
SOME COMMENTS ON THE STABLE BERNSTEIN CENTER
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Abstract. We prove several results concerning the stable Bernstein center of a connected

reductive p-adic group G, which follow from a variant of a “µ-constancy result” of Shahidi in

[Sha90]. One of these results says that the stable center conjecture holds for quasi-split classical
groups. Towards this result, we introduce a notion of unitarily stable discrete series L-packets,

and discuss criteria for detecting them, proving in particular that when p ≫ 0, Kaletha’s regular

supercuspidal packets are unitarily stable. We also prove a weak but unconditional variant
of Shahidi’s constancy of the Plancherel µ-function in an L-packet, as well as of its transfer

across inner forms. As a consequence, we deduce that the Plancherel µ-function is constant

on unitarily stable discrete series packets on Levi subgroups of G (and thus, when p ≫ 0, on
regular supercuspidal packets on Levi subgroups of G). We also slightly refine a result of M. Oi

on the depth preservation of the local Langlands correspondence for classical groups.
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1. Introduction

In this introduction, unless otherwise stated, let G be a connected reductive group defined over
a finite extension F of Qp, where p is a prime number. To keep this introduction simple, we will
assume G to be quasi-split unless otherwise stated. Further, theorems in this introduction will
typically be stated informally, but with a reference to their more precise versions in the body of
the paper.

1.1. Pre-introduction: Some of the main results proved in this paper. This paper is a
collection of a priori disparate seeming results, which are nevertheless related in their evolving from
a variant of an argument from [Sha90], that we will informally refer to as ‘Shahidi’s µ-constancy
argument’. To give the reader an idea of what to expect, let us state some consequences of these
results:

(1) The stable center conjecture for quasi-split classical groups (See Corollary 5.1.4): If G
is a quasi-split symplectic, special orthogonal, unitary, general symplectic or odd general
spin group, then it satisfies a form of the stable center conjecture of Bezrukavnikov, Kazh-
dan, Varshavsky and Haines. If G is a general special orthogonal group, a weaker result
involving an outer automorphism holds.

(2) Depth preservation for quasi-split classical groups (see Corollary 5.1.6): Combining this
result with the stability of the depth r projector (proved in [BKV16]) and with the work of
M. Oi in [Oi22] on depth preservation, we can slightly refine [Oi22, Theorem 1.2] into the
following depth preservation result for local Langlands correspondence: if p≫ 0, and σ is
an irreducible discrete series representation of a quasi-split symplectic, special orthogonal
or unitary group over F , with Langlands parameter φσ, then

depthφσ = depthσ

(the unitary case of this was already known by [Oi22] and [Oi21], even without requiring
G to be quasi-split).

(3) Comparing Kaletha’s and Arthur’s packets (see Remark 3.4.13): Assume that p ≫ 0.
Then for quasi-split symplectic, special orthogonal and unitary groups over F , regular
supercuspidal packets constructed by Kaletha are also packets in the sense of Arthur’s
book, [Art13]. However, we are not able to compare their Langlands parameterizations.

(4) Regular supercuspidal representations and the constancy/transfer of the Plancherel mea-
sure (See Corollary 4.2.13): Assume that p ≫ 0 (but G is arbitrary connected reductive
over F ). If Σ is a regular supercuspidal packet on M(F ), where M ⊂ G is a Levi subgroup,
and µ stands for the Plancherel µ-function, then µ(σ1) = µ(σ2) for all σ1, σ2 ∈ Σ. More
generally, if M∗ is a Levi subgroup of a quasi-split group G∗ over F , such that there exists
an inner twist from G∗ to G that restricts to an inner twist from M∗ to M, and if Σ∗ is
a regular supercuspidal packet on M∗(F ) with the same Langlands parameter as Σ, then
the values of the Plancherel µ-function on σ ∈ Σ and σ∗ ∈ Σ∗ are related by:

γ′′′(G∗|M∗)µ(σ∗) = γ′′′(G|M)µ(σ).

Note that according to the formalism described in [Sha90, Section 9], extending Langlands-
Shahidi L-functions outside the generic case, this tells us that even in many cases involving
non-quasi-split groups, Langlands-Shahidi L-functions can be used to normalize intertwin-
ing operators.

These results are deduced from more general versions stated in terms of unitarily stable discrete
series packets, a notion that we introduce in Definition 3.3.2. In Subsection 1.7 we try to state our
case that this notion enjoys ‘availability’, utility and naturality, and is hence worth considering.
Shahidi had shown in [Sha90, Section 9], under some natural but strong assumptions concerning
the existence of stable tempered L-packets, that for any Levi subgroup M ⊂ G and any discrete
series L-packet σ on M(F ), the Plancherel µ-function is constant on Σ. It is to Shahidi’s proof of
this result that we refer, when we talk of ‘Shahidi’s µ-constancy argument’. A key input into the
proofs of the main results of this paper is our variation on this µ-constancy result, as well as a
generalization of it, and a corresponding generalization of the ‘transfer to inner forms’ variant of
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Shahidi’s result studied by Choiy and Heiermann (see [Cho14] and [Hei16]): see Proposition 1.6.1
later in this introduction for an informal statement, and Corollary 4.2.12 for a precise statement.
In fact, we prove weaker and uglier but unconditional versions of these two results (see Proposition
1.3.1 in Subsection 1.3 for the former, and Proposition 1.4.1 in Subsection 1.4 for the latter).
In what follows, namely, the introduction proper to this paper, we will elaborate on the context
and the objects that we concern ourselves with, and discuss our more general results that specialize
to (1)-(4) above.

1.2. The stable center conjecture. Let Z(G) and Ω(G) respectively denote the Bernstein
center and the Bernstein variety of G (see, e.g., [BDK86, Hai14, BKV15, BKV16]), so that Z(G)
identifies with the ring C[Ω(G)] of regular functions on Ω(G).
There are many conjecturally equivalent candidates for the definition of a ring Zst(G), called the
stable Bernstein center of G, which is expected to map into Z(G) and inform the study of the
local Langlands conjectures and related topics such as stability and endoscopy. In fact, according
to [BKV15, the introduction], studying it can provide both a ‘supporting evidence’ and a ‘step in
the proof of the local Langlands conjecture’.
Since the work of Vogan in [Vog93], which is the earliest reference on this topic that the author is
aware of, several conjectural descriptions of what should deserve to be called the stable Bernstein
center have emerged, only some of which obviously map to Z(G). In this part, we will study the
equality of the two harmonic analytically defined complex vector spaces Z1(G) and Z2(G) ⊂ Z(G)
below.

Definition 1.2.1. (i) Let Z1(G) ⊂ Z(G) be the vector subspace of elements z that, viewed
as distributions on G(F ), are stable.

(ii) Let Z2(G) ⊂ Z(G) be the C-subalgebra of elements z such that whenever f ∈ C∞
c (G(F ))

is unstable, so is z ∗ f .

Let us first discuss the relation between Z1(G) and Z2(G). Recall that through out this introduc-
tion, we assume unless otherwise stated that G is quasi-split.

Remark 1.2.2. (i) While a priori Z1(G) is only a C-vector subspace of Z(G), Z2(G) is a
C-subalgera of Z(G).

(ii) Z2(G) ⊂ Z1(G): since z(f) = z ∗ f̌(1), this follows from the fact that f 7→ f(1) is a stable
distribution (see [Kot88, Proposition 1]).

A weak form of the stable center conjecture, namely [BKV15, Conjecture 3.1.4(a)], says:

Conjecture 1.2.3. Z1(G) ⊂ Z(G) is a subalgebra.

By Remark 1.2.2, this conjecture follows from the following conjecture, which is thus a stronger
form of the stable center conjecture:

Conjecture 1.2.4. Z2(G) = Z1(G).

As mentioned in the introduction of [BKV15], one expects Z1(G) to be the set of elements in
Z(G) with the property that, if π1, π2 are tempered representations of G(F ) belonging to the
same L-packet, then z acts as multiplication by the same scalar on π1 and π2. Note that this
would transparently yield Conjecture 1.2.3 as well. It is easy to turn this comment into an easy
proof of the stronger Conjecture 1.2.4, for those groups for which tempered L-packets have been
defined and shown to satisfy the appropriate stability properties.
Namely, according to the formalism of Langlands and Arthur, one expects that the set Irrtemp(G)
of isomorphism classes of irreducible tempered representations of G(F ) can be partitioned into
finite subsets, called tempered L-packets, such that each such packet Σ supports a nonzero stable
virtual character ΘΣ, and such that the ΘΣ form a basis for the space of stable tempered virtual
characters on G(F ). One makes a slightly more precise requirement: for each Levi subgroup M
of G, one asks for a partition of the set Irr2(M) of isomorphism classes of irreducible unitary
square-integrable (modulo center) representations of M(F ) into ‘discrete series L-packets’ Σ each
supporting a nonzero stable virtual character ΘΣ, and one asks for these ΘΣ to constitute a basis
for the space of stable elliptic virtual characters on M(F ). If this condition is satisfied, we will
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say that G satisfies the existence of tempered L-packets (thus implicitly assumed to have the
appropriate stability properties). In the body of the present paper, this requirement is stated as
Hypothesis 2.5.1, and referred to as the existence of tempered L-packets. Let us remark that in the
body of the paper, including in Hypothesis 2.5.1, we work with a system {OM}M of automorphisms
of Levi subgroups of G (essentially to deal with outer automorphisms of groups such as SO2n or
GSO2n), but to keep this introduction simple, we will assume all these groups to be trivial.
Thus, one of the aims of this paper is to show the following fact, which is probably known to many
experts but which the author cannot find in literature (see Theorem 4.4.2 for a precise version).

Theorem 1.2.5. If G satisfies the existence of tempered L-packets, then Conjecture 1.2.4 is true,
i.e., Z2(G) = Z1(G) (and hence, so is Conjecture 1.2.3).

As is well-known, in the case of quasi-split symplectic and special orthogonal groups, the monu-
mental work of Arthur in [Art13] gives us such a description of tempered L-packets as well as a
proof of character identities satisfied by them, while the work of Mok [Mok15] adapts the work of
Arthur to quasi-split unitary groups. In [Xu18], Bin Xu proves analogous results for quasi-split
general symplectic groups, and a weaker version for even general special orthogonal groups involv-
ing an outer automorphism. On the other hand, the work [Mg14] of Mœglin deals with quasi-split
general spin groups in addition to the quasi-split classical groups considered by Arthur and Mok,
and, proves a slightly weakened form of the character theoretic properties that these packets are
expected to satisfy; her results for even special orthogonal and even general spin groups too in-
volve an outer automorphism (and as far as the author understands, the results of [Mg14] do not
depend on the twisted weighted fundamental lemma for non-split groups, or the articles referred
to in [Art13] as [A25], [A26] or [A27]). What we know from these results is strictly stronger than
the hypotheses necessary for Theorem 1.2.5, so that we can deduce Conjecture 1.2.4, and hence
consequently also Conjecture 1.2.3, for quasi-split symplectic, special orthogonal, unitary, general
symplectic and odd general spin groups, and a weaker result involving an outer automorphism for
general special orthogonal groups; see Corollary 5.1.4, which gives (1) of the ‘pre-introduction’,
Subsection 1.1. However, due to some technical reasons, we do not treat the case of even general
spin groups (essentially because we do not yet know if certain transfer factors relevant to it are
invariant under the appropriate outer automorphism).

1.3. An unconditional variant of Shahidi’s µ-constancy argument. The proof of Theo-
rem 1.2.5 follows Shahidi’s proof of the constancy of the Plancherel µ-function on discrete series
L-packets on Levi subgroups, under an assumption almost equivalent to (perhaps slightly weaker
than) our assumption on the existence of tempered L-packets (see [Sha90, Proposition 9.3]). In-
deed, Shahidi studied the Plancherel expansion of f 7→ f(1) to show that if Σ is a discrete series
packet on a Levi subgroup M ⊂ G, then µ(σ1) = µ(σ2) for all σ1, σ2 ∈ Σ, where µ is the Plancherel
µ-function associated to the parabolic induction from M to G (see [Wal03, Section V]). Similarly,
given z ∈ Z1(G), the proof that z ∈ Z2(G) (under the assumption that tempered L-packets exist)
goes through first showing that if Σ is a discrete series packet on a Levi subgroup M ⊂ G, then
ẑ(σ1) = ẑ(σ2) for all σ1, σ2 ∈ Σ, where ẑ(σi) refers to the scalar with which z acts on any irre-
ducible subquotient of a representation of G(F ) parabolically induced from σi. This uses, as well
as combines with, the following deep result of Arthur: if f ∈ C∞

c (G(F )) satisfies that Θ(f) = 0
for all stable tempered virtual characters Θ on G(F ), then f is unstable, i.e., all its stable orbital
integrals vanish (this follows from [Art96, Theorems 6.1 and 6.2], but it may be more convenient
to see this from the statement of the twisted version given in [MW16, Corollary XI.5.2]). The
existence of tempered L-packets makes it convenient to check the condition that Θ(f) = 0 for
all stable tempered virtual characters Θ on G(F ). While Shahidi considers the Plancherel expan-
sion of f 7→ f(1), here one considers the expansion of f 7→ z(f∨) = z ∗ f(1), where f∨ is given
by f∨(g) = f(g−1), to get the constancy of σ 7→ ẑ(σ)µ(σ) on Σ, from which the constancy of
σ 7→ ẑ(σ) on Σ follows (using Shahidi’s result mentioned above, which can be recovered by taking
z to be the Dirac measure at the identity element).
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We find it convenient to use the above Plancherel expansion argument to prove the following
unconditional result along the way, one that does not depend on a strong assumption like the
existence of tempered L-packets (see Corollary 4.2.11(i) for more details):

Proposition 1.3.1. Let z ∈ Z1(G). Let ζ : AM(F ) → C× be a smooth unitary character, where
AM is the maximal split torus contained in the center of M. Write Irrζ,2(M) for the subset of
Irr2(M) consisting of representations whose central character restricts to ζ on AM(F ). Then

(1)
∑

σ∈Irrζ,2(M)

d(σ)ẑ(σ)µ(σ)Θσ,

which makes sense as a distribution on G(F ) by Remark 2.2.5, is stable.

1.4. An unconditional ‘inner form transfer’ variant of Shahidi’s µ-constancy argument.
Recall that already in [Sha90], Shahidi had proposed that his proof of the constancy of the µ-
function on discrete series packets on Levi subgroups should generalize to transfer to inner forms,
and should thus make local Langlands-Shahidi L-functions available for inner forms, modulo the
generic packet conjecture. Such transfers have been known, at least in many cases, by the work
of Choiy and Heiermann (see [Cho14] and [Hei16]).
Inspired by the transfer of µ-functions across inner forms by Choiy and Heiermann, one can ask if
the stability of (1) given by Proposition 1.3.1 can be enhanced to a transfer between inner forms.
This leads to the following proposition, which we state informally and refer to Corollary 4.2.11(ii)
for more details:

Proposition 1.4.1. Given an inner twist between G and its quasi-split inner form G∗ that trans-
fers a Levi subgroup M ⊂ G to a Levi subgroup M∗ ⊂ G∗, (1) above generalizes to:

(2)
∑

σ∗∈Irrζ,2(M∗)

d(σ∗)ẑ(σ∗)µ(σ∗)Θσ∗ transfers to (scalar) ·
∑

σ∈Irrζ,2(M)

d(σ)ẑ(σ)µ(σ)Θσ.

The scalar in the above proposition is given sort of explicitly in Corollary 4.2.11(ii). Among other
things, it involves the Kottwitz sign e(G) = e(M) of G.
While Proposition 1.3.1 used that f 7→ f(1) is stable (by [Kot88, Proposition 1]), Proposition
(1.4.1) uses that the distribution f∗ 7→ f∗(1) on G∗(F ) transfers to the product of e(G) and the
distribution f 7→ f(1) on G(F ) (by [Kot88, Proposition 2]). Instead of using the result of [Art96]
that the instability of a function can be checked on stable characters, one uses that whether or not
two functions have matching orbital integrals can be checked by seeing that various (non-explicit)
character identities are satisfied; this follows from [Art96, Lemma 6.3], as explained in [LM20]:
see the equivalence of the conditions (A) and (B) in page 587 of that reference.

1.5. Unitarily stable discrete series packets. This proposition suggests that, to conclude the
equality ẑ(σ1)µ(σ1) = ẑ(σ2)µ(σ2) for two given representations σ1, σ2 that belong to a candidate
discrete series L-packet (such as a Kaletha packet), we might not need the full strength of the
existence of tempered L-packets: it will suffice if we know that the function d(σ1)

−1fσ1
−d(σ2)−1fσ2

is unstable, where fσi is a pseudocoefficient for σi among those representations of M(F ) whose
central character restricts to ζ on AM(F ).
Thus, we consider what we call ‘unitarily stable’ discrete series L-packets, modifying terminology
from [MY20]: a finite subset Σ ⊂ Irr2(M) isunitarily stable if it supports a nonzero stable virtual
character ΘΣ with the property that every stable elliptic virtual character Θ on M(F ) can be
uniquely written as cΘΣ + Θ′, where c is a scalar and Θ′ is supported outside Σ. This notion
is a natural one and hence is almost certainly well-known to experts, but we could not find a
reference in literature. Note that the notion of unitary stability is stronger than the notion of
atomic stability found in [Kal22, Conjecture 2.2]. One then shows (see Corollary 4.2.12) that the
Plancherel µ-function as well as ẑ, for any z ∈ Z1(G), are constant on any unitarily stable discrete
series packet on a Levi subgroup of G. While pursuing these considerations, it is not hard to see
that for any unitarily stable discrete series packet Σ, ΘΣ is a scalar multiple of

∑
d(σ)Θσ, with σ

running over Σ and d(σ) denoting the formal degree of σ.
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If tempered L-packets are known to exist, then it is easy to see that every discrete series packet on
a Levi subgroup is unitarily stable. It turns out that examples can be given even when tempered
L-packets are not known to exist. We describe two ways to check that a given finite set of discrete
series representations constitutes a unitarily stable discrete series packet. Again, this should be
known to experts, since these two results are very simple consequences of [Art96], but we were
unaware of them and could not find them in literature. It was a remark of Mœglin in [Mg14, Section
4.8] that suggested the first to us, and it was [LMW18, Section 4.6, Lemma 3] that suggested the
second.
To describe the first, let M be a connected reductive group over F . Given a virtual discrete series
character Θ on M(F ), recalling that it is completely determined by the values it takes as a locally
constant function on the set M(F )ell of strongly regular elliptic semisimple elements of M(F ), let
us denote by Θst : M(F )ell → C the function that takes γ to the average of the Θ(γ′) as γ′ varies
over representatives for the conjugacy classes in the stable conjugacy class of γ. It is not obvious
that Θst is the set of values taken by any virtual character on M(F )ell, but one knows from a deep
result of [Art96] that it is so. The first way to detect unitary stability is as follows (see Proposition
3.4.2):

Proposition 1.5.1. A finite subset Σ ⊂ Irr2(M) is a unitarily stable discrete series packet if and
only if the following two conditions are satisfied:

• The Θst
σ , as σ varies over Σ, are all proportional to each other; and

• Some linear combination of the Θσ with all coefficients nonzero, as σ varies over Σ, is a
stable distribution.

As remarked earlier, the proof is not hard: if we assume for simplicity that M is semisimple,
the result follows easily once one computes that Θst

σ is the image of Θσ under the projection map
Dell(M) → SDell(M), whereDell(M) is the space of elliptic virtual characters on M(F ), SDell(M) ⊂
Dell(M) is the subspace of stable elliptic virtual characters on M(F ), and the projection is with
respect to the elliptic inner product.
The second way to detect unitary stability is only a sufficient condition, which we state slightly
informally and imprecisely as follows; see Proposition 3.4.11 for the more precise statement:

Proposition 1.5.2. If a finite subset Σ ⊂ Irr2(M) has a crude ‘endoscopic decomposition’, in the
sense that we can write ∑

σ∈Σ

CΘσ =
∑
H

CΘM
H ,

where H runs over a set of distinct relevant elliptic endoscopic data for M and ΘM
H is the transfer

to M(F ) of some stable elliptic virtual character on (a z-extension of) H(F ) via H, then Σ is a
unitarily stable discrete series packet.

This proposition follows easily from the result in [Art96] (though we follow the exposition in
[LMW18]) that endoscopic transfer from stable elliptic virtual characters on relevant elliptic endo-
scopic groups gives us a decomposition of Dell(M) that is orthogonal for the elliptic inner product.
This way of detecting the property of being unitarily stable is harder to implement, but has
the advantage that the necessary work has already been done by Kaletha in the case of regular
supercuspidal packets when p≫ 0.
Thus , we conclude that when p≫ 0, Kaletha’s regular supercuspidal packets are unitarily stable
(see Corollary 3.4.12). This implies (see Remark 3.4.13 for a few more details) a weak compatibility
result, comparing Kaletha’s local Langlands correspondence with those of Arthur, Mœglin and
Mok: when p ≫ 0, Kaletha’s regular supercuspidal packets on quasi-split special orthogonal and
symplectic (resp., unitary) groups are also packets in the sense of [Art13] (resp., [Mok15]); an
analogous comment applies with [Mg14] in place of [Art13] and [Mok15], provided one accounts
for an outer automorphism in the case of even special orthogonal groups. However, we do not
have any result on the compatibility between the relevant Langlands parametrizations. In any
case, this justifies (3) of Subsection 1.1.
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1.6. µ-constancy for unitarily stable packets. Given Propositions 1.3.1 and 1.4.1, the fol-
lowing informally stated proposition, whose first (resp., second) assertion generalizes Shahidi’s
constancy of the µ-function on discrete series L-packets (resp., the transfer of µ-functions as in
the works of Choiy and Heiermann), is not hard to see; we refer to Corollary 4.2.12 for more
details:

Proposition 1.6.1. (i) If Σ is a unitarily stable discrete series packet on a Levi subgroup
M ⊂ G, and z ∈ Z1(G), then for all σ1, σ2 ∈ Σ we have µ(σ1) = µ(σ2) and ẑ(σ1) = ẑ(σ2).

(ii) In the setting of Proposition 1.4.1, if a unitarily stable discrete series packet Σ∗ on M∗

transfers to a unitarily stable discrete series packet Σ on M in a sense that is not hard
to formulate, then for all σ ∈ Σ and σ∗ ∈ Σ∗, µ∗(σ∗) is the product of µ(σ) and an
explicit constant that does not depend on Σ∗ or Σ. If moreover z ∈ Z(G) is a transfer
of z∗ ∈ Z1(G

∗) in the sense that as a distribution on G(F ), z is the product of e(G) and
the endoscopic transfer of z∗ viewed as a distribution on G∗(F ), then for all σ∗ ∈ Σ∗ and
σ ∈ Σ, we have

(3) ẑ∗(σ∗) = ẑ(σ).

In particular, when p≫ 0, since we have observed that the regular supercuspidal packets on Levi
subgroups of G are unitary stable, the Plancherel µ-function associated to these packets transfers
well across inner forms, justifying (4) in Subsection 1.1.

1.7. Unitarily stable packets, again. We digress to summarize the virtues of unitarily stable
discrete series packets:

• There are provably many of them: They include the regular supercuspidal packets of
Kaletha when p≫ 0 (Corollary 3.4.12).

• They have good properties: Their defining property is precisely what it takes for Shahidi’s
µ-constancy argument to work (Corollary 4.2.12).

