lecture 24 that A is separable over k if and only if K bk A is separable
over K. Now use that finite split K-algebras are separable over K. □

The ‘equivalence of categories’ version of the main theorem of Galois theory for finite
extensions is:

Theorem 26.12. Let K{k be a Galois extension, and set G “ GalpK{kq. There exists an
equivalence of categories

splKpkqf ù pG-FinSetqcts, A ÞÑ XA “ Homk-AlgpA,Kq, 78

with a quasi-inverse given by

X ù AX “ MapspX,Kq
G

“ MapsGpX,Kq.

More precisely, the composites in either direction have natural isomorphisms with the iden-
tity functors idsplKpkqf and idpG-FinSetqcts, given by

(120) Gelf : A Ñ MapspXA, Kq
G, a ÞÑ pφ ÞÑ φpaqq,

and

(121) X ÞÑ Homk-AlgpAX , Kq, φ ÞÑ pa ÞÑ φpaqq.

Remark 26.13. (i) Thus, again the functors in either direction are obtained from the
G-equivariant evaluation pairing

ev : A ˆ Homk-AlgpA,Kq Ñ K,

78We are changing notation here: now A denotes a k-algebra, and K bk A will denote the associated
K-algebra.
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where A has the trivial action of G.
(ii) Taking k ãÑ K to be a separable closure k ãÑ ks, this theorem specializes to (or

rather, makes precise) Theorem 25.14 from Lecture 25.

Proof of Theorem 26.12. By the definition of splKpkqf , the equivalence of categories (119)
induces an equivalence of categories:

(122) splKpkqf ù tfinite split K-algebras + continuous semilinear G-actionu.

Recall that this sends A to K bk A, and has a quasi-inverse that sends B to BGalpK{kq.

On the other hand, recall from Exercise 25.9 of Lecture 25, that the category splpKqf “

splKpKqf of finite splitK-algebras is equivalent to the category of finite sets, by the functor
B Þ⇝ XB “ HomK-AlgpB,Kq, which has a quasi-inverse given by X Þ⇝ BX :“ MapspX,Kq.
More precisely, the obvious map B Ñ BXB

is a K-algebra isomorphism, and the obvious
map X Ñ XBX

is a bijection.

If B additionally has a continuous semilinear G-action, then XB “ HomK-AlgpB,Kq gets
a continuous G-action, provided for σ P G and φ P XB we define σ ¨φ “ σ ˝φ ˝ σ´1 (check
that σ ˝φ˝σ´1 is a K-algebra homomorphism). Similarly, if X has a continuous G-action,
then BX gets a G-action, by σ ¨ pb : X Ñ Kq “ pσ ˝ b ˝σ´1 : X Ñ Kq; this action is readily
verified to be continuous and semilinear.

It is immediately verified that the maps B Ñ BXB
and X Ñ XBX

respect G-actions,
and are hence isomorphisms respectively in the category of finite split K-algebras with
a continuous semilinear G-action, and the category pG-FinSetqcts (since they respect G-
actions, we can ignore the G-action in checking that they are isomorphisms). Therefore,
we get an equivalence of categories:

(123) tFinite split K-algebras + continuous semilinear G-actionu ù pG-FinSetqcts.

Combining (122) and (123), we get an equivalence of categories

splKpkqf ù pG-FinSetqcts,

given by

A Þ⇝ HomK-AlgpK bk A,Kq “ Homk-AlgpA,Kq

(use Hom-tensor adjointness), and with a quasi-inverse given by

X ÞÑ MapspX,Kq
G

“ MapsGpX,Kq,

as desired. □

To relate the above ‘equivalence of categories’ version of the Galois correspondence with
the ‘classical version’, we will also need:

Proposition 26.14. Let K{k be a Galois extension, and let G “ GalpK{kq. Let F be a fi-
nite K-algebra admitting a k-algebra homomorphism F Ñ K, and let XF “ Homk-AlgpF,Kq.
Then
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(i) We have an isomorphism of K-algebras K bk F Ñ MapspXF , Kq, which satisfies
b b a ÞÑ pσ ÞÑ bσpaqq.

(ii) F P Ob splKpkqf .

Proof, some verifications only sketched. If we knew (ii), (i) would follow from the equiv-
alence of categories between finite split K-algebras and finite sets (Exercise 25.9 from
Lecture 25). The point is that we are instead using Galois descent to prove (i), and then
deducing (ii).

For (i), we fix a k-algebra homomorphism F Ñ K and view it as an inclusion. It is easy
to see from the defining properties of the tensor product that there exists a well-defined
K-algebra homomorphism K bk F Ñ MapspXF , Kq satisfying b b a ÞÑ pσ ÞÑ σpaqbq.
This homomorphism respects the obvious continuous semilinear actions of G :“ GalpK{kq

on either side (this needs a little bit of straightforward checking; for more details, follow
Remark 26.16 below). Therefore, by Galois descent (Theorem 26.4), (i) follows if we show
that this map becomes an isomorphism on taking G-invariants. This is easy, once one
notes that, since G acts transitively on Homk-AlgpF,Kq, evaluating at the inclusion F ãÑ K
(whose stabilizer in G is GalpK{F q) identifies MapsGpXF , Kq with KGalpK{F q “ F .

(ii) follows from (i). □

26.3. Another take on the main theorem.
Note: The material of this section seems to give a proof of the main theorem of Galois
theory, in the case of finite extensions, without any primitive element theorem or Galois
descent, linear independence of characters etc. So it might be erroneous, be cautious.

In this subsection, we will give yet another proof of the classical form of the Galois corre-
spondence for finite Galois extensions K{k. This will crucially use Exercise 25.9 of Lecture
25 (which was already used above), so we restate it as a proposition:

Proposition 26.15. Let G be a (not necessarily finite) group acting by automorphisms on
a field K, and let k “ KG Ă K be the fixed field. Assume that K is algebraic over k. Let
A P Ob splKpkqf . Then the map

(124) K bk A Ñ
ź

σPHomk-AlgpA,Kq

K “ MapspXA, Kq,

sending each b b a to pbσpaqqσ “ pσ ÞÑ bσpaqq, 79 is an isomorphism of k-algebras (thus,
explicitly splitting the k-algebra K), respecting the obvious action of G on either side.

Remark 26.16. For later use, since (124) is important, we study its equivariance proper-
ties: 80

79Again, it implicitly has been left to you to check that this definition makes sense. e.g., the σ-th factor
is obtained using the universal property of tensor products of commutative k-algebras, from idK : K Ñ K
and σ : A Ñ K.

80Apologies again for the bad notation: this involves the switching of some orders in maps, necessitating
more care on the part of the reader than should have been demanded.
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(i) First, consider the case where K is finite and A “ K: taking A “ K is justified,
since the k-algebra K is K-split, by Lemma 26.17 below.
In this case, we are studying K bk K Ñ

ś

σPGK, where G “ GalpK{kq is finite
since A{k is assumed to be. Since the image of b b a in MapspG,Kq is given by
σ ÞÑ cσ :“ bσpaq, and since

τ1pbqσpτ2paqq “ τ1pb ¨ pτ´1
1 στ2paqqq “ τ1pcτ´1

1 στ2
q,

it follows that the action of τ2 P G – t1u ˆ G on K bk K gets transported to the
right-regular action of τ2 P G on MapspG,Kq, while the action of τ1 P G – Gˆ t1u

gets transported to the action of τ1 on MapspG,Kq that results from viewing G
and K as having their usual left G-actions.

(ii) If we drop the assumption that A “ K, then we still have an action of G – Gˆ t1u

on K bk A, which by the same computation is obtained by viewing G and K as
having their usual left G-actions, and giving MapspG,Kq the resulting G-action.

Proposition 26.17. If K{k is Galois, then finite K-split k-algebras are precisely those
isomorphic to products of the form

śn
i“1 Fi, with each Fi{k a finite subextension of K{k.

Proof. Suppose A is a finite K-split k-algebra. Then A is automatically separable over k
(Lemma 26.11), so we can write A “

śn
i“1 Fi, with each Fi{k a finite separable extension.

Since K bk A is a product of copies of K, for each i, we have a nonzero homomorphism
KbkFi Ñ K, so that we have a k-algebra embedding Fi Ñ K. This shows that each finite
K-split k-algebra is a product

śn
i“1 Fi as given.

We now need to prove the converse, i.e., that each finite subextension F {k of K{k is K-
split (compare with Proposition 26.14). If we can assume the primitive element theorem,
so that F “ krαs, then the minimal monic polynomial f of α over k has a factorization of
the form px ´ α1q . . . px ´ αnq, with the αi distinct, so Sunzi’s theorem gives:

K bk F – Krxs{

´

n
ź

i“1

px ´ αiq
¯

–

n
ź

i“1

K,

as a K-algebra, which is split.

But we wish to prove the proposition without using the primitive element theorem, since
we wish to have a proof of the main theorem of Galois theory without using the primitive
element theorem. The above argument does show that for any α P F , Kbk krαs Ă Kbk F
is a split K-algebra. It follows that K bk F is generated as a K-subalgebra by split K-
subalgebras. Thus, using finiteness of F {k, it is enough to show that split subalgebras
of K bk F are closed under taking compositums. This is because the compositum of K-
subalgebras A1, . . . , An of a K-algebra A is a homomorphic image of A1 bK ¨ ¨ ¨ bK An, and
it is easy to see that finite split K-algebras are closed under taking tensor products as well
as (ring-theoretic) quotients. □

Another take on the “FixpKHq “ H” half of Galois theory, when K{k is finite. For H Ă

G “ GalpK{kq, we need to show that the inclusion H Ă H 1 is an equality, where H 1 “
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FixGpKHq is the fixer of KH in G. From the ‘easy half’ of Galois theory, we know that
#H 1 “ #GalpK{KHq “ rK : KHs, so it is enough to show that #H “ rK : KHs.

We apply Proposition 26.15 with A “ K – we can indeed take A “ K, by Proposition
26.17. Note that Homk-AlgpA,Kq “ Homk-AlgpK,Kq “ G. For H Ă G, taking H-fixed
points and using Remark 26.16(ii), we get an isomorphism KH bk K Ñ MapsHpG,Kq of
k-algebras (even of KH-algebras). The dimension of KH bk K over k is rKH : ks ¨ rK : ks,
while, since H acts on G without fixed points, the dimension of MapsHpG,Kq over k is
#pG{Hq ¨ rK : ks. This gives #pG{Hq “ rKH : ks, and since #G “ rK : ks, we get
rK : KHs “ #H, as desired. □

Remark 26.18. Perhaps it would be good to give a proof of the ‘equivalence of categories’
version using these ideas, but I have not thought about how to do that.

26.4. The relation between the classical version and the ‘equivalence of cate-
gories’ version. Let us state a classical form of the main assertion of the main theorem
of Galois theory, describing finite subextensions of a possibly infinite Galois extension K{k
(the case where K{k is finite was covered in Lecture 25): 81

Theorem 26.19. Let K{k be a (not necessarily finite) Galois extension. Then we have a
bijection

!

Finite subextensions F {k of K{k
)

Ñ

!

Subgroups of GalpK{kq containing
GalpK{F0q for some finite subextension F0{k

)

,

F ÞÑ HF :“ FixGpF q “ GalpK{F q,
(125)

with a two-sided inverse

(126) H ÞÑ KH .

Proof. As an exercise, prove this using the classical form of the main theorem of Galois
theory that we saw in Lecture 25. Let us instead prove it using the ‘equivalence of cat-
egories’ version, thereby explicating the relation between the ‘equivalence of categories’
version and the classical version.

The ‘equivalence of categories’ version of the main theorem of Galois theory (Theorem
26.12) says that the following two obvious maps are isomorphisms in the appropriate
category (see (120) and (121)):

(127) A Ñ MapspXA, Kq
G,

(128) X ÞÑ Homk-AlgpAX , Kq.

By Proposition 26.17, the condition that the maps (127) are all isomorphisms needs to be
checked only on finite subextensions F {k of K{k. For such an F , XA “ Homk-AlgpF,Kq

identifies with GalpK{kq{GalpK{F q, so the map A Ñ MapspXA, KqG identifies with F Ñ

81The right-hand side will be described in terms of a topology in Theorem 26.26 below.
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KHF “ KGalpK{F q. Thus, the condition that (127) are isomorphisms is equivalent to the
composite F ÞÑ KGalpK{F q of (125) followed by (126) being identity.

On the other hand, the condition that the maps (128) are isomorphisms needs to be checked
only on transitive continuous GalpK{kq-sets X, i.e., those of the form GalpK{kq{H, for
subets H that contain GalpK{F0q for some finite subextension F0{k of K{k. For these H,
(128) can be verified to be just the map G{H Ñ G{H 1, where H 1 “ FixGpKHq. Thus,
the assertion that the maps (128) are all isomorphisms is equivalent to the assertion that
the composite H ÞÑ FixGpKHq of (126) followed by (125) is the identity. Thus, we have
shown that the ‘equivalence of categories’ version is equivalent to the classical version of
the theorem, which therefore follows. □

26.5. Infinite Galois correspondence. By infinite Galois correspondence, we mean a
description of infinite subextensions E{k of an infinite Galois extension K{k. We have not
discussed this yet.

When K{k is infinite Galois, it is usually no longer true that arbitrary subgroups H Ă

G :“ GalpK{kq are fixers HE of intermediate subfields k Ă E Ă F . Galois theory, in
this abstract general setting, doesn’t give an explicit answer for which H arise as HE,
but says that a topology determined by finite subextensions F {k of E{k can be used to
package the answer. Before going ahead, let us also remark that while the infinite Galois
correspondence also has an ‘equivalence of categories’ version, right now we will study the
classical version for concreteness.

In this subsection, we will typically write E for a possibly infinite intermediate field ex-
tension k Ă E Ă K, and F for an intermediate field extension k Ă F Ă K with rF : ks

finite.

Note that if k Ă F1 Ă F2 Ă K are intermediate extensions, so that GalpK{F2q Ă

GalpK{F1q, we have canonical maps

GalpK{kq Ñ Homk-AlgpF2, Kq – GalpK{kq{GalpK{F2q Ñ GalpK{kq{GalpK{F1q – Homk-AlgpF1, Kq.

Therefore, the following map of sets makes sense:

(129) GalpK{kq Ñ lim
Ð

kĂFĂK
F {k finite

Homk-AlgpF,Kq.

Here, to make sense of the above limit, we used that finite subextensions F {k of K{k,
ordered under inclusion, form a directed system (use composita).

If we restrict F to Galois extensions, then any element of Homk-AlgpF,Kq has image in
F Ă K, and hence Homk-AlgpF,Kq identifies with GalpF {kq. Therefore, we also get a map,
this time a group homomorphism:

(130) GalpK{kq Ñ lim
Ð

kĂFĂK
F {k finite Galois

GalpF {kq.
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Lemma 26.20. Sending E to HF “ FixGpEq “ GalpK{Eq, and H to KH , determines a
bijection
(131)

tIntermediate extensions k Ă E Ă Ku Ñ t
Arbitrary intersections

Ş

iHi,
each Hi “ GalpK{Fiq for some k Ă Fi Ă K, rFi : ks ă 8.u

Proof. For an intermediate extension k Ă F Ă K with rF : ks finite, we saw in Lecture 25
(the “easy half”, Lemma 25.27) that the inclusion F Ă KHF is an equality. This gives an
analogue of (131),
(132)

tIntermediate extensions k Ă F Ă K, with rF : ks ă 8u Ñ

!

subgroups of the form H “ GalpK{F q

for some k Ă F Ă K, with rF : ks ă 8
u.

(131) is a formal consequence of this, using the following observations:

‚ Composita correspond to intersections: If k Ă E Ă K is the compositum of tk Ă

Fi Ă KuiPI , then inside GalpK{kq we have an equality GalpK{Eq “
Ş

iGalpK{Fiq.
‚ The intermediate extensions k Ă E Ă K are precisely the composita of collections
of finite intermediate extensions k Ă F Ă K.

□

In the above setting, if E{k is Galois if and only if HE Ă GalpK{kq is normal, in which
case restriction defines an isomorphism GalpK{kq{GalpK{Eq Ñ GalpE{kq – this was part
of the “easy half”, Theorem 25.25 from Lecture 25, which covered infinite extensions.

The point of the infinite Galois correspondence seems to be to just systematize the right-
hand side of (131): is there a package to describe the intersections

Ş

iHi that arise in
it?

To this end, we will need to define a topology on GalpK{kq, for which we will use:

Lemma 26.21. Let K{k be an arbitrary Galois extension. Then the map (129) is a
bijection of sets, and the map (130) is an isomorphism of groups.

Proof. Every element of K, being algebraic over k, is contained in a finite subextension
F0{k, which has a finite Galois closure F {k inside K. 82 Thus, giving an element of
GalpK{kq is equivalent to giving elements σF P GalpF {kq, for each intermediate extension
k Ă F Ă K with F {k finite Galois, such that the ‘inverse limit compatibility’ is satisfied: if
k Ă F1 Ă F2 Ă K finite Galois, then σF2 |F1 “ σF1 . This gives that (130) is an isomorphism
of groups. Analogous considerations give that (129) is a bijection of sets, finishing the
proof of the lemma. □

82If F0 is obtained by adjoining to k roots of polynomials f1, . . . , fn in krxs, then the subfield of K
generated by all the roots of the fi in K is Galois, and independent of the choice of f1, . . . , fn in K.
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Recall inverse limits associated to inverse systems in Set and Top. For Set, if fij : Xj Ñ Xi

are the transition morphisms in an inverse system with tXiui as the underlying sets, we
have an identification of sets that we already used above:

lim
Ð
i

Xi “

!

pxiqi P
ź

i

Xi | fijpxjq “ xi @ i ď j
)

.

Moreover, the same description is valid in the category Top, where the right hand side
acquires the subspace topology from the product topology on

ś

iXi. It is also the weak-
est topology with respect to which each of the projection morphisms pri : X Ñ Xi is
continuous.

We will not prove the following theorem. We will not use it in an essential way either, but
it is good to keep it in mind.

Theorem 26.22. (i) Given a topological space X, the following are equivalent:
(a) X is an inverse limit of finite discrete topological spaces: we have a homeo-

morphism

X Ñ lim
Ð
i

Xi,

where the right-hand side is an inverse limit in the category Top, and each Xi

is a finite set given the discrete topology.
(b) X is compact, Hausdorff and totally disconnected.

(ii) Given a topological group G, the following are equivalent:
(a) G is an inverse limit of finite discrete topological groups: we have a homeo-

morphic isomorphism of groups

G Ñ lim
Ð
i

Gi

where the right-hand side is an inverse limit in the category TopGrp, and each
Gi is a finite group given the discrete topology.

(b) G is compact, Hausdorff and totally disconnected.

Definition 26.23. (i) An inverse limit lim
Ð
i

Xi as above, with each Xi a finite set, is

called a profinite set. Note that each profinite set X, equipped with the bijection
X Ñ lim

Ð
i

Xi, has a topology acquired from and depending on the bijection.

(ii) Similarly, we define a profinite group, and give profinite groups a topology depend-
ing on a realization G “ lim

Ð
i

Gi.

Here is a series of exercises to study profinite topologies:

Exercise 26.24. Suppose X “ lim
Ð
i

Xi, with each Xi finite, and give X the inverse limit

topology. Write pI,ďq for the directed set used in the above inverse limits; thus, if I is
made into a category the obvious way, the inverse system is a functor Iop Ñ Top.
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(i) A sub-directed-set I0 of I is defined in the obvious way (restrict the order relations).
We say that I0 Ă I is cofinal if for all i P I, there exists i0 P I0 such that i ď i0.
Show that the projection map

lim
Ð
iPI

Xi Ñ lim
Ð
iPI0

Xi

is an isomorphism of topological spaces. Note that this does not require the Xi to
be finite.

For the remaining problems below, fix a cofinal I0 as above, and make sure to
note that those assertions are independent of I0.

(ii) Note that a subbasis for the topology on X is given by the various pr´1
i pxiq, with

i P I and xi P Xi. However, show that this subbasis is in fact a basis, and that we
again get a basis if we consider only the pr´1

i pxiq with i P I0 and xi P Xi.
For this reason, when we talk of a profinite set X, we will not carry around a

presentation of X as lim
Ð
Xi, but only remember the topology on X. A similar

comment will apply to profinite groups.
(iii) Now assume that each Xi is a group Gi, and that G Ñ lim

Ð
i

Gi is an inverse limit

of the groups Gi. For each i, show that Hi :“ kerpG Ñ Giq is an open normal
subgroup of G. Further, show that the tHiu form a basis of neighborhoods of the
identity. Conclude that a topological group G is profinite if and only if 1 P G has a
basis of open neighborhoods tHiuiPI , with each Hi Ă G an open normal subgroup.
Note: If G is any topological group and H Ă G is an open subgroup, then H is
automatically closed; this is because H is the complement of the non-identity cosets
of H in G, each of which is open. In contrast, a closed subgroup H of a topological
group G need not be open, unless H is of finite index in G.

(iv) Conclude that if G is a compact, Hausdorff and totally disconnected group, then
1 P G has a basis of neighborhoods consisting of finite index normal subgroups,
which are open and closed in G.
Note: You may use Theorem 26.22 to prove this, but note that the profinite group
GalpK{kq that is of concern to us is explicitly given such a basis (as you can see
from the above exercises), so we will not really use this exercise.

(v) If G “ lim
Ð
i

Gi is a profinite group, H Ă G is a subgroup, and Ξ “ tH 1uH 1 is a basis

of neighborhoods of the identity in G consisting of open normal subgroups, show
that the closure H̄ of H is given by

H̄ “
č

H 1PΞ

H ¨ H 1,

where we note that each H ¨ H 1 Ă G is an open normal subgroup. Conclude that
the following are equivalent:
(a) H is closed in G.
(b) H can be written as

Ş

iHi, where each Hi Ă G is a finite index open normal
subgroup of G.
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Definition 26.25. Let K{k be an infinite (i.e., possibly infinite) Galois extension. Either
of (129) and (130) defines the same topology on G :“ GalpK{kq by Exercise 26.24(i). We
equip G “ GalpK{kq with, making it into a profinite topological group. This topology on
GalpK{kq is called the Krull topology.

Theorem 26.26. Let K{k be an arbitrary Galois extension, and set G “ GalpK{kq.
Sending F to HF “ FixGpF q, and H to KH , induces the following bijections:

(i)
(133)
tIntermediate extensions k Ă F Ă K with rF : ks finiteu Ñ tOpen subgroups of GalpK{kqu.

(ii)
(134)
tIntermediate extensions k Ă F Ă K with rF : ks finite Galoisu Ñ tOpen normal subgroups of GalpK{kqu.

(iii)

(135) tIntermediate extensions k Ă E Ă Ku Ñ tClosed subgroups of GalpK{kqu.

(iv)
(136)
tIntermediate extensions k Ă E Ă K with E{k Galoisu Ñ tClosed normal subgroups of GalpK{kqu.

For each intermediate extension k Ă E Ă K with E{k Galois, restriction from K
to E induces an isomorphism GalpK{kq{GalpK{Eq Ñ GalpE{kq.

Proof. Recall that the ‘easy half’ of Galois theory was proved for extensions that were
possibly infinite: thus, we have KHE “ E for any subextension E{k of K{k. This half also
covered the assertion in (iv) regarding GalpE{kq. Therefore, in each assertion, it suffices
to show that the image of E ÞÑ HE is as described.

Moreover, (ii) and (iv) follow respectively from (i) and (iii), using the “easy half” of Galois
theory (Lemma 25.27 from Lecture 25), so it is enough to prove (i) and (iii).

For (i), by the bijection (132), which we observed in the proof of Lemma 26.20, it suffices
to show that open subgroups of GalpK{kq are precisely the GalpK{F q, as F varies over
intermediate extensions k Ă F Ă K with F {k finite. It is immediate that each such
GalpK{F q is an open subgroup of GalpK{kq, and it suffices to show that each open subgroup
U Ă GalpK{kq is of the form GalpK{F q for some such F . By Exercise 26.24(ii), U contains
a subgroup of the form GalpK{F0q, with F0{k finite. Replacing F0 with its Galois closure
in K, we may and do assume that F0{k is finite Galois.

Let Ū be the image of U in GalpK{kq{GalpK{F0q “ GalpF0{kq. By the finite Ga-
lois correspondence, we can write Ū “ GalpF0{F q, for some finite subextension F {k of
F0{k. U Ă GalpK{kq is the preimage of Ū “ GalpF0{F q Ă GalpF0{kq, and hence equals
GalpK{F q. This gives (i).

Given Lemma 26.20, specifically (131), together with Exercise 26.24(v), (iii) follows from
(i), finishing the proof of the theorem. □
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Exercise 26.27. Let K{k be a Galois extension.

(i) Recall from Definition 26.1 what it means for a action of GalpK{kq on a K-
vector space V (by k-vector space automorphisms) to be continuous. Show that
the continuity of this action is equivalent to the continuity of the action map
GalpK{kq ˆ V Ñ V , where GalpK{kq is given the Krull topology defined above,
and V is given the discrete topology.

(ii) Prove an analogous result about what it means for an action of GalpK{kq on a
finite set to be continuous (see Definition 26.10(ii)).

Exercise 26.28. Read up about, or work out, an ‘equivalence of categories’ version of the
infinite Galois correspondence, involving profinite (instead of finite) sets with a continuous
GalpK{kq-action. One source for this is the book of Janelidze and Borceux. I would
have liked to work it out here, but I don’t have time, at least any more than Fermat
had margin. It would be (modulo trade-offs/opportunity cost) helpful to then deduce the
‘infinite subextension’ case from the ‘equivalence of categories’ version.

26.6. Appendix – a bit on Galois categories, without proofs. The material of this
subsection is recommended but optional. But even more than reading the following, I
encourage you to work through (at least if you have enough time and interest) the material
on Galois categories in Lenstra’s notes at:
https://websites.math.leidenuniv.nl/algebra/GSchemes.pdf ,
and translate it back to the case of field extensions. Galois categories unify the formal
aspects of the Galois theory field extensions and covering spaces. I wanted to write in
some detail about them, but don’t have the time to do so. However, I will set up notation
and state the ‘main theorem of Galois theory’ in that setting. The reference is the article of
Lenstra mentioned above, which itself may have been taken from or inspired by analogous
material in SGA1.

The following notion of Galois category axiomatizes some conditions that turn out to be
sufficient for a category C to be equivalent to a category of the form pπ-FinSetqcts, for a
profinite group π. As you read the conditions in the definition below, consider doing the
easy verification that these conditions are all satisfied by each pπ-FinSetqcts, and hence
necessary for C to be equivalent to some pπ-FinSetqcts.

Definition 26.29. Let C be a category, 83 and F : C Ñ FinSet a functor. We say that
C is a Galois category, with F as a fundamental functor, if the following conditions of
Grothendieck are satisfied:

(G1) C is closed under finite limits (i.e., it has a final object and is closed under fiber
products).

(G2) C is closed under finite coproducts (and in particular has an initial object), and for
every finite group H of automorphisms of an object X of C, a ‘categorical’ quotient
X{H exists – the existence of this quotient means, by definition, that (noting that

83I will assume that all categories are “essentially small”.
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H acts on the set HomCpX, Y q for any Y P Ob C), the functor phXqH : Cop Ñ Set
given by Y ÞÑ HomCpX, Y qH is representable. (Note that this latter ‘quotient’
condition is saying that C is closed under a particular kind of coequalizers).

(G3) Any morphism in C is a composite of an epimorphism followed by a monomorphism,
and any monomorphismX Ñ Y in C factors in the form pY 1 ãÑ Y 1\Y 2q˝pX Ñ Y 1q,
where X Ñ Y 1 is an isomorphism.

(G4) F preserves finite limits (i.e., it takes a final object in C to one in π-FinSet, and
commutes with fiber products).

(G5) F commutes with finite coproducts, sends epimorphisms to epimorphisms, and
commutes with passages X Ñ X{H to quotients by the action of a finite group H
of automorphisms (i.e., the obvious map F pXq{H Ñ F pX{Hq is an isomorphism).

(G6) F is a conservative functor, i.e., F puq is an isomorphism if and only if u is an
isomorphism.

Example 26.30. (i) One example is the category C of finite covering spaces of a topo-
logical space X with a chosen base-point x, with F pY Ñ Xq being the preimage
of x in Y , or equivalently the set of maps X̃ Ñ Y lifting the universal covering
X̃ Ñ Y .

(ii) Another example is the category C “ pf étkqop opposite to the category f étk of finite
separable algebras over a field k, and where F pK{kq equals Homk-AlgpK, k

sq for a
chosen separable closure k ãÑ ks of k. Note that in this case an initial object of
C, whose existence is required by the axiom (G2), corresponds to a final object of
f étk, which is the 0-ring viewed as a k-algebra!

Remark 26.31. The axioms in Definition 26.29 are not trivial to verify in the cases men-
tioned in Example 26.30, and in the case of pf étkqop in fact include the substantial results
from classical Galois theory. For instance, the condition F pX{Hq – F pXq{H from (G5), in
the situation of C “ pf étqopk , implies the following. IfX P Ob C corresponds to a finite Galois
field extension K{k in the opposite category f étk, it is easy to see that X{H corresponds to
for the finite separable k-algebra KH , and the condition in (G5) that F pXq{H Ñ F pX{Hq

is an isomorphism implies that the restriction map Homk-AlgpK, k
sq{H Ñ Homk-AlgpK

H , ksq
is an isomorphism, or equivalently, that GalpK{KHq “ GalpK{kq{H̄, where H̄ Ă GalpK{kq

is the image of H under the restriction map Galpks{kq Ñ GalpK{kq. Thus, this says that
the inclusion H̄ ãÑ FixGalpK{kqpK

H̄q is an equality, and is hence the ‘latter half’ of finite
Galois theory.

I think this means that Galois theory is not formal, but the formalism of Galois categories
is still useful for us since it helps us give a concrete shape to the analogy between the Galois
theories for field extensions and covering spaces, and probably also helps us understand
field extensions better.

To prepare for the statement of the main theorem, Lenstra actually considers a second
group, the group AutpF q of automorphisms of the functor F (this is somewhat analogous to
how one realizes suitable abelian categories A as modules over AutApP qop, where P P ObA
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is a projective generator: though F itself is not representable in general, it is kind of ‘pro-
representable’). He then notices that AutpF q has an obvious structure of a profinite group
(use that F is valued in finite sets), and that F can also be viewed as a functor

H : C ù pAutpF q-FinSetqcts.

In this setting, the main theorem of Galois theory can be stated as (I am basically copying
from Theorem 3.5 of Lenstra’s notes mentioned above):

Theorem 26.32. Let C be an essentially small Galois category with fundamental functor
F .

(i) The functor H : C ù pAutpF q-FinSetqcts is an equivalence of categories.
(ii) For any profinite group π, and any equivalence C ù pπ-FinSetqcts of categories

such that the composition

C ù pπ-FinSetqcts
Forget
Ñ FinSet

is naturally isomorphic to F , π is canonically isomorphic to AutpF q.
(iii) Any two fundamental functors on C are naturally isomorphic.
(iv) For any profinite group π such that C and pπ-FinSetqcts are equivalent, there is an

isomorphism π Ñ AutpF q that may not be unique, but is unique up to an inner
automorphism of AutpF q.

I would have liked to describe more of the proof, but as I said I don’t have time to do so (or
even to work through that proof myself in more detail). It seems to me that reading the
proof in Lenstra’s notes and comparing it with the usual Galois theory for fields, can help
us understand the latter better, and also give some general practice in category theory.
For instance, when C “ pf étkqop, you can check that the definition of a connected object
in Lenstra’s notes corresponds to a finite separable k-algebra that is a field extension. He
defines a Galois object of C to be an object A such that A{AutCpAq is the final object 1
of C; for C “ pf étkqop, this corresponds to the initial object of f étk, namely, the k-algebra
k. It is interesting how the analogue of constructing a Galois extension containing a given
separable extension, is carried out in this setting, and then how it translates back to the
case of pf étkqop: one can no longer take splitting fields associated to polynomials, so one
takes a #HomkpK, ksq-fold tensor product ofK with itself over k, and looks at a ‘connected
component’ inside it; see Section 3.14 of Lenstra’s notes for more details. This is probably
a good exercise in field theory, one that could have been at least an optional problem in
one of the homework sets.

A different treatment of this material can be found in the stacks project:
https://stacks.math.columbia.edu/tag/0BMQ .

However, the stacks project treatment makes stronger assumptions: e.g., rather than just
require commutativity with passage to finite quotients, which was one of the inputs from
Galois theory, the stacks project page requires F to be exact, and hence in particular to
commute with all finite colimits (which very nontrivially includes coequalizers associated
to the action of a finite group).
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27. Lecture 27 – Additional topics related to Field and Galois theory
(crude)

27.1. Normal basis theorem. Let K{k be a finite Galois field extension. Then G :“
GalpK{kq acts on K, and hence K is a left module over krGs.

Theorem 27.1 (Normal basis theorem). The left krGs-module K (i.e., the k-linear repre-
sentation of G on the k-vector space K via the Galois action) is isomorphic to krGs with
its right regular action of G. In other words, there exists α P K such that the Galois orbit
tσpαq | σ P GalpK{kqu of α is a basis for K as a vector space over k.

First we recall a computation from Lecture 26: the base-change of K to K, i.e., K bk K
as a KrGs-module, is isomorphic to KrGs.

Lemma 27.2. KbkK, where G acts via the first copy of K, and thought of as a K-vector
space via the second copy of K, is isomorphic to KrGs with its right regular representation.

Proof. This was proved in Lecture 26 (see Proposition 26.15 and Remark 26.16), but let
us briefly recall the computation. We have an isomorphism of K-vector spaces

K bk K – MapspG,Kq, such that a b b ÞÑ pσ ÞÑ σpaqbq.

Under this action, the action of τ P G “ GalpK{kq on the first copy ofK sends pσ ÞÑ σpaqbq
to pσ ÞÑ pστpaqqbq, which is the right regular action on MapspG,Kq. But then MapspG,Kq

with its right regular action is precisely KrGs with its right regular action. □

Lemma 27.3. Let V,W be representations of a k-algebra A that are finite dimensional
as k-vector spaces, and let K{k be a field extension. Suppose V bk K – W bk K as
A bk K-modules. Then V – W as A-modules.

Proof of Theorem 27.1, assuming Lemma 27.3 for finite K{k. Take A “ krGs, V “ K
and W “ krGs, where we give W the right regular representation. Then by Lemma
27.2, V bkK – KbkK and W bkK – krGs bkK “ KrGs are isomorphic as modules over
KrGs “ krGs bk K. Therefore, by Lemma 27.3, and using that K{k is finite, we conclude
that K – krGs as krGs-modules. □

Proof of Lemma 27.3, only sketched when K{k is infinite. This may be due to Deuring.
First we assume rK : ks ă 8. Write

V –
à

i

V ‘mi
i , W “

à

i

V ‘ni
i

as a direct sum of indecomposable A-modules (some of the mi and the ni may be zero):
we have such a decomposition since V and W are finite dimensional as k-vector spaces,
and hence of finite length as A-modules. It is enough to show that mi “ ni for each i.

Note that, as modules over A – A b t1u Ă A bk K, we have

V bk K –
à

i

V
‘mi¨rK:ks

i , W “
à

i

V
‘ni¨rK:ks

i .
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Therefore, by the Krull-Schmidt-Remak decomposition, we have mi ¨ rK : ks “ ni ¨ rK : ks

for all i, so that mi “ ni for all i, as desired.

Now consider the general case; we will sketch how to reduce this to the case where K{k
is finite. The isomorphism φ : V bk K – W bk K involves only finitely many elements of
K. Thus, it is easy (exercise!) to see that there exists a finitely generated k-subalgebra
B Ă K such that V bkB – W bkB as AbkB-modules. Let m Ă B be any maximal ideal.
Then, with F :“ B{m, we have:

V bk F
–
Ñ W bk F

as modules over A bk F .

Thus, it is enough to prove that rF : ks is a finite extension. Since F is a field extension of
K which is finitely generated as a k-algebra, this follows from a result known as Hilbert’s
Nullstellensatz. □

Remark 27.4. (i) If K{k is Galois but not necessarily finite, one still has a normal
basis theorem, which says that with G “ GalpK{kq, we have a G-equivariant iso-
morphism

K Ñ MapsctspG, kq,

where the right-hand side is the space of continuous maps G Ñ k with the left
or right regular action of G, k is given the discrete topology, and G is given the
Krull topology: see Theorem 1 of the paper “A normal basis theorem for infinite
Galois extensions” by H. W. Lenstra Jr., Indagationes Mathematicae (Proceedings),
Volume 88, Issue 2, 1985, Pages 221-228 (it is a short paper, you can easily read it).
Theorem 2 of the paper gives another generalization of the normal basis theorem
to infinite Galois extensions.

(ii) For a more standard proof of the normal basis theorem, using linear independence
of characters, see
https://kconrad.math.uconn.edu/blurbs/galoistheory/linearchar.pdf
I haven’t read the argument in Serge Lang’s book carefully, but at least one of the
editions was supposed to have an omission.

27.2. Inseparable extensions.

Notation 27.5. We will continue to write rE : kss for #Homk-AlgpE,Lq, where L is an
algebraically closed field containing k, even when E{k is only algebraic but not finite. But,
at least for now, we consider rE : ksi “ rE : ks{rE : kss to be only defined when E{k is
finite.

Let us slightly generalize our definition of purely inseparable extensions – the following
terminology may be nonstandard (and a less than necessary detour).

Definition 27.6. (i) If A1 is a finite commutative k-algebra and A is a finite com-
mutative A1-algebra, then we say that A{A1 is a purely inseparable extension, if
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for every algebraically closed field L containing k, the fibers of the restriction map
Homk-AlgpA,Lq Ñ Homk-AlgpA1, Lq are all singleton.

Note that, when A1 is a field, this terminology agrees with our earlier definition,
namely, that A{A1 is purely inseparable if and only if rA : A1ss “ 1.

(ii) An algebraic field extension K{k is said to be purely inseparable if rK : kss “ 1 –
i.e., if there is at most one k-algebra homomorphism from K into any given (alge-
braically closed, or any other) field. Note that when K{k is finite, this definition
agrees with (i). For an algebraic field extension K{k, α P K is said to be purely
inseparable over k if krαs{k is a purely inseparable extension.

Example 27.7. If k is algebraically closed, a finite commutative k-algebra A is purely
inseparable over k if and only if A is local.

Recall from Lecture 24 that any finite commutative k-algebra A has a maximal separable
k-subalgebra A0. Let us study A0 better.

Proposition 27.8. (i) If A is a finite commutative k-algebra, and F {k is an arbitrary
(not necessarily algebraic) field extension, then A{k is purely inseparable if and only
if A bk F {F is.