• They are canonical: If Σ is a unitarily stable discrete series packet on a Levi subgroup
M of G, and if G satisfies the existence of tempered L-packets, then the resulting set of
discrete series packets on M includes Σ. In particular, when p≫ 0, Kaletha’s packets are
also Arthur’s (see Remark 3.4.13).

1.8. Application to Langlands-Shahidi L-functions. We discuss two applications for Propo-
sition 1.6.1. First, the arguments of Shahidi following [Sha90, Conjecture 9.4] should now make
available the normalization of intertwining operators using Langlands-Shahidi L-functions, for
those unitarily stable discrete series packets on G(F ) that transfer to unitarily stable discrete
series packets on the quasi-split form G∗(F ) that can be shown to be generic, and in particular for
regular supercuspidal packets when p≫ 0. For some more explanation, see Subsubsection 4.3.1.
Let us also remark that there is a much more delicate and subtle strengthening of the aforemen-
tioned transfer of Plancherel µ-functions, called the local intertwining relation (and which is due
to Arthur), addressing which is beyond the scope of this paper. One can hope that forthcoming
work of Kaletha will shed light on it. Let us also take this opportunity to mention that a ‘rela-
tively local’ approach towards proving some special cases of the local intertwining relation when
the induced representation is irreducible, is given by the Goldberg-Shahidi method of computing
residues of intertwining operators: see [Sha92] and [Var]. We hope that, at least in some very
special situations, and assuming p ≫ 0, it could yield, by ‘relatively local’ methods, an answer
to a question that the above considerations bring to the fore: whether the Langlands-Shahidi
L-functions and ϵ-factors associated to regular supercuspidal packets on Levi subgroups agree
with the corresponding Artin L-functions and ϵ-factors associated to the Langlands parameters
assigned to them by Kaletha.

1.9. Application to depth preservation. To state the second application of Proposition 1.6.1,
fix r ≥ 0 and let Er ∈ Z(G) be the depth r projector in the sense of [BKV16]; thus, for an

irreducible admissible representation σ of G(F ), Êr(σ) equals 1 or 0 depending on whether or not
the depth of σ is at most r. Assuming p≫ 0, the second application of Proposition 1.6.1 gives the
constancy of depth (see [MP96]) on unitarily stable discrete series L-packets, and the fact that
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transfer of unitarily stable discrete series L-packets across inner forms respects depth; we refer to
Corollary 4.3.4 and Proposition 4.3.5 for more details.

Proposition 1.9.1. (i) If p is very good for G in the sense of [BKV16], and Σ is a unitarily
stable discrete series packet on a Levi subgroup M ⊂ G, then the elements of Σ have the
same depth.

(ii) Let G∗ be a quasi-split inner form of G, and let E∗
r be the depth r projector on it. Assume

p to be very good for G, and that g has a bilinear form that behaves well with respect to
its Moy-Prasad filtrations (as in [AR00, Proposition 4.1]). Then:
(a) E∗

r belongs to Z1(G
∗) and transfers as a stable Bernstein center element to Er, in the

sense that when viewed as distributions, and with G(F ) and G∗(F ) given compatible
Haar measures, E∗

r transfers to e(G)Er.
(b) Moreover, if we are in the setting of Proposition 1.4.1, and if a unitarily stable discrete

series packet Σ∗ on M∗ transfers to a unitarily stable discrete series packet Σ on M,
then for all σ ∈ Σ and σ∗ ∈ Σ∗, we have depth(σ) = depth(σ∗).

(i) of the above proposition is an immediate consequence of the stability of Er (as given by
[BKV16], since p is ‘very good’ for G) and Proposition 1.6.1(i). As for (ii) of the above proposition,
the assertion (a) is Proposition 4.3.5, while the assertion (b) follows from the assertion (a) and
Proposition 1.6.1(ii). In future joint work with Li and Oi alluded to above, we hope to generalize
(ii)(a) of the above proposition to an assertion about the behavior of the depth r projector with
respect to endoscopic transfer, when p≫ 0.
Using Proposition 1.9.1((i)) along with the existence of tempered L-packets for quasi-split classical
groups (due to Arthur and Mok; see Proposition 5.1.2) and [Oi22, Theorem 1.2], it is easy to refine
the latter theorem into the assertion that for p≫ 0, the local Langlands corresondence for quasi-
split classical groups preserves depth, giving (2) of Subsection 1.1 (see Corollary 5.1.6).
Acknowledgements: This paper owes its existence to T. Haines introducing the stable Bernstein
center to me more than a decade ago. His preprint [Hai14] forms the basis for a good chunk of
what is done in this paper, and it was he who told me, among other things, about the form of
the stable center conjecture asserting the equality of Z1(G) and Z2(G) (Conjecture 1.2.4), and of
its relation to the form of the stable center conjecture as stated by Bezrukavnikov, Kazhdan and
Varshavsky (Conjecture 1.2.3). At an earlier stage of writing this paper, Y. Kim patiently went
through a lot of what I had written, and corrected several inaccuracies. This paper benefited from
discussions with and support from D. Prasad and F. Shahidi, as well as from helpful comments
given by A. M. Aubert and A. Bertoloni-Meli. It is a pleasure to thank all these people, as well as
W.-T. Gan, T. Kaletha, W.-W. Li and M. Oi for their interest and encouragement. Let me also
gratefully record this paper’s intellectual debt to several existing works in literature, especially
[Li13], [Mg14], [MW16] and [LMW18], which taught me several aspects of the beautiful paper
[Art96], that are crucially used in this paper and which I would have missed otherwise.

2. Some notation, preliminaries, preparation, and hypotheses

Throughout this paper, notation that we define for a group will be applied with obvious modifi-
cation to other groups. For instance, once we define the object D(M) or Ω(G) associated to the
connected reductive group M or G, then for any connected reductive group G′, we will use D(G′)
or Ω(G′) to denote the analogous object associated to G′.

2.1. Some notation.

2.1.1. Miscellaneous notation. For an abstract group G that acts on a mathematical object X, we
will denote by XG (resp., XG ) the invariants (resp., the coinvariants) for the action of G on X,
provided such a thing makes sense. For any mathematical object X, we will write Aut(X) for the
group of automorphisms of X, when the meaning of ‘automorphisms’ is clear from the context. If
G is a topological group, Homcts(G ,C×) will denote the group of (quasi-)characters of G , i.e., of
continuous homomorphisms G → C×.
For a ring R, an R-algebra R′, a module M over R and a scheme X over R, we will write MR′ for
M ⊗R R′ and XR′ or X ×R R′ for the base-change of X from R to R′.
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M0 will denote the identity component of an algebraic group M defined over a field. The Lie algebra
of an algebraic group denoted by a roman letter (e.g., G) will be denoted by the corresponding
fraktur letter (e.g., g). If X is a variety (resp., algebraic group) over a valued field F , X(F ) will be
viewed as a topologial space (resp., topological group) with the “Hausdorff topology” associated
to the valuation. Whenever X is a complex variety, we may abbreviate X(C) to X.

2.1.2. Tori. If T is a torus defined over a field F , we will denote by X∗(T) (resp., X∗(T)) the
character lattice (resp., the cocharacter lattice) of the base-change TF s of T to F s, and view it
together with the Gal(F s/F )-action on it, where F s will be a separable closure of F that will be
clear from the context. Moreover, given such a T, AT ⊂ T will denote the maximal split subtorus
and T → ST the maximal split quotient torus.

2.1.3. Derived group, outer automorphisms etc. If M is a connected reductive group over a field
F , we will write Mder,Mad and Msc respectively for the derived group of M, the adjoint group of
M, and the simply connected cover of Mder, respectively. Moreover, Out(M) will denote the group
of outer automorphisms of the base-change MF̄ of M to a suitable algebraic closure F̄ of F (i.e.,
the group of all algebraic automorphisms of MF̄ quotiented by the normal subgroup of the inner
automorphisms Intm, with m ranging over M(F̄ )).

2.1.4. Twisted spaces, center and related notation. For any algebraic group M over a field F , M̃
will usually denote a twisted space for M — recall that this means that M̃ is an algebraic variety
over F that is given commuting left and right M-actions, which we will write as (m, δ) 7→ mδ and

(δ,m) 7→ δm, that are both simply transitive, and satisfying M̃(F ) ̸= ∅. Note that m1δm2 has an

unambiguous meaning for m1,m2 ∈ M(F ) and δ ∈ M̃(F ), as either of the terms in the equality
(m1δ)m2 = m1(δm2).

If δ is an element of a twisted space M̃ over an algebraic group M over a field F , we will denote
by Int δ the unique automorphism of M such that δ ·m = Int δ(m) · δ. Ad δ will then denote the

derivative of Int δ. ZM̃ will denote the intersection of the kernels of the Int δ as δ ranges over M̃,
and AM̃ the maximal split torus contained in ZM̃.
Often, an algebraic group M over a field F will be implicitly considered as a twisted space over
itself using its left and right multiplication. The group ZM thus defined coincides with the center of
M, and, for each δ ∈ M, the automorphisms Int δ and Ad δ thus defined coincide with conjugation
by δ and the adjoint action of δ, respectively.

2.1.5. The p-adic field F and related notation. Henceforth we fix a finite extension F of Qp for
some prime p, an algebraic closure F̄ of F , and a uniformizer ϖ for the ring of integers of F . Let
O = OF ⊂ F be the ring of integers of F , and q the cardinality of the residue field of F . Let
| · | : F̄ → R denote the usual extension to F̄ of the normalized absolute value on F . We will
denote by Γ := Gal(F̄ /F ) and by WF ⊂ Γ the absolute Galois group and the Weil group of F ,
by IF ⊂WF the inertia subgroup, and by W ′

F :=WF × SL2(C) the Weil-Deligne group of F . Let
Fr ∈WF /IF stand for the element that induces the Frobenius automorphism of the residue field.
We denote by ∥ · ∥ : WF → R>0 the composite of the normalized absolute value on F× and the
abelianization homomorphism WF → F× that is normalized to send (any representative for) Fr
to a uniformizer in the ring of integers of F .

2.1.6. Discrete series etc. For a connected reductive group M over F , a ‘discrete series represen-
tation of M(F )’ will refer to a unitary irreducible smooth representation of M(F ) whose matrix
coefficients are square-integrable modulo the center, while an ‘essentially square-integrable rep-
resentation of M(F )’ will refer to a twist of a discrete series representation of M(F ) by a (not
necessarily unitary) continuous (quasi-)character χ ∈ Homcts(M(F ),C×). If M is a connected
reductive group over F , we denote by Irr(M)(resp., Irrtemp(M); resp., Irr2(M); resp., Irr+2 (M))
the set of isomorphism classes of irreducible representations of M(F ) that are admissible (resp.,
tempered; resp., discrete series; resp., essentially square-integrable).
If Z ⊂ M(F ) is a central subgroup that is understood from the context, and ζ : Z → C× is a smooth
character, then we denote by Irr2(M)ζ ⊂ Irr2(M), Irr+2 (M)ζ ⊂ Irr+2 (M), Irrtemp(M)ζ ⊂ Irrtemp(M)
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and Irr(M)ζ ⊂ Irr(M) the subsets consisting of (isomorphism classes) of representations whose
central character restricts to ζ on Z.

2.1.7. Levi subgroups and parabolic induction. Let M be a connected reductive group over F . For
each Levi subgroup L ⊂ M, we denote by WM(L), and by W (L) when M is understood from the
context, the group of F -rational points of the quotient, of the normalizer of L in M, by L. Then
every element of W (L) can be represented by an element of M(F ), letting us identify W (L) with
the quotient of the normalizer of L(F ) in M(F ), by L(F ) (here is a quick argument: choosing
a parabolic subgroup Q of M with L as a Levi subgroup and having unipotent radical N, W (L)
acts freely on the set of parabolic subgroups of M that are M(F̄ )-conjugate to Q and have L as
a Levi subgroup; but the normalizer of L(F ) in M(F ) acts transitively on this set — use [Bor91,
Proposition 20.5], which gives both the surjectivity of M(F ) → (Q\M)(F ) and the fact that the
set of Levi subgroups of Q is a torsor under N(F )-conjugation).
Let M1 ⊂ M be a Levi subgroup (of a parabolic subgroup of M). Then for any parabolic subgroup

P1 ⊂ M with Levi subgroup M1, we will write IndMP1
for the associated (normalized) parabolic

induction functor, taking smooth representations of M1(F ) to smooth representations of M(F ).

The map induced by the functor IndMP1
at the level of virtual characters is independent of the choice

of P1, and hence will be written IndMM1
. Sometimes we will refer to a subquotient of IndMM1

σ, by

which we will mean a subquotient of IndPP1
σ — this notion is independent of the choice of P1,

though IndMP1
σ itself (and what its subrepresentations and quotient representations are) depends

on P1. We have not defined the twisted harmonic analytic version of the notation just introduced,
as we will not need it.

2.1.8. Twisted representations and virtual characters. In this subsubsection, let M be an arbitrary
reductive group over F and M̃ a twisted space associated to M, with the property that for some
δ ∈ M̃(F ), Int δ is a semisimple automorphism of M whose restriction to AM̃ is of finite order. Let
ω : M(F ) → C× be a continuous character attached to a cocycle a ∈ H1(WF ,ZM̂). Assume that
ω is unitary.
An ω-invariant distribution on M̃(F ) refers to a C-linear map C∞

c (M̃(F )) → C such that D(f̃ ◦
Intm) = ω(m)D(f̃) for all m ∈ M(F ).

Recall that a representation of (M̃(F ), ω), or an ω-representation of M̃(F ), is a representation

(σ, V ) of M(F ) together with a map σ̃ : M̃(F ) → AutC(V ), such that σ̃(m1δm2) = ω(m2)σ(m1)σ̃(δ)σ(m2)

for all m1,m2 ∈ M(F ) and δ ∈ M̃(F ). We will refer to σ as the representation of M(F ) underlying
σ̃. We will say that σ̃ is smooth or admissible or M(F )-irreducible or of finite length if the repre-
sentation σ of M(F ) that underlies it, is (see [MgW18, Section 2.5]). Note that M(F )-irreducibility
is stronger than the ‘obvious’ notion of irreducibility. We will refer to σ̃ as tempered if σ̃ is unitary
and σ is tempered.
Given an admissible representation σ̃ of M̃(F ) (the underlying representation σ of M(F ) being sup-
pressed from the notation), we will denote by Θσ̃ the (easily checked to be ω-invariant) distribution

C∞
c (M̃(F )) → C that takes f̃ ∈ C∞

c (M̃(F )) to tr σ̃(f̃), where:

σ̃(f̃) =

(
v 7→

∫
M̃(F )

f̃(δ) · σ̃(δ)v dδ

)
,

for some fixed choice of a measure on M̃(F ) obtained by transferring a Haar measure on M(F )

via any isomorphism M(F ) → M̃(F ) obtained as m 7→ δ ·m or m 7→ m · δ for some δ ∈ M̃(F ). All

these isomorphisms indeed yield the same measure on M̃(F ) that is independent of δ. One knows

that any such Θσ̃ can be realized by integration against a locally integrable function on M̃(F )

that is locally constant on the set of regular semisimple elements of M̃(F ) (see [LH17, Corollary
5.8.3] and use, as discussed in [LMW18, Section 3.1], that F has characteristic zero). By abuse of
notation, we will use Θσ̃ to also denote this function, called the Harish-Chandra character of σ̃.
We can talk of formal complex linear combinations

∑
ciσ̃i of finite-length admissible ω-representations

σ̃i of M̃(F ), and thus make sense of character distributions or Harish-Chandra characters asso-
ciated to such formal linear combinations as well: Θ∑

ciσ̃i
=
∑
ciΘσ̃i

. Such distributions and
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functions will be referred to as virtual characters associated to the ω-representation theory of
M̃(F ). Let Θ be such a virtual character. Θ is said to be supported on a set Σ of isomorphism

classes of M-irreducible admissible ω-representations of M̃(F ), if we can write Θ =
∑
i ciΘσ̃i with

σ̃i ∈ Σ for each i. Θ is said to be supported outside another such set Σ′, if Σ can be chosen so
that no M(F )-representation underlying an element of Σ underlies an element of Σ′.

2.1.9. Some spaces of distributions.

Notation 2.1.1. Let M, M̃, ω be as in Subsubsection 2.1.8.

(i) Following [LMW18, Section 3.1], or the definition of “Dtemp(G̃(F ), ω)” in [MgW18, Section

2.9], let D(M̃, ω) denote the complex vector space of ω-invariant distributions on M(F )

spanned by the characters of tempered M(F )-irreducible ω-representations of M̃(F ); it is
spanned by characters of representations σ̃τ associated to certain triplets τ as in [MgW18,
Section 2.9].

(ii) Following [MgW18, Section 2.12], we consider the subspace Dell(M̃, ω) ⊂ D(M̃, ω) spanned
by the characters of those σ̃τ such that the triplet τ is elliptic as defined in [MgW18, Section
2.11]; it is the twisted version of the analogous notion considered by Arthur.

(iii) We refer to [MW16] for the notion of orbital integrals O(γ, ω, ·), and their special cases

O(γ, ·) = O(γ,1, ·), defined on appropriate function spaces (like suitable C∞
µ (M̃(F )) as

below).
(iv) Let Z ⊂ M(F ) be a central subgroup, and µ : Z → C× a continuous character. In such

a situation we will use the following notation, often suppressing from the notation the
dependence on Z when it is understood in the context.

• We will let C∞
µ (M̃(F )) be the space of smooth functions f1 : M̃(F ) → C, com-

pactly supported modulo Z , such that f1(z1γ1) = µ(z1)
−1f1(γ1) for all z1 ∈ Z and

γ1 ∈ M̃(F ). If Z is not clear from the context, or if Z = C1(F ) with C1 ⊂ M a
central subgroup the dependence on which we do not wish to suppress, we will write
C∞

Z ,µ(M̃(F )) or C∞
C1,µ

(M̃(F )) or C∞
C1(F ),µ(M̃(F )) in place of C∞

µ (M̃(F )).

• We will let DZ ,µ(M̃, ω) = Dµ(M̃, ω) (resp., DZ,µ,ell(M̃, ω) = Dµ,ell(M̃, ω)) denote the

subspace of D(M̃, ω) (resp., Dell(M̃, ω)) generated by characters of ω-representations

(π, π̃) of M̃(F ) with the property that π has a central character that restricts to µ on
Z ; this agrees with the notation in [LMW18, Sections 4.3 and 4.4].

(v) The above notation will be adapted, without further comment, to deal with usual in-

variant harmonic analysis — Dell(M̃), DZ ,µ(M̃), Dµ,ell(M̃) etc. will denote Dell(M̃,1),

DZ ,µ(M̃,1), Dµ,ell(M̃,1) etc., where 1 denotes the trivial character of M(F ). Further,

Dell(M), DZ ,µ(M), Dµ,ell(M) etc. will denote Dell(M̃
′), DZ ,µ(M̃

′), Dµ,ell(M̃
′) etc., where

M̃′ equals M thought of as a twisted space over itself using left and right multiplication.
(vi) Now suppose further that we are in the case where M̃ has the property that, for all

δ ∈ M̃(F̄ ), the automorphism Int δ of M is inner (i.e., equal to Intm for somem ∈ Mad(F̄ )).

The latter property is what [MW16] refers to as M̃ being ‘á torsion intérieure’. Further,
assume that ω is trivial, and that either M is quasi-split, or that we are in the case where
the twisted space M̃ is isomorphic to M acting on itself by left and right multiplication. 1

In this case:
• We refer to [KS99] or [MW16] for the notion of the stable orbital integrals SO(γ, ·).
• In the setting of twisted endoscopy, a function belonging to C∞

c (M̃(F )) or some

suitable C∞
µ (M̃(F )), whose stable orbital integrals all vanish, will be called unstable.

The condition that the stable orbitals vanish only needs to be checked at semisimple
elements that are strongly regular in the sense of having an abelian centralizer.

• A stable distribution is one that vanishes on unstable functions (in the context of an
appropriate space of distributions).

1This combination of assumptions may not be very natural, but we stick to it for simplicity.
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• Therefore, various spaces of distributions defined above have their stable variants,
which are their subspaces consisting of those distributions that are stable: SD(M̃) ⊂
D(M̃), SDell(M̃) ⊂ Dell(M̃), SDZ ,µ,ell(M̃) ⊂ DZ ,µ,ell(M̃) etc. Again, this makes sense
of SDell(M), SD(M) etc., thinking of M as a twisted space over itself under left and
right multiplication.

(vii) Let Z ⊂ M(F ) be a central subgroup. Any choice of a Haar measure on Z gives us

an obvious map C∞
c (M̃(F )) → C∞

µ (M̃(F )), through which the elements of Dµ(M̃, ω)

and Dµ,ell(M̃, ω) factor, letting us view Dµ(M̃, ω) and Dµ,ell(M̃, ω) as linear forms on

C∞
µ (M̃(F )). We will similarly make sense of SDµ(M̃) and SDµ,ell(M̃) as linear forms on

C∞
µ (M̃(F )), in those contexts in which we have defined SD (see (vi) above).

We will use the above notation only when µ is unitary.

2.2. Review of facts about Langlands classification, and about stable virtual charac-
ters. In this subsection, let M be a connected reductive group over F .

Definition 2.2.1. Let Q ⊂ M be a parabolic subgroup, and χ : Q(F ) → C× an unramified
character (this notion is recalled in Notation 2.3.1 below). Then χ is said to be Q-dominant
if for some (or equivalently, any) maximal split torus A0 of M contained in Q, and any coroot
λ : Gm → A0 associated to a root of A0 in the unipotent radical of Q (one knows that the coroots
λ belong to X∗(A0) and not just to X∗(A0) ⊗ Q), the character χ ◦ λ : F× → C× is of the form
| · |s, where the complex number s, well-defined modulo 2πi(log q)−1Z ⊂ C, has a nonnegative real
part.

The following notation will be used only in this section.

Notation 2.2.2. Let L be a Levi subgroup of a parabolic subgroup Q of M, and let υ ∈ Irr+2 (L).
One knows that one can write υ = υ′⊗χ′, where υ′ ∈ Irr2(L) and χ

′ : L(F ) → C× is an unramified
character. We say that υ is Q-dominant if χ′, viewed as a character Q(F ) → C× by inflation, is.
This notion is independent of the decomposition υ = υ′ ⊗χ′, since given two such decompositions
υ′ ⊗ χ′ and υ′′ ⊗ χ′′ of υ, χ′(χ′′)−1 is unitary.

We now recall the version of the Langlands classification involving essentially square-integrable
representations:

Proposition 2.2.3. (i) Given σ ∈ Irr(M), there exists a pair (L, υ) consisting of a Levi
subgroup L of M and a representation υ ∈ Irr+2 (L), uniquely determined up to M(F )-

conjugacy, such that σ is an irreducible quotient (not just subquotient) of IndMQ υ, where
Q is a choice of a parabolic subgroup of M such that Q has L as a Levi subgroup and υ is
Q-dominant (it is standard that such a Q exists).

(ii) Sending σ to the M(F )-conjugacy class of (L, υ) as in (i) gives a finite-to-one map from
Irr(M) to the set of M(F )-conjugacy classes of pairs (L, υ) with L ⊂ M a Levi subgroup
and υ ∈ Irr+2 (L). Thus, we get a finite-to-one surjective map

(4) Irr(M) →
⊔
L

Irr+2 (L)/WM(L),

where L runs over any set of representatives for the M(F )-conjugacy classes of Levi sub-
groups of M (and WM(L) is as in Subsubsection 2.1.7).