(ii) Purely inseparable finite commutative algebras over k are closed under taking quo-
tients (by ideals) and tensor products. Moreover, if k Ă A1 Ă A2 Ă A with A{k
purely inseparable, then A2{A1 is purely inseparable.

(iii) If A is a finite commutative algebra over k which is local, and tAiuiPI is a family
of purely inseparable subalgebras of A, then the subalgebra of A generated by the Ai
is purely inseparable.

(iv) If a field extension K{k is a purely inseparable algebraic field extension, and k Ă

F Ă E Ă K are intermediate extensions, then E{F is purely inseparable.
(v) If k Ă E Ă K are field extensions with E{k and K{E purely inseparable, then so

is K{k.
(vi) If E,F are contained in an algebraic field extension K{k, and if E{k is purely

inseparable, so is EF {F . Note that this property, together with (v), implies that if
both E{k and F {k are purely inseparable, so is EF {k.

Proof. Unless otherwise stated, L will denote an algebraically closed field containing k.

(i) is immediate from the fact that separable degree is invariant under base-change (Propo-
sition 24.22(i) from Lecture 24).

If a k-algebra A1 is a quotient of a purely inseparable k-algebra A, then Homk-AlgpA
1, Lq Ă

Homk-AlgpA,Lq has cardinality 1. IfA1, A2 are purely inseparable k-algebras, then Homk-AlgpA
1bk

A2, Lq – Homk-AlgpA
1, LqˆHomk-AlgpA

2, Lq is singleton, giving closure under taking tensor
products. If k Ă A1 Ă A2 Ă A are finite commutative k-algebras, then for any k-algebra
homomorphism A1 Ñ L with L algebraically closed, we have

(137) Homk-AlgpA,Lq Ą HomA1-AlgpA,Lq↠ HomA1-AlgpA2, Lq,
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where the latter map is surjective, as follows from the analogous result for fields. If A{k is
purely inseparable, then Homk-AlgpA,Lq is singleton, and hence so is HomA1-AlgpA2, Lq by
(137), so that A2{A1 is purely inseparable. This finishes the proof of (ii).

(iii) is proved as in the separable case (see Corollary 24.33(ii) from Lecture 24), using
closure under tensor products.

For (iv), follow the proof of the analogous assertion in (ii). (v) is asserting the following: if
there is only one k-algebra homomorphism E Ñ L, and if that homomorphism E Ñ L ex-
tends to only one homomorphism K Ñ L, then there is only one k-algebra homomorphism
K Ñ L; this is clear. For (vi), note that for suitably large L, HomF -AlgpEF,Lq injects into
Homk-AlgpE,Lq. □

Corollary 27.9. Let K{k be an algebraic field extension. The following are equivalent:

(i) K{k is purely inseparable, i.e., rK : kss “ 1.
(ii) Each α P K is purely inseparable over k.
(iii) K is generated over k by a family of elements each of which is purely inseparable

over k.

Proof. Easy exercise, using ideas that we have already seen. □

If K{k is a purely inseparable field extension, it is clear that it has no subextension K0{k
which is separable (please do this as an exercise if this is not clear to you). However, the
converse doesn’t seem clear from what we have seen so far today, and will be proved below.

27.3. Field extensions and inseparability.

Lemma 27.10. Let K{k be a (not necessarily finite) field extension.

(i) There exists a subextension k Ă K0 Ă K such that K0{k is separable, and K{K0 is
purely inseparable.

(ii) Any K0 as in (i) is the unique maximal separable subextension of K.

Proof. If char k “ 0, K{k is separable and there is nothing to prove, so let us assume
char k “ p ą 0.

First we prove the assertions assuming that K is a finite extension of k. Since char k “ p ą

0, x ÞÑ xp is a field homomorphism of K, and its image Kp is a subfield of K. Similarly,
we can talk of Kpn for any n ě 0, and of the compositum Kpnk of Kpn and k in K.

We claim that for each n, K{Kpnk is purely inseparable. If σ, σ1 : K ãÑ L are pKpnkq-
algebra homomorphisms into an algebraically closed field L containing Kpnk, then for all
α P K we have that σpαp

n
q “ σ1pαp

n
q, so σpαq “ σ1pαq, because pn-th roots are unique in

characteristic p (if xp
n

“ yp
n
, then px ´ yqp

n
“ 0, so x ´ y “ 0). Thus, HomKpnk-AlgpK,Lq

is singleton, yielding our claim that K{Kpnk is purely inseparable.

Since rK : ks is finite, we have for large enough n that Kpnk “ Kpn`1
k “ . . . . Choose such

an n, and set K0 “ Kpnk. To prove (i), it suffices to prove that K0{k is separable.
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Let us first prove this in the special case where K “ krαs for some α. In this case,
K0 “ krαp

n
s for all large enough n. Since Kp

0k “ K0, we get that if β “ αp
n
for a suitably

large n, then β “ gpβpq for some g P krxs. In other words, β is a root of f P krxs, where
fpxq “ x ´ gpxpq is separable, so that K0 “ krβs is separable over k, as desired.

To prove the lemma for general K “ krα1, . . . , αrs (still assuming that K{k is finite).

K0 “ krαp
n

1 , . . . , α
pn

r sk for large n. By the case where K “ krαs, we know that each of

krαp
n

1 s, . . . , krαp
n

r s is separable over k, for large n, so their compositumK0 “ krαp
n

1 , . . . , α
pn

r s

is separable over k as well.

Now let us prove (ii) (still assuming that K{k is finite). K0, being separable over k, is
contained in the maximal separable subextension of k in K, say K 1

0. If K0 is properly
contained in K 1

0, we have

1 “ rK : K0ss “ rK : K 1
0ssrK

1
0 : K0ss,

so rK 1
0 : K0ss “ 1, so that

rK 1
0 : kss “ rK 1

0 : K0ssrK0 : kss “ rK0 : kss ď rK0 : ks ă rK 1
0 : ks,

contradicting that K 1
0 is separable over k. Thus, we are done when K{k is finite.

Now we consider the case where K{k is infinite. In this case, let K0 Ă K instead denote
the maximal separable subextension of K{k. If α P KzK0, it is easy to see that K0Xkrαs is
the maximal separable subextension of krαs{k, so krαs is purely inseparable over K0 Xkrαs

by the already proved finite case, and it follows that K0rαs is purely inseparable over K0.
Thus, K{K0 is purely inseparable by Corollary 27.9, giving (i).

Given our choice of K0, (ii) is immediate in this case. □

Corollary 27.11. If K{k is a finite field extension and char k “ p ą 0, then K{k is
separable if and only if Kpk “ K.

Proof. If Kpk Ĺ K, then we saw in the above proof that K{Kpk is purely inseparable, so
K{k is not separable. On the other hand, if Kpk “ K, then Kpnk “ K for all n, so the
K0 constructed in the above proof equals K, so K{k “ K0{k is separable. □

Corollary 27.12. Assume that char k “ p ą 0. A singly generated finite algebraic exten-
sion krαs of k is purely inseparable if and only if the monic minimal polynomial of α over
k is of the form xp

n
´ a, with a P k.

Proof. By the proof of Lemma 27.10, krαs{k is purely inseparable if and only if pkrαsqp
n
k “

krαp
n
s equals k for all large enough n. This is equivalent to α satisfying a polynomial over

k of the form xp
n

´ a “ 0 for some a P k.

A polynomial f P krxs is of the form xp
n

´ a if and only if in some or equivalently any
algebraic closure L of k, f splits into the form px ´ αqp

n
for some n. Thus, the condition

that α satisfies a polynomial of the form xp
n

´ a “ 0 is equivalent to the condition that
the minimal polynomial of α is of the form xp

n
´ a, yielding the corollary. □



372

Corollary 27.13. Let K{k be a finite purely inseparable extension, and assume that
char k “ p ą 0.

(i) rK : ks is a power of p.
(ii) For each α P K, there exists n ą 0 such that αp

n
P k.

Proof. Immediate from Corollary 27.9 and Corollary 27.12. □

Thus, purely inseparable field extensions are obtained by attaching p-power roots succes-
sively.

Exercise 27.14. Let K “ krαs, and suppose char k “ p ą 0. Fix any algebraically closed
field L containing krαs. Let f P krxs be the minimal polynomial of α. Choose n maximal
so that fpxq “ gpxp

n
q for some g P krxs. Show that the roots of f in L all occur with

the same multiplicity equal to rkrαs : ksi, and that the maximal separable subextension of
krαs{k is obtained by adjoining to k a root of g in K. Show also that the distinct roots αi
of f in L and the (necessarily distinct) roots βi of g in L are in bijection, given by βi “ αp

n

i .
Use this to give an alternate proof of Lemma 27.10.

Part of the corollary below has already been proved, e.g., in Corollary 27.11, but it seems
to be a convenient summary.

Corollary 27.15. Given an algebraic field extension K{k, the following are equivalent:

PI1. rK : kss “ 1, i.e., K{k is purely inseparable.
PI2. The only separable subextension of K{k is k itself.
PI3. Each α P K is purely inseparable over k.
PI4. For all α P K, the minimal monic polynomial of α over k is of the form xp

n
´a “ 0,

with some n ě 0 and a P k.
PI5. K is generated by a family tαiuiPI , each of which is purely inseparable over k.

Proof. PI1, PI3 and PI5 are equivalent by Corollary 27.11.

If rK : kss “ 1, then for all subextensions E{k of K{k, we have rE : kss “ 1, so PI1
implies PI2. Lemma 27.10 implies that PI2 implies PI3.

Given PI3, Corollary 27.12 gives PI4. If α satisfies a polynomial of the form xp
n

´ a,
then for each k-algebra embedding of σ : krαs Ñ L with L algebraically closed, σpαqp

n
“

a “ αp
n
, so we get σpαq “ α, so rkrαs : kss “ 1. Thus, PI4 implies PI3 as well. All the

equivalences have been proved.

□
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27.4. Perfect fields.

Example 27.16. It is easy to see that any algebraic extension K{k of fields has a maximal
purely inseparable subextensionK1{k, namely the compositum of all the purely inseparable
subextensions of K{k in K. However, in non-analogy with Lemma 27.10, K{K1 may not
be separable. For instance, let k “ F2py, zq, the field of rational functions in two variables
y and z over the finite field F2, and let K{k be a degree 4 extension generated by a root of
f , where fptq “ t4 ` yt2 ` z. It is immediately verified that f is irreducible over F2py, zq.
Since fptq “ gpt2q, where gptq “ t2 ` yt ` z, and since g is irreducible and separable, it is
easy to see that rK : kss “ rK : ksi “ 2.

Suppose K1{k is nontrivial and purely inseparable. Then rK1 : ks “ 2, and K{k1 is
separable. The prime factorization of f takes the form fpxq “ px ´ αq2px ´ βq2, so
the minimal polynomial of f over K1 is px ´ αqpx ´ βq, which is a square-root of f .
But for an algebraic closure L of k “ Fqpy, zq, f has a square-root in Lrts of the form
f1ptq “ t2 `

?
yt`

?
z. Since square-roots are unique in characteristic p, we conclude that

?
y,

?
z P K1. But this forces rK1 : ks ě 4, a contradiction.

I saw this example in an article by Joseph Lipman called “Balanced field extensions” that I
recommend, but clearly examples of this kind must have been known well before his article.
In particular, he proves in the article that the following two properties are equivalent, and
each of them is in turn equivalent to a third property that we won’t concern ourselves with
here:

(i) K{k can be factored as K{K1{k, where K{K1 is separable and K1{k is purely
inseparable.

(ii) Some separable algebraic extension of K is normal over k.

We will see in Proposition 27.17 below that normal algebraic extensions do have such a
factorization.

Proposition 27.17. Let K{k be a normal algebraic extension, and let G “ Autk-AlgpKq.

(i) The unique maximal purely inseparable subextension of K{k is given by KG, the
subfield of K fixed by G.

(ii) K{KG is Galois.
(iii) If k Ă K0 Ă K is the maximal separable subextension, then K “ KGK0, and

K0 X KG “ k.

Proof. Let L be an algebraically closed field containing K Ą k. The unique maximal purely
inseparable subextension of K{k consists of all the α P K that are purely inseparable over
k, i.e., such that

Ξα :“ tσpαq | σ P Homk-Algpkrαs, Lqu “ tσpαq | σ P Homk-AlgpK,Lqu “ G ¨ α

is singleton (use the normality of K and the fact that L is algebraically closed, to get the
latter two equalities in the above line), i.e., of all the α P K fixed by G.
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This proves (i), but note that that does not imply (ii). Instead, we have seen from Galois
theory (Lemma 25.30 in Lecture 25) that K{KG is Galois and hence separable, at least in
the case of finite G, but one reduces to the case of finite G by considering finite normal
subextensions K1{K

G of K{KG. This proves (ii).

SinceK0XKG is both separable and purely inseparable over k, it follows thatK0XKG “ k.
Since K{KGK0 is both separable (since K{KG is separable) and purely inseparable (since
K{K0 is purely inseparable), it follows that K “ K0K

G. □

Definition 27.18. A field k is called perfect if either char k “ 0, or if char k “ p ą 0 and
k “ kp.

Proposition 27.17 has the following corollary for perfect fields.

Corollary 27.19. The following are equivalent:

(i) k is perfect.
(ii) k has no nontrivial purely inseparable extension.
(iii) Every algebraic extension of k is separable.
(iv) Every algebraic extension of k is perfect.

Proof. Note that the given conditions all automatically hold when char k “ 0, so let us
assume char k “ p ą 0.

The equivalence (i) ô (ii) needs just the definition, as follows. k has no nontrivial purely
inseparable extension if and only if it has no singly generated nontrivial purely inseparable
extension. If k is perfect, then it has no singly generated nontrivial algebraic extension
krαs, since this would force αp

n
P k for some n, and hence α P k by perfectness and the fact

that pn-th roots of unity are unique in characteristic p. Conversely if k is not perfect, then
any a P kzkp gives a nontrivial purely inseparable extension krαs where α is the unique
p-th root of a.

It is for (ii) ñ (iii) that one uses Proposition 27.17. Namely, K is contained in some normal
extension K 1{k (e.g., K 1 is contained in an algebraic closure), which Proposition 27.17 lets
us write as the composition of a purely inseparable extension and a separable extension.
Hence (ii) gives us that K 1{k is separable, and hence so is K{k, giving (iii).

If every algebraic extension K{k is separable, then it also follows that such an extension
K{k has no nontrivial purely inseparable extension – otherwise, if K 1{K is purely insep-
arable and nontrivial, it follows that K 1{k is an algebraic extension that is not separable,
a contradiction. This gives that every algebraic extension K{k satisfies (ii), and hence by
the equivalence of (i) and (ii), also (i), giving (iv). Finally, it is immediate that (iv) implies
(i). □

27.5. Maximal separable subalgebra.

Lemma 27.20. Let A “
śr

i“1Ai be a finite commutative k-algebra, with each Ai Artin
local. For 1 ď i ď r, let mi Ă Ai be the unique maximal ideal, and let Ki “ Ai{mi.
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(i) The maximal separable subalgebra A0 Ă A takes the form A0 “
śr

i“1A0,i, where
for each 1 ď i ď r, A0,i Ă Ai is a maximal separable subalgebra.

(ii) For each 1 ď i ď r, A0,i Ñ Ai Ñ Ai{mi “ Ki defines a k-algebra isomorphism from
A0,i to the maximal separable subalgebra of the k-algebra Ki.

(iii) Let pA{ radpAqq0 denote the maximal separable subalgebra of A{ radpAq. Then the
map A0 ãÑ A Ñ A{ radpAq Ą pA{ radpAqq0 defines an isomorphism from A0 to
pA{ radpAqq0.

In particular, A0 –
śr

i“1K0,i, where for 1 ď i ď r, K0,i Ă Ki is the maximal separable
subextension of Ki{k.

Proof. (iii) and the last assertion are a summary of the combination of (i) and (ii), so let
us prove the first two assertions.

We let A0 be the maximal separable k-subalgebra of A, but define, for 1 ď i ď r, A0,i

to be the image of A0 under A Ñ Ai. Since separable algebras are closed under taking
homomorphic images, each A0,i is a separable k-algebra. We now have an inclusion A0 ãÑ
śr

i“1A0,i, which is an equality since
śr

i“1A0,i, being a product of separable k-algebras, is
separable. This gives (i).

Let K0,i Ă Ki be the maximal separable k-subalgebra. Since separability of finite commu-
tative k-algebras is preserved under taking quotients, A0,i Ñ Ki has image contained in
K0,i. Moreover, each A0,i, being reduced and hence a product of fields, and contained in
the Artin local ring Ai, is a field. Therefore, A0,i Ñ K0,i is injective; view it as an inclusion.

Suppose it is not surjective. Let ᾱ P K0,izA0,i. The minimal polynomial of ᾱ is some
separable polynomial f P krxs. By Hensel’s lemma (Theorem 17.23 from Lecture 17),
applied to the homomorphism Ai Ñ Ki of rings with nilpotent kernel mi, the root ᾱ P K0,i

of f P krxs Ă K0,irxs lifts to a root α P Ai of f P krxs Ă A0,irxs. Since f is a separable
irreducible polynomial, the subring A0,irαs Ă Ai generated by α over A0,i is a field, and
is separable over A0,i and hence over k. This contradicts that A0,i is a maximal separable
subalgebra of Ai. This gives the surjectivity of A0,i Ñ K0,i, which is the assertion of
(ii). □

Example 27.21. Note that the algebra A “ Rrxs{px2 ` 1q2 over k “ R is local, since the
ideal px2 ` 1q Ă A is nilpotent and maximal (maximal since going modulo it gives us a
field K “ C). It follows from Lemma 27.20 above that the maximal separable subalgebra
of A is isomorphic to C (of course, this follows from Hensel’s lemma, which was used in
the proof of Lemma 27.20). If you try to find a square-root of ´1 in A directly, it can be
seen not to be all that simple a polynomial.

Exercise 27.22. (This problem gives a somewhat intrinsic version of the Jordan decom-
position of linear operators – in the context of finite k-algebras, ‘independently of a rep-
resentation of the algebra on a vector space realizing the algebra as an algebra of linear
operators’). Let V be a finite dimensional vector space over a field k, and let T P EndkpV q.
Recall that T is said to be semisimple if it is diagonalizable over an algebraic closure k ãÑ k̄
of k, i.e., viewed as an element of Endk̄pV bk k̄q, T is diagonalizable.
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(i) Show that T is semisimple if and only if the finite commutative k-algebra krT s Ă

EndkpV q is a separable k-algebra.
Hint: This is very easy: you can base-change to an algebraically closed field (why?),
and there you know how separable algebras look like.

(ii) Let T P EndkpV q be arbitrary (not necessarily semisimple). A Jordan decomposi-
tion of T is a decomposition T “ Ts ` Tn, where Ts, Tn P EndkpV q are endomor-
phisms with Ts semisimple, Tn nilpotent, and such that Ts and Tn commute with
each other (and hence with T as well). By/as in Problem 2 of HW 1, such Ts
and Tn exist if k is algebraically closed, and for general k, Ts and Tn are uniquely
determined if they exist (since uniqueness may be checked after base-changing to
an algebraic closure).