(iii) For a pair (L, υ), with L occurring in (4) and υ ∈ Irr+2 (L), the fiber of (4) over the image of

υ in Irr+2 (L)/WL consists of all the irreducible quotients of IndMQ υ, where Q is any choice
of a parabolic subgroup of M such that L is a Levi subgroup of Q and υ is Q-dominant.

Proof. We omit the proof, since it is well-known, and can be found in [ABPS14, Theorem 1.2].
Let us remark that the proof combines two ingredients, the first being [Wal03, Proposition III.4.1],
which asserts the existence of a finite-to-one surjective map defined similarly as in (4):

(5) Irrtemp(M) →
⊔
L

Irr2(L)/WM(L).
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(5) is the restriction of (4) to Irrtemp(M), and its fibers have a description similar to the one
given for (4) in Proposition 2.2.3(iii). The second ingredient is the usual statement of Langlands
classification (e.g., [SZ18, Theorem 1.4]). □

Remark 2.2.4. We now recall some easy facts about stable virtual characters that we will use.
Let

∑
σ∈Σ cσΘσ be a stable virtual character on M(F ), for some Σ ⊂ Irr(M).

(i) For any central subgroup Z ⊂ M(F ) and any smooth character χ : Z → C×,
∑
σ∈Σχ

cσΘσ
is also a stable virtual character, where Σχ ⊂ Σ is the subset consisting of representations
whose central character restricts to χ on Z.

(ii) For any isomorphism M → M′ of reductive groups over F , and any smooth character χ′ :
M′(F ) → C× that is trivial on M′

der(F ),
∑
σ∈Σ cσΘ(σ◦β−1)⊗χ′ = ((

∑
σ∈Σ cσΘσ) ◦ β−1)χ′

is a stable virtual character on M′(F ).

Remark 2.2.5. Later, we will have use for distributions on M(F ) of the form:∑
σ∈Irr2(M)ζ

cσΘσ,

where ζ : Z → C× is a smooth character of a central subgroup Z of M(F ) containing AM(F ),
and cσ ∈ C for each σ ∈ Irr2(M)ζ . We claim that such infinite sums makes sense, i.e., for each
f ∈ C∞

c (M(F )), or equivalently for each f ∈ C∞
ζ (M(F )), Θσ(f) = 0 for all but finitely many

σ ∈ Irr2(M)ζ . This is easy to deduce from [Wal03, Theorem VIII.1.2] using standard facts, as
observed in [MW16, Corollary XI.4.1].

2.3. Unramified characters.

Notation 2.3.1. Suppose P is a linear algebraic group over F , which is not necessarily reductive.

(i) We denote by SP the maximal split torus quotient of P.
(ii) Recall that a character χ : P(F ) → C× is said to be unramified if χ(x) = 1 for all x ∈ P(F )

such that |µ(x)| = 1 for all algebraic characters µ : P → Gm. We denote by Xunr(P) the
group of unramified characters P(F ) → C×. Then Xunr(P) ⊂ Homcts(P(F ),C×).

(iii) Let Xunr−uni(P) ⊂ Xunr(P) be the subgroup of unitary characters, and Xunr(P)>0 ⊂
Xunr(P) the subgroup consisting of characters taking values in the multiplicative group
R>0 of positive real numbers.

(iv) Xunr(P) will be viewed as a complex torus in the usual way (see Remark 2.3.2(ii) below).
The product map

Xunr(P)>0 ×Xunr−uni(P) → Xunr(P)

is easily seen to be an isomorphism, identifying Xunr(P)>0 with the set of hyperbolic
elements of Xunr(P) in the sense of [SZ18, Section 5.1], and Xunr−uni(P) with the maximal
compact subgroup of Xunr(P).

Remark 2.3.2. (i) Pull-back gives an isomorphism Xunr(M) ∼= Xunr(P), where M is the
Levi quotient of P.

(ii) Recall that Xunr(SP) → Xunr(P) is surjective with finite kernel. Indeed, for surjectivity,
combine the injectivity of the abelian group C× with the fact that for any χ ∈ Xunr(P)
and p ∈ P(F ), χ(p) depends only on the image of p under P(F ) → SP(F ) → SP(F )/SP(O)
(use that any algebraic character µ : P → Gm factors through P → SP). For the finiteness
of the kernel, one immediately reduces to the case where P = M is reductive, and notes
that we have a chain of restriction maps Xunr(SM) → Xunr(M) → Xunr(AM), whose
composite has finite kernel since AM → SM is an isogeny.

Since Xunr(SP) ∼= Hom(X∗(SP),C×) is a complex torus, it follows that so is Xunr(P).
Clearly, Xunr(SP) → Xunr(P) restricts to an isomorphism Xunr(SP)>0 → Xunr(P)>0.

(iii) If χ ∈ Homcts(P(F ),C×) is valued in R>0, then χ ∈ Xunr(P) — assuming without loss
of generality that P is reductive, and using that R>0 is torsion free, this follows from
the well-known fact that the subgroup of p ∈ P(F ) such that |µ(p)| = 1 for all algebraic
characters µ : P → Gm, is generated by the compact subgroups of P(F ) (e.g., [FP21,
Lemma 4.8]).
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2.4. Groups of automorphisms ‘up to which’ we will work. We will now fix our connected
reductive group G over F , as well as a collection {OM}M indexed by Levi subgroups M ⊂ G
(subject the to some conditions), where each OM is a subgroup of Aut(M).

Notation 2.4.1. (i) For the rest of this paper, let G be a fixed connected reductive group
over F .

(ii) We fix a collection {OM}M indexed by Levi subgroups M ⊂ G, where OM ⊂ Aut(M) is
a group of (F -rational algebraic) automorphisms of M, subject to the conditions of (iv)
below; we will abbreviate OG to O.

(iii) Given Levi subgroups L,L1,L2 ⊂ M ⊂ G, we define groups O+
M(L2,L1),O+

M,L and O+
M as

follows:
• We let O+

M(L2,L1) be the set of all β|L1
: L1 → L2, as β runs over the elements of

OM ◦ IntM(F ) (which we will soon abbreviate to O+
M) such that β(L1) = L2. We

abbreviate O+
M(L,L) to O+

M,L and O+
M,M = OM ◦ IntM(F ) to O+

M;

(iv) We subject the collection {OM}M to the following conditions:
(a) For each M, each element of OM acts as the identity on AM;
(b) If L,M ⊂ G are Levi subgroups, and β ∈ O+

G = OG ◦ IntG(F ) satisfies that β(L) ⊂
M, then under the map Aut(L) → Aut(β(L)) given by transport by β, the image
of O+

L = OL ◦ Int L(F ) is contained in O+
M,β(L) (so, as an important special case,

OL ⊂ O+
L ⊂ O+

M,L);

(c) The image of OG in Out(G) is finite.

Remark 2.4.2. (i) An important example of a collection {OM}M as above is the one where
each OM is trivial. We get another example by fixing any group O of automorphisms of
G with finite image in Out(G), and taking OM to be the group of automorphisms of M
induced by those elements of O+

G = O◦IntG(F ) that act as the identity on ZM (and hence
preserve the centralizer M of ZM).

(ii) The typical example we have in mind for a nontrivial collection {OM} is in the case where
G is a quasi-split form of SO2n, GSO2n or GSpin2n, with O = OG a two element group
of automorphisms of G, one of which is outer, and the OM as in the latter example of (i)
above (i.e., consisting of those automorphisms of M induced by elements of O+

G that act
as the identity on ZM).

(iii) As (ii) suggests, the reason for introducing the collection {OM}M is to be able to make a
weaker statement in cases where we don’t have a ‘canonical’ collection of stable packets
for the M as such, but only one up to the action of the OM; this applies to the study of
quasi-split forms of SO2n in [Mg14], of GSO2n in [Xu16] and [Xu18], and of GSpin2n in
[Mg14]. A reader who is not particular about cases of this sort may assume each OM to
be trivial or to be simply the group of all inner conjugations Intm with m ∈ M(F ), in
which case a lot of the definitions and results below simplify.

(iv) For each Levi subgroup of M ⊂ G, O+
G,M contains the group of conjugations of M by

the elements of the normalizer NG(M)(F ) of M(F ) in G(F ). If OG is trivial, then this
containment is easily checked to be an equality.

(v) We will only consider the action of OM on objects related to invariant harmonic analysis
on M, so replacing OM by O+

M will not change any of the analysis that follows. The only

reason we write OM instead of O+
M in what follows, is that it can be convenient to think of

a finite group of automorphisms (which O+
M almost never is, while OM is allowed, though

not required, to be trivial).
(vi) A lot of the time we will consider only the action of OM on objects such as a set of

‘L-packets’ or a set of (non-enhanced) Langlands parameters associated to M, so our
dependence on OM will often, though not always, be only through its image in Out(M).

Lemma 2.4.3. Let L ⊂ M ⊂ G be Levi subgroups, and let β ∈ O+
G = O ◦ IntG(F ).

(i) β transports O+
M,L isomorphically onto O+

β(M),β(L).

(ii) IntM(F ) ⊂ O+
G,M is of finite index. Equivalently, the image of O+

G,M in Out(M) is finite.
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(iii) For any Levi subgroup M′ ⊂ G, the collection {OL′}L′ , as L′ varies over the Levi subgroups
of M′, satisfies the analogues, for M′ in place of G, of the hypotheses imposed on the
collection {OM}M in Notation 2.4.1(iv).

Proof. By (iv)b of Notation 2.4.1, β transports O+
M,M = O+

M into O+
β(M),β(M) = O+

β(M). In doing so,

it clearly transports the set O+
M,L of automorphisms in O+

M that preserve L to the set O+
β(M),β(L) of

automorphisms in O+
β(M) that preserve β(L). By making a similar argument with β−1, (i) follows.

Since O+
G has finite image in Out(G), and IntG(F ) has finite index in IntGad(F ), IntG(F ) has

finite index in O+
G. Thus, some finite-index subgroup of O+

G,M acts on M by restrictions of elements

of IntG(F ). Since the normalizer of M(F ) in G(F ) has finite image in Out(M), some smaller finite-
index subgroup of O+

G,M acts on M by elements of IntM(F ). From this, (ii) follows. Now (iii) is

easy to verify (using (ii)). □

Lemma 2.4.4. Let M be a Levi subgroup of G. Suppose β ∈ Aut(G) preserves M and restricts to
an element of O+

M on it. Then for each parabolic subgroup P ⊂ G with M as a Levi subgroup, we
have β(P) = P.

Proof. If P ⊂ G is a parabolic subgroup with M as a Levi subgroup, there exists a homomorphism
µ : Gm → AM such that Lie P is the subspace of LieG on which Ad ◦µ acts by nonnegative weights.
Hence the lemma follows from the fact that O+

M acts trivially on AM. □

Lemma 2.4.5. Suppose M is a Levi subgroup of G. Then the obvious actions of O+
M on Xunr(M)

and Xunr(SM) are trivial.

Proof. The assertion for Xunr(SM) follows from the fact that AM → SM is an isogeny, so that
the elements of O+

M induce the identity automorphism of SM. The assertion for Xunr(M) follows
from the assertion for Xunr(SM), since the restriction map Xunr(SM) → Xunr(M) is surjective and
respects the action of O+

M. □

2.5. L-packets from the point of view of stability of distributions.

2.5.1. The main hypothesis for L-packets to be defined from the perspective of stability. In much of
what follows, Remark 2.4.2(v) can be helpful to keep in mind. Informally, the following hypothesis
says that ‘O-coarsened’ tempered L-packets can be defined based on the notion of stability of
distributions (see also [Sha90, Section 9], and the notion of being unitarily stable in [MY20,
Section 4]).

Hypothesis 2.5.1 (Existence of tempered L-packets). For each Levi subgroup M of G, there
exists a collection Φ2(M) of finite subsets of Irr2(M) partitioning it, and a virtual character ΘΣ

for each Σ ∈ Φ2(M), such that the following two properties are satisfied:

(i) For each Σ ∈ Φ2(M), ΘΣ is a nonzero stable OM-invariant (or equivalently, O+
M-invariant)

virtual character on M(F ) of the form
∑
σ∈Σ cσΘσ (thus, Σ is O+

M-invariant as well).

(ii) {ΘΣ | Σ ∈ Φ2(M)} is a complex vector space basis for the subspace SDell(M)OM =

SDell(M)O
+
M of SDell(M) fixed by OM or equivalently by O+

M.

Proposition 2.5.2. Suppose Hypothesis 2.5.1 is satisfied. Then ΘΣ is a multiple of
∑
σ∈Σ d(σ)Θσ,

where d(σ) stands for the formal degree of σ. In particular, if ΘΣ =
∑
σ∈Σ cσΘσ, then cσ ̸= 0 for

each σ ∈ Σ.

Proof. This is proved exactly as in Proposition 3.3.6(ii) below, and in fact follows from it. Note
that, while we do not prove Proposition 3.3.6(ii) either, its proof is an easier variant of the proof
of Proposition 3.3.7(ii) below it. □

Lemma 2.5.3. Assume Hypothesis 2.5.1. Let M ⊂ G be a Levi subgroup.

(i) Φ2(M) can be described as the set of Σ ⊂ Irr2(M) satisfying the following condition: there
exists a nonzero stable OM-invariant virtual character Θ′

Σ supported on Σ, with the prop-
erty that every stable OM-invariant virtual character Θ ∈ SDell(M)OM can be uniquely
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written in the form c1Θ
′
Σ + c2Θ

′ for a (automatically stable and OM-invariant) virtual
character Θ′ supported outside Σ, and complex numbers c1, c2.

(ii) If β ∈ O+
G and M′ = β(M), and χ′ : M′(F ) → C× is a smooth unitary character on which

OM′ acts trivially (this is automatic if χ is unramified, by Lemma 2.4.5), then we have a
bijection Φ2(M) → Φ2(M

′) sending each Σ ∈ Φ2(M) to Σ′ := {(σ ◦ β−1) ⊗ χ′ | σ ∈ Σ}.
Moreover, ΘΣ′ is a scalar multiple of (ΘΣ ◦ β−1)χ′.

Remark 2.5.4. (i) of the lemma implies that, when Hypothesis 2.5.1 is satisfied, Φ2(M) is uniquely
determined, and not a choice made along with assuming the hypothesis. On the other hand, each
ΘΣ is uniquely determined up to a nonzero scalar.

Proof of Lemma 2.5.3. (i) is immediate, but it needs that cσ ̸= 0 whenever Σ ∈ Φ2(M) and σ ∈ Σ
(to prevent proper subsets of such a Σ from satisfying the condition of (i)), a consequence of
Proposition 2.5.2. (ii) follows from (i) and the fact that β transports O+

M to (OM′)+ (see Lemma
2.4.3(i)) and SDell(M) to SDell(M

′), etc. □

We will now define analogous sets Φ(M), Φtemp(M) and Φ+
2 (M), using the Langlands classification

of Proposition 2.2.3, or rather its corollary in the form of the following OM-invariant version:

Corollary 2.5.5. Let M ⊂ G be a Levi subgroup.

(i) The map (4) induces a finite-to-one surjective map

(6) Irr(M)/OM = Irr(M)/O+
M →

⊔
L

Irr+2 (L)/O
+
M,L,

where the L runs over a set of representatives for the O+
M-orbits of Levi subgroups of M.

It restricts to an analogously defined map:

(7) Irrtemp(M)/OM = Irrtemp(M)/O+
M →

⊔
L

Irr2(L)/O+
M,L.

(ii) For a pair (L, υ), with L occurring in (6) and υ ∈ Irr+2 (L), the fiber of (6) over the image
of υ in Irr+2 (L)/O

+
M,L is the union of the O+

M-orbits (or equivalently the OM-orbits) of

the irreducible quotients of IndMQ υ, where Q is a choice as in Proposition 2.2.3(iii). An
analogous description applies to the fibers of (7).

Proof. One gets (i) from Proposition 2.2.3(ii) simply by quotienting with O+
M ⊃ IntM(F ). The

finite-to-one-ness follows from the fact that IntM(F ) ⊂ O+
M is of finite index (see Lemma 2.4.3(ii)).

(ii) is an immediate consequence of Proposition 2.2.3(iii). □

Notation 2.5.6. Henceforth, whenever Hypothesis 2.5.1 is satisfied, in addition to fixing the ΘΣ

as in it (the Φ2(M) being automatically fixed — see Remark 2.5.4), we also define the following
objects:

(i) For each Levi subgroup M ⊂ G, we define Φ+
2 (M) = {Σ⊗ χ | Σ ∈ Φ2(M), χ ∈ Xunr(M)}.

(ii) If L ⊂ M ⊂ G are Levi subgroups and Υ ∈ Φ+
2 (L) (as defined in (i)), then we let ΥM

be the preimage, under (6), of the image of Υ in Irr+2 (L)/O
+
M,L: here we assume without

loss of generality that L occurs on the right-hand side of (6). In other words, ΥM is the

collection of the OM-conjugates of the irreducible quotients of IndMQ υ, where υ runs over
Υ and Q is as in Proposition 2.2.3(iii): note that the same Q works for all υ ∈ Υ. If
Υ ∈ Φ2(L), then by unitarity, we can replace the word ‘quotients’ by ‘subquotients’ in the
previous sentence.

(iii) For M ⊂ G a Levi subgroup, we let Φ(M) (resp., Φtemp(M)) be the set of all ΥM as (L,Υ)
ranges over pairs consisting of a Levi subgroup L ⊂ M and Υ ∈ Φ+

2 (L) (resp., Υ ∈ Φ2(L)).

(iv) If Σ ∈ Φtemp(M), choosing (L,Υ) such that Σ = ΥM, we let ΘΣ = AvgOM
(IndML ΘΥ),

where AvgOM
refers to averaging with respect to the action of OM (which acts through

the finite quotient O+
M/ IntM(F )). Note that ΘΣ, which is a virtual character supported

on Σ, is well-defined, since (L,Υ) is well-defined up to O+
M-conjugation by (6).

Lemma 2.5.7. Let M ⊂ G be a Levi subgroup.
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(i) Φ(M), Φ+
2 (M) and Φtemp(M) consist of O+

M-invariant sets, and they are partitions of Irr(M), Irr+2 (M)
and Irrtemp(M), respectively.

(ii) ΘΣ is well-defined for each Σ ∈ Φtemp(M), and the collection of the ΘΣ forms a basis for
SD(M)OM .

Proof. Since every element of Irr+2 (M) can be written as σ⊗χ with σ ∈ Irr2(M) and χ ∈ Xunr(M),
it is immediate that the union of the Φ+

2 (M) equals Irr+2 (M). By Lemma 2.4.5, each element of
Φ+
2 (M) is also O+

M-invariant. If Σ1,Σ2 ∈ Φ+
2 (M), χ1, χ2 ∈ Xunr(M) and Σ1⊗χ1 intersects Σ2⊗χ2,

then χ1χ
−1
2 ∈ Xunr(M) restricts to a unitary character on ZM(F ) and is hence unitary, so that

Σ1 ⊗ χ1 = Σ2 ⊗ χ2 by Lemma 2.5.3(ii).
Thus, we have proved the assertion of (i) for Φ+

2 (M). Applying this with M replaced by various
Levi subgroups L ⊂ M, the assertion of (i) for Φ(M) (resp., Φtemp(M)) then follows from (6) (resp.,
(7)) and the fact that the elements of O+

M,L permute Φ+
2 (L) (resp., Φ2(L)), by Lemma 2.5.3(ii).

(ii) follows from Proposition 3.2.8 later below, applied with M in place of G, and the corresponding
restriction of the collection {OM}M (as justified by Lemma 2.4.3(iii)). □

Remark 2.5.8. Thus, Hypothesis 2.5.1 also has the consequence that each SD(M)OM and in
particular SD(G)OG = SD(G)O, has a basis consisting of virtual characters whose supports are
pairwise disjoint and together exhaustive. By the same argument as in Lemma 2.5.3(i), the
elements of such a basis are uniquely determined up to scaling, and hence Φtemp(M) has an
alternate characterization as in Lemma 2.5.3(i).

Notation 2.5.9. Henceforth, for any Levi subgroup M ⊂ G, the elements of Φ2(M) (resp.,
Φtemp(M)) will be referred to as the discrete series L-packets (resp., tempered L-packets) on
M(F ) up to the action of OM in the sense of Hypothesis 2.5.1.

Remark 2.5.10. Suppose that Hypothesis 2.5.1 is satisfied with the collection {OM}M replaced
by a collection {O′

M}M satisfying analogous conditions, where O′
M is a normal subgroup of OM for

each Levi subgroup M ⊂ G. Since we may assume that cσ > 0 for each σ ∈ Σ by Proposition 2.5.2,
it is easy to see by averaging and using the idea of the proof of Lemma 2.5.3, that Hypothesis
2.5.1 is satisfied (without replacing {OM}M by {O′

M}M).

3. Some results on stable virtual characters and unitarily stable packets

3.1. Elliptic characters and endoscopic transfer. We will typically assume the three hy-
potheses stated in [MW16, Section I.1.5]:

Notation 3.1.1. Let (M, M̃,a) be a triple where (M, M̃) is a twisted space (see Subsubsection
2.1.1), and a is a cocycle representing an element of H1(WF ,ZM̂). Let ω : M(F ) → C× be the
quasi-character associated to a, which we assume to be unitary. The purpose of this notation is
to record the following hypothesis (to be imposed later):

(i) M̃(F ) ̸= ∅;
(ii) θ∗ has finite order, where θ∗ is the object constructed towards the end of [MW16, Section

I.1.2], as an automorphism of ‘the pinned Borel pair’ attached to M.
(iii) ω is trivial on ZM̃(F ) (else the theory is empty).

Notation 3.1.2. For a triple (M, M̃,a) and the associated character ω : M(F ) → C× as in
Notation 3.1.1, satisfying the hypotheses of that notation, we will often use the following notation:

(i) As in [MW16, I.4.11], E(M̃,a) will denote the set of isomorphism classes of relevant elliptic

endoscopic data for (M̃,a). If we simply write E(M), it will stand for the set E(M,1), where
M is thought of as a twisted space over itself with respect to left and right multiplication,
and 1 stands for the zero element of H1(WF ,ZM̂) (thus, E(M) consists of endoscopic data
for standard, untwisted, endoscopy).

(ii) We will write a typical element of E(M̃,a) or E(M) as H, and given such an H, write H for
its underlying endoscopic group. This is an abuse of notation, since H does not determine
H.
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(iii) For each endoscopic datum H = (H,H, s̃) ∈ E(M̃,a) (the notation is chosen as in [MW16,
Section I.1.5] — we will recall more of it in a later section when it becomes necessary), we

will denote by (H, H̃) the associated twisted space as in [MW16, Section I.1.7]; it has the

property that for each γ ∈ H̃(F̄ ), Int γ is of the form Inth for some h ∈ Had(F̄ ) (this is the
meaning of ‘est á torsion intérieure’ in (3) of [MW16, Section I.1.7]). For each such H, we
will also often choose some auxiliary data as in [MW16, Section I.2.1], but also satisfying
the extra condition of [MW16, Section I.7.1, (3)] (which may be imposed as ω is unitary);

these yield for us a 5-tuple (H1 → H, ξ̂1, H̃1 → H̃,C1, µ), where:
• H1 → H is a z-extension, i.e., its kernel is an induced torus and the derived group of
H1 is simply connected;

• ξ̂1 will be recalled later when it becomes necessary;
• C1 is the kernel of H1 → H (and is hence an induced torus);
• µ : C1(F ) → C× is a character (this is the λ1 of [MW16, Section I.2.1]), which is
unitary since we have imposed [MW16, Section I.7.1, (3)] (see towards the end of
[MW16, Section I.7.1]);

• H̃1 is a twisted space with underlying group H1, satisfying H̃1(F ) ̸= ∅, and the map

H̃1 → H̃ is compatible in the obvious way with the homomorphism H1 → H.
Typically, when we make these choices, we will suppress the dependence of these objects
on H for lightness of notation.