Show that the following are equivalent for T P EndkpV q:
(a) T has a Jordan decomposition T “ Ts ` Tn in EndkpV q.
(b) The image of T P A :“ krT s in A{pradAq belongs to the maximal separable

k-subalgebra pA{pradAqq0 of A{pradAq.
(iii) (This is sort of part of, and hence also a hint for, (ii), so it is possible that you may

want to prove this simultaneously while proving (ii)). Show that when a Jordan
decomposition T “ Ts ` Tn of T P EndkpV q exists, Ts is simply the unique element
of the maximal separable k-subalgebra A0 Ă A that has the same image as T in
pA{pradAqq0.
Hint for (ii) and (iii): By Lemma 27.20, A0 Ñ pA{pradAqq0 is surjective, where
A0 is the maximal separable k-subalgebra of A.
Note:
(a) Recall from HW 1 Problem 2 that the Jordan decompositions there realized

Ts and Tn as polynomials in T . That is sort of baked in to our situation, since
Ts and Tn are already in the algebra krT s.

(b) All the above go through to give a ‘multiplicative Jordan decomposition’
T “ TsTu of any T P GLkpV q under similar hypotheses (i.e., when the equiv-
alent conditions of (ii) hold), where Ts P krT s is semisimple and Tu P krT s Ă

EndkpV q is unipotent. Automatically, Ts and Tu commute in krT s.
(c) Make sense of the following in the light of your work on the above exercises:

thus, additive and multiplicative Jordan decompositions can be defined on
any finite commutative k-algebra A (without any other vector space in sight),
with the property that for any finite dimensional k-vector space V and any
k-algebra homomorphism φ : A Ñ EndkpV q, x P A (if we are interested
in an additive Jordan decomposition) or x P Aˆ (if we are interested in a
multiplicative Jordan decomposition) has a Jordan decomposition if and only
if φpxq P EndkpV q has, in which case φ transports the Jordan decomposition
of x into that of φpxq.
Here, note that ‘nilpotent’, ‘unipotent’ and ‘semisimple’ have intrinsic mean-
ings in a k-algebra A independently of any embedding A ãÑ EndkpV q: a
nilpotent element of A is just one that is nilpotent as a ring element, and a
unipotent element of A is just an element u of A such that u ´ 1 is nilpotent.
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The above exercises give an intrinsic meaning to ‘semisimple’ too: namely, one
that belongs to the maximal separable k-subalgebra A0 Ă A, or equivalently
to some separable k-subalgebra of A.

(iv) Application: If g P GLnpkq is a semisimple element, show that its centralizer in
GLnpkq is isomorphic to a group of the form

śr
i“1GLmi

pKiq, where each Ki{k is a
finite separable extension.
Hint: This is easier than it seems. V “ kn is a module over krxs, where x acts via
g, or equivalently through krxs Ñ A :“ krgs Ă EndkpV q, and the centralizer of g
is just AutApV q Ă EndApV q. A itself is a product of fields since A{k is a separable
algebra.
Note: Note that such a result would be harder to see if one were working with
matrices.

(v) (ii) shows that if k is perfect, then every T P EndkpV q has a Jordan decomposi-
tion. Deduce it independently, from HW 1 problem 2 (including its optional/extra
assertions), using the existence and uniqueness of the Jordan decomposition over
the algebraic closure k̄, and taking Galpk̄{kq-invariants – note that Galpk̄{kq makes
sense, because since k is perfect, k̄ is separable over k.

We state the following assertion with only an idea of proof; it is not hard, but we don’t
have time to prove it:

Proposition 27.23. If A is a finite commutative k-algebra and A0 Ă A is its maximal
separable k-subalgebra, then for any field F , A0 bkF is the maximal separable F -subalgebra
of A bk F .

Idea of the proof. Roughly, it is clear that A0 bk F Ă Abk F is a separable F -subalgebra;
the point is to show that there is no bigger separable subalgebra in A bk F . For this,
we may assume F to be as large as we wish. The general case follows from three cases:
the first is when F is a separable closure of k, the second is when k is separably closed
and F is an algebraic closure of k, and the third is when both k and F are algebraically
closed. The first case is taken care of by Galois descent. The second is proved by noting
that passing to a purely inseparable extension cannot introduce new idempotents (because
if the characteristic is p ą 0 and F {k is purely inseparable, then for any idempotent
e P A bk F , e “ ep

n
P A for large enough n). The third is proved by noting that for

an algebraically closed field k, every finite commutative k-algebra is a product of local
k-algebras with residue field k, and this condition is preserved by base-change. □

Remark 27.24. The above lemma generalizes to the case where A is only commutative
and finitely generated, and not necessarily finite. The maximal separable subaglebra of A
then defines what is known as the ‘π0’ of A from the perspective of scheme theory.

Lemma 27.25. Let A be a finite commutative k-algebra, and let A0 Ă A a maximal
separable k-subalgebra. Then A{A0 is purely inseparable in the sense of Definition 27.6.

Proof. We have A “
śr

i“1Ai and A0 “
śr

i“1A0,i, with each Ai Artin local, and each
A0,i Ă Ai a maximal separable subalgebra.
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Let L be an algebraically closed field. Each homomorphism A Ñ L factors through the
projection A Ñ Ai for a unique i, and it thus suffices to show that Homk-AlgpAi, Lq Ñ

Homk-AlgpA0,i, Lq is injective. Each such homomorphism factors through the radpAiq Ą

radpA0,iq “ 0 (recall that radpAiq is just the nilradical of Ai), so by Lemma 27.20, according
to which A0,i surjects onto the maximal separable k-subalgebra K0,i of Ki, it remains to
show that Homk-AlgpKi, Lq Ñ Homk-AlgpK0,i, Lq is injective.

Thus, we are reduced to the case where A{k is a field extension, which is treated in Lemma
27.10. □

27.6. Norm and trace.

Definition 27.26. S{R ring extension, S finite free over R. Then NS{R : S Ñ R is the
multiplicative monoid homomorphism s ÞÑ detpmsq, where pms : S Ñ Sq P EndRpSq is
multiplication by S. Recall that we had defined trS{R : S Ñ R to be the additive group
homomorphism s ÞÑ trpmsq.

Since the following is nontrivial, and because it seems subtle enough not to have ‘canonical’
proofs, let us give it the status of a theorem.

Theorem 27.27. (i) Let R Ñ S Ñ T be ring homomorphisms such that T is finite
free over S and S is finite free over R. Then trT {R “ trS{R ˝ trT {S, and NT {R “

NS{R ˝ NT {S.
(ii) Let R Ñ S be a ring homomorphism such that S is finite free over R, and let V be a

finite free S-module. If T P EndSpV q Ă EndRpV q, then trRpT q “ trS{RpT q ˝ trSpT q,
and detRpT q “ NS{RpdetSpT qq.

An ugly proof, assuming that R is a field. First, some remarks regarding the general case.
The assertions involving the trace are easy, and will be skipped. We refer to John Sylvester’s
paper “Determinants of block matrices”:

https://hal.science/hal-01509379/document ,

for a general proof of the assertions regarding the norm: it is an easy, elementary and
elegant proof, one that nevertheless uses matrices. I don’t reproduce it here because I
don’t want to write out those matrices. But the rough idea is as follows: the assertions
regarding the norm are easy to verify for matrices that are products of block upper or lower
triangular matrices, and general matrices can be obtained from these, if certain elements
can be guaranteed to be nonzerodivisors, which one ensures by adjoining variables.

I will write out a proof of the transitivity of norm assuming that R “ k is a field. But
what I have written below has turned out to be ugly, so I am not sure if you will want to
read it, but I hope you read up a proof from elsewhere.

(ii) implies (i), so it is enough to prove (ii). Replacing R “ k and S by R bk k̄ “ k̄ and
S bk k̄, where k ãÑ k̄ is an algebraic closure, we assume without loss of generality that k
is algebraically closed.
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We can write S “ S1 ˆ ¨ ¨ ¨ ˆ Sn, where S1, . . . , Sn are Artin local k-algebras. Accordingly,
we can write V “ V1 ‘ ¨ ¨ ¨ ‘Vn, where each Vi is a free Si-module on which S acts through
the projection S Ñ Si. This allows us to write T “ pT1, . . . , Tnq, where Ti P EndSi

pViq for
each i. It is easy to see that detSpT q “ pdetS1pT1q, . . . , detSnpTnqq P S1 ˆ ¨ ¨ ¨ ˆSn “ S, and
NS{kpdetSpT qq “

śn
i“1NSi{kpdetSi

pTiqq P k. Since detkpT q “
śn

i“1 detkpTiq as well, this
reduces us to the case where S is Artin local.

We may write V “ V̄ bkS, for some k-vector space V̄ . Since S is Artin local, the composite
k ãÑ S Ñ S̄ :“ S{pradSq is an isomorphism. Therefore, we may also identify V̄ with the
vector space V bS pS{pradSqq “ V bS k. This lets us realize EndkpV̄ q as a subring of
EndSpV q as well as a quotient ring.

To finish, it is enough to prove:

(138) detkpT q “ detSpT q
rS:ks

“ NS{kpdetSpT qq,

where we write a ÞÑ ā for S Ñ S̄.

Note that the first equality of (138), applied to the case where V is replaced by S and T
by multiplication by detSpT q, implies the second. Therefore, it is enough to prove the first
equality of (138).

For this, we claim that, if T1 and T2 have the same image in EndkpV̄ q, then detkpT1q “

detkpT2q. To see this claim, note that T1 ´ T2 sends V to radpSq ¨ V , so T1 and T2 induce
the same k-linear maps on the successive quotients of the (finite) k-vector space filtration
V Ą pradSqV Ą pradSq2V Ą . . . of V . Thus, the equality detkpT1q “ detkpT2q follows
from the determinant being multiplicative in exact sequences.

Therefore, to finish the proof of the theorem by proving the first equality of (138), we only
need to consider the case where T P EndkpV̄ q Ă EndSpV q (this is because EndkpV̄ q ãÑ

EndSpV q Ñ EndkpV̄ q is an isomorphism). In other words, with slightly different language,
we can write T “ T̄ b id P EndkpV̄ q bk EndkpSq “ EndkpV̄ bk Sq “ EndkpV q (though T
commutes with S and hence belongs to EndSpV q. In this case, T identifies with a direct
sum of rS : ks-many copies of T̄ , so the first equality of (138) is clear.

□

Theorem 27.28. (i) Suppose A is a finite separable commutative k-algebra, and let
k ãÑ k̄ be an algebraic closure. Then for all α P A we have:

trA{kpαq “
ÿ

σPHomk-AlgpA,k̄q

σpαq, NA{kpαq “
ź

σPHomk-AlgpA,k̄q

σpαq.

(ii) Suppose K{k is a finite purely inseparable field extension. Then for all α P A we
have:

trK{kpαq “ rK : ksα (“ 0 if rK : ks ą 1), NK{kpαq “ αrK:ks.
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(iii) For a general field extension K{k,

trK{kpαq “ rK : ksi

ÿ

σPHomk-AlgpK,k̄q

σpαq, NK{kpαq “

´

ź

σPHomk-AlgpK,k̄q

σpαq

¯rK:ksi

.

Proof. For (i), base-change to ks:

A bk k
s –

Ñ
ź

σPHomk-AlgpA,ksq

ks,

via the map that sends a b b to pσpaqbqσ. Thus, multiplication ma by a on the left-hand
side becomes diagonalized on the right-hand side, since in the σ-th coordinate ma acts as
multiplication by σpaq. Then just use that the trace and determinant of a diagonal matrix
are respectively the sum and the product of its diagonal entries.

Now we come to (ii). Without loss of generality, char k “ p ą 0. We have a “ αp
n

P k
for some n. We will prove the result for NK{k; the result for trK{k is analogous. Then

NK{kpαqp
n

“ NK{kpaq “ arK:ks “ pαrK:ksqp
n
. Now take pn-th roots. (For a different

approach, base-change to an algebraic closure of k, and use the latter equality of (138)).

(iii) follows from (i) and (ii), since every finite extension can be obtained as a finite sep-
arable extension followed by a finite purely inseparable extension (Lemma 27.10), using
the transitivity of norm (Theorem 27.27), which we have proved when the base is a field,
which in our case is. □

Remark 27.29. The separable case of the above proof tells us that the isomorphism
AbkK Ñ

ś

σPHomk-AlgpA,Kq
K for K-split (and hence separable) finite k-algebras A, which

we have seen many times by now (e.g., a special case was used in Lemma 27.2), is about
diagonalization: this isomorphism lets us diagonalize the multiplication by a P A on A, but
after base-change to K. Note how this ties in with our discussion of Jordan decomposition
and maximal separable subalgebras above (Exercise 27.22).

In contrast, when K{k is purely inseparable, pmα : x ÞÑ αxq P EndkpKq cannot be diag-
onalized for α P Kzk, because this endomorphism is not semisimple. If one base-changes
to an algebraic closure k̄, one can see that in Endk̄pK bk k̄q, mα “ mαb1 differs from
the scalar and hence commuting semisimple endomorphism m1bα by something nilpotent,
hence has m1bα as the semisimple part of its Jordan decomposition, and hence has the
same determinant as m1bα, namely αrK:ks (thus giving a proof of the ‘purely inseparable’
case of the above theorem). This is essentially the comment made in the above proof about
using (138).
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28. Lecture 28 – Group cohomology, Artin-Schrier theorem

28.1. Group homology and cohomology – basic definitions and examples.

Definition 28.1. Let G be a group, and consider G-Mod :“ ZrGs-Mod, the category of
abelian groups with a G-action.

(i) The functor of G-invariants,

p´q
G : G-Mod ù AbGrp, M Þ⇝MG :“ tm P M | σm “ m @σ P Gu – HomZrGspZ,Mq, 84

is left exact (e.g., since Hom is left exact), and one defines the group cohomolgy
functors tH ipG,´quiě0 to be its right derived functors:

H i
pG,´q :“ Ri

pM Þ⇝MG
q “ ExtiZrGspZ,´q.

(ii) The functor of G-coinvariants,

p´qG : G-Mod ù AbGrp, M Þ⇝MG :“ M{tσm ´ m | σ P G,m P Mu – Z bZrGs M, 85

is right exact (e.g., since tensor product is right exact), and one defines the group
homology functors tHipG,´quiě0 to be its left derived functors:

HipG,´q :“ LipM Þ⇝MGq “ Tor
ZrGs

i pZ,´q.

Note that, in particular, H0pG,´q “ p´qG and H0pG,´q “ p´qG.

We will later (in Subsection 28.5) introduce a standard projective resolution to compute
the H ipG,´q and HipG,´q, but first let us study it as far as possible without such a
systematic/standard resolution.

Notation 28.2. We recall notation from our discussion of representation theory: the
augmentation ideal in ZrGs is the kernel of the augmentation map (a ring homomorphism)
ε : ZrGs Ñ Z that sends each σ P G to 1 P Z. Note that, temporarily writing R for ZrGs

and I Ă ZrGs for the augmentation ideal, we can also describe MG and MG (functorially)
as follows, and the following description may be used without further mention:

MG
“ tm P M | Im “ 0u – HomRpR{I,Mq, MG “ M{pIMq – pR{Iq bRM,

where Z – R{I is viewed as a left R-module in the first description, and as a right R-module
in the second.

Proposition 28.3. If the group G acts trivially on the abelian group M , then:

(i) H1pG,Mq “ HompG,Mq “ HompGab,Mq.
(ii) H1pG,Mq “ Gab bZ M .

Remark 28.4. The proof will use the following standard facts we have seen before:

84where Z is thought of as a left ZrGs-module with the trivial G-action
85where Z is thought of as a right ZrGs-module with the trivial G-action
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(i) Recall from HW 7, Problem 3(iii), that for a left ideal I of a ring R, we have:

TorR1 pR{I,Mq – kerpI bRM
mult.
Ñ IM Ă Mq.

Indeed, this follows from the long exact sequence for Tor associated to the short
exact sequence 0 Ñ I Ñ R Ñ R{I Ñ 0:

0 “ TorR1 pR,Mq Ñ TorR1 pR{I,Mq Ñ I bRM Ñ R bRM “ M Ñ pR{Iq bRM Ñ 0.

(ii) We claim

Ext1RpR{I,Mq “ cokerpHomRpR,Mq
restriction

Ñ HomRpI,Mqq

– HomRpI,Mq{tpi ÞÑ imq | m P Mu.

To see this, apply the long exact sequence for Ext to 0 Ñ I Ñ R Ñ R{I Ñ 0, to
get

0 Ñ HomRpR{I,Mq Ñ HomRpR,Mq Ñ HomRpI,Mq Ñ Ext1RpR{I,Mq Ñ Ext1RpR,Mq “ 0,

and the claim follows easily.

We will need one more preparatory observation for the proof of Proposition 28.3:

Lemma 28.5. Let I Ă ZrGs be the augmentation ideal. Then there is an isomorphism of
groups Gab – I{I2.

Proof. We have a map G Ñ I{I2, g ÞÑ pg ´ 1q ` I2. This is a group homomorphism,
because gh ´ 1 “ pg ´ 1q ` ph ´ 1q ` pg ´ 1qph ´ 1q P pg ´ 1q ` ph ´ 1q ` I2. Since (it is
easy to see that) I “ SpanZptg ´ 1 | g P Guq, this shows that G Ñ I{I2 is surjective as
well, and hence factors through a surjective group homomorphism Gab Ñ I{I2.

In the other direction, note that tg ´ 1 | 1 ‰ g P Gu is actually a Z-module basis for I.
Hence we have an abelian group homomorphism I Ñ Gab, sending each g´1, g ‰ 1, to the
image of g in Gab. This homomrphism sends pg ´ 1qph´ 1q “ pgh´ 1q ´ pg ´ 1q ´ ph´ 1q

to the image of gh ¨ g´1 ¨ h´1, i.e., to 1 P Gab, so this gives a well-defined homomorphism
of abelian groups I{I2 Ñ Gab. It is easy to see that the homomorphisms Gab Ñ I{I2 and
I{I2 Ñ Gab that we have defined are two-sided inverses to each other.

Note that G was not assumed to be finite anywhere in the argument. □

Exercise 28.6. In contrast, show that if I is the augmentation ideal in krGs, with G finite
and k a field with pchar k,#Gq “ 1, then I “ I2.
Hint: Tensor with k and use the right exactness of the tensor product. An alternate
approach is to note that I is the product of some EndDi

pViq (why?), and hence a ring with
the induced multiplication, and the square of the unit ideal is the unit ideal.

Proof of Proposition 28.3. Let R “ ZrGs, and let I Ă R denote the augmentation ideal,
so that R{I – Z. For (i), note that by Remark 28.4, we have:

H1
pG,Mq “ Ext1RpR{I,Mq – HomRpI,Mq{tpi ÞÑ imq | m P Mu – HomRpI{I2,Mq{0,
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where in the last equality we used that I annihilates M , both for the numerator and the
denominator.

Hence, using Lemma 28.6 and the fact that R{I “ Z via the augmentation map,

H1
pG,Mq – HomR{IpI{I2,Mq – HomZpGab,Mq – HomAbGrppG,Mq,

This gives (i), and we move to (ii). Again using that IM “ 0, we get

H1pG,Mq “ TorR1 pR{I,Mq “ kerpI bRM Ñ IMq – I bRM.

Since I annihilates M , we get:

I bRM – pI bR pR{Iqq bR{I M – pI{I2q bZ M – Gab
bZ M,

again using Lemma 28.6. □

Remark 28.7. In the above proof, we approached H ipG,Mq “ ExtiZrGspZ,Mq by using the
long exact sequence associated to Ext in the first argument (we used 0 Ñ I Ñ R Ñ R{I Ñ

0), though technically Definition 28.1 involves computing using an injective ZrGs-resolution
ofM , which gives long exactness in the second argument. Thus, we have already used that
the two ways of defining Ext – using a resolution of either argument – are equivalent.
Similarly with HipG,Mq.

Example 28.8. Suppose G “ xt | tn “ 1y is a cyclic group of order n. Let us compute
H1pG,Mq for any G-module M . We recall the following computation from the midterm
examination. If R is a commutative ring, and a, b P R are such that Rrbs :“ AnnRpbq
equals aR and Rras :“ AnnRpaq equals bR, then note that we have the following resolution
of R{a.

¨ ¨ ¨ Ñ R
ˆa
Ñ R

ˆb
Ñ R

ˆa
Ñ . . .

ˆa
Ñ R

ˆb
Ñ R

ˆa
Ñ R Ñ R{a Ñ 0.

Homming this intoM and tensoring this intoM respectively, but removing the contribution
from R{a (as that is not part of the complex that computes the homology/cohomology),
we get the following complexes:

0 Ñ M
ˆa
Ñ M

ˆb
Ñ M

ˆa
Ñ M

ˆb
Ñ . . . , and . . .

ˆa
Ñ M

ˆb
Ñ M

ˆa
Ñ M Ñ 0.

Taking cohomology/homology, we get
(139)

ExtiRpR{a,Mq –

$

’

&

’

%

M ras, if i “ 0,

M rbs{aM, if i ą 0 is odd, and

M ras{bM, if i ą 0 is even

, TorRi pR{a,Mq –

$

’

&

’

%

M{aM, if i “ 0,

M ras{bM, if i ą 0 is odd, and

M rbs{aM, if i ą 0 is even

.

We will apply (139) with R “ ZrGs (which is commutative in this case), noting that
a “ t´ 1 generates the augmentation ideal I, and with b “ 1 ` t` ¨ ¨ ¨ ` tn´1. It is easy to
check the conditions Rras “ bR and Rrbs “ aR. Write N : M Ñ M for the action of b –
note that this looks like a ‘norm’, from what we saw at the end of Lecture 27.



384

N clearly factors through M Ñ MG, and has image in MG, and hence induces a map
N̄ :MG Ñ MG. Applying (139), and noting that MG “ M ras and kerpN̄q “ M rbs{aM , it
follows that for any (possibly nontrivial) G-module M :

H i
pG,Mq “

$

’

&

’

%

MG, if i “ 0,

kerpN̄q, if i ą 0 is odd, and

cokerpN̄q, if i ą 0 is even

HipG,Mq “

$

’

&

’

%

MG, if i “ 0,

cokerpN̄q, if i ą 0 is odd, and

kerpN̄q, if i ą 0 is even

.

Exercise 28.9. If G – Z “ xty is instead an infinite cyclic group, show:

H i
pG,Mq –

#

MG, if i “ 0,

MG, if i “ 1,
HipG,Mq –

#

MG, if i “ 0,

MG, if i “ 1
.

Note: It can help if you note that in this case ZrGs “ ZrZs – Zrt, t´1s.

28.2. Restriction and corestriction. In this subsection, we would like to prove the
following:

Theorem 28.10. For any finite group G and an abelian group M , multiplication by #G
annihilates HipG,Mq and H ipG,Mq for all i ą 0.

A partial motivation for this theorem is that it gives an alternate proof of Maschke’s
theorem – though seemingly more complicated, this proof throws light into the failure
of Maschke’s theorem in bad characteristic (and explains why group cohomology sort of
measures this failure):

Alternate proof of Maschke’s theorem. The proof of Maschke’s theorem boiled down to the
assertion that when G is a finite group and k is a field with pchar k,#Gq “ 1, then V Þ⇝ V G

is exact on RepkpGq. 86 Via the forgetful functor RepkpGq “ krGs-Mod ù ZrGs-Mod,
and the long exact sequence for H˚pG,´q “ Ext˚

ZrGspZ,´q, this will follow if we show

that for each V P ObRepkpGq, viewing V as a ZrGs-module, we have (H1pG, V q “ 0, or)
H ipG, V q “ 0 for each i ą 0. But by Theorem 28.10, we know that multiplication by
#G annihilates H ipG, V q. On the other hand, we also know that multiplication by #G
on H ipG, V q is induced by (multiplication by #G) :V Ñ V (this is easy, and is the Ext
analogue of HW 7 Problem 3(i)), which is an isomorphism as p#G, char kq “ 1. Thus,
(multiplication by #G) :H ipG, V q Ñ H ipG, V q is an isomorphism as well as the 0 map, so
H ipG, V q “ 0. □

To prove Theorem 28.10, it will help to introduce the functors of restriction and corestric-
tion for group homology and cohomology, which are anyway important. For our prepara-
tion, we will not assume that G is finite.

86This allowed us to get a complement to any subrepresentation W Ă V , by getting a section for the
surjective map V Ñ V {W “: W 1 of representations of G over k: applying the exactness of V Þ⇝ V G

to the clearly surjective map HomkpW 1, V q ↠ HomkpW 1,W 1q of representations of G, we obtained that
HomGpW 1, V q Ñ HomGpW 1,W 1q was surjective, and any inverse image of id P HomGpW 1,W 1q splits
V Ñ W 1.
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Being left and right derived functors, the group homology and cohomology functors are
universal δ-functors from ZrGs-Mod toAbGrp, ptHipG,´qui, tδiuiq and ptH ipG,´qui, tδ

iuiq.
Let H Ñ G be a group homomorphism; viewing G-modules also as H-modules, we have
δ-functors ptHipH,´qui, tδiuiq and ptH ipH,´qui, tδ

iuiq, again from ZrGs-Mod to AbGrp.
Thus, on the category ZrGs-Mod of G-modules, we have natural transformations

p´qH Ñ p´qG and p´q
G

Ñ p´q
H ,

consisting of the MH Ñ MG and the MG ãÑ MH figuring in the obvious factorizations

pM Ñ MGq “ pMH Ñ MGq˝pM Ñ MHq, and pMG ãÑ Mq “ pMH ãÑ Mq˝pMG ãÑ MH
q.

Definition 28.11. Thus, with the above notation, by Grothendieck’s theorem on univer-
sal δ-functors, we get morphisms of homological/cohomological δ-functors on ZrGs-Mod:
corestriction in group homology from H to G,

CoresGH : ptHipH,´qui, tδiuiq Ñ ptHipG,´qui, tδiuiq,

and restriction in group cohomology from G to H:

ResGH : ptH i
pG,´qui, tδ

i
uiq Ñ ptH i

pH,´qui, tδ
i
uiq.

For us, these notions will only be of interest when H Ñ G is the inclusion of a subgroup.

In particular we have restriction maps H ipG,Mq Ñ H ipH,Mq for each i, functorial in M .

The proof of the above theorem uses a corestriction for group cohomology as well, and a
restriction for group homology as well. These are defined when H Ă G is a subgroup of
finite index. Then we have natural transformations in the opposite direction, i.e., from
p´qG to p´qH and from p´qH to p´qG as well: for all m P M , where M is an abelian group
with a G-action,

NG{H :MG Q (image of m P M) ÞÑ
ÿ

sPrHzGs

(image of s ¨ m under M Ñ MH) P MH

(don’t be like me, check carefully that this is well-defined), and

NG{H :MH
Q m ÞÑ

ÿ

sPrG{Hs

sm P MG,

where rHzGs and rG{Hs are sets of representatives for HzG and G{H, respectively.

But to get morphisms of δ-functors from here, we need the following:

Lemma 28.12. When H is a subgroup of finite index in G, ptHipH,´qui, tδiuiq and
ptH ipH,´qui, tδ

iuiq are are effaceable/coeffaceable on ZrGs-Mod.

Proof. For any ZrGs-module M , we have morphisms P ↠ M ãÑ I of ZrGs-modules, with
P projective and I injective. It is enough to show that for i ą 0, we have HipH,P q “ 0
and H ipH,Mq “ 0. The former is true because P is also projective as a ZrHs-module. For
the latter, it is enough to show that I is injective as a ZrHs-module, i.e., HomZrHsp´, Iq

is exact. But this is because, by Frobenius reciprocity, HomZrHsp´, Iq is the composite
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of IndGH “ ZrGs bZrHs ´ and HomZrGsp´, Iq, both of which are exact (the former is exact
because ZrGs is projective as a ZrHs-module). □

Exercise 28.13. Give an alternate proof of the above lemmas by showing that HipH,´q “

Tor
ZrGs

i pZrHzGs,´q, and H ipH,´q “ ExtiZrGspZrG{Hs,´q.

Notation 28.14. Therefore, Grothendieck’s theorem still applies, and with the above
notation (in particular H Ă G is of finite index), gives us a morphism of homological
δ-functors on ZrGs-Mod:

ResGH : ptHipG,´qui, tδiuiq Ñ ptHipH,´qui, tδiuiq,

called restriction for group homology from G to H, and a morphism of cohomological
δ-functors on ZrGs-Mod:

CoresGH : ptH i
pH,´qui, tδ

i
uiq Ñ ptH i

pG,´qui, tδ
i
uiq,

called the corestriction for group cohomology from H to G. Note that we have only defined
these when H Ă G and rG : Hs is finite.

Proposition 28.15. Let H Ă G be a subgroup of finite index. Then for all i and all
M P ObG-Mod,

CoresGH ˝ResGH : H i
pG,Mq Ñ H i

pG,Mq

is given by multiplication by #G. A similar statement applies to group homology.

Proof. We will prove the assertion involving group cohomology; the assertion involving
group homology is similar. For i “ 0, this is just saying that the map

MG ãÑ MH
mÞÑ

ř

sPrG{Hs sm
Ñ MG

is multiplication by rG : Hs, which is clear. The general case follows because morphisms
from universal δ-functors are completely determined at the i “ 0 level, and multiplication
by #pG{Hq is trivially a morphism of δ-functors.. □

Proof of Theorem 28.10. For the assertion involving group cohomology, apply Proposition
28.15 with H equal to the trivial subgroup of G, and use that in this case H ipH,Mq “ 0
for all i ą 0 (e.g., taking fixed points under t1u is exact, and hence has vanishing derived
functors). The proof of the assertion involving group homology is similar. □

28.3. Induced modules and Shapiro’s lemma. If H Ă G is a subgroup, we have al-
ready introduced the functors IndGH : ZrHs-Mod ù ZrGs-Mod and coIndGH : ZrHs-Mod ù

ZrGs-Mod in Lecture 7. Since these are involved in some nice adjointness properties, we
can ask if these properties reflect in the world of group homology and cohomology, which
is indeed the case:
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Theorem 28.16 (Shapiro’s lemma). (i) (Shapiro’s lemma for group cohomology) For
all i P N, we have isomorphisms functorial in H-modules M :

H i
pG, coIndGHMq Ñ H i

pH,Mq,

obtained as a composite H ipG, coIndGHMq Ñ H ipH, coIndGHMq Ñ H ipH,Mq, the
latter induced by the morphism coIndGHM Ñ M , and the former given by restriction
for group cohomology.

(ii) (Shapiro’s lemma for group homology) For all i P N, we have isomorphisms func-
torial in H-modules M :

HipH,Mq Ñ HipG, Ind
G
HMq,

obtained as the composite HipH,Mq Ñ HipH, Ind
G
HMq Ñ HipG, Ind

G
HMq, the for-

mer induced by M Ñ IndGHM , and the latter given by corestriction for group ho-
mology.

Remark 28.17. Recall also that coIndGH and IndGH are functorially isomorphic when rG :
Hs is finite.

Partial proof of Theorem 28.16. Only the existence of such isomorphisms will be proved
(and that is all that we will need for Artin-Schreier theory below). It will be left to it to
the interested readers (if any) to fill in the justification for their descriptions, by making
the relevant HW 7 problems more precise.

Let R “ ZrHs and S “ ZrGs. Since S is projective as a left R-module, we know from HW
7, problem 5(ii)(b) that for all left R-modules N and left S-modules M , we have for all
i ě 0:

(140) ExtiRpN,Mq – ExtiSpN,HomRpS,Mqq.

LettingN be Z as a left S-module, the above gives an isomorphismH ipH,Mq Ñ H ipG, coIndGHMq.
Unfortunately the description of this map was not explicitly given in HW 7 probem 5(ii)(b),
but you can check that it agrees with the one given in the proposition.

This gives (i). (ii) is similar, using HW 7, problem 5(ii)(c), which says that whenever S is
projective as a right R-module (which is the case in our situation), for all right S-modules
N and left R-modules M , we have for all i ě 0:

TorSi pN,S bRMq
–
Ñ TorRi pN,Mq.

□

28.4. The Artin-Schrier theorem.

Proposition 28.18 (Hilbert’s Theorem 90, additive form). Let K{k be a finite Galolis
extension of fields. Then H ipGalpK{kq, Kq “ HipGalpK{kq, Kq “ 0 for all i ą 0.
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Proof. Let G :“ GalpK{kq. Recall that by the normal basis theorem, K{k is, as a krGs-
module, free (and even isomorphic to krGs). Thus, as a G-module, we have identifications
K “ krGs “ MapspG, kq “ coIndGt1u k “ IndGt1u k, where k is given the trivial action of the
trivial group t1u. Therefore, for i ą 0, we have by Shapiro’s lemma (Theorem 28.16),

H i
pG,Kq – H i

pk,1q “ 0, and HipG,Kq – Hipt1u, kq “ 0.

□

Definition 28.19. A field extension K{k is called cyclic (resp., abelian) if it is Galois and
satisifies that GalpK{kq is cyclic (resp., abelian).

Corollary 28.20. Let K{k be a finite cyclic extension, with GalpK{kq “ xσy. For β P K,
we have trK{kpβq “ 0 if and only if there exists α P K such that β “ σpαq ´ α.

Remark 28.21. If β is of the form σpαq ´ α, it is immediate that trK{kpβq “ 0. It is the
converse that is non-obvious.

Proof of Corollary 28.20. Recall the description H ipGalpK{kq, Kq “ kerpN̄q for i odd,
from and in the notation of Example 28.8, where we let G “ GalpK{kq and M “ K.
Applying the additive form of Hilbert’s Theorem 90 (Proposition 28.18), we get that N̄ is
injective. But in this case, N̄ identifies with the map

MG “ K{SpanZtσ1
pαq ´ α | σ1

P G,α P Ku
trK{k
Ñ KG

“ k.

The injectivity of N̄ means that

tβ P K | trK{k β “ 0u “ SpanZptσ1
pαq ´ α | σ1

P G,α P Kuq “ SpanZptσpαq ´ α | α P Kuq,

where the last step is an easy consequence of the fact that α is a generator of the cyclic
group G. □

Exercise 28.22. Prove Corollary 28.20 by instead considering

α “ ptrK{k θq
´1

pβσpθq ` pβ ` σpβqqσ2
pθq ` ¨ ¨ ¨ ` pβ ` σpβq ` ¨ ¨ ¨ ` σn´2

pβqqσn´1
pθqq,

for some θ P K such that trK{kpθq ‰ 0 (such a θ exists by the separability of K{k, since in
that case we have seen in Lecture 24 that the trace form is nondegenerate).

Theorem 28.23. Let k be a field of characteristic p ą 0.

(i) Let K{k be a finite cyclic extension. Then there exists α P K such that K “ kpαq,
and such that α satisfies an equation of the form xp ´ x ´ a “ 0 for some a P k.

(ii) Conversely, given a polynomial fpxq “ xp ´ x ´ a with a P k, one of the following
holds:
(a) f has a root in k, in which case all roots of f are in k; or
(b) f is irreducible, and adjoining a root α of f to k defines a cyclic extension

krαs{k of degree p.
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Proof. We first prove (i). Let GalpK{kq “ xσy. Since trK{kp1q “ rK : ksp1q “ pp1q “ 0,
Corollary 28.20 implies that there exists α P K such that σpαq ´ α “ 1.

Note that
σpαpq ´ αp “ pα ` 1q

p
´ pα ` 1q “ σpαq ´ α,

so that a :“ αp ´α is fixed by σ and hence belongs to KGalpK{kq “ k. Therefore α is a root
of xp ´ x ´ a P krxs. Since α P Kzk, and rkrαs : ks divides p, we have rkrαs : ks “ p. This
proves (i), though let us also note as an aside that the σ-orbit of α is α, α`1, . . . , α`pp´1q.

Now let us prove (ii), so let fpxq “ xp ´ x ´ a. If α is a root of f in any extension of k,
note that so are α, α ` 1, . . . , α ` p ´ 1, and all these are distinct. This already implies
that if f has a root in k, then all roots of f are in k. Hence, suppose f does not have a
root in k.

Let K{k be the extension obtained by adjoining a root α of f , so that K “ krαs, and
rK : ks “ d ď p. It is enough to show that K{k is Galois of degree exactly p, which
will also give the irreducibility of f . The argument of the previous paragraph shows that
f splits completely in K, so that K{k is normal. It is also separable – since the roots
of f are all distinct – and hence Galois. Any nontrivial σ P GalpK{kq sends α to α ` i
for some 0 ă i ă p. Since pp, iq “ 1, for each 0 ă j ă p, GalpK{kq also contains an
automorphism that sends α to α ` j. This implies that #GalpK{kq ě p “ deg f , so that
rK : ks “ GalpK{kq “ p, forcing f to be irreducible. □

28.5. The bar resolution. There is an explicit free resolution of the ZrGs-module Z,
which helps us to describe the H ipG,Mq more explicitly.

Definition 28.24. For all n P N, let Bn be the free Z-module (not the free ZrGs-module)
on the pn`1q-tuples pσ0, . . . , σnq P Gn`1 (in particular B0 identifies with ZrGs), made into
a ZrGs-module by

σ ¨ pσ0, . . . , σnq “ pσσ0, . . . , σσnq,

and define, for n ě 1, B “ Bn : Bn Ñ Bn´1 by

Bpσ0, . . . , σnq “

n
ÿ

i“0

p´1q
i
pσ0, . . . , σ̂i, . . . , σnq.

For n “ 0, let
B “ B0 : B0 “ ZrGs Ñ Z

be given by the augmentation map.

It is readily checked (exercise) that the Bn and the Bn form a complex pB‚, B‚q. It is also
immediate that each Bn is free as a ZrGs-module.

Lemma 28.25. B‚ Ñ Z is a resolution.

Proof. First we check the exactness at B0. The map B1 : B1 “ ZrG ˆ Gs Ñ ZrGs “ B0

sends pσ0, σ1q to σ1 ´ σ0. Thus the image of B1 is the augmentation ideal of ZrGs, so that
coker B1 identifies with Z via the augmentation map, as desired.
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Now let us prove exactness at n ě 1. For n ě 0, define Hn : Bn Ñ Bn`1, by

Hnpσ0, . . . , σnq “ p1, σ0, . . . , σnq.

Check that for n ě 1 we have Bn`1 ˝Hn `Hn´1 ˝ Bn “ idBn , which immediately gives that
for all v P ker Bn, we have

v “ Bn`1pHnpvqq ` Hn´1pBnpvqq “ Bn`1pHnpV qq Ă impBn`1q.

□

Exercise 28.26. The following may be a better way of writing out the above proof.
Throw in a Z “ B´1 into the resolution, define an H´1, and interpret the above result as
the identity map of the resulting complex being null homotopic.

A resolution involving an explicit ZrGs-basis, on the other hand, would replace Bn by
something that has n explicit generators over ZrGs.