(iv) There is a notion of endoscopic transfer of functions, which is a linear map from C∞
c (M̃(F ))

to the quotient of C∞
µ (H̃1(F )) by the subspace consisting of the unstable functions in it,

i.e., functions whose stable orbital integrals all vanish (see, e.g., [MW16, Section 1.2.4]).
By [MW16, Corollary XI.5.1] (keeping in mind the convention from [MW16, Section
XI.1] of calling an ω-representation just a representation), dual to this map is a map

TH : SDµ(H̃1) → D(M̃, ω), restricting to a map TH,ell : SDµ,ell(H̃1) → Dell(M̃, ω) (thus,

one can show that pulling back under endoscopic transfer of functions takes SDµ(H̃1) to

D(M̃, ω) and SDµ,ell(H̃1) to Dell(M̃, ω)). As explained around [LMW18, Section 4.4,

(4)], the latter factors through the projection SDµ,ell(H̃1) → SDµ,ell(H̃1)Aut(H) from

SDµ,ell(H̃1) to its space of coinvariants for an action of a certain outer automorphism

group Aut(H) of H determined by the endoscopic datum H ∈ E(M̃, ω) (this group Aut(H)
is recalled in [MW16, I.1.5]), and these add together to give us an isomorphism of complex
vector spaces :

(8)
⊕

H∈E(M̃,a)

TH =
⊕

H∈E(M̃,a)

TH,ell :
⊕

H∈E(M̃,a)

SDµ,ell(H̃1)Aut(H) → Dell(M̃, ω).

For Θ ∈ Dell(M̃, ω) and H ∈ E(M̃,a), we will let ΘH denote the component of Θ along the subspace

of Dell(M̃, ω) obtained from the contribution of H in the above decomposition of Dell(M̃, ω).

Remark 3.1.3. We emphasize that, in (8), each H contributes a different ‘µ’, i.e., the ‘µ’ of

SDµ,ell(H̃1)Aut(H) depends on H as well. This dependence is suppressed from notation for lightness.

Remark 3.1.4. Fix (M, M̃,a), ω,H and (H1 → H, ξ̂1, H̃1 → H̃,C1, µ) as in Notation 3.1.2, except
that we do not yet assume that H is elliptic.

(i) Suppose H is elliptic and relevant. Let (LH, L̃H) be a Levi subspace of (H, H̃), and (L1, L̃1)

its inverse image in (H1, H̃1). We now state the compatibility between parabolic induction
and endoscopic transfer as follows.

• If LH ⊂ H is not relevant in the sense described in [MW16, Section I.3.4], then under

the endoscopic transfer map SDµ(H̃1) → D(M̃, ω), the image of any virtual character

parabolically induced from L̃1 is zero.
• Suppose LH is relevant in the sense described in [MW16, Section I.3.4]. Thus, [MW16,

Section I.3.4] constructs a Levi subspace (L, L̃) ⊂ (M, M̃) and an elliptic relevant en-

doscopic datum LH for (L̃,aL̃) with underlying group LH, where aL̃ is a cocycle

representing the image of a in H1(WF ,ZL̂). Then (L1, L̃1, µ) is part of a choice
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of auxiliary data for LH obtained from those for H, as discussed in [MW16, Sec-

tion I.3.3 or Section I.3.4]. For any virtual character Θ1 ∈ SDµ(L̃1) parabolically

inducing to IndH̃1

L̃1
Θ1 =: ΘH̃1

1 ∈ Dµ(H̃1) and endoscopically transferring via LH to

Θ ∈ D(L̃, ω|L(F )), Θ
H̃1
1 belongs to SDµ(H̃1), and its endoscopic transfer to D(M̃, ω)

under H equals the parabolically induced character IndM̃
L̃
Θ =: ΘM̃.

These assertions are present in [MW16, Section I.4.11]. Slightly more precisely, recall-
ing that parabolic induction is dual to the ‘constant term’ map, and using the assertion
from the discussion below [MW16, Proposition I.4.11] that the image of the map [MW16,

I.4.11(4)] is contained in the space denoted IE+(G̃(F ), ω) there, the former (resp., the lat-
ter) assertion follows from the condition (3) (resp., the condition (2)) in the definition of

IE+(G̃(F ), ω) given at the beginning of [MW16, Section I.4.11].
(ii) For simplicity, we now assume that we are in the situation of standard endoscopy, and

suppose that H is not elliptic, i.e., the obvious injection ZΓ,0

M̂
→ ZΓ,0

Ĥ
is not bijective.

Thus, dimAH > dimAM, and it is easy to see that no elliptic strongly regular semisimple
element of M(F ) matches any semisimple element of H(F ). Therefore, the image of the
endoscopic transfer map SDµ(H1) → D(M) consists of virtual characters that vanish
on the set M(F )ell of elliptic strongly regular elements of M(F ). This implies (using a
standard fact, (11) below) that this image is contained in the span of virtual characters
that are fully induced from proper Levi subgroups of M.

3.2. Unstable functions and stable characters on a non-quasi-split group. Many of the
descriptions concerning SD(G) in [Art96] are only given explicitly in the case where G is quasi-
split. The purpose of this subsection is to explain that similar descriptions for non-quasi-split G
are implicitly present in [Art96], subsumed into Arthur’s formalism concerning the stabilization
of the trace formula.

Notation 3.2.1. (i) In this subsection, given a connected reductive group M over F , we will
denote by M∗ its quasi-split inner form, and implicitly fix an inner twist ψM∗ : M∗

F̄
→ MF̄

from M∗ to M unless otherwise specified. Note that ψM∗ fixes an identification LM∗ =
LM, helping realize M∗ as the endoscopic group underlying some M∗ ∈ E(M), which is
uniquely determined up to isomorphism. For H = M∗, we may and shall assume that the
associated auxiliary data as in Notation 3.1.2(iii) satisfy µ = 1, H̃ = H and H̃1 = H1, and

identify C∞
µ (H1(F )) with C

∞
c (M∗(F )), SDµ,ell(H̃1) with SDell(M

∗) etc. When we talk of
endoscopic transfer between M and M∗ (i.e., between C∞

c (M(F )) and C∞
c (M∗(F )) or the

pull-back from SD(M∗) to D(M)), the reference will be to such a fixed endoscopic datum.
(ii) It is easy to see that the inner twist ψM∗ fixed in (i) above identifies AM∗ , ZM∗ , SM∗ ,

Xunr(M∗), Xunr−uni(M∗) etc. with AM,ZM,SM, X
unr(M), Xunr−uni(M) etc. We will use

this to transfer central characters, unramified characters etc. between M∗(F ) and M(F ).
(iii) Sometimes we will consider a ‘variant with central character’ of these notions: if Z ⊂ M

is a central subgroup and ζ : Z(F ) → C× is a unitary character, then endoscopic transfer
also defines a map from C∞

Z,ζ(M(F )) to the quotient of C∞
Z,ζ(M

∗(F )) by its subspace of

unstable functions, where these function spaces are as in Notation 2.1.1(iv), and where Z is
also viewed as a central subgroup of M∗ as described in (ii) above. The map SDZ,ζ(M

∗) →
SDZ,ζ(M) dual to this transfer (between C∞

Z,ζ(M(F )) and C∞
Z,ζ(M

∗(F ))) is also obtained

by restricting the dual map SD(M∗) → SD(M) for the transfer between C∞
c (M(F )) and

C∞
c (M∗(F )).

(iv) Sometimes, we will give M(F ) and M∗(F ) measures that are compatible in the sense
explained in [Kot88, page 631]: this means that, for some scalar c > 0 and some top-
degree differential form ω on M defined over F , these measures are c|ω| and c|(ψM∗)∗(ω)|.

(v) There is an injection from the set of M(F )-conjugacy classes of Levi subgroups of M to the
set of M∗(F )-conjugacy classes of Levi subgroups of M∗, under which the conjugacy class of
M1 ⊂ M maps to that of M∗

1 ⊂ M∗ if and only if ψM∗((M∗
1)F̄ ) is M(F̄ )-conjugate to (M1)F̄ ,

or equivalently, M∗
1 and M1 correspond to the same conjugacy class of Levi subgroups of
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LM∗ = LM (the identification LM∗ = LM is obtained from ψM∗ or equivalently from
M∗). Here, to make sense of the former description of this injection, we use Solleveld’s
result that conjugacy of Levi subgroups may be checked after base-changing to F̄ (see
[Sol20, Theorem A]). A Levi subgroup M∗

1 ⊂ M∗ is said to be M∗-relevant if its conjugacy
class lies in the image of this map; this agrees with the notion of relevance from [MW16,
Section I.3.4], that we used earlier.

(vi) Now let M1 ⊂ M be a Levi subgroup, and consider inner twists ψ∗ in ψM∗ ◦ IntM∗(F̄ ) =
IntM(F̄ ) ◦ ψM∗ such that (ψ∗)−1 takes, for some or equivalently any parabolic subgroup
Q ⊂ M with Levi subgroup M1, (QF̄ , (M1)F̄ ) to (Q∗

F̄
, (M∗

1)F̄ ) for some parabolic-Levi pair
(Q∗,M∗

1) in M∗: to see that this condition is independent of Q, note that these are precisely
the inner twists ψ∗ ∈ ψM∗ ◦ IntM∗(F̄ ), that satisfy the property that σψ∗ ◦ (ψ∗)−1 ∈
IntM1(F̄ ) for all σ ∈ Gal(F̄ /F ), and hence satisfy the same property with Q replaced
by any other parabolic subgroup Q′ ⊂ M with M1 as a Levi subgroup. Given any such
inner twist ψ∗, (ψ∗)−1((M1)F̄ ) is of the form (M∗

1)F̄ for some Levi subgroup M∗
1 ⊂ M∗.

Thus, any such ψ∗ restricts to an inner twist ψM∗
1
from such an M∗

1 to M1, realizing an
endoscopic datum M∗

1 for M1 with M∗
1 as the unerlying group. Here is a second way

to describe the resulting identification LM1 = LM∗
1 up to Int M̂1-conjugacy. We can

choose parabolic subgroups Q ⊂ M and Q∗ ⊂ M∗ with ψ∗(Q∗
F̄
) = QF̄ , so that Q and

Q∗ correspond to the conjugacy class of a common parabolic subgroup Q ⊂ LM = LM∗.
Choosing a Levi subgroup L ⊂ Q, we get using the pairs (Q,M1), (Q

∗,M∗
1) and (Q,L)

embeddings ιM,M1 : LM1 → LM and ιM∗,M∗
1
: LM∗

1 → LM∗ with the same image L,
and using these embeddings, a realization of M∗

1 as an elliptic endoscopic group of M1,
that can also be seen to agree with M∗

1. Henceforth, given a Levi subgroup M1 ⊂ M as
above, we will often choose ‘Levi subgroup matching data’ consisting of a Levi subgroup
M∗

1 ⊂ M∗ together with an inner twist ψ∗ = ψM∗ ◦ Intm∗ restricting to ψM∗
1
as above,

and the resulting realization M∗
1 of M∗

1 as an elliptic endoscopic group of M1. Sometimes,
we will also fix auxiliary choices Q,Q∗,Q, ψM∗

1
etc. as above. This endoscopic datum

and the resulting map SD(M∗
1) → D(M1), as well as various isomorphisms such as the

map W (M∗
1) → W (M1) considered in (vii) below, depend on these auxiliary choices, but

in a harmless way. In what follows, this dependence will be suppressed for lightness of
notation.

(vii) Suppose M1 ⊂ M is a Levi subgroup, and a pair (M∗
1, ψM∗

1
) is assigned to M1 as in

(vi) above. Let us study the impact of changing the choice of (M∗
1, ψM∗

1
) to a different

one, ((M∗
1)

′, ψ(M∗
1)

′). Choose a parabolic subgroup Q ⊂ M with M1 as a Levi subgroup,

and note that (M∗
1, ψ

−1
M∗

1
(QF̄ )) and ((M∗

1)
′, ψ−1

(M∗
1)

′(QF̄ )) are obtained by base-change from

conjugate parabolic pairs in M∗. It follows that ψ(M∗
1)

′ = ψM∗
1
◦ Int(m∗

1w) for some w ∈
M∗(F ) transporting (M∗

1)
′ to M∗

1 and some m∗
1 ∈ M∗

1(F̄ ). It is then easy to see that the
identifications LM1 = LM∗

1 and LM1 = L(M′
1)

∗ as in (vi) differ from each other by the
isomorphism LM∗

1 = L(M′
1)

∗ that is dual to Intw : (M′
1)

∗ → M∗
1.

(viii) It is easy to see that ψM∗
1
, though not defined over F , induces an (F -)isomorphism

W (M1) ∼=W (M∗
1) between the Weyl groups of M1 in M and M∗

1 in M∗, where W (M∗
1) and

W (M1) are described in terms of F̄ -points using the discussion of Subsubsection 2.1.7.

Remark 3.2.2. Let M be a connected reductive group over F . We collect a few useful facts
concerning the endoscopic transfer between M and M∗ (see Notation 3.2.1).

(i) The transfer factors between M∗ and M can be normalized such that, if the stable conju-
gacy classes of γ∗ ∈ M∗(F ) and γ ∈ M(F ) correspond to each other, then ∆(γ∗, γ) = 1
(while this surely exists somewhere in the literature, since we have managed to not be able
to locate a reference, here is a summary: as per [LS87], the transfer factor ∆I and the
relative transfer factor ∆1 = ∆III,1 are trivial because the element ‘s’ in the endoscopic
datum is the identity, the transfer factors ∆II and ∆IV are trivial because all roots of M
come from M∗, and the transfer factor ∆2 = ∆III,2 is trivial because, in the notation of
[LS87, (3.5)], we have ξ ◦ ξTH

= ξT ).
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(ii) (i), together with the fact that the set of stable conjugacy classes of strongly regular
semisimple elements of M(F ) injects into the analogous set for M∗(F ) under the matching
of semisimple elements in the theory of endoscopy (see [Kot82, Section 6]), implies that:

• If Z ⊂ M is a central torus and ζ : Z(F ) → C× is a unitary character, then a function
f ∈ C∞

c (M(F )) (resp., C∞
Z,ζ(M(F ))) is unstable if and only if some or equivalently

any endoscopic transfer f∗ ∈ C∞
c (M∗(F )) (resp., f∗ ∈ C∞

Z,ζ(M
∗(F ))) of f to M∗(F )

is unstable.
• At the level of distributions, it follows that endoscopic transfer takes stable distribu-
tions on M∗(F ) to stable distributions on M(F ), and SD(M∗) to SD(M) ⊂ D(M).
Restricting to SDell(M) and using [MW16, Theorem XI.4], it also induces a map
SDell(M) → SDell(M

∗).
(iii) The compatibility between parabolic induction and endoscopic transfer (see Remark 3.1.4)

simplifies in this situation. Let M∗
1 ⊂ M∗ be a Levi subgroup, and Θ∗ ∈ SD(M∗

1) a stable

tempered character on M∗
1(F ). First, IndM

∗

M∗
1
Θ∗ is then a stable tempered character on

M∗(F ), so it transfers to a distribution on M(F ) under SD(M∗) → SD(M). There turn
out to be two cases, depending on whether or not M∗

1 ⊂ M∗ is M∗-relevant.

• If M∗
1 is not M

∗-relevant, the assertion is that the image of IndM
∗

M∗
1
Θ∗ under SD(M∗) →

SD(M) is 0.
• Suppose M∗

1 is relevant, and let the Levi subgroup M1 ⊂ M and various auxiliary
choices be as in Notation 3.2.1(vi). The assertion in this case is that Θ∗ transfers
to some tempered character Θ on M1(F ) under the resulting transfer SD(M∗

1) →
SD(M1), and moreover, the stable character IndM

∗

M∗
1
Θ∗ transfers to IndMM1

Θ under

the transfer SD(M∗) → SD(M), independently of the auxiliary choices of parabolic
subgroups involved in Notation 3.2.1(vi).

(iv) Let Levi subgroups M∗
1 ⊂ M∗ and M1 ⊂ M and Levi subgroup matching data be chosen

as in Notation 3.2.1(vi). It is now easy from the definitions in [LS87] that the transfer
of stable conjugacy classes from M∗

1 to M1, and hence by (i) also the endoscopic transfer
map SD(M∗

1) → SD(M1), respects conjugacy under W (M1) =W (M∗
1).

Lemma 3.2.3. Let M be a connected reductive group over F . Then:

(i) The map SD(M∗) → SD(M) respects ‘central characters’, i.e., the eigendecomposition
with respect to ZM(F ) = ZM∗(F ) ⊃ AM∗(F ) = AM(F ), as well as twisting by Xunr−uni(M∗) =
Xunr−uni(M) (see Notation 3.2.1(ii) for these identifications).

(ii) Let M∗
1 ⊂ M∗,M1 ⊂ M be as in Notation 3.2.1(vi). Let O′

M1
⊂ Aut(M1),O′

M∗
1
⊂ Aut(M∗

1)

be subgroups with the same image Ō′
M1

= Ō′
M∗

1
in Out(M1) = Out(M∗

1) (e.g., we could

have Ō′
M1

=W (M1) and Ō′
M∗

1
=W (M∗

1), by the discussion in Notation 3.2.1(viii)). Then

the transfer of stable conjugacy classes from M∗
1(F ) to M1(F ), as well as the endoscopic

transfer map SD(M∗
1) → SD(M1), are equivariant under Ō′

M1
= Ō′

M∗
1
(through which the

actions of O′
M1

and O′
M∗

1
clearly factor).

Remark 3.2.4. Of course, one can prove a more general version of (i) of the above lemma,
involving twisting by a group of characters that is larger than Xunr−uni(M), but we will not need
it.

Proof of Lemma 3.2.3. These assertions being well-known (part of (i) was used in Notation 3.2.1(iii)),
we will only sketch the proof. In what follows, we will use that the ‘correspondence’ of semisimple
conjugacy classes between M(F ) and M∗(F ) has the following easy description: the conjugacy
classes of semisimple elements m ∈ M(F ) and m∗ ∈ M∗(F ) correspond if and only if m is M(F̄ )-
conjugate to ψ(m∗).
The assertion in (i) concerning central characters follows from Remark 3.2.2(i) together with
the easy observation that the left-regular action of ZM(F ) = ZM∗(F ) respects the transfer of
stable conjugacy classes from M∗(F ) to M(F ). For the assertion in (i) concerning twisting by
Xunr−uni(M∗) = Xunr−uni(M), combine Remark 3.2.2(i) with the easy observation that the inner
twist ψM∗ gives us an identification of the map M∗ → SM∗ with the map M → SM that is
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manifestly compatible with the transfer of stable conjugacy classes. For (ii), note that if β ∈ O′
M1

and β∗ ∈ O′
M∗

1
have the same image in Ō′

M1
= Ō′

M∗
1
, then strongly regular semisimple elements

m ∈ M1(F ) and m∗ ∈ M∗
1(F ) match if and only if β(m) and β∗(m∗) do; now use Remark

3.2.2(i). □

Remark 3.2.5. Let M∗
1, (M

′
1)

∗ etc. and w ∈ M(F ) be as in the setting of Notation 3.2.1(vii), from
where we recall that the identifications LM1 = LM∗

1 and LM1 = L(M′
1)

∗ differ by an isomorphism
LM∗

1 → L(M′
1)

∗ dual to Intw. On the other hand, it is easy to see from Remark 3.2.2(i), as in the
proof of the assertions of Lemma 3.2.3, that the maps SD(M∗

1) → SD(M1) and SD((M′
1)

∗) →
SD(M1), and hence their restrictions SDell(M

∗
1) → SDell(M1) and SDell((M

′
1)

∗) → SDell(M1),
differ by Intw.

Proposition 3.2.6. Let M be a connected reductive group over F , and let D ∈ Dell(M) have the
property that its restriction to the set M(F )ell,srss ⊂ M(F ) consisting of elliptic strongly regular
semisimple elements is stable — in other words, recalling that D can be viewed as a function
M(F ) → C that is locally constant on the set M(F )srss of strongly regular semisimple elements of
M(F ) and locally integrable on M(F ), D(γ) = D(γ′) whenever γ, γ′ ∈ M(F )ell,srss are such that γ′

is M(F̄ )-conjugate to γ. Then:

(i) D is stable, i.e., D ∈ SDell(M).
(ii) D is the transfer of a stable distribution D∗ ∈ SDell(M

∗) (in the sense of Notation 3.2.1).

Proof. In the case where M is quasi-split, (i) (and hence trivially also (ii)) is a well-known result
of Arthur; see [MW16, Theorem XI.3]. The general case can be easily deduced from this and some
standard facts, as we will see now.
By the discussion in Remark 3.2.2(ii), (ii) implies (i), so it suffices to prove (ii).
As before, we will write H for a typical element of E(M) and, given H, H for the corresponding
endoscopic group. (8) specializes to an isomorphism:

(9)
⊕

H∈E(M)

TH :
⊕

H∈E(M)

SDµ,ell(H1)AutH → Dell(M).

Recall that, when H equals the endoscopic datum M∗ ∈ E(M) as in Notation 3.2.1, we identify
the factor SDµ,ell(H1)AutH with SD(H)AutH = SDell(M

∗). It suffices to show that D belongs to
TM∗(SDell(M

∗)) under (9).
For this, we recall more specific details on the realization of (9). In this proof, write C∞

c,cusp(M(F )) ⊂
C∞
c (M(F )) for the subspace consisting of cuspidal functions in the sense of [MgW18, Section 7.1],

i.e., whose nonelliptic strongly regular semisimple orbital integrals all vanish. Let Icusp(M) be
the quotient of C∞

c,cusp(M(F )) by the subspace consisting of those functions all of whose strongly
regular semisimple orbital integrals vanish; this agrees with the notation in [MW16, towards the
end of I.3.1]. Similarly, by [MW16, towards the end of Section I.3.1 and towards the end of Sec-
tion I.2.5], for each H ∈ E(M), we have a space SIcusp(H), a space of stable orbital integrals for
functions, not on H(F ), but lying in a space C∞

µ (H1(F )) associated to a fixed choice of auxiliary
data as in Notation 3.1.2(iii), which we now make.
By [Art96, Proposition 3.5], or by [MW16, Proposition I.4.11], as invoked in [LMW18, Section 4.4,
(3)], endoscopic transfer from M along the H, as H varies over E(M), descends to an isomorphism
of vector spaces:

(10) Icusp(M)
∼=→

⊕
H∈E(M)

SIcusp(H)Aut(H),

where Aut(H) is as in (8) (implicit in this isomorphism is the assertion that, if the orbital integrals
of f ∈ C∞

c (M(F )) at strongly regular nonelliptic semisimple elements of M(F ) all vanish, then for
any H ∈ E(M), the stable orbital integrals of any transfer fH ∈ C∞

µ (H1(F )) of f satisfy a similar
property).
We have a map Dell(M) → HomC(Icusp(M),C), obtained by restricting an element of Dell(M) to
the space C∞

c,cusp(M(F )) ⊂ C∞
c (M(F )). As recalled in [LMW18, Section 4.3, a bit below (5)], this

map lets us identify Dell(M) as a linear subspace of HomC(Icusp(M),C). A similar prescription
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identifies SDµ,ell(H1) with a linear subspace of HomC(SIcusp(H),C), for each H ∈ E(M). Moreover,
with these identifications, as explained in [LMW18, Section 4.4, (4)], (9) is obtained by restricting
the isomorphism

HomC(Icusp(M),C)
∼=→

⊕
H∈E(M)

HomC(SIcusp(H)Aut(H),C)

obtained by applying HomC(−,C) to (10) (because TH is dual to endoscopic transfer).
Using this and the fact that (10) is an isomorphism, it now suffices to show that D, viewed inside
HomC(Icusp(M),C), factors as the composite of the projection Icusp(M) → SIcusp(M

∗)Aut(M∗)

and some element of HomC(SIcusp(M
∗)Aut(M∗),C) (a priori not necessarily the one obtained from

D using (9)). Thus, by Remark 3.2.2(i), it suffices to show that if f ∈ C∞
c,cusp(M(F )), then D(f)

depends only on the set of stable orbital integrals of f at strongly regular semisimple elements of
M(F ). This follows from the hypothesis on D (that its restriction to the set of elliptic strongly
regular semisimple elements is stable), the fact that f belongs to C∞

c,cusp(M(F )), and the Weyl
integration formula. □

Corollary 3.2.7. Let M be a connected reductive group over F . The transfer SD(M∗) → D(M),
in the sense of Notation 3.2.1, takes SDell(M

∗) isomorphically onto SDell(M).