Definition 28.27. Let, for n ě 0, B1
n be the free (left) ZrGs-module on the set of n-tuples

pσ1, . . . , σnq with each σi P G. Here, by convention, B1
0 is understood to be ZrGs, a free

left ZrGs-module on the empty tuple. For n ě 0, we have an isomorphism B1
n Ñ Bn of left

ZrGs-modules, given on the standard basis of B1
n by

pσ1, . . . , σnq ÞÑ p1, σ1, σ1σ2, . . . , σ1σ2 . . . σnq.

We transport the maps Bn : Bn Ñ Bn´1 to maps B1
n : B1

n Ñ B1
n´1, and the map B0 Ñ Z

to a map B1
0 Ñ Z, via these isomorphisms, and form the resolution pB1

‚, B
1
‚q of the left

ZrGs-module Z. Note that B1
0 “ ZrGs Ñ Z identifies with the augmentation map.

Let us explicitly compute the B1
n. We have on Bn:

Bnp1, σ1, σ1σ2, . . . , σ1σ2 . . . σnq “ pσ1, σ1σ2, . . . , σ1σ2 . . . σnq

`

´

n´1
ÿ

i“1

p´1q
i
p1, σ1, . . . , {σ1σ2 . . . σi, . . . , σ1σ2 . . . σnq

¯

` p´1q
n
p1, σ1, . . . , σ1σ2 . . . σn´1q.

This implies (please ask me if you don’t follow this) that

B
1
npσ1, . . . , σnq “ σ1pσ2, . . . , σnq`

n´1
ÿ

i“1

p´1q
i
pσ1, . . . , σi´1, σiσi`1, . . . , σnq`p´1q

n
pσ1, . . . , σn´1q.

Thus, HnpG,Mq identifies with the quotient ZnpG,Mq{BnpG,Mq, where inside the abelian
group CnpG,Mq of all maps f : G ˆ ¨ ¨ ¨ ˆ G Ñ M from a product of n copies of G to M ,
we have

Zn
pG,Mq “ kerpCn

pG,Mq
´˝B1

n
Ñ Cn`1

pG,Mqq “

!

f | @σ1, . . . , σn`1 P G,

σ1fpσ2, . . . , σnq `

n
ÿ

i“1

p´1q
ifpσ1, . . . , σiσi`1, . . . , σnq ` p´1q

n`1fpσ1, . . . , σnq “ 0
)

,
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and

Bn
pG,Mq “ Cn´1

pG,Mq ˝ B
1
n “ tpσ1, . . . , σnq ÞÑ σ1fpσ2, . . . , σn´1q`

n´1
ÿ

i“1

p´1q
ifpσ1, . . . , σiσi`1, . . . , σnq ` p´1q

nfpσ1, . . . , σn´1q | f P Cn´1
pG,Mqu.

Remark 28.28. Let us explicitly write out what this means for n “ i “ 0, 1, 2:

(i) For i “ 0 (interpreting the terms involving i´1 appropriately), one getsB0pG,Mq “

0, but Z0pG,Mq “ tm P M | @ σ P G, σpmq ´ m “ 0u “ MG, recovering that
H0pG,Mq “ Z0pG,Mq{B0pG,Mq equals MG.

(ii) For i “ 1, one gets

Z1
pG,Mq “ tpσ ÞÑ aσ : G Ñ Mq | @σ, τ P G, σpaτ q ´ aστ ` aσ “ 0u Ă C1

pG,Mq,

and B1pG,Mq “ tσ ÞÑ pσpmq ´ mq | m P Mu Ă C1pG,Mq. Thus, the cocycle
condition here is “aστ “ aσ ` σpaτ q”, and the coboundaries are the form σ ÞÑ

σpmq ´ m. (Exercise: verify explicitly that the coboundaries are cocycles).
Note that when the G-action on M is trivial, Z1pG,Mq “ HompG,Mq and

B1pG,Mq “ 0, recovering the description H1pG,Mq “ HompG,Mq from Proposi-
tion 28.3.

(iii) For i “ 2, one gets

Z2
pG,Mq “ tpσ, τq ÞÑ aσ,τ : GˆG Ñ M | @ σ1, σ2, σ3 P G, σ1paσ2,σ3q´aσ1σ2,σ3`aσ1,σ2σ3´aσ1,σ2 “ 0u

inside C2pG,Mq, and

B2
pG,Mq “ tpσ1, σ2q ÞÑ σ1aσ2 ´ aσ1σ2 ` aσ1 | ppσ ÞÑ aσq : G Ñ Mqu Ă C2

pG,Mq.

Notation 28.29. Elements of ZipG,Mq are called i-cocycles, and elements of BipG,Mq

are called i-coboundaries. Two i-cocycles in ZipG,Mq having the same image in H ipG,Mq

are said to be cohomologous to each other. Similarly, we define i-cycles and i-boundaries
in the homological context.

Exercise 28.30. (i) When the G-action on M is trivial, use the explicit resolution
pB1

‚, B
1
‚q to recover the identification H1pG,Mq “ Gab bZM from Proposition 28.3.

(ii) Assume that G is finite cyclic. Use the explicit description of H1pG,Mq in Remark
28.28(i) to recover the formula for H1pG,Mq given in Example 28.8.

Definition 28.31. The description of H1pG,´q in the abelian case from Remark 28.28(i)
can be adapted to give a definition of H1pG,Mq even when M is a nonabelian group, as
follows. Namely, in this case:

(i) We first set

Z1
pG,Mq “ tpσ ÞÑ aσq : G Ñ M | aστ “ aσ ¨ σpaτ q @σ, τ P Gu

– it is a set and not a group – and call its elements 1-cocycles of G in M .



392

(ii) Two elements paσqσ and pa1
σqσ are said to be cohomologous, a relation we indicate

by paσqσ „ pa1
σqσ, if there exists b P M such that a1

σ “ b´1aσσpbq for all σ P G.
Check that „ is an equivalence relation, and that if paσqσ P Z1pG,Mq and b P G,
we do have pσ ÞÑ b´1aσσpbqq P Z1pG,Mq.

(iii) Since „ is an equivalence relation, we may and do set H1pG,Mq to be the set
Z1pG,Mq{ „ of equivalence classes. Its elements are called the (1-)cohomology
classes of G inM . Note thatH1pG,Mq is not a group in this case, but it is a pointed
set, the ‘distinguished point’ being the equivalence class (i.e., the cohomology class)
of paσqσ, where aσ “ 1 P M for all σ P G. Note that we haven’t defined B1pG,Mq,
but rather replaced it with an equivalence relation.

Note that when M is nonabelian, we use multiplicative notation to describe operations in
it; in particular we write 1 instead of 0 for its identity element in such situations.

The definition of H1pG,Mq when M is nonabelian will be relevant in Lecture 29, where
I hope to discuss the multiplicative Hilbert’s Theorem 90, which says that for all n ě 1
and all finite Galois extensions L{K, H1pGalpL{Kq, GLnpLqq is the trivial (i.e., singleton)
pointed set.

Exercise 28.32. (Easy and formal) Let G be a group acting on a (not necessarily abelian)
group M . Form the semidirect product M ¸ G, and consider the projection map p :
M ¸ G Ñ M .

(i) Show that Z1pG,Mq is in bijection with the set of (group-theoretic) sections G Ñ

M ¸G to p :M ¸G Ñ G, such that a section s : G Ñ M ¸G and a 1-cocycle paσqσ
correspond to each other under this bijection if for all σ P G, we have spσq “ paσ, σq.

(ii) If sections s, s1 : G Ñ M ¸ G correspond to cocycles paσqσ, pa
1
σqσ under the above

bijection, show that paσqσ and pa1
σqσ are cohomologous to each other if and only if

there exists b P M such that s1 “ Int b ˝ s, where Int b : M ¸ G Ñ M ¸ G is given
by conjguation by b.

In other words, elements of H1pG,Mq correspond to M -conjugacy classes of
sections to M ¸ G Ñ G.

(iii) When M is abelian, show that the above bijections respect the relevant group
structures: e.g., realize the set of sections to M ¸ G Ñ G as a group in this case
(i.e., when M is abelian), as Z1pG,Mq is, and show that the bijection from the set
of sections to Z1pG,Mq is a group homomorphism. Similarly, interpret the bijection
from H1pG,Mq to the set of G-conjugacy classes of sections to M ¸ G Ñ G as a
group isomorphism.
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29. Lecture 29 – H2 and group extensions, Hilbert’s theorem 90, basic
Kummer theory

Since we are going to write cocycles as pcσqσ, pcσ,τ qσ,τ etc. today, rather than paσqσ, paσ,τ qσ,τ
etc., let us recall the concrete descriptions of H1pG,Mq and H2pG,Mq from Lecture 28.

(i) For i “ 1, we have

Z1
pG,Mq “ tpσ ÞÑ cσ : G Ñ Mq | @σ, τ P G, σpcτ q ´ cστ ` cσ “ 0u Ă C1

pG,Mq,

and B1pG,Mq “ tσ ÞÑ pσpmq ´ mq | m P Mu Ă C1pG,Mq. Thus, the cocycle
condition here is “cστ “ cσ ` σpcτ q”, and the coboundaries are the form σ ÞÑ

σpmq ´ m. (Exercise: verify explicitly that the coboundaries are cocycles).
(ii) For i “ 2, one has

Z2
pG,Mq “ tpσ, τq ÞÑ cσ,τ : GˆG Ñ M | @ σ1, σ2, σ3 P G, σ1pcσ2,σ3q´cσ1σ2,σ3`cσ1,σ2σ3´cσ1,σ2 “ 0u

inside C2pG,Mq, and

B2
pG,Mq “ tpσ1, σ2q ÞÑ σ1pbσ2q ´ bσ1σ2 ` bσ1 | ppσ ÞÑ bσq : G Ñ Mqu Ă C2

pG,Mq.

29.1. Some comments on H1. Recall that if a group G acts on a not necessarily abelian
groupM , we have the first group cohomologyH1pG,Mq “ Z1pG,Mq{ „, where Z1pG,Mq “

tpcσqσ : G Ñ M | cστ “ cσ ¨σpcτ qu, and where pcσqσ „ pc1
σqσ if and only if there exists b P M

such that c1
σ “ b´1cσσpbq for each σ P G. This is a pointed set, and if M is an abelian

group, this is in bijection the abelian group Z1pG,Mq{B1pG,Mq given earlier (with the
distinguished element mapping to 0). Our comments on H1 will be through the following
exercise.

Exercise 29.1. (i) Let the group G act on groups N and M , and let N ãÑ M be
an injective homomorphism of groups respecting the action of G. Note that the
coset space X “ M{N gets an induced action of G. Though M Ñ X is surjective,
MG Ñ XG may not be surjective. However, if H1pG,Nq is trivial (or even if
H1pG,Nq Ñ H1pG,Mq is injective), show that MG Ñ XG is surjective.
Hint: If x P XG, choose m P M mapping to x. For all σ P G, consider m´1σpmq,
which is a coboundary for M but only a cocycle for N . If H1pG,Nq is trivial, there
exists n P N such that n´1σpnq “ m´1σpmq for all σ, so mn´1 P M is fixed by G
and maps to x.
Note: One can make this better an say that there is an ‘exact sequence of pointed
sets’

1 Ñ NG
“ H0

pG,Nq Ñ MG
“ H0

pG,Mq Ñ XG
“ H0

pG,Xq
δ

Ñ H1
pG,Nq Ñ H1

pG,Mq,

and one can further add in an H1pG,Xq if N Ă G is normal, so that X becomes
a group. Here, a sequence B1 Ñ B Ñ B2 of pointed sets is said to be exact if
the preimage in B of the distinguished element of B2 is the image of B1 Ñ B (but
note that this sort of exact sequence is weaker in its implication than for groups;
nevertheless it is still useful).
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Note: Here is an application of sorts, though this can be proved more elementarily.
If N is a normal subgroup of M , multiplication by #G is invertible on N , so that
H1pG,Nq vanishes by Theorem 28.10 from Lecture 28, and if G acts trivially on N
and pM{Nq, it follows that G acts trivially on M .

(ii) Let k ãÑ k̄ be an algebraic closure. One knows that elements of GLnpkq that are
conjugate in GLnpksq are also conjugate in GLnpkq, but this is not true for other
groups like the special linear groups SLn, or symplectic or orthogonal groups. Let
M be such a group, where we can talk ofMpkq andMpksq – for concreteness, we can
let M “ SLn. The question is when γ, γ1 P Mpkq may be Mpksq-conjugate but not
Mpkq-conjugate. Using the aforementioned exact sequence, show that the Mpkq-
conjugacy classes of elements γ1 that are Mpksq-conjugate to γ are in bijection
with kerpH1pGalpks, kq,Mγpksqq Ñ H1pGalpks{kq,Mpksqq, where Mγpksq is the
centralizer of γ in Mpksq, and ‘kernel’ means ‘inverse image of the distinguished
element’.

Thus, if we know some Galois cohomology vanishing, we may be able to say that
certain elements of an algebraic group M that are ‘conjugate over ks’ are actually
‘conjugate over k’, or at least quantify the failure in this being the case.

29.2. H2 and group extensions. One motivation for considering H2 is that it allows us
to construct a generalization of the semidirect product. Let A be an abelian group, and G
a group acting on A, so that A ¸ G is well-defined, with underlying set A ˆ G. How can
we get other group structures on the same underlying set A ˆ G?

Notation 29.2. Until Proposition 29.6 below, we fix a group G acting on an abelian group
A. Given a function c : GˆG Ñ A denoted as pcσ,τ qσ,τ , we let E “ Ec be equal to AˆG
as a set, but given the binary operation:

(141) pa1, σ1q ¨ pa2, σ2q “ pa1 ` σ1pa2q ` cσ1,σ2 , σ1σ2q.

Example 29.3. When c : GˆG Ñ A is identically 0, E “ Ec is clearly a group: it is the
semidirect product A¸G, where the semidirect product is defined using the action already
fixed.

Of course, the question here is: what are the c “ pcσ,τ qσ,τ for which E “ Ec is a group (i.e.,
with the multiplication defined as in (141)) above?

Exercise 29.4. Assume that E “ Ec is a group. Show that we have an exact sequence of
groups

(142) 1 Ñ A Ñ E Ñ G Ñ 1.

Note: Though Grp is not an abelian category, a sequence 1 Ñ A Ñ E Ñ G Ñ 1 of
homomorphisms of (not necessarily abelian) groups is defined to be exact if A Ñ E is
injective, E Ñ G is surjective, and the image of A Ñ E is the kernel of E Ñ G.
Hint: It is clear that E Ñ G is a group homomorphism, and the kernel is A ˆ t1u with
the binary operation pa1, 1qpa2, 1q “ pa1 ` a2 ` c1,1, 1q. Then pa, 1q ÞÑ a ` c1,1 defines a
group isomorphism from this group to A.
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What are the conditions on c : pσ1, σ2q ÞÑ cσ1,σ2 that turn Ec in to a group?

Invertibility of actions: It is immediately checked that regardless of what pσ1, σ2q ÞÑ cσ1,σ2
is, the map pa, σq ¨´ : AˆG Ñ AˆG is always bijective for all pa, σq P Ec: informally, it is
bijective on the ‘G’-coordinate, and the extra cσ1,σ2 on the ‘A’-coordinate can be adjusted
by modifying the a2. An analogous assertion applies to ‘multiplying from the right’.

Associativity: The associativity condition translates to requiring, for all pa1, σ1q, pa2, σ2q, pa3, σ3q P

Ec, that:

a1 ` σ1pa2q ` cσ1,σ2 ` σ1σ2pa3q ` cσ1σ2,σ3 “ a1 ` σ1pa2q ` σ1σ2pa3q ` σ1pcσ2,σ3q ` cσ1,σ2σ3 .

It follows that the multiplication is associative if and only if c “ pcσ,τ qσ,τ is a 2-cocycle.

Identity element: An identity element, if any, is of the form pa, 1q; and it is immediately
verified that pa, 1q is a left identity (resp., right identity) if and only if σ “ 1 and, for all
pa1, σ1q we have c1,σ1 “ ´a (resp., cσ1,1 “ ´σ1paq).

So for a general c, such an a does not exist (e.g., why should c1,σ1 be independent of σ1?).
However:

Exercise 29.5. (i) If c “ pcσ,τ qσ,τ is a 2-cocycle of G in A, show that there exists a
unique a P A such that for all σ P G we have c1,σ “ ´a and cσ,1 “ ´σpaq. In other
words, show that for all σ P G we have c1,σ “ c1,1, and that cσ,1 “ σpc1,1q.

(ii) Show that (any general) 2-cocycle c “ pcσ,τ qσ,τ of G in A is cohomologous to a
normalized 2-cocycle c1 “ pc1

σ,τ qσ,τ , where ‘normalized’ means having the property
that c1

σ,1 “ c1
1,σ “ 0 for all σ P G.

Hint: Let c and c1 differ by the coboundary db of any b “ pbσqσ P C1pG,Aq such
that b1 “ c1,1.
Note: One advantage of a normalized cocycle is that, if c P Z2pG,Aq is normalized,
checking the identity axiom for Ec as in (141) becomes trivial: p0, 1q P AˆG “ E is
an identity under these assumptions. Thus, Exercise 29.4 is even more trivial when
c is normalized. Proposition 29.6(ii) below, together with the present exercise, tells
us that to study Ec, we can always reduce to the case where c is a normalized
2-cocycle.

Proposition 29.6. Let a group G act on an abelian group A. Fix a map c “ pcσ,τ qσ,τ :
G ˆ G Ñ A, and form Ec “ A ˆ G as in Notation 29.2, with the binary operation (141).

(i) Ec, given the binary operation (141), is a group if and only if c is a 2-cocycle.
(ii) Suppose 2-cocycles c “ pcσ,τ qσ,τ , c

1 “ pc1
σ,τ qσ,τ P Z1pG,Aq are 2-cocycles with the

same image in H2pG,Aq; say,

(143) cpσ1, σ2q ´ c1
pσ1, σ2q “ σ1pbσ2q ´ bσ1σ2 ` bσ1 , @σ1, σ2 P G,



396

where pbσqσ P C1pG,Aq is a 1-cochain. Then defining Ec and Ec1 as above, we have
a commutative diagram of homomorphisms of groups

(144) 1 // A // Ec //

pa,σqÞÑpa`bσ ,σq

��

G // 1

1 // A // Ec1 // G // 1

.

(iii) Assume that c is a 2-cocycle, so that Ec is a group by (i). Then Ec fits into an
exact sequence

1 Ñ A Ñ E Ñ G Ñ 1,

with the following further property. Since A is abelian, the conjugation action of E
on A quotients to an action of G on A; the property is that this action is the action
of G on A that we started with.

Proof. (i) follows from the above discussion: to summarize, we have shown that the asso-
ciativity of the binary operation on Ec is equivalent to c being a 2-cocycle, that c being a
2-cocycle automatically implies the existence of an identity element (see Exercise 29.5(i)),
and that left or right ‘multiplication’ by any pa, σq is automatically bijective.

For (ii), what one needs to verify is the following, which follows from (144).

a1 ` σ1pa2q ` cσ1,σ2 ` bσ1σ2 “ a1 ` bσ1 ` σ1pa2 ` bσ2q ` c1
σ1,σ2

, @σ1, σ2 P G.