Proof. The map SDell(M
∗) → SDell(M) is injective, since (9) isi an isomorphism, and since

Aut(M∗) is trivial (use the identification LM∗ = LM). The surjectivity of this map SDell(M
∗) →

SDell(M) follows from Proposition 3.2.6. □

The above proof has the following corollary, in which W (M) is as in Subsubsection 2.1.7:

Proposition 3.2.8. Let L̃ denote the set of all Levi subgroups of G. Then, inside the space:

(11) D(G) =
⊕

M∈L̃/G(F )

IndGMDell(M)W (M)

(this identification is defined by parabolic induction; for a proof, see [MgW18, Proposition 2.12]),
we have compatibly an equality

(12) SD(G) =
⊕

M∈L̃/G(F )

IndGM SDell(M)W (M).

Moreover we also have the following compatible equality, where we recall our abbreviation O = OG:

SD(G)O =
⊕

M∈L̃/O+
G

AvgO

(
IndGM SDell(M)OM

)
,

where AvgO refers to averaging with respect to the action of O (which makes sense as O acts via
a finite quotient; see the proof of Lemma 2.4.3(ii)).

Proof. It is easy to deduce the latter assertion from the former, noting that

o · IndGM SDell(M)W (M) = o · IndGM SDell(M) = IndGo·M SDell(o ·M) = IndGo·M SDell(o ·M)W (o·M),

for each o ∈ O+
G and each M ∈ L̃. Therefore let us prove the former.

As observed in [MW16, VIII.2.4] and [LMW18, Remark 3.4, around (2)], when M is quasi-split,
this assertion (and even a twisted version of it) follows from [MW16, Corollary XI.3.1]. What we
describe will be essentially the proof in [MgW18, Corollary XI.3.1], with only a slight variance, so
we will be brief.
The inclusion ‘⊃’ is immediate, since parabolic induction preserves the stability of virtual char-
acters (a convenient reference for which is [KV16, Corollary 6.13]). To prove the inclusion ‘⊂’,

fix Θ ∈ SD(G), and, using fixed representatives for L̃/G(F ), chosen so as to contain a common

minimal Levi subgroup, write Θ =
∑

M IndGM ΘM according to the decomposition in (11). It is
enough to show that the element ΘM of Dell(M) is stable for each M. By an easy induction ar-

gument involving L̃, partially ordered under reverse inclusion up to conjugacy (see [MgW18, the

proof of Corollary XI.3.1]), we may assume that for some fixed L ∈ L̃, ΘM = 0 if M contains a
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conjugate of L properly, and then prove that ΘL is stable. If M ∈ L̃ is such that gγg−1 ∈ M(F ) for
some g ∈ G(F ) and some γ in the set L(F )ell,srss of elliptic strongly regular semisimple elements
of L(F ), then g−1Mg ⊃ L by hypothesis (because AL equals the maximal split torus in the cen-
tralizer of γ by ellipticity, and hence contains g−1AMg), and hence ΘM = 0 unless M = L. Using
this, the fact that ΘL was chosen to be fixed under W (L), and van Dijk’s formula for induced
characters ([vD72, Theorem 3], which takes a particularly simple form at elliptic elements of the
Levi subgroup under consideration), it follows that up to a ratio of discriminant factors, which is
invariant underW (L) and under stable conjugacy, Θ equals a multiple of ΘL on L(F )ell,srss. Thus,
ΘL is stable when restricted to L(F )ell,srss, in the sense explained in Proposition 3.2.6. Hence
Proposition 3.2.6 implies that ΘL is stable, as desired. □

Corollary 3.2.9. Let M be a connected reductive group over F . The transfer SD(M∗) → D(M),
in the sense of Notation 3.2.1, takes SD(M∗) surjectively onto SD(M).

Proof. In view of the compatibility between endoscopic transfer and parabolic induction (see
Remark 3.2.2(iii)), this follows from Proposition 3.2.8 and Corollary 3.2.7. □

Proposition 3.2.10. Let M be a connected reductive group over F . Let Z ⊂ M be a central
induced torus, and ζ : Z(F ) → C× a smooth unitary character. Recall the space C∞

Z,ζ(M(F )),

and for each Levi subgroup L ⊂ M, the space SDZ,ζ,ell(L) := SDZ(F ),ζ,ell(L) (see Notation 2.1.1).

Suppose f ∈ C∞
Z,ζ(M(F )) has the property that

(
IndML Θ

)
(f) = 0 for every Levi subgroup L ⊂ M

and every stable elliptic virtual character Θ ∈ SDZ,ζ,ell(L). Then f is unstable.

Remark 3.2.11. If M is quasi-split, this is immediate from [Art96, Lemma 6.3], as explained in
[LM20, page 587]. When Z is trivial, an alternative reference that is more convenient to cross-check
(in this quasi-split case) is the combination of [MW16, Corollary XI.5.2(i)] and the description in
[MW16, Corollary XI.3.1], invoked earlier, of the space SD(M).

Proof of Proposition 3.2.10. We choose a quasi-split form M∗ of M, and fix an endoscopic datum
M∗ and an inner twist from M∗ to M as in Notation 3.2.1(i). By Remark 3.2.2(ii), it is enough
to show that any transfer f∗ ∈ C∞

Z,ζ(M
∗(F )) of f to the quasi-split form M∗ of M is unstable

(recall from Notation 3.2.1(iii) that Z is viewed, using the fixed inner twist, as a subgroup of
M∗ as well). The proposition being already known with M replaced by the quasi-split group M∗

([Art96, Lemma 6.3] — here we use that Z is an induced torus), it suffices to show that for any

Levi subgroup L∗ ⊂ M∗ and any Θ ∈ SDZ,ζ,ell(L
∗), we have (IndM

∗

L∗ Θ)(f∗) = 0. This follows
from the hypothesis of the proposition together with the fact that endoscopic transfer between M
and M∗ is compatible with parabolic induction (see Remark 3.2.2(iii)), as well as with the central
character condition involving (Z, ζ) (see the discussion in Notation 3.2.1(iii)), and takes stable
virtual characters to stable virtual characters. □

The following corollary will be useful later:

Corollary 3.2.12. Assume Hypothesis 2.5.1. Suppose f ∈ C∞
c (G(F )) has O-invariant image in

the space I(G) of coinvariants for the G(F )-conjugation action on C∞
c (G(F )), and suppose that

D(f) = 0 whenever D is a virtual character on G(F ) obtained by O-averaging IndGM Θ for some
Levi subgroup M ⊂ G and some Θ ∈ SDell(M)OM . Then f is unstable.

Proof. Let M ⊂ G be a Levi subgroup, and let Θ′ ∈ SDell(M). By Proposition 3.2.10, it suffices

to show that D′(f) = 0, where D′ = IndGM Θ′. Let Θ ∈ SDell(M)OM be the OM-average of Θ′, and

let D0 = IndGM Θ.
Let D be the O-average of D′. Since elements of OM are obtained by restricting from O+

G (by (iv)b

of Notation 2.4.1), and since O and O+
G have the same orbit on the space of invariant distributions

on G(F ), D is also the O-average of D0 = IndGM Θ, so that D(f) = 0. Therefore, using that f has
O-invariant image in I(G), we have D′(f) = D(f) = 0, as desired. □

We record the following variant of Proposition 3.2.10 for use elsewhere.
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Proposition 3.2.13. Suppose H1 is a quasi-split reductive group over F , and H̃1 is a twisted
space over H1 with the property that for all γ1 ∈ H̃1(F ), the automorphism Int γ1 of H1 is inner
in the sense of being given by conjugation under an element of H1,ad(F ). Assume further that

H̃1(F ) ̸= ∅. Let C1 ⊂ H1 be a central induced torus, and µ : C1(F ) → C× a unitary character.

Suppose f1 ∈ C∞
µ (H̃1(F )) has the property that Θ1(f1) = 0 for all Θ1 ∈ SDµ(H̃1). Then f1 is

unstable.

Proof. Since H̃1(F ) ̸= ∅, by [MW16, Proposition III.2.3], one has an embedding H1 ↪→ H2 of H1

into a quasi-split reductive group H2 with the same derived group as H1, and with the property
that, as an H1-bitorsor, H̃1 can be identified with a coset of H1 in H2 (and hence with a fiber of
H2 → H2/H1). We can find a compact (usually not open) subgroup Z2 of ZH2

(F ), containing the

identity, with the property that the multiplication map H̃1(F )×Z2 → H2(F ) identifies the product

H̃1(F )× Z2, as a topological space, with an open subset of H2(F ). Let f2 be the pushforward of

f1 ⊗ 1Z2 ∈ C∞
µ (H̃1(F )× Z2) to an element of C∞

µ (H2(F )), where C
∞
µ (H2(F )) is defined just like

C∞
µ (H̃1(F )), using the same subgroup C1(F ).

For appropriate choices of measures, it is easy to see that the stable orbital integral of f2 at any
strongly regular semisimple element of H2(F ) is either zero or equal to the stable orbital integral
of f1 at some strongly regular semisimple element of H1(F ). Therefore, it suffices to show that
f2 ∈ C∞

µ (H2(F )) is unstable.
Since H2 is quasi-split and C1 is an induced torus, this in turn follows from [Art96, Lemma 6.3] if
we show that Θ2(f2) = 0 for all stable tempered virtual characters Θ2 ∈ SDµ(H2).
Viewing Θ2 as a locally integrable function on H2(F ), it is easy to see that its restriction to

H̃1(F ), call it Θ1, belongs to SDµ(H̃1): if (π2, V2) is an irreducible smooth representation of

H2(F ), the restriction of Θπ2 to H̃1(F ) is the character of H̃1(F ) acting on the subspace of V2 that

is spanned by those irreducible H1(F )-subrepresentations that are preserved by H̃1(F ). Therefore,
Θ1(f1) = 0. On the other hand, it is easy to see that Θ2(f2) is some scalar multiple of Θ1(f1), so
that Θ2(f2) = 0 as well, as desired. □

3.3. Unitarily stable discrete series L-packets. In many situations where Hypothesis 2.5.1
hasn’t been proved, we do have finite sets of representations that deserve to be called discrete series
L-packets, in the sense that they satisfy a property of being ‘unitarily stable’ related to atomic
stability as in [MY20, Section 4], and hence are necessarily automatically elements of Φ2(M) the
moment Hypothesis 2.5.1 is true. We will see that this is the case with the notion of L-packets
given in Definition 3.3.2 below.

Notation 3.3.1. (i) Henceforth, for a connected reductive group M over F , e(M) denotes
its Kottwitz sign (see [Kot83]).

(ii) For this subsection alone, we fix a pair (M,O′
M) consisting of reductive group M over F ,

and a group O′
M of automorphisms of M with finite image in Out(M). For example, M

could be a Levi subgroup of G and O′
M could equal OM.

Definition 3.3.2. Let Σ ⊂ Irr2(M) be finite. We say that Σ is an O′
M-unitarily stable L-

packet of discrete series representations of M(F ), if there exists a nonzero stable virtual character
ΘΣ =

∑
σ∈Σ cσΘσ on M(F ) supported on Σ, such that Σ and ΘΣ are preserved under the action

of O′
M, and such that every O′

M-invariant stable elliptic virtual character Θ ∈ SDell(M)O
′
M on

M(F ) can be uniquely written in the form c1ΘΣ + c2Θ
′ for a (automatically stable and O′

M-
invariant) virtual character Θ′ supported outside Σ and complex numbers c1, c2. By a unitarily
stable discrete series L-packet, we refer to an O′′

M-unitarily stable discrete series L-packet in the
sense just defined, but with O′′

M ⊂ Aut(M) taken to be the trivial group.

Remark 3.3.3. The property of being ‘unitarily stable’ is a priori stronger than the property
of ‘atomic stability’ as in [Kal22, Conjecture 2.2], though one hopes these two properties to be
ultimately equivalent.

Remark 3.3.4. Later, we will see in Proposition 3.4.11, that any finite set Σ of discrete series
representations of M(F ) for which one can establish an ‘endoscopic decomposition’ (in the sense
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of Definition 3.4.9) satisfies the above property. Thanks to the fact that Kaletha and others have
established endoscopic decompositions for various supercuspidal L-packets they have constructed
(e.g., see [Kal15]), the scope of the above definition is not subordinate to that of Hypothesis 2.5.1.

Remark 3.3.5. Assume that O′
M fixes AM pointwise, Then the following lemma says that, for

any Σ as in Definition 3.3.2, one can take ΘΣ =
∑
σ∈Σ d(σ)Θσ, where d(σ) ∈ R>0 is the formal

degree of σ with respect to any choice of Haar measure on M(F )/AM(F ).

Proposition 3.3.6. Suppose Σ and ΘΣ are as in Definition 3.3.2, and assume that O′
M fixes AM

pointwise. Fix any Haar measure on M(F )/AM(F ). Then:

(i) The central characters of the elements of Σ agree on ZM(F )O
′
M ⊃ AM. In particular, there

exists a smooth character ζ : AM(F ) → C× such that the central character of each σ ∈ Σ
restricts to ζ on AM(F ).

(ii) For some c ∈ C \ {0}, ΘΣ = c
∑
σ∈Σ d(σ)Θσ, where d(σ) denotes the formal degree of σ

with respect to the chosen Haar measure.
(iii) Suppose we are in the situation of (ii), and let ζ : AM(F ) → C× be as in (i). Suppose that

Θ is an O′
M-invariant distribution on M(F ) defined by a possibly infinite sum:

Θ =
∑

σ∈Irr2(M)ζ

c(σ)Θσ,

where c(σ) ∈ C for each σ (see Remark 2.2.5 for why this infinite sum is well-defined). If
further Θ is stable, then for all σ1, σ2 ∈ Σ we have c(σ1)d(σ1)

−1 = c(σ2)d(σ2)
−1.

Proof. (i) is an easy consequence of the definitions together with Remark 2.2.4(i).
The proofs of (ii) and (iii) are easier versions of the proofs of (ii) and (iii) of Proposition 3.3.7 that
we will prove below, so we will be brief, referring the reader to the proof of Proposition 3.3.7 for
more details including of some of the notation. Let us first prove (ii). Write ΘΣ =

∑
σ∈Σ c(σ)Θσ.

Suppose σ1, σ2 ∈ Σ; (ii) follows if we show that c(σ2)d(σ1) = c(σ1)d(σ2). For i = 1, 2, we let
fσi ∈ C∞

AM(F ),ζ(M(F )) be a pseudocoefficient for σi from among those representations of M(F )

whose central character restricts to ζ on AM(F ), and let fi ∈ C∞
AM(F ),ζ(M(F )) be the average

of the pseudocoefficients fσi ◦ β−1 of the representations σi ◦ β−1 ∈ Σ, as β runs over a set of
representatives in O′

M for the finite group O′
M · IntM(F )/ IntM(F ).

We claim that c(σ2)f1 − c(σ1)f2 ∈ C∞
AM(F ),ζ(M(F )) is unstable; this is the analogue of Claim 1

in the proof of Proposition 3.3.7 below. By Proposition 3.2.10, this claim follows if we show that
Θ(c(σ2)f1 − c(σ1)f2) = 0 for all Θ ∈ SD(M). More precisely, the same proposition, together
with the fact that σ1, σ2 ∈ Irr2(M), in fact implies that this needs to be checked only for Θ ∈
SDell(M). Moreover, by the “O′

M-averaging” process used to define the fi, we may assume that

Θ ∈ SDell(M)O
′
M , and then using Definition 3.3.2, that either Θ = ΘΣ, or Θ is supported outside Σ.

If Θ = ΘΣ, then we have Θ(c(σ2)f1−c(σ1)f2) = Θ(c(σ2)fσ1−c(σ1)fσ2) = c(σ2)c(σ1)−c(σ1)c(σ2) =
0, while if Θ is supported outside Σ we have Θ(c(σ1)f1 − c(σ2)f2) = 0− 0 = 0; in both cases, we
used the definition of pseudocoefficients and the O′

M-invariance of Θ.
This proves that c(σ2)f1 − c(σ1)f2 is unstable. By [Kot88, Section 3, Proposition 1], we get
c(σ2)f1(1)− c(σ1)f2(1) = 0, and since O′

M-averaging of functions preserves evaluation of functions
at the identity, we get c(σ2)fσ1(1)− c(σ1)fσ2(1) = 0. But it is easy to see that fσi(1) = d(σi) ̸= 0
for i = 1, 2 (see [DKV84, Proposition A.3.g]), so we get c(σ2)d(σ1) = c(σ1)d(σ2), as desired.
This proves (ii). Coming to (iii), (ii) and its proof now give us that d(σ2)f1 − d(σ1)f2 is unstable,
applying which, along with the O′

M-invariance of Θ, we get:

c(σ1)d(σ2) = Θ(d(σ2)fσ1
) = Θ(d(σ2)f1) = Θ(d(σ1)f2) = Θ(d(σ1)fσ2

) = c(σ2)d(σ1),

which yields c(σ1)d(σ1)
−1 = c(σ2)d(σ2)

−1, as desired. □

Proposition 3.3.7. Let the quasi-split form M∗ of F and various auxiliary data such as the
inner twist ψM and the endoscopic datum M∗ be as in Notation 3.2.1(i). Let O′

M∗ ⊂ Aut(M∗) be a
subgroup with finite image in Out(M∗). Let Σ be an O′

M-unitarily stable discrete series L-packet on
M(F ), and Σ∗ an O′

M∗-unitarily stable discrete series L-packet on M∗(F ). Assume that O′
M and
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O′
M∗ fix AM and AM∗ pointwise, and that their finite images Ō′

M and Ō′
M∗ in Out(M) = Out(M∗)

are equal. Let ΘΣ ∈ SDell(M)O
′
M and ΘΣ∗ ∈ SDell(M

∗)O
′
M∗ be as in Definition 3.3.2. Assume

that the image of ΘΣ∗ under the isomorphism SDell(M
∗) → SDell(M) (see Corollary 3.2.7) is

supported in Σ.

(i) There exists a smooth character ζ : AM(F ) = AM∗(F ) → C× (the identification AM = AM∗

made using the inner twist ψM), such that each σ ∈ Σ and σ∗ ∈ Σ∗ has a central character
restricting to ζ on AM(F ) = AM∗(F ).

(ii) We normalize the transfer factors as in Remark 3.2.2(i), and give M∗(F ) and M(F ) com-
patible Haar measures (see Notation 3.2.1(iv)), and similarly with AM∗(F ) and AM(F ),
so that we get compatible quotient measures on (M∗/AM∗)(F ) and (M/AM)(F ). If we use
Proposition 3.3.6(ii) to choose ΘΣ =

∑
σ∈Σ d(σ)Θσ and ΘΣ∗ =

∑
σ∗∈Σ∗ d(σ∗)Θσ∗ , the

image of ΘΣ∗ under the isomorphism SDell(M
∗) → SDell(M) equals e(M)ΘΣ.

(iii) Suppose we are in the situation of (ii). Suppose Θ is an O′
M-invariant stable distribution

on M(F ), and Θ∗ an O′
M∗-invariant stable distribution on M∗(F ), defined by infinite but

well-defined (by [Wal03, Theorem VIII.1.2], as explained in Remark 2.2.5) sums:

Θ =
∑

σ∈Irr2(M)ζ

c(σ)Θσ, and Θ∗ =
∑

σ∈Irr2(M∗)ζ

c(σ∗)Θσ∗ ,

where each c(σ), c(σ∗) ∈ C. If further Θ is the image of Θ∗ under the endoscopic transfer
of distributions between M and M∗, then we have c(σ) = e(M) · d(σ)c(σ∗) · d(σ∗)−1 for
each σ ∈ Σ and σ∗ ∈ Σ∗.

Proof of Proposition 3.3.7. (i) immediately follows from Lemma 3.2.3(i).
Now let us prove (ii), for which we write Z = AM(F ) = AM∗(F ), this identification made using
ψM; it will not create confusion, though Z is being viewed as a subgroup of two different groups.
Let ‘Z -central character’ stand for ‘the restriction of the central character to Z ’, so that ζ is
the common Z -central character of the elements of Σ as well as of σ∗. For σ ∈ Σ, let fσ ∈
C∞

Z ,ζ(M(F )) be a pseudocoefficient for σ from among those representations of M(F ) with Z -

central character ζ, i.e., for every σ′ ∈ Irrtemp(F ) with Z -central character ζ, we have that
trσ′(fσ) equals 0 if σ′ ̸∼= σ, and that it equals 1 otherwise (here σ′(fσ) is defined using an integral
over M(F )/Z = (M/AM)(F )). Similarly, we can talk of pseudocoefficients fσ∗ ∈ C∞

Z ,ζ(M
∗(F ))

for each σ∗ ∈ Σ∗. Let f ∈ C∞
Z ,ζ(M(F )) be the average of the pseudocoefficients fσ ◦ β−1 of the

representations σ ◦ β−1 ∈ Σ, as β runs over a set of representatives in O′
M for the finite group

O′
M · IntM(F )/ IntM(F ). Similarly, define f∗ by averaging the fσ∗ ◦ β−1, as β runs over a set of

representatives for O′
M∗ · IntM∗(F )/ IntM∗(F ).

We can talk of elements in C∞
Z ,ζ(M(F )) and C∞

Z ,ζ(M
∗(F )) having matching orbital integrals.

Further, by Lemma 3.2.3(i), the map SD(M∗) → SD(M) takes SDζ(M
∗) to SDζ(M). Note that

the actions of O′
M and O′

M∗ on SDζ(M) and SDζ(M
∗) (which are well-defined as O′

M and O′
M∗ fix

Z pointwise) each factor through Ō′
M = Ō′

M∗ , and the map SDζ(M) → SDζ(M
∗) is equivariant

for Ō′
M = Ō′

M∗ by Lemma 3.2.3(ii). Thus, the image of ΘΣ∗ under SDell(M
∗) → SDell(M), which

is supported in Σ by hypothesis, is also O′
M-invariant, and nonzero (by Corollary 3.2.7), and can

hence be written as aΘΣ for some nonzero a ∈ C.
Claim 1. a−1 · d(σ)−1f ∈ C∞

Z ,ζ(M(F )) and d(σ∗)−1f∗ ∈ C∞
Z ,ζ(M

∗(F )) have matching orbital
integrals.
Since AM = AM∗ is split and in particular induced, it is an easy consequence of [Art96, Lemma
6.3], as explained in [LM20, page 587] (see the equivalence of the conditions (A) and (B) there),
that Claim 1 follows if we show that for every Θ∗ ∈ SDζ(M

∗) with image Θ ∈ SDζ(M), we have

(13) Θ∗(d(σ∗)−1f∗) = Θ(a−1d(σ)−1f).

f and f∗ are linear combinations of pseudocoefficients of discrete series representations. Therefore,
using Proposition 3.2.8 and the compatibility between endoscopic transfer and parabolic induction
(see Remark 3.2.2(iii)), we may assume without loss of generality that Θ∗ ∈ SDζ,ell(M

∗) and Θ ∈
SDζ,ell(M). The image of f∗ in the space IZ ,ζ(M

∗) of IntM∗(F )-coinvariants for C∞
Z ,ζ(M

∗(F ))

is O′
M∗ -invariant. Combining this the analogous observation for f , the hypothesis Ō′

M = ŌM∗ ,
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and Lemma 3.2.3(ii), we may and do replace Θ∗ by its well-defined Ō′
M∗ -average and Θ by its

Ō′
M-average, to assume that Θ∗ ∈ SDζ,ell(M

∗)O
′
M∗ and Θ ∈ SDζ,ell(M)O

′
M . Using Definition 3.3.2,

we can write Θ∗ = bΘΣ∗ + Θ∗
1, where b ∈ C, and Θ∗

1 ∈ SDζ,ell(M
∗) is supported outside Σ∗.

Accordingly, we can write Θ = abΘΣ + Θ1, where Θ1 is the image of Θ∗
1 under SDζ,ell(M

∗) →
SDζ,ell(M). On the other hand, we can instead apply Definition 3.3.2 to Θ ∈ SDζ,ell(M)O

′
M , to

write Θ = b′ΘΣ + Θ′
1, where b

′ ∈ C, and Θ′
1 ∈ SDζ,ell(M) is supported outside Σ. Using the

O′
M∗ -invariance of Θ∗, the O′

M-invariance of Θ and the definition of pseudocoefficients, we get:

bΘΣ∗(d(σ∗)−1f∗) = bΘΣ∗(d(σ∗)−1fσ∗) = b = (abΘΣ)(a
−1d(σ)−1fσ) = (abΘΣ)(a

−1d(σ)−1f).

From this, and recalling that Θ∗ = bΘΣ∗ +Θ∗
1 and Θ = abΘΣ +Θ1, (13), and hence also Claim 1,

follows if we show that Θ∗
1(d(σ

∗)−1f∗) = 0 = Θ1(a
−1d(σ)−1f). The definition of pseudocoefficients

gives us Θ∗
1(d(σ

∗)−1f∗) = 0 = Θ′
1(a

−1d(σ)−1f) instead, so Claim 1 follows if we prove Claim 2
below.
Claim 2 . We have Θ1 = Θ′

1 (and consequently we have ab = b′ as well).
Let us give a proof of Claim 2; it will involve some basic facts about the elliptic inner products
on SDζ,ell(M

∗) and Dζ,ell(M) ⊃ SDζ,ell(M), about which more references and explanation are
given in the proof of Proposition 3.4.11 below, which uses the same idea in a slightly more general
setting. Claim 2 follows if we show that Θ1 is orthogonal to ΘΣ under the elliptic inner product
on Dζ,ell(M), a property that Θ′

1 clearly satisfies (because ΘΣ and Θ′
1 have disjoint supports). But

since Θ∗
1 is orthogonal to ΘΣ∗ for the elliptic inner product on SDζ,ell(M

∗) (as it is a multiple of
the restriction of the elliptic inner product on Dζ,ell(M

∗), by [LMW18, Section 4.6, Lemma 3]),
Claim 2 follows from the fact that the map SDζ,ell(M

∗) → Dζ,ell(M) is known to take the elliptic
inner product on the former space to a multiple of the elliptic inner product on the latter (again
by [LMW18, Section 4.6, Lemma 3]).
Thus, we have proved Claim 2, and hence also Claim 1. By [Kot88, Section 3, Proposition 2],
given that our choice of measures is compatible with that in [Kot88], we conclude that e(M) ·
a−1 · d(σ)−1f(1) = d(σ∗)−1f∗(1) (here, the Kottwitz sign e(M) comes from the definition of
singular stable orbital integrals in [Kot88, page 638]; the Kottwitz sign of M∗ equals 1 since M∗

is quasi-split). Since Aut(M) and Aut(M∗) preserve evaluation at the identity element, we get
e(M) · a−1 · d(σ)−1fσ(1) = d(σ∗)−1fσ∗(1). But it is easy to see that fσ(1) = d(σ) ̸= 0 and
fσ∗(1) = d(σ∗) ̸= 0 (see [DKV84, Proposition A.3.g]), so we get a = e(M), giving (ii).
To see (iii), apply Claim 1 to Θ and Θ∗; we then get:

c(σ)e(M)−1d(σ)−1 = Θ(e(M)−1d(σ)−1fσ) = Θ(e(M)−1d(σ)−1f) = Θ∗(d(σ∗)−1f∗) = Θ∗(d(σ∗)−1fσ∗) = c(σ∗)d(σ∗)−1,

giving (iii). □

Lemma 3.3.8. Suppose Σ,Σ′ are O′
M-unitarily stable discrete series L-packets on M(F ). Assume

that O′
M fixes AM pointwise. Then:

(i) The space of nonzero stable O′
M-invariant virtual characters on M(F ) supported on Σ is

one-dimensional. Thus, Σ determines ΘΣ up to a nonzero complex multiple.
(ii) Σ and Σ′ are either equal or disjoint.
(iii) If M is a Levi subgroup of G, O′

M = OM, and Hypothesis 2.5.1 is satisfied, then Σ ∈ Φ2(M).
(iv) Let θ be an F -rational automorphism of M normalizing O′

M, and suppose χ belongs to the

group Homcts(M(F ),C×)O
′
M of (quasi-)characters of M(F ) fixed by O′

M. Assume that χ
is unitary. Then

(Σ ◦ θ)⊗ χ := {(σ ◦ θ)⊗ χ | σ ∈ Σ}
is an O′

M-unitarily stable discrete series L-packet on M(F ), supporting the stable O′
M-

invariant virtual character Θ(Σ◦θ)⊗χ := (ΘΣ ◦ θ)χ.

Proof. All assertions are easy. (i) is immediate from the definitions, and (iii) follows from Lemma
2.5.3(i). For (ii), if Σ ∩ Σ′ ̸= ∅, then expanding ΘΣ′ as c1ΘΣ + c2Θ

′ as in Definition 3.3.2 gives
the inclusion Σ ⊂ Σ′, where we use the consequence of Proposition 3.3.6(ii) that the coefficients
of Θσ′ in ΘΣ′ and Θσ in ΘΣ are nonzero for all σ ∈ Σ and σ′ ∈ Σ′; similarly Σ′ ⊂ Σ, so Σ = Σ′.
For (iv), one uses that Σ ◦ θ and χ are O′

M-invariant, the former since θ normalizes O′
M. □
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Thanks to (ii) and (iv) of the above lemma, we get the following easy corollary:

Corollary 3.3.9. Let O′′
M be some group of F -rational automorphisms of M normalizing O′

M. Let
F0 be a set of O′

M-unitarily stable discrete series L-packets on M(F ) in the sense of Definition
3.3.2, and let

F = {(Σ ◦ θ)⊗ χ | Σ ∈ F0, θ ∈ O′′
M, χ ∈ Homcts(M(F ),C×)O

′
M is unitary}

= {(Σ⊗ χ) ◦ θ | Σ ∈ F0, θ ∈ O′′
M, χ ∈ Homcts(M(F ),C×)O

′
M is unitary}.

Extend the definition of ΘΣ to F as follows: for Σ ∈ F , make a choice of Σ0 ∈ F0, θ ∈ O′′
M and

χ ∈ Homcts(M(F ),C×)O
′
M such that Σ = (Σ0 ◦ θ)⊗ χ, and set ΘΣ = (ΘΣ0

◦ θ)χ. Then:

(i) The (distinct) elements of F are all disjoint.

(ii) Given Θ ∈ SDell(M)O
′
M , write Θ = Θ1 + Θ2, where Θ1 (resp., Θ2) is supported outside

(resp., inside) the union of the members of F . Then Θ1,Θ2 ∈ SDell(M)O
′
M , and Θ2 is

uniquely a linear combination of the ΘΣ, as Σ runs over F .

Proof. (i) follows from (ii) and (iv) of Lemma 3.3.8. Given (i), and using that each element of F
is also an O′

M-unitarily stable discrete series L-packet (by (iv) of Lemma 3.3.8), (ii) then follows
by induction. □

3.4. Some criteria to prove unitary stability. The main results of this subsection are Propo-
sitions 3.4.2 and 3.4.11, each of which gives a ‘character theoretic’ criterion intended to help verify
whether a given ‘candidate packet’, in the form of a finite set of discrete series representations,
forms a unitarily stable discrete series L-packet. Proposition 3.4.2 is inspired by, and at least
aspires to be a commentary on, a remark in [Mg14, Section 4.8]. We feel that it should be possible
to check the criterion in this proposition whenever one can verify stability for the given candidate
packet.
The criterion of Proposition 3.4.11 is more involved, since it almost amounts to verifying the
endoscopic character identities for the candidate packet, but has the advantage that it has already
been verified by Kaletha for his regular supercuspidal packets when p≫ 0, allowing us to conclude
that these packets are unitarily stable. Thus, there are indeed many provably unitarily stable
packets, partially justifying the point of Definition 3.3.2.
These two propositions should be well-known to experts, and the proof of Proposition 3.4.11 seems
to have some similarities with that of [MY20, Proposition 4.2].

Notation 3.4.1. (i) In this subsection, given a twisted space (M, M̃) over F , with M reduc-

tive, M̃(F )ell will denote the set of strongly regular semisimple elliptic elements of M̃(F );

it is an open subset of M̃(F ). In this subsection, given a triple (M, M̃,a) and the associ-

ated unitary character ω : M(F ) → C× as in Notation 3.1.1, an element Θ ∈ Dell(M̃, ω)

will be viewed by restriction as a locally constant function M̃(F )ell → C (this restriction

determines Θ, as follows from [MgW18, Theorem 7.3]). Thus, Dell(M̃, ω) can be viewed

as a collection of locally constant functions M̃(F )ell → C.
(ii) If (M, M̃) is a twisted space over F , with M quasi-split reductive and M̃ of inner torsion

(i.e., Int m̃ is an inner automorphism of M for each m̃ ∈ M̃(F )), then for each γ ∈ M̃(F )ell,
we let κ(γ) be the number of conjugacy classes in the stable conjugacy class of γ. Moreover,

given any virtual character Θ ∈ Dell(M̃(F )), we define Θst to be the function M̃(F )ell → C,
given by:

Θst(γ) = κ(γ)−1
∑
γ′

Θ(γ′),

where γ′ runs over a set of representatives for the M(F )-conjugacy classes in the stable
conjugacy class of γ.

(iii) For the rest of this subsection, let M be a connected reductive group over F ; we will put
ourselves in the situation of Notation 3.3.1, but with O′

M trivial.

Now we can state the first main result of this subsection.
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Proposition 3.4.2. Let Σ ⊂ Irr2(M) be a finite subset. Then Σ is a unitarily stable discrete
series L-packet (see Definition 3.3.2) if and only if the following conditions are satisfied:

(a) The Θst
σ , as σ varies over Σ, are all proportional to each other; and

(b) There exist nonzero complex numbers cσ for each σ ∈ Σ, such that ΘΣ :=
∑
σ∈Σ cσΘσ is

stable, i.e., belongs to SDell(M) ⊂ Dell(M).

Moreover, when these conditions are satisfied, we have that d(σ)−1Θst
σ = d(σ′)−1Θst

σ′ for any
σ, σ′ ∈ Σ, and that for any σ0 ∈ Σ:(∑

σ∈Σ

d(σ)2

)−1

·
∑
σ∈Σ

d(σ)Θσ = d(σ0)
−1 ·Θst

σ0
.

Remark 3.4.3. It would be satisfying if Proposition 3.4.2 could be interpreted as giving a ‘stable’
version of the classical result that orbital integrals of pseudocoefficients at elliptic strongly regular
elements yield character values (e.g., the much simpler elliptic untwisted case of [MgW18, Theorem
7.2]). However, we do not know if such an interpretation is appropriate.

We now proceed to do some preparations for the proof of Proposition 3.4.2.

Notation 3.4.4. Let a triple (M, M̃,a) and the associated unitary character ω : M(F ) → C× be
as in Notation 3.1.1, and assume notation from Notation 3.1.2. Note that for any closed subgroup
Z ⊂ ZM(F ) we have a decomposition

(14) Dell(M̃, ω) =
⊕
ζ

DZ ,ζ,ell(M̃, ω),

where ζ varies over unitary characters of Z . We define an inner product ⟨·, ·⟩ on Dell(M̃, ω), using
(14) with Z taken to be by AM̃(F ): we require ⟨·, ·⟩ to restrict to the elliptic inner product (see

[MgW18, Section 7.3]) on each DAM̃(F ),ζ,ell(M̃, ω), and the DAM̃(F ),ζ,ell(M̃, ω) for distinct ζ to be

orthogonal to each other. If either M̃ = M or if M is quasi-split and M̃ is of inner torsion, and
if ω is trivial, we get by restriction an inner product on SDell(M̃) ⊂ Dell(M̃). We will use the
following well-known property of this inner product (see [MgW18, Theorem 7.3(i)]): if σ̃1, σ̃2 are

ω-representations of M̃(F ), whose underlying M(F )-representations σ1, σ2 belong to Irr2(M), then
⟨Θσ1

,Θσ2
⟩ = 0 unless σ1 ∼= σ2.

The inner product on Dell(M) having been defined, we can now state the following lemma, to be
proved later, and modulo which Proposition 3.4.2 is almost formal.

Lemma 3.4.5. If Θ ∈ Dell(M), then Θst is the image of Θ under the orthogonal projection
Dell(M) → SDell(M). In particular, Θst ∈ SDell(M) (when viewed as in Notation 3.4.1(i)).

Proof of Proposition 3.4.2, assuming Lemma 3.4.5. Since the condition (b) concerning the stable
virtual character ΘΣ is clearly necessary, we may and do assume it.
It is easy to see from the definition of the elliptic inner product (see Notation 3.4.4) that Σ is a
unitarily stable discrete series L-packet if and only if each Θ ∈ SDell(M) that is orthogonal to ΘΣ

in SDell(M) ⊂ Dell(M) is also orthogonal in Dell(M) to Θσ for each σ ∈ Σ. For each Θ ∈ SDell(M)
and each Θ′ ∈ Dell(M) with projection Θ̄′ in SDell(M), the elliptic inner product ⟨Θ,Θ′⟩ inside
Dell(M) equals ⟨Θ, Θ̄′⟩ taken inside SDell(M). Therefore, using Lemma 3.4.5, we conclude that Σ
is a unitarily stable discrete series L-packet if and only if each Θ ∈ SDell(M) that is orthogonal to
ΘΣ in SDell(M) is also orthogonal in SDell(M) to Θst

σ for each σ ∈ Σ. This is clearly equivalent
to ΘΣ being proportional to Θst

σ for each σ ∈ Σ, which is easily seen to be equivalent to the
condition (a). Here, we note that each Θst

σ is nonzero: this follows from Lemma 3.4.5 and [Mg14,
Proposition 2.1].
For the last assertion, note from Proposition 3.3.6(ii) that

∑
d(σ)Θσ is stable, where σ runs over

Σ. Further, it is easy to see that d(σ)−1Θst
σ is independent of σ ∈ Σ: either use the argument

of [Mg14, Proposition 2.1], or note that for σ1, σ2 ∈ Σ, the constant of proportionality between
the Θst

σi
equals that between the ⟨Θst

σi
,
∑
d(σ)Θσ⟩ = ⟨Θσi ,

∑
d(σ)Θσ⟩ = d(σi). Using these two
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observations:∑
d(σ)Θσ = (

∑
d(σ)Θσ)

st =
∑

d(σ)2 · (d(σ)−1Θσ)
st =

(∑
d(σ)2

)
· d(σ0)−1Θst

σ0
,

where each sum is over σ ∈ Σ. This gives the last assertion of the lemma. □

We still need to prove Lemma 3.4.5 to complete the proof of Proposition 3.4.2, for which we now
make some further preparations.

Remark 3.4.6. In what follows, we will use a lot of observations from [LMW18]. In each case
it will be implicitly left to the reader to verify that, though the setting of [LMW18] involves an
unramified quasi-split group in place of our M, the observations that we will use do not depend
on these assumptions.

The following remark will also introduce some notation.

Remark 3.4.7. Let a triple (M, M̃,a) and the associated unitary character ω : M(F ) → C× be as
in Notation 3.1.1, and assume notation from Notation 3.1.2. Suppose Z is a closed subgroup of
ZM̃(F ), such that Z ∩AM̃(F ) is of finite index in AM̃(F ). Let ζ : Z → C× be a unitary character,

and fix Haar measures on Z and M(F ), the latter also giving a measure on M̃(F ).

(i) Let C∞
ζ,cusp(M̃(F )) ⊂ C∞

ζ (M̃(F )) be the subspace consisting of functions that are cus-

pidal in the sense of [MgW18, Sections 7.1 and 7.2] (i.e., whose nonelliptic strongly

regular semisimple orbital integrals vanish), and let IZ ,ζ,cusp(M̃, ω) be the quotient of

C∞
ζ,cusp(M̃(F )) by the subspace consisting of functions whose strongly regular semisimple

ω-twisted orbital integrals vanish. When M is quasi-split and M̃ has inner torsion, and
ω is trivial, we define SIZ ,ζ,cusp(M̃) as the quotient of C∞

ζ,cusp(M̃(F )) by the subspace
consisting of functions whose strongly regular semisimple stable orbital integrals vanish
(this is a priori slightly different from the ‘variant with central character’ of the definition
in [MW16, page 57], but equivalent to it, thanks to the surjectivity of the obvious map

IZ ,ζ,cusp(M̃) → SIZ ,ζ,cusp(M̃); see [MW16, Proposition I.4.11], or rather its variant with
central character, discussed below).

(ii) For γ ∈ M̃(F )ell, we will normalize, in this subsection alone, the ω-twisted orbital integral

of f ∈ C∞
ζ,cusp(M̃(F )) at γ as:

(15) O(γ, ω, f) :=

∫
Z \M(F )

ω(m)f(m−1γm) dm,

where we use the measures on M(F ) and Z fixed in the present collection of notation (and
recall that ω is trivial on ZM̃(F ) ⊃ Z , since we are imposing the conditions of Notation
3.1.1). The integral defining O(γ, ω, f) is absolutely convergent by ellipticity. Recall that if
ω is trivial, we write O(γ, f) = O(γ, ω, f). Recall that the stable orbital integrals SO(γ, f),

when M is quasi-split and M̃ has inner torsion and ω is trivial, are defined by summing
the O(γ′, f) as γ′ runs over a set of representatives for the M(F )-conjugacy classes in the
stable conjugacy class of γ.

(iii) If a ∈ Iζ,cusp(M̃, ω) and γ ∈ M̃(F )ell, a(γ) will denoteO(γ, ω, f), for any f ∈ C∞
ζ,cusp(M̃(F ))

with image a; it is independent of a by the density of strongly regular semisimple orbital
integrals in the space of invariant distributions.

(iv) For each H ∈ E(M̃,a), we fix associated auxiliary data such as the z-extension H1

of H (see Notation 3.1.2(iii)). Let us now recall from [LMW18, Section 4.5] a subset

E(M̃,a)ζ ⊂ E(M̃,a), and for each H ∈ E(M̃,a) a pair (Z1, ζ1) consisting of a closed sub-

group Z1 ⊂ ZH1(F ) and a unitary character ζ1 : Z1 → C× (E(M̃,a)ζ is the CZ,µ defined in
[LMW18, Section 4.5, between (4) and (5)], while (Z1, ζ1) is denoted (Z ′

1, µ
′
1) in [LMW18];

we suppress the dependence of these on H and the auxiliary choices for lightness of no-
tation). Z1 is the inverse image in ZH1

(F ) of the image ZH of Z ↪→ ZM(F ) → ZH(F ).

E(M̃,a)ζ ⊂ E(M̃,a) is defined to be the subset consisting of H such that there exists a
(necessarily unitary) character ζ1 : Z1 → C× with the property that whenever strongly
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regular semisimple elements δ1 ∈ H̃1(F ) and γ̃ ∈ M̃(F ) match (such δ1 and γ̃ exist as H
is relevant), we have an equality of transfer factors:

∆(z1δ1, zγ̃) = ζ1(z1)
−1ζ(z)∆(δ1, γ̃),

for all z1 ∈ Z1 and z ∈ Z with the same image in ZH. In view of Remark 3.4.6, we
remark that the ‘λz’ of [LMW18, Section 4.5] is the ‘λC ’ of [KS99, page 53]. Note that it
follows from the ellipticity of H that Z1 ∩AH1(F ) is of finite index in AH1(F ).

(v) As in [LMW18, Section 4.5, (5)], endoscopic transfer ‘with Z -central character ζ’ defines
an isomorphism of vector spaces:

(16) IZ ,ζ,cusp(M̃, ω) →
⊕

H∈E(M̃,a)ζ

SIZ1,ζ1,cusp(H̃1)
Aut(H).

Dually, as in [LMW18, Section 4.5, (6)], we get an isomorphism:

(17)
⊕

H∈E(M,a)ζ

TH =
⊕

H∈E(M,a)ζ

TH,ell : SDZ1,ζ1,ell(H̃1)Aut(H) → DZ ,ζ,ell(M̃, ω),

which is a restriction of (8) (any dependence on measures is at the level of the transfer of
functions, and not at the level of the transfer of Harish-Chandra characters).

(vi) As in [LMW18, Section 4.4, just below (4)], we average with respect to Aut(H) to identify

each SDZ1,ζ1,ell(H̃1)Aut(H) with the space SDZ1,ζ1,ell(H̃1)
Aut(H) of Aut(H)-invariants. This

space gets an inner product from its inclusion inDZ1,ζ1,ell(H̃1) (which has an inner product

as in Notation 3.4.4), also denoted ⟨·, ·⟩. For ΘH
1 ,Θ

H
2 ∈ SDZ1,ζ1,ell(H̃1)

Aut(H), we have, by
[LMW18, Section 4.6, (5) and Lemma 3], an equality

(18) ⟨TH(Θ
H
1 ),TH(Θ

H
2 )⟩ = c(M̃,H)−1⟨ΘH

1 ,Θ
H
2 ⟩,

describing the behavior of the inner products we have defined with respect to TH; here,

c(M̃,H) is the constant from [LMW18, Section 4.6, just before Lemma 2].
Here, in view of Remark 3.4.6, let us add that the key point is the inner product formula

of [MW16, Proposition I.4.17], from which one deduces a ‘variant with central character’
involving (16) (see [LMW18, Section 4.6, Lemma 2]), which in turn by duality gives the
inner product formula of [LMW18, Section 4.6, (5)] for virtual characters.