The existence of the exact sequence as in (iii) has been covered in Exercise 29.4. To show
the assertion about the action of G on A, by (ii) and Exercise 29.5(ii), we may and do
assume that c is normalized, i.e., that cσ,1 “ c1,σ “ 0 for all σ. Now the claim about the
action of G on A follows from the computation

p0, σqpa, 1q “ pσpaq, σq “ pσpaq, 1qp0, σq,

where the first equality used that cσ,1 “ 0, and the second that c1,σ “ 0. □

Notation 29.7. (i) Let G be a group and A an abelian group. If no action of G on A
is specified, then an extension of G by A refers to a group E together with an exact
sequence of groups 1 Ñ A Ñ E Ñ G Ñ 1. Any such extension/exact sequence
determines an action of G on A, the one obtained by quotienting the conjugation
action of E on A.

If an action of G on A is specified, then in that context an extension of G by A
will again refer to an exact sequence 1 Ñ A Ñ E Ñ G Ñ 1 of groups, but with the
additional property that the action of G on A determined by this exact sequence
equals the given action of G on A.

(ii) Two extensions 1 Ñ A Ñ E Ñ G Ñ 1 and 1 Ñ A Ñ E 1 Ñ G Ñ 1 of G by A
are isomorphic if these are the rows of a commutative diagram as in (144), whose
middle vertical arrow is some isomorphism of groups E Ñ E 1.
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(iii) An extension E of G by A is said to be a central extension if the associated action
of G on A is trivial. This is easily seen to be equivalent to A Ă E being a central
subgroup of E.

Theorem 29.8. Let a group G act on an abelian group A. Associating to a 2-cocycle c of
G in A the set Ec “ A ˆ G together with the binary operation (141), induces a bijection

(145) H2
pG,Aq Ñ t

Isomorphism classes of extensions of G by A,
for the given action of G on A.

Under this bijection, the 0-element of H2pG,Aq corresponds to A¸G (so the other elements
of H2pG,Aq correspond to extensions 1 Ñ A Ñ E Ñ G Ñ 1 that are not semidirect
products, or equivalently, such that E Ñ G does not have a section).

Proof. The existence of a well-defined map as given follows from Proposition 29.6. The
assertion about the image of 0 P H2pG,Aq follows from Example 29.3. It is therefore
enough to show that (145) is a bijection.

For this, one constructs a candidate two-sided inverse as follows. Given an extension of E by
A inducing the given action of G on A, we choose a set-theoretic section pσ ÞÑ sσq : G Ñ E
to E Ñ G, and set cσ1,σ2 “ sσ1sσ2s

´1
σ1σ2

.

Any other set-theoretic section is of the form bs : G Ñ E, where b : G Ñ A, replacing
s by which replaces c by a cohomologous 2-cocycle, as one sees by verifying the following
computation:

bσ1sσ1 ¨ bσ2sσ2 ¨ pbσ1σ2sσ1σ2q
´1

“ bσ1σ1pbσ2qb´1
σ1σ2

¨ sσ1sσ2s
´1
σ1σ2

.

This gives a candidate map in the other direction; denote it by E ÞÑ cE (adopting some
informal notation: cE is really in H2pG,Aq but we might confuse it with a representative
in Z2pG,Aq). To finish the proof, we need to show that cEc is cohomologous to c, and that
EcE is isomorphic to E.

Let us first prove the latter. Note that while constructing this map using the set-theoretic
section s, resulting in the 2-cocycle c “ cE, A ˆ G identifies set-theoretically with E
via pa, σq ÞÑ aspσq. Under the inverse of this identification, the multiplication on E
is transported to the binary operation on A ˆ G given by (141), as follows from the
computation:

a1spσ1qa2spσ2q “ a1σ1pa2qspσ1qspσ2q “ a1σ1pa2q ¨ pspσ1qspσ2qspσ1σ2q
´1

q ¨ spσ1σ2q.

But this is giving exactly the equality E – EcE . To finish the proof, it is enough to show
that cEc is cohomologous to E. Start with a 2-cocycle c, which we assume without loss of
generality to be normalized, so that cσ,1 “ c1,σ “ 0 for all σ P G. Then the computation

p0, σ1qp0, σ2q “ pcσ1,σ2 , σ1σ2q “ pcσ1,σ2 , 1q ¨ p0, σ1σ2q,

where the latter equality uses the normalization of c, shows that cEc is cohomologous to
c. □
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Exercise 29.9. Show that any two normalized 2-cocycles of G in A (again, pcσ,τ qσ,τ is
‘normalized’ if cσ,1 “ c1,σ “ 0 for all σ P G) differ from each other by a normalized 2-
coboundary, i.e., by a db, where bp1q “ 0. Thus, H2pG,Aq can also be described as the
quotient of the group of normalized 2-cocycles by that of normalized 2-coboundaries.

A better, more systematic and general, treatment of group cohomology using normalized
cocycles is found in Professor Nair’s notes, where a normalized bar resolution is defined, us-
ing which one can also define the H ipG,Aq, for all i, in terms of what are called normalized
i-cocycles and normalized i-coboundaries.

29.3. The Schur-Zassenhaus theorem.

Theorem 29.10 (Schur-Zassenhaus). Let G,H be finite groups with p#G,#Hq “ 1. Then
any exact sequence 1 Ñ H Ñ E Ñ G Ñ 1 of groups is split, i.e., we have an isomorphism
E – H ¸ G.

Proof. The base case of the induction will be when H is abelian. In this case, by The-
orem 29.8, extensions for any given action of G on H are classified by H2pG,Hq. Since
p#G,#Hq “ 1, on one hand, multiplication by #G on (the abelian group) H is an iso-
morphism and hence induces one on H2pG,Hq. On the other hand, multiplication by #G
induces the 0 map on H2pG,Hq by Theorem 28.10 from Lecture 28. Thus, multiplication
by #G is both an isomorphism and the 0 map on H2pG,Hq, so we have H2pG,Hq “ 0.

Now we will reduce the general case to the abelian case, by induction on #H. Assume the
result to be true whenever #H is smaller. Let P Ă H be a p-Sylow subgroup for some prime
p; it is a p-Sylow subgroup of E as well, since p#H,#Gq “ 1. First let us reduce to the case
where E normalizes P . SinceH is normal in E, any p-Sylow subgroup of E, being conjugate
to P , is contained in H, from which it follows that the map E Ñ G remains surjective when
restricted to the normalizer NEpP q Ă E of P in E (since any E-conjugate of P can be
H-conjugated to P ). Now we have an exact sequence 1 Ñ HXNEpP q Ñ NEpP q Ñ G Ñ 1,
and it is enough to find a section to NEpP q Ñ G (since NEpP q Ñ G is a restriction of
E Ñ G). Thus, we have reduced to the case where E “ NEpP q, i.e., to the case where P
is normalized by E, which we assume now.

Let Z “ ZpP q be the center of P . Since H and E normalize P , they normalize Z as well,
and we get an exact sequence

1 Ñ H{Z Ñ E{Z Ñ G Ñ 1.

By the induction hypothesis (which applies since Z is nontrivial), E{Z Ñ G splits, so E{Z
has a subgroup G1 isomorphic to G. If E 1 Ă E is the inverse image of G1 under E Ñ E{Z,
then we have an exact sequence

1 Ñ Z Ñ E 1
Ñ G1

– G Ñ 1.

Since Z is abelian, this exact sequence splits, as desired. □
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29.4. Application to projective representations. Here is one way 2-cocycles help.
Sometimes, we don’t have a representation G Ñ GLkpV q, but only a homomorphism
G Ñ PGLkpV q: or equivalently, a noncanonical map g ÞÑ Ag P GLkpV q such that
G Ñ GLkpV q Ñ PGLkpV q is a homomorphism. Since a lot of representation the-
ory has been studied and found to be useful, we would like to ask: can the homomor-
phism G Ñ PGLkpV q can be studied using a representation? This would be easy if
G Ñ PGLkpV q lifts to a homomorphism G Ñ GLkpV q, but such a lift may not exist. We
might like to find the “next best approximation”.

Here is one way this sort of a situation can arise. Suppose that pρ, V q is an irreducible
representation of H over an algebraically closed field k, and that G acts on H in such a
way that for each g P G, gρ :“ ρ ˝ Int g´1 : H Ñ GLkpV q is isomorphic to ρ. This means
that for each g P G, we have a linear map Ag : V Ñ V such that gρphq ˝ Ag “ Ag ˝ ρphq

for all h P H – i.e., Ag intertwines ρ with gρ. It is then easy to see that AgAh and Agh
both intertwine ρ with ghρ. In other words, pAghq´1 ˝ AgAh intertwines V with V , and is
hence, by Schur’s lemma, a scalar in k. But this is the same as saying that g ÞÑ Āg is a
homomorphism G Ñ PGLkpV q, where Āg is the image of Ag under GLkpV q Ñ PGLkpV q.

In general, we may not be able to ‘correct’ the Ag by scalars so that g ÞÑ Ag becomes a
homomorphism G Ñ GLkpV q. In such a situation, how can we still get a representation
out of G Ñ PGLkpV q? One easily verifies that pg, hq ÞÑ AgAhA

´1
gh is a 2-cocycle valued in

kˆ – ZpGLkpV qq, and thus gives rise to an element of H2pG, kˆq, where let G act trivially
on kˆ. If A “ kˆ, or if A Ă kˆ is a subgroup containing the image of this cocycle, then we
get, by Theorem 29.8, a group extension 1 Ñ A Ñ G̃ Ñ G Ñ 1 correpsonding to the class
of this cocycle in H2pG,Aq, and it is easy to see that there is a unique homomorphism
G̃ Ñ GLkpV q, call it g̃ ÞÑ Ãg̃, such that the following diagram commutes:

G̃ GLkpV q

G PGLkpV q

g̃ ÞÑÃg̃

g ÞÑAg

.

Thus, the projective representation G Ñ PGLkpV q may not lift to a representation G Ñ

GLkpV q, but it will lift to a representation G̃ Ñ GLkpV q, where G̃ is a central extension
of G by some abelian group A.

A particularly important example is when we have a symplectic space pW, x¨, ¨yq over, say R.
Then one can form the group H whose underlying set is RˆW , and whose multiplication
is given by:

pa1, w1q ¨ pa2, w2q “

´

a1 ` a2 `
1

2
xw1, w2y, w1 ` w2

¯

.

Then H is called the Heisenberg group associated to W and x¨, ¨y. By the famous Stone-
von Neumann theorem, given a nontrivial (continuous) character ψ : R Ñ Cˆ, there exists
a unique irreducible unitary representation pρ “ ρψ, V “ Vψq of H on a Hilbert space
V “ Vψ, with the property that ZpHq “ R Ă H acts on V “ Vψ through ψ.
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Note that the symplectic group G “ SppW, x¨, ¨yq acts by automorphisms onH: g P G sends
pa, wq to pa, g ¨ wq, which is a group homomorphism since xw1, w2y “ xgw1, gw2y. Since
G acts as the identity on ZpHq, the uniqueness of pρ “ ρψ, V “ Vψq up to isomorphism
implies that gρ :“ ρ˝ Int g´1 is isomorphic to ρ for each g P G. One is now in the situation
described earlier, and we get Ag P GLCpV q as above. One can show that in this case,
we don’t get a representation of G or H ¸ G on V – the Ag cannot be chosen so that

Ag1g2 “ Ag1Ag2 for each g and h – but only one of H¸ G̃, where G̃ Ñ G is a certain central

extension of G. In fact, one can show that this G̃ Ñ G can be chosen to have kernel t˘1u.
The resulting G̃ is what is called the metaplectic group, which has a lot of importance in
the theory of modular forms.

29.5. (Multiplicative) Hilbert’s Theorem 90.

Theorem 29.11 (Hilbert’s Theorem 90). Let K{k be a finite Galois extension.

(i) We have H1pGalpK{kq, Kˆq “ 0 (where GalpK{kq has its obvious action on Kˆ).
(ii) More generally, for any positive integer n, the pointed set H1pGalpK{kq, GLnpKqq

is trivial (i.e., singleton).

Proof. Though (ii) is a generalization of (i), we will first give a stand-alone proof of (i),
which is more concrete though less obviously conceptual.

So let a 1-cocycle σ ÞÑ cσ of GalpK{kq in Kˆ be given; it is enough to show that it is
a coboundary. By the linear independence of characters, there exists y P K such that
b :“

ř

τPGalpK{kq
cττpyq ‰ 0.

Then for each σ P GalpK{kq we have

σpbq “ σp
ÿ

τ

cττpyqq “
ÿ

σ

σpcτ qστpyq “
ÿ

σ

c´1
σ cστ ¨ στpyq “ c´1

σ b.

Therefore, we have cσ “ σpbq´1b for each σ P GalpK{kq, which is to say, pcσqσ is a cobound-
ary, proving (i).

Now we come to the more general statement, (ii). Again, we start with a cocycle pcσqσ,
with each cσ P GLnpKq. As before, it is enough to show that this cocycle is a coboundary,
i.e., that there exists A P GLnpKq such that cσ “ σpAq´1A for all σ P GalpK{kq.

Consider V :“ Kn as a vector space over K with a new action of GalpK{kq, where the
new action of σ P GalpK{kq on v P V will be denoted by σnew ¨ v:

σnew ¨ v :“ cσpσpvqq P GLnpKqpKn
q “ Kn.

Of course, one needs to check that this is indeed an action: one checks that σnew ˝ τnew “

pστqnew using the cocycle condition (i.e., cστ “ cσσpcτ q), and that 1new “ 1 (since c1 “

c1 ¨ 1pc1q “ c21 P GLnpKq, we have c1 “ 1 P GLnpKq). 87

87Here is another way of checking that this is an action. GLnpKq ¸ GalpK{kq acts on Kn (I will leave
it to you to make sense of the details for this), and recall from an Exercise in Lecture 28 that σ ÞÑ pcσ, σq

is a homomorphism GalpK{kq Ñ GLnpKq ¸ GalpK{kq.
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It is immediate that this new action is GalpK{kq-semilinear, i.e., σnewpavq “ σpaqσnewpvq

for all a P K and v P V . Thus, by Galois descent (Theorem 26.4 from Lecture 26), Kn,
with this new GalpK{kq-action, is isomorphic to kn bk K “ Kn with the usual Galois
action, i.e., there exists a basis v1, . . . , vn P Kn “ V that is fixed by the new action. Let
e1, . . . , en be the standard basis of Kn (fixed by the usual action).

Let A P GLnpKq be such that A´1ei “ vi for 1 ď i ď n. Then for each 1 ď i ď n, since
σnewpviq “ vi, for each σ P GalpK{kq we have cσpσpA´1eiqq “ A´1ei, so cσ ˝σpA´1q “ A´1,
i.e., cσ “ A´1σpAq for each σ, which shows that pcσqσ is a coboundary, finishing the proof
of (ii). □

Remark 29.12. (i) The moral of the above proof of Theorem 29.11 is that Hilbert’s
Theorem 90 (in its multiplicative form) is basically Galois descent (and thus, in a
sense equivalent to Galois theory itself; see the notes for Lecture 26).

(ii) How are the arguments given for (i) and (ii) of Theorem 29.11 above related? In
Galois descent, one gets invariant vectors by summing over (rather than averaging
over) GalpK{kq-orbits – see the proof of Proposition 26.6 in the notes for Lecture
26, which was used to prove Galois descent for vector spaces, Theorem 26.4 from
Lecture 26. This is exactly what was done in (i) – the

ř

τ cττpyq is, in terms of
notation from the proof of (ii) of the theorem, simply the sum over the GalpK{kq-
orbit of y for the ‘new’ action of GalpK{kq. The fact that the choice of y involved
linear independence of characters exactly mirrors the use of linear independence of
characters in the proof of Proposition 26.6 from Lecture 26.

(iii) I have not thought about whether the additive form of Hilbert’s Theorem 90 has
a similar interpretation. Perhaps something involving “affine spaces over the K-
vector space K”, but I am not sure. If you figure this out, please let me know.

(iv) A very vague remark follows, although one that is a very important point about
what H1 does. Let X be a ‘mathematical object’ over a field k. What are the
mathematical objects Y over k with the property that X and Y become isomorphic
upon base-change to an extension K{k? Say we have φ : XK Ñ YK . Since X and
Y may not be isomorphic over k, it can happen that for each σ P GalpK{kq,
σφ :“ σ ˝ φ ˝ σ´1 is different from φ. Consider φ´1 ˝ σφ : XK Ñ XK , or rather
pcσ :“ φ´1 ˝ σφ P AutpXKqqσPGalpK{kq. It is easy to see that pcσqσ is a 1-cocycle of
GalpK{kq in AutpXKq (after all, “φ´1 ˝ σφ” looks like a coboundary, except that
φ does not belong to AutpXKq; nevertheless, this is enough for getting a cocycle).
One then shows that assigning the isomorphism class of Y over k to pcσqσ induces
a bijection between H1pGalpK{kq,AutpXKqq, and the ‘K{k-forms of X’, i.e., the
isomorphism classes of mathematical objects Y over k such that X and Y become
isomorphic over K. This seems to be at least reminiscent of, if not the very basis
of, what happened with Hilbert’s Theorem 90 above: GLnpKq “ AutKpKnq “

Autkpkn bk Kq, so H1pGalpK{kq, GLnpKqq should classify something like vector
spaces over k that become isomorphic to Kn over K; but Galois descent implies
that there can only be one such object over k, namely the k-vector space kn, so



402

it follows that H1pGalpK{kq, GLnpKqq is trivial (but this is informal; I haven’t
thought about this well enough to make this vague heuristic precise).

For a more concrete example, Exercise 29.1(ii) exemplifies this philosophy of H1.

Remark 29.13. What about infinite Galois extensions K{k? In this case, GalpK{kq is
to be considered with its Krull topology, so it turns out that group cohomology as defined
in Lecture 28 (and dealt with above) is not the correct object to consider while dealing
with it. However, there is a slight variant of the theory of group cohomology that does
satisfactorily apply to this situation, as we now outline.

(i) Rather than look at the category of abelian groups on which GalpK{kq acts, one
should look at the category of abelian groups viewed as topological groups with the
discrete topology, on which GalpK{kq acts continuously (thus, actions on abelian
groups A such that the stabilizer of each element of A in GalpK{kq is an open
subgroup).

(ii) On this category, we can define the functor of GalpK{kq-invariants, and derive
this functor to get functors that one denotes by H ipGalpK{kq,´q (which are thus
different from what is denoted by H ipGalpK{kq,´q as per the definition in Lecture
28).

(iii) One can show that this newH ipGalpK{kq, Aq can also be described as ZipG,Aq{BipG,Aq,
but where this time ZipG,Aq and BipG,Aq are required to be continuous maps
Gˆ ¨ ¨ ¨ ˆG Ñ A that satisfy the same cocycle or coboundary condition as consid-
ered in Lecture 28.

(iv) One can also show that H ipGalpK{kq, Aq is in a suitable sense the directed colimit
of the H ipGalpK{kq{H,AHq as H varies over the open normal subgroups of A: the
groups GalpK{kq{H are finite Galois groups, and hence the H ipGalpK{kq{H,AHq

are the usual Galois cohomology groups from Lecture 28, without having to worry
about any continuity condition.

(v) It thus follows from Hilbert’s Theorem 90 for finite Galois extensions that the same
also applies to infinite Galois extensions, so that H1pGalpK{kq, Kˆq “ 0 (as long
as we mean H1 in the sense being discussed, taking the topology of GalpK{kq into
account).

(vi) When i “ 1, one can analogously talk of pointed sets H1pGalpK{kq,Mq for pos-
sibly nonabelian groups M on which the possibly infinite group GalpK{kq acts
continuously. In this context, we still have Hilbert’s Theorem 90, saying that
H1pGalpK{kq, GLnpKqq is trivial for each n.