(vii) It follows from (vi) above that the components TH(SDZ1,ζ1,ell(H̃1)Aut(H)) of the decom-

position of DZ ,ζ,ell(M̃, ω) given by (17) are orthogonal to each other.

(viii) Let us recall the antilinear isomorphism ιZ ,ζ : DZ ,ζ,ell(M̃(F ), ω) → IZ ,ζ,cusp(M̃, ω) de-
scribed in [LMW18, Section 4.6, between (2) and (3)], and denoted by ‘ιZ ,µ’ in that
reference (here, an antilinear isomorphism refers to a bijective additive map that is semi-
linear for complex conjugation). ιZ ,ζ is defined to satisfy:

(19)

∫
Z \M̃(F )

Θ(γ)f2(γ)(dγ/dz) =: Θ(f2) = (ιZ ,ζ(Θ), f2)Z ,ζ,ell,

where the (·, ·)Z ,ζ,ell on the right-hand side refers to the inner product on IZ ,ζ,cusp(M̃, ω)
as in [LMW18, Section 4.6, (2)]; thus, if h1, h2 map to f1, f2 under the obvious map

C∞
cusp(M̃(F )) → C∞

ζ,cusp(M̃(F )) → IZ ,ζ,cusp(M̃) (see the map pZ ,µ of [LMW18, page

315]), then we have a formula of the form:
(20)

(f1, f2)Z ,ζ,ell :=

∫
Z

∫
M̃(F )ell/ conj

DM̃(γ)meas(Z \Mγ(F ))−1O(γ, ω, h1)O(zγ, ω, h2)ζ(z) dγdz,

where Mγ denotes the centralizer of γ. To cross check this formula, use [LMW18, the
discussion shortly before (1) in Section 4.6, and (4) in Section 4.3], and take into ac-
count various slight differences in notation (such as the definition of orbital integrals, in
particular our using the unnormalized ones) between us and [LMW18]. [LMW18] itself
refers to [MW16, Section I.4.17] for some of the notation, such as the measure on the set
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M̃(F )ell/ conj of M(F )-conjugacy classes in M̃(F )ell. Clearly, ιZ ,µ depends on the chosen
measures on M(F ) and Z .

(ix) The antilinear isomorphism ιZ ,ζ : DZ ,ζ,ell(M̃, ω) → IZ ,ζ,cusp(M̃, ω) from (viii) above, we

claim, is described as follows: ιZ ,ζ(Θ) = f1 if and only if for all γ ∈ M̃(F )ell, we have:

(21) Θ(γ) = O(γ, ω, f1).

Write f1 = ιZ ,ζ(Θ), and let h1, h2 map to f1, f2 under the obvious map C∞
cusp(M̃(F )) →

C∞
ζ,cusp(M̃(F )) → IZ ,ζ,cusp(M̃). Then (19) is equivalent to:

Θ(h2) =

∫
Z

∫
M̃(F )ell/ conj

DM̃(γ)meas(Z \Mγ(F ))−1O(γ, ω, h1)O(zγ, ω, h2)ζ(z) dγdz.

As far as the left-hand side is concerned, Θ(h2), which is an integral over M̃(F ), can be

evaluated in terms of an integral over M̃(F )ell/ conj using an equality given in [MW16,
Section I.4.17, shortly before (1)] (and keeping in mind that h2 is a cuspidal function and
that Θ(h2) has an ω-equivariance on conjugation). On the right-hand side, we first replace
γ by z−1γ and then change the order of integration and replace z by z−1, and use the
relation between h1 and f1 (and that ζ(z−1) = ζ(z)), to get that (19) is equivalent to:∫

M̃(F )ell/ conj

DM̃(γ)m−1
Z Θ(γ)O(γ, ω, h2) dγ =

∫
M̃(F )ell/ conj

DM̃(γ)m−1
Z O(γ, ω, f1)O(γ, ω, h2) dγ,

where mZ = meas(Z \Mγ(F )). From here, the claim involving (21) is easy to see.

(x) Suppose M is quasi-split and M̃ has inner torsion, and assume that ω is trivial. In this

case, one can view SIZ ,ζ,cusp(M̃) = SIZ ,ζ,cusp(M̃, ω) as a subspace of IZ ,ζ,cusp(M̃), using
the isomorphism (16) and noting that one has a principal endoscopic datum H with H = M

and H̃ = M̃, for which Aut(H) = 1 and SIZ1,ζ1,cusp(H̃1) identifies with SIZ ,ζ,cusp(M̃). As
in the discussion in [LMW18, Section 4.6, between Lemma 1 and Lemma 2], this identifies

SIZ ,ζ,cusp(M̃) as the subspace of IZ ,ζ,cusp(M̃) consisting of all a such that a(γ) = a(γ′)
(using the notation of Notation 3.4.4(iii)) whenever γ and γ′ are stably conjugate. From

this perspective, if a ∈ SIZ ,ζ,cusp(M̃) ⊂ IZ ,ζ,cusp(M̃) is the image of f ∈ C∞
ζ,cusp(M̃(F )),

then for all γ ∈ M̃(F )ell we have:

(22) SO(γ, f) = κ(γ)a(γ),

where, like in Notation 3.4.1(iii), κ(γ) denotes the number of conjugacy classes in the
stable conjugacy class of γ, and SO(γ, f) and a(γ) are as in (ii) and (iii) above.

(xi) Consider the setting of (v) above, but assume for simplicity that we are in the situation

of standard endoscopy. Fix H ∈ E(M̃,a)ζ = E(M)ζ ⊂ E(M), with associated data such as

Z1 and ζ1. The discussion of (x) above applies with (M, M̃,Z , ζ) replaced by (H1, H̃1 =
H1,Z1, ζ1), so we have SIZ1,ζ1,cusp(H1) ⊂ IZ1,ζ1,cusp(H1). Then, using (iii) above and
(22), the endoscopic transfer map IZ ,ζ,cusp(M) → SIZ1,ζ1,cusp(H1) can now be described
as follows: a 7→ b if and only if for all strongly M-regular δ1 ∈ H1(F )ell, we have:

(23) b(δ1) = κ(δ1)
−1
∑
γ

DH1(δ1)
−1/2DM(γ)1/2∆(δ1, γ)a(γ),

where γ runs over a set of representatives for conjugacy classes in the (possibly empty)
stable conjugacy class in M(F ) matching δ. Here, we recall that our orbital integrals are
unnormalized, and we have used the convention wherein “∆IV ” is not part of ∆, but
is accounted for separately using the discriminant factors. Moreover, we have used the
discussion on the normalization of measures in [LMW18, the top of page 317], to justify our
use of the definition of orbital integrals in (ii) above without adding any extra normalizing

constants. Since we are in the case of standard endoscopy, the factors “d
1/2
θ ” and “d−1

γ ”
from [LMW18, Section 4.5, (2)] are trivial, and the local isomorphism “Z \Gγ(F ) →
Z ′

1\G′
1,δ1

(F )” from [LMW18, page 317] is an isomorphism. Another standard fact we

have used is that for strongly regular semisimple elements δ1 ∈ H1(F ) and γ ∈ M(F ),
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∆(δ1, γ) ̸= 0 if and only if the stable conjugacy classes of δ1 and γ match, in which case
δ1 ∈ H1(F ) is elliptic if and only if γ ∈ M(F ) is.

Lemma 3.4.8. Let H ∈ E(M) (thus, we are considering standard endoscopy, not twisted en-

doscopy). Let H1 = H̃1,Z , ζ,Z1, ζ1 be as in Remark 3.4.7. Let Θ ∈ DZ ,ζ,ell(M), let ΘH be its pro-

jection to SDZ1,ζ1,ell(H1)Aut(H) = SDZ1,ζ1,ell(H1)
Aut(H) as per (17), and write ΘH,M := TH(Θ

H).
We have, for all γ ∈ M(F )ell:

ΘH,M(γ) = c(M,H)
∑
δ1

κ(δ1)
−1∆(δ1, γ)

∑
γ′

∆(δ1, γ′)Θ(γ′),

where δ1 ranges over a set of representatives in H1(F ) for the M-regular stable conjugacy classes
in H(F )ell, γ

′ runs over a set of representatives for the M(F )-conjugacy classes in M(F )ell, and
c(M,H) is as in (18), i.e., as in [MW16, Section I.4.17] or equivalently [LMW18, Section 4.6].

Proof. In this proof, any sum over δ1 will range over representatives in H1(F ) for M-regular
stable conjugacy classes in H(F )ell, and any sum over γ′ will range over representatives for M(F )-
conjugacy classes in M(F )ell.
The first step is to study ΘH. We claim that for all δ1 ∈ H1(F )ell we have:

(24) ΘH(δ1) = c(M,H)κ(δ1)
−1 ·

∑
γ′

DH1(δ1)
−1/2DM(γ′)1/2 ·∆(δ1, γ′)Θ(γ′).

Consider the isomorphism ιZ1,ζ1 : DZ1,ζ1,ell(H1) → IZ1,ζ1,cusp(H1) analogous to ιZ ,ζ : DZ ,ζ,ell(M) →
IZ ,ζ,cusp(M). It follows from Remark 3.4.7(ix) (specifically, (21)), and the discussion of Remark
3.4.7(x), that ιZ1,ζ1 carries SDZ1,ζ1,ell(H1) to SIZ1,ζ1,cusp(H1) ⊂ IZ1,ζ1,cusp(H1). More is true:
if ιZ ,ζ(Θ) = a ∈ IZ ,ζ,cusp(M) and ιZ1,ζ1(Θ

H) = b ∈ SIZ1,ζ1,cusp(H1) ⊂ IZ1,ζ1,cusp(H1), then, as
explained in [LMW18, Section 4.6, slightly before (5)], then we have b = c(M,H)b′, where b′ is
the image of a under the endoscopic transfer map IZ ,ζ,cusp(M) → SIZ1,ζ1,cusp(H1). Therefore,
we have, for all M-regular δ1 ∈ H1(F )ell:

ΘH(δ1) = b(δ1) = c(M,H)b′(δ1) = c(M,H)κ(δ1)
−1
∑
γ′

∆(δ1, γ′)DH1(δ1)−1/2DM(γ′)1/2a(γ′),

where we used Remark 3.4.7(ix) (specifically (21)) at the first step, and and (23) at the third.

Noting that a(γ′) = Θ(γ′) by (21), (24) follows.
The computation of ΘH,M = TH(Θ

H) in terms of ΘH can be done using [Art96, Lemma 2.3],
analogously to how [Li13, Proposition 5.3.2] is proved from [Li13, Lemma 5.3.1], and is what is
reflected in the ‘character value’ form of character identities found in, e.g., [Kal15, Theorem 6.6];
we merely state the result:

ΘH,M(γ) = TH(Θ
H)(γ) =

∑
δ1

DH1(δ1)
1/2DM(γ)−1/2∆(δ1, γ)Θ

H(δ1).

Thus, using (24), ΘH(γ) equals:

c(M,H) ·
∑
δ1

κ(δ1)
−1DH1(δ1)

1/2DM(γ)−1/2∆(δ1, γ)
∑
γ′

DH1(δ1)
−1/2DM(γ′)1/2∆(δ1, γ′)Θ(γ′).

Since the set of elements in M(F )srss that match a given δ1 ∈ H(F )srss form a single stable
conjugacy class, we have DM(γ′)1/2 = DM(γ)1/2 for each γ′ occurring in the above sum, so that
the above expression equals the one given in the lemma. □

Proof of Lemma 3.4.5. We apply Lemma 3.4.8 with H replaced by the principal endoscopic datum
M∗ attached to M as in Notation 3.2.1(i). It is easy to compute that (every factor in the definition,
in [MW16], of) c(M,M∗) equals 1, and then, assuming transfer factors to be normalized as in

Remark 3.2.2(i), that Θst
σ = Θ

M∗,M
σ ∈ SDell(M). It follows from Remark 3.4.7(vii), and the fact

that TM∗ defines an isomorphism SDell(M
∗) → SDell(M) (see Corollary 3.2.7), that Θ

M∗,M
σ is the

projection of Θσ to SDell(M), and the lemma follows. □

The terminology in the following definition is ad hoc:
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Definition 3.4.9. (i) By a discrete series L-packet for M equipped with an endoscopic de-
composition, we refer to a finite set Σ ⊂ Irr2(M) with the property that:
(a) There exists a nonzero complex number cσ for each σ ∈ Σ, such that

∑
σ∈Σ cσΘσ is

a stable distribution; and
(b) For each elliptic endoscopic datum H ∈ E(M), with underlying endoscopic group H,

choosing auxiliary data and hence the 5-tuple (H1 → H, ξ̂1, H̃1 → H̃,C1, µ) as in
Notation 3.1.2(iii), there exists a stable elliptic virtual character ΘH ∈ SDµ,ell(H1)

on H̃1(F ) = H1(F ), such that (letting H vary in E(M) now) the following holds inside
Dell(M):

(25)
∑
H

C ·TH(Θ
H) =

∑
σ∈Σ

C ·Θσ.

We will refer to (25) as an endoscopic decomposition for Σ.

(ii) Suppose that the triple (M, M̃,a) and the associated character ω : M(F ) → C× are as in
Notation 3.1.1, and that they satisfy the hypotheses there. By a discrete series L-packet
for (M̃, ω) equipped with an endoscopic decomposition, we refer to a pair (Σ, Σ̃) such that:
(a) Σ is a discrete series L-packet for M together with an endoscopic decomposition, in

the sense of (i);

(b) Σ̃ is a finite set of (isomorphism classes of) representations of (M̃(F ), ω) such that

the map that takes an M̃(F )-representation to its underlying M(F )-representation

defines an injection Σ̃ ↪→ Σ; and
(c) For each H ∈ E(M̃,a) with underlying endoscopic group H, choosing auxiliary data

and hence the 5-tuple (H1 → H, ξ̂1, H̃1 → H̃,C1, µ) as in Notation 3.1.2(iii), there

exists a stable elliptic virtual character ΘH ∈ SDµ,ell(H̃1) on H̃1(F ), such that the

following holds inside Dell(M̃, ω):

(26)
∑
H

C ·TH(Θ
H) =

∑
σ̃∈Σ̃

C ·Θσ̃.

Remark 3.4.10. By [Kal19, Theorem 6.3.4], it follows that when p≫ 0, the regular supercuspidal
packets of Kaletha are equipped with an endoscopic decomposition in the sense of Definition
3.4.9(i). More generally, Kaletha-type results should give a large class of discrete series L-packets
equipped with an endoscopic decomposition.

Now we prove that a discrete series L-packet equipped with an endoscopic decomposition is auto-
matically unitarily stable.

Proposition 3.4.11. Suppose that the triple (M, M̃,a) and the associated unitary character ω :
M(F ) → C× are as in Notation 3.1.1, and that they satisfy the hypotheses there.

(i) Suppose (Σ, Σ̃) is a discrete series L-packet for (M̃, ω) equipped with an endoscopic de-
composition given by (26) (which in particular involves choosing auxiliary data, and in-

volves some ΘH ∈ SDµ,ell(H̃1) for each H ∈ E(M̃,a)). Fix H0 ∈ E(M̃,a). Then any

Θ ∈ Dell(M̃, ω) that belongs to the image TH0
(SDµ,ell(H̃0,1)Aut(H0)

) of TH0
can be uniquely

written as c0TH0
(ΘH0)+c◦Θ◦, where c0, c◦ ∈ C, and Θ◦ is supported on a set of represen-

tations each of whose underlying M(F )-representations lies outside the image of Σ̃ ↪→ Σ

(note that TH0
(ΘH0) is supported in Σ̃ by definition).

(ii) Suppose Σ is a discrete series L-packet for M with an endoscopic decompostion (25). Then
Σ is a unitarily stable discrete series L-packet.

Proof. Let us see that (ii) follows from (i). By definition, (Σ,Σ) can be viewed as a discrete
series packet for (M,1) with an endoscopic decomposition. Fix M∗ and related objects as in
Notation 3.2.1(i); thus, M∗ is a quasi-split form of M. We also have ΘM∗ ∈ SDell(M

∗) associated
to Σ, as in (i), i.e., as in Definition 3.4.9(i). By the surjectivity assertion in Corollary 3.2.7,

SDell(M) = TM∗(SDell(M
∗)) = TH0

(SDµ,ell(H̃0,1)Aut(H0)
), where H0 = M∗, for which we may

and do take H̃0,1 to be H0,1 and µ to be trivial. Applying (i) to an arbitrary stable distribution
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in
∑

C ·Θσ (the sum being over σ ∈ Σ), and using the linear independence of characters, we see
that the space of stable distributions in

∑
C · Θσ is at most one dimensional, and spanned by

TM∗(ΘM∗
) if it is nonzero. But the requirement in Definition 3.4.9(i) that there exists a stable

distribution
∑
cσΘσ supported in Σ, with each cσ nonzero, then forces that this space is indeed

one dimensional with ΘΣ :=
∑
cσΘσ as a basis, which is therefore a scalar multiple of TM∗(ΘM∗

).
Applying (i) once again to an arbitrary stable virtual character Θ ∈ SDell(M) = TM∗(SDell(M

∗))
then shows that Σ satisfies the conditions of Definition 3.3.2, i.e., that it is unitarily stable.
Thus, it remains to prove (i); we no longer have H0 = M∗. We can write the given Θ ∈
TH0

(SDµ,ell(H̃0,1)Aut(H0)
) of (26) as c0TH0

(ΘH0) + Θ◦, where c0 ∈ C, and Θ◦ belongs to the

image of TH0
but is orthogonal in Dell(M̃, ω) to TH0

(ΘH0) (even if TH0
(ΘH0) is 0). By the def-

inition of the inner product on Dell(M̃, ω) (see Notation 3.4.4), it is enough to see that Θ◦ is

orthogonal to Θσ̃ for each σ̃ ∈ Σ̃, or, equivalently by the decomposition (26), that it is orthogonal

to each TH(Θ
H) as H varies through E(M̃,a). By definition, this is so for H = H0, while, by

Remark 3.4.7(vii), this is so for all H ̸= H0. This proves (i), as desired. □

Corollary 3.4.12. If p ≫ 0, the regular supercuspidal L-packets constructed in [Kal19] are uni-
tarily stable.

Remark 3.4.13. If G is a quasi-split special orthogonal, symplectic or unitary group over F ,
so that Hypothesis 2.5.1 is satisfied by the work of Arthur and Mok ([Art13] and [Mok15]; see
Proposition 5.1.2 below for more details), then Corollary 3.4.12, in view of of Lemma 3.3.8(iii),
implies that regular supercuspidal L-packets for G in the sense of Kaletha are also L-packets
in the sense of Arthur and Mok (though we have no result comparing the relevant Langlands
parametrizations). An appropriately analogous comment applies with the work [Mg14] of Mœglin
in place of [Art13] and [Mok15], provided one accounts for an outer automorphism in the even
special orthogonal case.

Proof of Corollary 3.4.12. This follows from Remark 3.4.10 and Proposition 3.4.11. □

Remark 3.4.14. Lemma 3.4.8 is more involved than what was strictly needed to prove Lemma
3.4.5. The reason we went through Lemma 3.4.8 is to make the optimistic proposal that it might
be possible in principle to start with the character of a single discrete series representation, and
construct all the “unstable endoscopic characters” associated to the L-packet that contains it (for
nice enough representations and packets). However, we do not know how far this can be used in
practice to study, given the character of a single discrete series representation, the characters of
the representations that belong to its L-packet.

4. The main technical results: Shahidi’s µ-constancy argument and applications

4.1. Candidates for the stable Bernstein center, Z1(G) and Z2(G).

Notation 4.1.1. In this section, we will write Ω(G) for the Bernstein variety of cuspidal pairs
for G: see [Hai14, Section 3.3]. We write Ω(G) for its quotient under the action of O = OG

(which acts through a finite quotient). In this section, we will use the following facts about Ω(G),
and their simpler analogues for Ω(G). The C-points of the variety Ω(G) are the O+

G-conjugacy
classes of cuspidal pairs: these are the pairs (M, σ), where M ⊂ G is a Levi subgroup and σ
is a supercuspidal representation of M(F ). Moreover, Ω(G) is reduced as a variety, and a map
f : Ω(G) → X(C), for a variety X over C, is regular if and only if for each cuspidal pair (M, σ),
the map Xunr(M) → C given by f 7→ f((M, σ ⊗ χ)) is regular, where (M, σ ⊗ χ) ∈ Ω(G) is the

image of (M, σ ⊗ χ).

Notation 4.1.2. In this subsection, given f ∈ C∞
c (G(F )), f∨ ∈ C∞

c (G(F )) will stand for the
function x 7→ f(x−1). Given g ∈ G(F ) and f ∈ C∞

c (G(F )), we will let lgf(x) = f(g−1x) and
rgf(x) = f(xg). We fix a Haar measure on G(F ), which will be used in the convolutions that
follow.
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We recall some facts on convolutions from [Hai14, Section 3.1]. For a distribution D on G(F ) and
f ∈ C∞

c (G(F )), D ∗ f ∈ C∞(G(F )) is given by g 7→ D((rgf)
∨) = D(lgf

∨) — thus, this is defined
so as to satisfy:

(D ∗ rgf) = rg(D ∗ f) and D(f) = (D ∗ f∨)(1).
D is said to be essentially compact if D ∗ f ∈ C∞

c (G(F )) for all f ∈ C∞
c (G(F )). If D′ and D

are distributions and D is essentially compact, we can convolve them by letting (D′ ∗ D)(f) =
D′((D ∗ f∨)∨).
Now we recall the definition of the Bernstein center Z(G) of G.

Definition 4.1.3. The Bernstein center Z(G) of G is the C-vector space of essentially compact
invariant distributions on C∞

c (G(F )), i.e., the space of (G(F )-conjugation) invariant distributions
C∞
c (G(F )) → C with the property that for all f ∈ C∞

c (G(F )), z ∗ f ∈ C∞(G(F )) belongs
to C∞

c (G(F )). Convolution makes Z(G) into a commutative C-algebra (see [Hai14, Corollary
3.1.2]), and the work of Bernstein gives the following alternate descriptions of the ring Z(G):

(i) Via z 7→ (f 7→ z ∗ f), Z(G) identifies with the ring of endomorphisms of C∞
c (G(F )) that

commute with left and right convolution.
(ii) One can uniquely make each z ∈ Z(G) act as an intertwining operator π(z) on π, for each

smooth representation π of G(F ), such that:
• Denoting temporarily by l the left-regular representation of G(F ) on C∞

c (G(F )), we
have l(z)(f) = z ∗ f ;

• π 7→ π(z) respects morphisms of representations.
z 7→ (π 7→ π(z)) defines a homomorphism from Z(G) to the ring of endomorphisms of the
identity functor of the category of smooth representations of G(F ), which Bernstein’s work
shows to be an isomorphism. The action of Z(G) on a smooth representation (π, V ) can
typically be computed using the following: given v ∈ V , we have a map (l, C∞

c (G(F ))) →
(π, V ) given by f 7→ π(f)v, so that π(z)(π(f)v) = π(l(z)f)(v) = π(z ∗ f)(v). This also
gives:

(27) π(z ∗ f) = π(z)π(f).