29.6. Transcendental extensions.

Definition 29.14. (i) A field extension K{k is said to be transcendental if it is not
algebraic. Note that K{k is transcendental if and only if there exists α P K such
that the k-algebra homomorphism krxs Ñ K sending x to α is injective, in which
case the subfield kpαq Ă K generated by k and α is isomorphic to the field kpxq of
rational functions in one variable over k. Such an α is said to be transcendental
over k.
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(ii) Let K{k be a field extension. A subset S Ă K is said to be algebraically in-
dependent over k if the elements of S do not satisfy any nontrivial polynomial
relation with coefficients in k; more precisely, if every k-algebra homomorphism
φ : krx1, . . . , xns Ñ K with φpxiq P S for all 1 ď i ď n is injective.

(iii) A subset S Ă K which is algebraically independent over k, and is maximal with
respect to inclusion, is called a transcendence base or a transcendence basis for
K over k. Note that S Ă K is a transcendence basis if and only if the following
two conditions hold: S is algebraically independent over k, and K is algebraic over
kpSq (where kpSq stands for the subfied of K generated by k and S; note that it is
isomorphic to the quotient field kpxs | s P Sq of a polynomial ring krxs | s P Ss in
variables indexed by S).

Theorem 29.15. Let K{k be a field extension. Then any two transcendence bases for K
over k have the same cardinality.

Sketch of the proof in the special case where K has a finite transcendence basis. We follow
Serge Lang’s book. Suppose K has a finite transcendence basis tx1, . . . , xmu. It is enough
to show that if w1, . . . , wn P K are algebraically independent over k, then n ď m (this
suffices by symmetry, which will then give the inequality m ď n whenever w1, . . . , wn is a
transcendence basis).

Since w1, x1, . . . , xm are algebraically dependent, we may write f1pw1, x1, . . . , xmq “ 0 for
some irreducible polynomial f1 P krY0, . . . , Yms over k in m ` 1 variables. Without loss of
generality, we may assume that “Y1 occurs in f1”, i.e., that we can write

0 “ f1pw1, x1, . . . , xmq “
ÿ

j

gjpw1, x2, . . . , xmqxj1,

with gN ‰ 0 for some N ě 1 (as a polynomial in m variables).

Note that no irreducible factor of gN vanishes on pw1, x2, . . . , xmq: otherwise w1 is a root
of two distinct irreducible polynomials over kpx1, . . . , xmq.

Therefore, x1 is algebraic over w1, x2, . . . , xm, and w1, x2, . . . , xm are algebraically indepen-
dent over k (otherwise x1, . . . , xm would be algebraically dependent over k).

Now one repeats this argument, assuming that w1, . . . , wr, xr`1, . . . , xm are algebraically
independent and that x1, . . . , xr are algebraic over w1, . . . , wr, xr`1, . . . , xm, and then shows
(after renumbering the xi if necessary) that w1, . . . , wr`1, xr`2, . . . , xm is algebraically in-
dependent, and that K is algebraic over kpw1, . . . , wr`1, xr`2, . . . , xmq. Therefore, one can
proceed by induction. □

Exercise 29.16. Let K{k be a field extension. Show that any set of elements in K that
are algebraically independent over k can be completed into a transcendence basis for K
over k. Moreover, given any set Γ Ă K of generators for K{k (i.e., the minimal subfield
kpΓq Ă K containing Γ is K), show that the extra elements in this transcendence basis
can be chosen to be from Γ.
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Definition 29.17. If K{k is a field extension, the transcendence degree of K{k, sometimes
denoted trdegK{k, is the cardinality of some, and hence by Theorem 29.15 any, transcen-
dence basis for K over k.

Exercise 29.18. Read up about the notion of separable extensions in the context of
transcendental extensions.

29.7. Kummer theory – the simplest case. We will follow Serge Lang’s book.

Notation 29.19. (i) In this subsection, let k be a field, and m a positive integer, such
that:

‚ pchar k,mq “ 1 (considered automatically true if char k “ 0); and
‚ µmpkq “ µmpk̄q Ă kˆ, where we write µmpkq and µmpk̄q for the sets of m-th
roots of unity in k and some algebraic closure k̄ of k. In other words, given
that pchar k,mq “ 1, we are assuming that k contains m distinct m-th roots
of unity; call their set µm.

(ii) Fix an algebraic closure k ãÑ k̄; in this subsection, “an extension of k” will refer to
“an extension of k in k̄”.

Kummer theory answers the question: what are the finite abelian extensions of K{k (by
convention, inside k̄) 88 of exponent m?

To state the answer, we will use the following notation:

Notation 29.20. (i) We will write pkˆqm (resp., km) for tam | a P kˆu (resp., tam |

a P ku).
(ii) For a P kzkm “ kˆzpkˆqm, kpa1{m{kq will denote the extension K{k in k̄ obtained

by adjoining a choice of an m-th root a1{m of a in k̄: note that while a1{m itself is
only well-defined up to multiplication by an element of µmpk̄q “ µmpkq, kpa1{mq is
well-defined because of our hypothesis that µmpk̄q Ă k. Thus, kpa1{mq is also the
extension of k in k̄ obtained by adjoining all the m-th roots of a in k̄.

(iii) Given B Ă k, kpB1{mq will denote the extension K{k obtained by adjoining to k
all the m-th roots of the elements of B in k̄.

Then the answer give by Kummer theory in our easy situation is:

Theorem 29.21. Assume Notation 29.19, so pchar k,mq “ 1 and µmpk̄q “ µmpkq. Then
there exists a bijection

tSubgroups of kˆ containing pkˆ
q
m

u Ñ tAbelian extensions of k of exponent mu,

sending B to KB :“ kpB1{mq.

Note that the following lemma is an analogue of the Artin-Schreier theorem discussed
in Lecture 28 (Theorem 28.23). Just as the proof of the Artin-Schreier theorem used the
additive form of Hilbert’s theorem 90, the following lemma will use the multiplicative form.
This lemma will be a sort of induction step in the proof of Theorem 29.21.

88Note that multiple such extensions can be isomorphic in fétk.
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Lemma 29.22. (i) Let K{k be a finite cyclic extension of degree n. Then there exists
α P K such that K “ kpαq, and such that α is an n-th root of some a P k.

(ii) Let a P k. Then kpa1{mq is Galois, with Galois group isomorphic to Z{dZ for
some d|m: in fact sending σ P Galpkpa1{mq{kq to σpa1{mq{a1{m gives an injective
homomorphism of groups Galpkpa1{mq{kq ãÑ µm (and hence has cyclic image of
order some d|n).

Proof. The proof of (i), which uses Hilbert’s Theorem 90 analogously to how the proof
of the corresponding assertion of the Artin-Schreier theorem used the additive form of
Hilbert’s Theorem 90, is part of HW 14.

kpa1{mq{k is Galois, because it is separable and normal – the former because pm, char kq “

1), and the latter because it is clearly it contains the set a1{mµmpkq “ a1{mµmpk̄q of all roots
of xm ´ a, and is hence the splitting field of xm ´ a. The rest of (ii) is immediate, but let
us remark that σpa1{mq{a1{m is independent of the choice of a1{m because µmpk̄q Ă k. □

Proposition 29.23. Assume Notation 29.19. Let pkˆqm Ă B Ă kˆ be a subgroup. Let
KB “ kpB1{mq.

(i) KB “ kpB1{mq is a Galois extension of k.
(ii) Set G “ GalpKB{kq. Consider the bilinear map

G ˆ B Ñ µm, pσ, aq ÞÑ
σpa1{mq

a1{m
.

The kernel of this map on the left is t1u Ă G, and the kernel of this map on the
right is pkˆqm Ă B.

(iii) KB{k is finite if and only if rB : pkˆqms is finite, in which case we have B{pkˆqm –

HompG, µmq and rKB : ks “ rB : pkˆqms.

Proof. (i) is easy, just like in Lemma 29.22(ii).

Now we come to (ii). If σ P G belongs to the kernel on the left, then σpa1{mq “ a1{m for
all a P B, so σ is the identity on KB. Thus, the kernel on the left is t1u. If a P B is such
that xσ, ay “ 1 for all σ P G, then (any choice of) a1{m is fixed by all σ P G “ GalpKB{kq,
so kpa1{mq “ k, so that a P pkˆqm. This proves (ii).

(iii) is then an easy exercise using (ii) and basic properties of pairings between finite
groups. □

Proof of Theorem 29.21, somewhat tersely written. First we prove the injectivity of B ÞÑ

KB. It is easy to see that if B1 Ă B2 then KB1 Ă KB2 .

Conversely, suppose KB1 Ă KB2 , but there exists b1 P B1zB2. Then kpb
1{m
1 q Ă KB1 Ă KB2

is contained in a finitely generated subextension of KB2 . This allows us to assume without
loss of generality that rB2 : pkˆqms is finite (replace B1 by the image of xb1y in kˆ{pkˆqm,

and B2 by a suitable smaller group while ensuring that we still have kpb
1{m
1 q Ă KB2). Let

B3 be the subgroup of kˆ generated by B2 and b. Then KB2 “ KB3 , so by Proposition
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29.23(iii), we have #pB2{pkˆqmq “ #pB3{pkˆqmq, so B2 “ B3, a contradiction to b1 R B2.
This gives the injectivity of B ÞÑ KB.

Now we come to the surjectivity, so let K be an abelian extension of k of exponent m. It
is enough to see that K is a compositum of extensions of the form kpa1{mq (since then we
can let B be the subgroup of kˆ generated by pkˆqm and all those a). Equivalently, it is
enough to see that any finite (necessarily Galois, by the abelianness of K{k) subextension
of k is a compositum of extensions of the form kpa1{mq.

Being abelian of exponentm, it is easy to see that any such finite extension is a compositum
of cyclic extensions of exponentm: this is an easy argument involving the structure theorem
for abelian groups. Thus, we are done since, by Lemma 29.22, any cyclic extension of k of
degree m is obtained by adjoining an m-th root of some a P k. □

29.8. Appendix – The Brauer group and Galois cohomology. This subsection was
not discussed in the lecture, probably not even alluded to, and hence is optional. Re-
call central simple algebras and Brauer groups from Lecture 19. In this subsection, we
wish to study how to relate Brauer groups to Galois cohomology. Specifically, given a
finite Galois extension K{k, we would like to get an isomorphism between a subgroup
BrpK{kq Ă Brpkq, and H2pGalpK{kq, Kˆq. We will only sketch a proof of a bijection
(with no indication that it is an isomorphism of groups), and that too modulo some black-
boxes.

Definition 29.24. Let BrpK{kq denote the subset of BrpKq represented by central simple
algebras A{k with the property that A splits over K, i.e., A bk K – MnpKq for some n.

Blackbox: We will with very little further mention assume the following as a blackbox:
A central simple algebra A over k represents an element of BrpK{kq if and only if there
exists an A1 in its equivalence class such that the k-algebra K embeds into A1 as a maximal
commutative subfield. For a proof, see Lemma 16.3 of

https://ocw.mit.edu/courses/18-706-noncommutative-algebra-spring-2023/

mit18_706_s23_lec16.pdf

for a proof. Note that A1 as above is unique by dimension considerations.

Recall from Theorem 29.8 that H2pGalpK{kq, Kˆq is in a certain bijection with the set of
isomorphism classes of extensions

(146) 1 Ñ Kˆ
Ñ N Ñ GalpK{kq Ñ 1.

Thus, we need in particular a bijection from isomorphism classes of extensions (146), and
BrpK{kq. For this, we make:

Construction 29.25. LetK{k be a finite Galois extension. Given a central simple algebra
A over k into which the k-algebra K embeds as a maximal subfield, fix such an embedding
K ãÑ A, and let N be the normalizer of Kˆ in Aˆ. Therefore, N defines, by conjugation,
an action of N{Kˆ on K, and hence a homomorphism N{Kˆ Ñ GalpK{kq. This map is
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injective since K Ă A is a maximal commutative subfield, and it is easy to see from the
Skolem-Noether theorem that this map is surjective (if σ P GalpK{kq, then pK ãÑ Aq ˝ σ
is another k-algebra embedding of K into A). Thus, we get an extension

(147) 1 Ñ Kˆ
Ñ N Ñ GalpK{kq Ñ 1

of the abelian group Kˆ by the group GalpK{kq. It is immediate that the action of
GalpK{kq on Kˆ associated to this extension is just the usual action of GalpK{kq on Kˆ.

Using the Skolem-Noether theorem, it is easy to check that the isomorphism class of the
extension (147) is independent of the choice of the embedding K ãÑ A (this is an important
point). Note also from the blackbox above that A is the unique central simple algebra in
the equivalence class associated to its image in BrpK{kq withK as a maximal commutative
subfield.

The theorem I wish to discuss is:

Theorem 29.26. Let K{k be a finite Galois extension. Then there is a unique isomor-
phism of groups BrpK{kq Ñ H2pGalpK{kq, Kˆq, which sends the image of each central
simple algebra A over k having the k-algebra K as a maximal commutative subfield (see
the blackbox above), to the element of H2pGalpK{kq, Kˆq that corresponds, by the bijection
of Theorem29.8, to the isomorphism class of the extension of GalpK{kq by Kˆ associated
to A in Construction 29.25. It has a suitably functorial dependence on K.

Remark 29.27. Suppose K{k is infinite Galois. Letting H2pGalpK{kq, Kˆq be as in
Remark 29.13, i.e., Galois cohomology with continuous cocycles, and using some ba-
sic facts about group cohomology, it is easy to deduce that the assertion BrpK{kq –

H2pGalpK{kq, Kˆq continues to hold in this case, so in particular we have Brpkq –

H2pGalpks{kq, pksqˆq, where k ãÑ ks is a separable closure.

Some ideas involved in a proof of Theorem 29.26. Please be careful of several potential in-
accuracies, even serious ones, in the following: I could have been careless; I think I did not
follow any standard reference except for the description of the construction of Ac.

Already, Construction 29.25 (including the observation at the end that it is well-defined),
together with Theorem 29.8, gives us a map BrpK{kq Ñ H2pGalpK{kq, Kˆq – here we
have used the blackbox above.

Let us describe how to attach a central simple algebra Ac to a 2-cocycle c :“ pcσ,τ qσ,τ
of G :“ GalpK{kq in Kˆ. For simplicity we will assume c to be normalized, so that
c1,σ “ cσ,1 “ 1 P Kˆ for all σ. To c we attach:

Ac “

!

ÿ

σPG

aσrσs | aσ P K @σ
)

,

and define a multiplication on Ac by imposing the relations rσs ¨x “ σpxq ¨ rσs and rσsrτ s “

cσ,τ rστ s, for all σ, τ P GalpK{kq and x P K.
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Just as with group extensions, one deduces associativity from the 2-cocycle condition. It
is now easy to see that Ac is a ring that is a k-vector space of dimension rK : ks2. Via the
inclusion a ÞÑ ar1s, Ac is a k-algebra (this uses that the cocycle c is normalized). a ÞÑ ar1s

also gives us a k-algebra embedding K ãÑ Ac, which we will think of as an inclusion for
the rest of this proof.

Let us verify that Ac is a central simple algebra. Since conjugation by α P Kˆ sends
ř

aσrσs

to
ř

aσ ¨ pσpαqα´1q ¨ rσs, it follows that the centralizer of Kˆ in Ac equals K “ K ¨ r1s Ă Ac.
Therefore, the center of Ac is contained the subset of K fixed by each rσs, namely, k Ă K.
Thus, Ac is central.

Let us show that Ac is simple. Suppose I Ă Ac is a two-sided ideal. Again, consider
conjugation by Kˆ. On the basis element rσs of Ac as a K-vector space (where K acts
on Ac by left multiplication), conjugation by α P Kˆ acts as multiplication by ασpα´1q.
Thus, this conjugation action of Kˆ on Ac is simultaneously diagonalizable. Since this
action preserves I, it follows that I is a direct sum of simultaneous eigenspaces for this
action (a submodule of a semisimple module is semisimple). Thus, I is a linear span of
some of the rσs (note that each K ¨ rσs is the whole of a simultaneous eigenspace). If I is
nonzero, then it contains some rσs, from which, multiplying by other rτ s and some nonzero
scalars, it follows that I contains every rσs and hence equals Ac. Thus, we have shown that
Ac is simple as well, so it is central simple over k. Since we have a k-algebra embedding
K ãÑ Ac, Ac represents an element of BrpK{kq (use the blackbox above).

Further, it is easy to see that if pc1
σ,τ qσ,τ is cohomologous to pcσ,τ qσ,τ , with cσ,τ ´ c1

σ,τ “

σ1pbσ2q ´ bσ1σ2 ` bσ1 , then mapping
ř

aσrσs to
ř

aσbσrσs defines an isomorphism of al-
gebras Ac Ñ Ac1 (we are being slightly vague here: this is true if c and c1 are nor-
malized; otherwise one can use this to realize Ac and A1

c as k-algebras, and then the
same statement will hold). Thus, sending c to Ac induces a well-defined set-theoretic
map H2pGalpK{kq, Kˆq Ñ BrpK{kq. To show that this map is a bijection, it remains
to show that H2pGalpK{kq, Kˆq Ñ BrpK{kq Ñ H2pGalpK{kq, Kˆq and BrpK{kq Ñ

H2pGalpK{kq, Kˆq Ñ BrpK{kq are the identity maps.

What do we get when we apply Construction 29.25 to Ac, or rather what is the element
of H2pG,Kˆq attached by Theorem 29.8 to the resulting extension? The normalizer of
Kˆ Ă K Ă Ac in A

ˆ
c contains each rσs P Ac, conjugation by which is readily verified to

send α P Kˆ to σpαq. Thus, it is automatic from (147) that Kˆ together with the rσs

generate N . Using σ ÞÑ rσs in place of the section s in the proof of Theorem 29.8, we
find that the element of H2pGalpK{kq, Kˆq associated to the extension given by applying
Construction 29.25 to Ac, is represented by the two-cocycle

pσ, τq ÞÑ rσsrτ srστ s
´1

“ cσ,τ P Kˆ.

This shows that H2pGalpK{kq, Kˆq Ñ BrpK{kq Ñ H2pGalpK{kq, Kˆq is the identity
map.

Now let us show that BrpK{kq Ñ H2pGalpK{kq, Kˆq Ñ BrpK{kq is the identity map. We
use the blackbox above to start with a representative A for a given element of BrpK{kq,
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that contains the k-algebra K as a maximal commutative subfield. We look at (147) in
Construction 29.25, and assume notation from there. We let rσs P N to be any preimage
of σ P GalpK{kq, except that we require r1s “ 1. Then it follows from Construction 29.25
that rσsrτ s “ cσ,τ rστ s for some 2-cocycle pcσ,τ qσ,τ representing the extension given by that
construction. Since r1s “ 1, it is easy to see that the 2-cocycle pcσ,τ qσ,τ is normalized.
Given the construction of H2pGalpK{kq, Kˆq Ñ BrpK{kq via c ÞÑ Ac, it now suffices to
show that as a K-vector space (K operating on A by left multiplication), A has the rσs as
a basis.

By dimension considerations, and the fact that rK : ks “ GalpK{kq, this follows if we show
that the rσs are K-linearly independent. But this follows from the fact that conjugation by
α P Kˆ acts on K ¨ rσs by multiplication by ασpα´1q, and the simultaneous eigencharacters
α ÞÑ α ¨ σpα´1q are pairwise distinct.

□