(iii) By (ii) and Schur’s lemma, each z ∈ Z(G) acts on each irreducible admissible representa-
tion π of G(F ) by multiplication by some scalar, which can be shown to depend only on
the cuspidal support (M, σ)G ∈ Ω(G) of π. We denote this scalar by:

ẑ(π) = ẑ(M, σ) = ẑ((M, σ)G).

More generally, for any Levi subgroup M′ ⊂ G and σ′ ∈ Irr(M′) such that the cuspidal
supports of σ′ and π are G(F )-conjugate, we will write ẑ(π) = ẑ(σ′) = ẑ((M′, σ′)) =
ẑ((M′, σ′)G) when there is no scope for confusion, where in turn (M′, σ′)G denotes the
G(F )-conjugacy class of (M, σ). By Bernstein’s work, sending z ∈ Z(G) to ẑ : Ω(G) → C
gives an isomorphism of rings Z(G) → C[Ω(G)].

It is clear that O acts on Z(G); we now explicate this action. O acts on C∞
c (G(F )) and C∞(G(F )),

and on the space of distributions on G(F ): (β · f)(x) = f(β−1(x)) and (β ·D)(f) = D(β−1 · f).
For β ∈ O, one verifies the following equalities for each distribution D on G(F ), f ∈ C∞

c (G(F ))
and β ∈ O:

(28) (βD)(βf) = D(f), and βD ∗ βf = β(D ∗ f).
It is now clear that the action of O on the space of distributions on G(F ) preserves the subspace
Z(G). The action of O on Irr(G), given by β · π = π ◦ β−1, is related to the action of O on Z(G)
as follows:

(29) β̂ · z(π) = ẑ(π ◦ β).
Indeed, using the identity π(z ∗ f) = ẑ(π)π(f) (which follows from (27)), the identity (π ◦β)(f) =
π(f ◦ β−1), and (28), this follows from:

ẑ(π◦β)·(π◦β)(f) = π◦β(z∗f) = π((z∗f)◦β−1) = π(β·(z∗f)) = π((β·z)∗(β·f)) = β̂ · z(π)π(f◦β−1) = β̂ · z(π)(π◦β)(f).
From (28) and (29), the following is easy to deduce:
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Lemma 4.1.4. The isomorphism Z(G) → C[Ω(G)] given by z 7→ ẑ is O-equivariant, and restricts
to an isomorphism Z(G)O → C[Ω(G)], where the inclusion C[Ω(G)] ⊂ C[Ω(G)] comes from the
quotient map Ω(G) → Ω(G) of varieties (see Notation 4.1.1). In particular, Z(G)O ⊂ Z(G) is a
subring.

Notation 4.1.5. In this subsection, I(G) will denote the space of coinvariants for G(F )-conjugation
on C∞

c (G(F )). We will consider the actions of O and O+
G on I(G) inherited from their ac-

tions on C∞
c (G(F )). Note that the space of invariant distributions on C∞

c (G(F )) identifies with
HomC(I(G),C).

Remark 4.1.6. Since IntG(F ) is of finite index in O+
G by Notation 2.4.1(iv) (see Lemma 2.4.3(ii)),

O acts on I(G) through a finite quotient, and therefore, given f ∈ C∞
c (G(F )), there exists

f ′ ∈ C∞
c (G(F )) such that:

• f ′ is a sum of finitely many O-translates of f , and has O-invariant image in I(G).

It follows from (28) that for any such f ′, and any z ∈ Z(G)O, we have:

• z ∗ f ′ is a sum of finitely many O-translates of z ∗ f , and has O-invariant image in I(G)

(use the easy observation that, if f ′′ ∈ C∞
c (G(F )) has O-invariant image in I(G), then so does

z ∗ f ′′: this is because f ′′ 7→ z ∗ f ′′ is O-equivariant by (28), and hence so is the map it induces
from I(G) to itself). It will also help to note that for any such f ′, since O acts by algebraic
automorphisms:

• If f (resp., z ∗ f) is unstable, then so is f ′ (resp., z ∗ f ′).

Now we recall the spaces Z1(G),Z2(G) ⊂ Z(G) from the introduction.

Notation 4.1.7. (i) Z1(G) ⊂ Z(G) is the (clearly O-invariant) C-vector subspace of Z(G)
consisting of all z ∈ Z(G) that are stable as a distribution on G(F ). We will also study
the O-fixed subspace Z1(G)O of Z1(G).

(ii) • Z2(G) ⊂ Z(G) is the C-sublgebra of Z(G) consisting of all z ∈ Z(G) with the
property that z ∗ f is unstable for every unstable function f ∈ C∞

c (G(F )).
• More generally Z2,O(G) ⊂ Z2(G) is the C-subalgebra of Z(G)O consisting of all
z ∈ Z(G)O such that for every unstable function f ∈ C∞

c (G(F )) whose image in
I(G) is fixed by O, z ∗ f is unstable.

Note that if O is trivial, then Z1(G) = Z1(G)O, and Z2(G) = Z2,O(G).

Lemma 4.1.8. We have Z2,O(G) ⊂ Z1(G)O. In particular, if O is trivial, then Z2(G) ⊂ Z1(G).

Proof. Let z ∈ Z2,O(G) ⊂ Z(G)O, and let f ∈ C∞
c (G(F )) be unstable. It is enough to show that

z(f) := z ∗ f∨(1) equals 0. Choose f ′ as in Remark 4.1.6. Then, by Remark 4.1.6, f ′
∨
is unstable.

Since z ∈ Z2,O(G), we conclude that z ∗ f ′∨ is unstable, from which it follows that z ∗ f ′∨(1) = 0
(as f ′′ 7→ f ′′(1) is a stable distribution, by [Kot88, Proposition 1]).
Since z ∗ f ′∨ is a finite sum of O-translates of z ∗ f∨ (see Remark 4.1.6), and since the action of
O+

G on C∞
c (G(F )) preserves f ′′ 7→ f ′′(1), it follows that z ∗ f∨(1) = 0, as desired. □

Proposition 4.1.9. Let z ∈ Z(G)O. Then the following are equivalent:

(i) z ∈ Z2,O(G).
(ii) If D is a stable O-invariant distribution on G(F ), then the distribution f 7→ D(z ∗ f) is

stable.
(iii) If D ∈ SD(G)O, then the distribution f 7→ D(z ∗ f) is stable.

(iv) If D is the O-average of IndGM Θ′, where M ⊂ G is a Levi subgroup and Θ′ ∈ SDell(M)OM ,
then the distribution f 7→ D(z ∗ f) is stable.

Remark 4.1.10. Using the formula D ∗ z(f) = D ((z ∗ f∨)∨) (see just below Notation 4.1.2), one
can show that each of the conditions (ii), (iii) and (iv) of the above proposition has an equivalent
variant where the distribution f 7→ D(z ∗ f) is replaced by the distribution D ∗ z.
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Proof of Proposition 4.1.9. Let us prove (i) ⇒ (ii). Let z ∈ Z2,O(G) ⊂ Z(G)O, and let us show
that ifD is an O-invariant distribution on G(F ), and f ∈ C∞

c (G(F )) is unstable, thenD(z∗f) = 0.
Let f ′ be as in Remark 4.1.6, so that f ′ is unstable, its image in I(G) is O-invariant, and z ∗ f ′ is
a finite sum of O-translates of z ∗ f . Therefore, z ∗ f ′ is unstable (by the definition of Z2,O(G)),
so that D(z ∗ f ′) = 0, while by the O-invariance of D, D(z ∗ f ′) is a nonzero integer multiple of
D(z ∗ f). Therefore, D(z ∗ f) = 0, and the implication (i) ⇒ (ii) follows.
Now it is clear that (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) (for (iii) ⇒ (iv), use that parabolic induction preserves
stability of distributions, for which a nice reference is [KV16, Corollary 6.13]).
If f ∈ C∞

c (G(F )) has O-invariant image in I(G), then so does z ∗ f (we observed this in Remark
4.1.6). This fact together with Corollary 3.2.12 gives the implication (iv) ⇒ (i). □

4.2. Using Shahidi’s argument on the Plancherel µ-function. Let M ⊂ G be a Levi sub-
group, and ζ : AM(F ) → C× a unitary character. One of the results that we will prove in this
subsection is Corollary 4.2.11, part (i) of which says that the distribution

∑
d(σ)µ(σ)Θσ is stable,

and more generally so is
∑
d(σ)µ(σ)ẑ(σ)Θσ for any z ∈ Z1(G), where the sum ranges over the sub-

set Irr2(M)ζ ⊂ Irr2(M) of discrete series representations of M(F ) whose central character restricts
to ζ on AM(F ). Part (ii) of the corollary says that these distributions transfer well across inner
forms. These are weaker but unconditional results in the spirit of the constancy of the Plancherel
measure on L-packets as proved by Shahidi (see [Sha90, Section 9]), and that of the transfer of
Plancherel measures across inner forms as one sees in the works of Choiy (see, e.g., [Cho14]) and
Heiermann (see [Hei16, Appendix A]). We then use these results in Corollary 4.2.12 to show, in
part (i) of the corollary, that the Plancherel measure or rather the µ-function, is constant on
unitarily stable discrete series L-packets, and in part (ii) of the corollary that whenever a unitarily
stable discrete series L-packet Σ on M transfers to a unitarily stable discrete series L-packet Σ∗

on the quasi-split inner form M∗ of M, we have µ(σ) = cµ(σ∗) for all σ ∈ Σ and σ∗ ∈ Σ∗, where
c is an explicit constant. We will use the Paley-Wiener theorem as stated in [Art96], so we begin
by reviewing it.

4.2.1. Review of the version of the Paley-Wiener theorem in [Art96].

Notation 4.2.1. (i) For this subsection, we fix a maximal split torus A0 ⊂ G, and let M0

be the minimal Levi subgroup of G obtained as the centralizer of A0 in G. Further,
let L denote the set of Levi subgroups of G that are semistandard, i.e., contain A0, or
equivalently, M0.

(ii) Set W0 =W (M0) (i.e., the WG(M0) in the sense of Subsubsection 2.1.7).
(iii) W0 acts on L, and we write L/W0 for the set-theoretic quotient. It is easy to see that

each G(F )-conjugacy class of Levi subgroups of G intersects L in a single W0-orbit, so
that L/W0 can be identified with the set of G(F )-conjugacy classes of Levi subgroups of
G.

(iv) We let the topological space T̃ (G), the topological space T̃ell(M) for each Levi subgroup
M ∈ L, and the decomposition

(30) T̃ (G) =
⊔

M∈L/W0

(T̃ell(M)/W (M))

be as in [Art96, Section 4]. T̃ (G) ⊃ T̃ell(G) is formed of certain tuples (L, σ, r), where
L is a Levi subgroup of G and σ ∈ Irr2(L); we will recall a few more details below.

We will also occasionally use the quotients T (G) and Tell(G) of T̃ (G) and T̃ell(G) as in
[Art96, page 531]. For a smooth unitary character ζ : AG(F ) → C×, we also have subsets

T̃ζ(G) ⊂ T̃ (G), T̃ζ,ell(G) ⊂ T̃ell(G), Tζ(G) ⊂ T (G) and Tζ,ell(G) ⊂ Tell(G) represented
by tuples (L, σ, r) such that the central character of σ restricts to ζ on AG(F ) (slightly
differing in notation from [Art96, page 531]).

(v) If M ∈ L and τ = (L, σ, r) ∈ T̃ (M), we let ΘM
τ be the associated virtual character on M(F ):

for M = G, the ‘normalized version’ of ΘG
τ , obtained by multiplying it by the discriminant

factor γ 7→ |D(γ)|1/2 in the notation of [Art96], is what is denoted by γ 7→ I(τ, γ) in [Art96,

Section 4, near the top of page 532]. For τ ∈ T̃ (G), let Θτ = ΘG
τ . If τ = (L, σ, r) ∈ T̃ell(M),
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where M ∈ L, and ΘG
τ is defined using the image of τ in T̃ (G), one knows, and we will

use without further comment in what follows, that ΘG
τ = IndGM ΘM

τ : use [MgW18, Lemma
2.10] (which works in the twisted case). One also knows that for each M ∈ L, the ΘM

τ with

τ ∈ T̃ell(M) running over a set of representatives for Tell(M) form a basis for Dell(M).
(vi) In this section too, we will write I(G) for the space of IntG(F )-coinvariants of C∞

c (G(F ));
it is also the quotient of C∞

c (G(F )) by the subspace consisting of those functions whose
strongly regular semisimple orbital integrals all vanish. SI(G) will denote the quotient
of I(G) such that the kernel of C∞

c (G(F )) → I(G) → SI(G) is the subspace of func-
tions whose strongly regular semisimple orbital integrals all vanish. Thus, I(G)∗ =
Hom(I(G),C) identifies with the space of invariant distributions on G(F ), and SI(G)∗ ⊂
I(G)∗ with the subspace of stable distributions. Of course, similar notation will apply
with G replaced by a Levi subgroup M or a quasi-split form G∗, etc. According to the
Paley-Wiener theorem, as stated in [Art96] and recalled in Remark 4.2.3 below, sending

f ∈ C∞
c (G(F )) to the function T̃ (G) → C given by τ 7→ Θτ (f), induces an isomorphism

from I(G) to a concrete space of functions on T̃ (G). Once we describe this isomorphism
in Remark 4.2.3, it will be thought of as an identification.

We now partially recall (slightly more than) what we need concerning the objects of Notation

4.2.1(iv). The second page of [Art96, Section 4] defines the set T̃ (G) as the set of W0-orbits of
certain triples (L, σ, r). For each such triple (L, σ, r), L is an element of L, σ is a discrete series
representation of L(F ), and r is an element belonging to a certain central extension of the R-group
of (L, σ) in G (we will not need the exact definition of this group, and hence refer the reader to

[Art96] for more details). We refer to [Art96] for the definition of the subset T̃ell(G) ⊂ T̃ (G) of

elliptic elements, and the fact that we have a map from T̃ell(M) (the set obtained by substituting

M for G in the definition of T̃ell(G)) to T̃ (G), giving a decomposition of T̃ (G) as in (30).

For each M ∈ L, Xunr−uni(M) acts on T̃ell(M), where the action of a unitary character χ : M(F ) →
C× in Xunr−uni(M) sends each (L, σ′, r) to (L, σ′ ⊗ χ, r). This action makes each orbit into a
torsor for a finite quotient of Xunr−uni(M), which being a compact torus topologizes the orbit.

The orbits obtained this way partition T̃ell(M), which we topologize by requiring this partition to

be topological. Moreover, T̃ell(M)/W (M) is then given the quotient topology. Allowing M to vary,

this topologizes T̃ (G) by requiring the partition (30) to be topological.

Notation 4.2.2. For any M ∈ L, we have an injection Irr2(M) ↪→ T̃ell(M) given by σ 7→ (M, σ, 1),

which will be thought of as an inclusion. Note that Irr2(M) ⊂ T̃ell(M) is a disjoint union of

connected components of T̃ell(M).

We will need to know Θτ , where τ ∈ T̃ (G), only when it is the image of some (M, σ, 1) ∈ Irr2(M) ⊂
T̃ell(M), where M ∈ L and σ ∈ Irr2(M). In such a situation, Θτ is simply the Harish-Chandra

character of IndGM σ, i.e., of IndGP σ for any parabolic subgroup P ⊂ G with M as a Levi subgroup.

Remark 4.2.3. According to the trace Paley-Wiener theorem, as interpreted by Arthur in [Art96,

page 532], the map f 7→ (τ 7→ ΘG
τ (f)), from C∞

c (G(F )) to some space of functions on T̃ (G),

quotients to an isomorphism from I(G) to the space of functions g : T̃ (G) → C satisfying the
following three conditions:

(i) g is supported on finitely many connected components of T̃ (G) (Condition (i) on [Art96,
page 532]);

(ii) For any M ∈ L and any τ ∈ T̃ell(M), the map Xunr−uni(M) → C given by χ 7→ g(χ · τ),
where χ · τ denotes the image of χ · τ ∈ T̃ell(M) in T̃ (G), is a finite complex linear com-
bination of continuous characters of Xunr−uni(M) (Condition (ii) on [Art96, page 532]);
and

(iii) Condition (iii) on [Art96, page 532], which only concerns the third component of a triple
τ = (L, σ, r), and is automatically satisfied for functions that are supported on the union

over M ∈ L/W0, of Irr2(M)/W (M) ⊂ T̃ell(M)/W (M) ⊂ T̃ (G).

As mentioned in Notation 4.2.1(vi), we will now start viewing I(G) also as the space of functions

T̃ (G) → C satisfying the three conditions above.
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Remark 4.2.4. In fact, the original version of the trace Paley-Wiener theorem in [BDK86] was
stated quite differently: it involved the set of cuspidal supports, rather than the triples τ = (L, σ, r)
above. It is the difference between these two formulations that necessitated the extra care taken in
the proof of [Sha90, Proposition 9.3] (as Shahidi mentions in the remark after that Proposition),
which the formulation of the Paley-Wiener theorem given by Arthur in [Art96] lets one avoid.
According to [MgW18, Sections 6.1 and 6.2], the version we use follows from [LH17, Section 3.2]
(which in fact handles the twisted case).

Notation 4.2.5. (i) We fix a Haar measure on G(F ), and more generally on M(F ) for each
M ∈ L. For each M ∈ L, as in [MgW18, Section 1.2], we give AM(F ) and Xunr−uni(AM)
Haar measures such that meas(AM(F )c)meas(Xunr−uni(AM)) = 1, where AM(F )c ⊂
AM(F ) is the maximal compact subgroup. We give M(F )/AM(F ) the quotient measure,
and use it to define the formal degree d(σ) for each σ ∈ Irr2(M).

(ii) Unless otherwise stated, for any compact open subgroup H ⊂ G(F ) and an algebraic
subgroup L ⊂ G, HL will denote H ∩ L.

(iii) Fix a maximal compact subgroup K = KG ⊂ G(F ), which is the stabilizer of a special
point belonging to the apartment of A0 in the Bruhat-Tits building of G. We let I =
IG ⊂ K be an Iwahori subgroup of G(F ) associated to a chamber in the same apartment.
Thus, I has an Iwahori decomposition I = INIMIN− , whenever M ⊂ G is a semistandard
Levi subgroup, and N and N− are unipotent radicals of opposite parabolic subgroups of
G that have M as a common Levi subgroup.

(iv) To each semistandard Levi subgroup M ⊂ G, we attach constants γ(G|M), γ′(G|M) and
γ′′(G|M) (the latter two are, notationally, nonstandard and ad hoc) as follows. We choose
opposite parabolic subgroups P and P− having M as a common Levi subgroup, with N
and N− as their unipotent radicals, and let γ(P) = γ(G|M) be as in [Wal03, page 241],
using the choices of the measures as fixed in that reference. Moreover, we set (ad hoc and
non-standard notation):

(31)

γ′(G|M) =

(∏
α

γ(Mα|M)−2

)
, γ′′(G|M) = [KN : IN]

−1[KN− : IN− ]−1, and γ′′′(G|M) = γ′(G|M)γ′′(G|M),

where in the first product α runs over the set of reduced roots of AM (outside M), taken
up to a sign. It follows from [Wal03, Section I.1, (3)] that γ(G|M) and γ′(G|M) depend
only on M, and not on P and P−. That the same applies to γ′′(G|M) and hence also to
γ′′′(G|M) follows from the relation

(32) γ(G|M) =
[K : H]

[KN : HN][KM : HM][KN− : HN− ]
,

which we claim holds for any compact open subgroup H ⊂ G(F ) with an Iwahori decom-
position H = HNHMHN− (and in particular for H = I, independently of P and P−). The
formula (32) follows from the latter equality of [Wal03, Section I.1, (2)], upon taking the f
there to be the characteristic function of H, and noting that our analogues of the measures
dg, dū, dm and du as in that equality are obtained by dividing arbitrarily chosen Haar mea-
sures on G(F ),N−(F ),M(F ) and N(F ) respectively by meas(K),meas(KN−),meas(KM)
and meas(KN).

(v) For each Levi subgroup M ∈ L, let Ē2(M) denote the set of connected components of

Irr2(M) ⊂ T̃ell(M), and for each σ ∈ Irr2(M), let

Oσ := Xunr−uni(M) · σ = Xunr−uni(M) · (M, σ) = Xunr−uni(M) · (M, σ, 1) ⊂ Irr2(M) ⊂ T̃ell(M)

be the element of Ē2(M) containing the image of σ ∈ Irr2(M) ⊂ T̃ell(M). As in [Wal03,
pages 239 and 302], we give each Oσ the unique measure such that the restriction map
Xunr−uni(M) → Xunr−uni(AM) and the obvious map Xunr−uni(M) → Oσ locally pre-
serve measures. In other words, the “AM(F )-central character” map from Irr2(M) to the
set Xuni(AM) of unitary characters AM(F ) → C× is locally measure preserving, where
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Xuni(AM) is given the topology and measure such that each orbit map Xunr−uni(AM) →
Xuni(AM) is a measure preserving homeomorphism.

Here, the O in the orbit Oσ is not to be confused with the groups OM of automorphisms.
(vi) If M ∈ L and σ ∈ Irr2(L), we let µ(σ) = µG(σ) be the Harish-Chandra µ-function

evaluated on σ, as in [Wal03, Section 5.2].

Now let us recall the Plancherel formula as stated in [Wal03, Theorem VIII.1.1(3)], but in terms
of our different choice of measures, and in a form suited to our purposes:

Lemma 4.2.6. Let g : T̃ (G) → C be an element of I(G) (identified as in Remark 4.2.3), and let

fg ∈ C∞
c (G(F )) have image g; in other words, g(τ) = Θτ (fg) for all τ ∈ T̃ (G). Let f∨g be as in

Notation 4.1.2 (like what f̌g would be in the notation of [Wal03, page 236]). Then we have:

(33) fg(1) = f∨g (1) =
∑

M∈L/W0

γ′′′(G|M)meas(IM)

meas(I) ·#W (M)

∫
ζ∈Xuni(AM)

 ∑
σ∈Irr2(M)ζ

µ(σ)d(σ)g(σ)

 dζ,

where g(σ) = g((M, σ)) refers to the value of g on the image of σ ∈ Irr2(M) ⊂ T̃ell(M) in T̃ (G).

Proof. Given the constraint meas(AM(F )c)meas(Xunr−uni(AM)) = 1 (see Notation 4.2.5(i)), and
because d(σ) varies linearly with the measure on AM(F ), we may and do assume that AM(F )c
and Xunr−uni(AM) are given the normalized Haar measure, as in [Wal03].
Suppose we can prove:

(34) fg(1) = f∨g (1) =
∑

M∈L/W0

γ′(G|M)γ(G|M)meas(KM)

meas(K) ·#W (M)

∑
O∈Ē2(M)

∫
(M,σ)∈O

µ(σ)d(σ)g(σ) dσ.

Since the “AM(F )-central character map” from Irr2(M) ⊂ T̃ell(M) to Xuni(AM) preserves measures
locally, the fiber measure on each fiber of this map is the counting measure. Moreover, the fibers
have finite intersection with each O ∈ Ē2(M) (since Xunr(M) → Xunr(AM) is an isogeny). Using
this and the Fubini theorem (justified by g being continuous and supported on finitely many

connected components of T̃ (G), together with the finiteness of the map T̃ell(M) → T̃ (G)), and the
equality

γ(G|M)meas(KM)

meas(K)
=
γ′′(G|M)meas(IM)

meas(I)

that follows from (32), it is easy to see that (33) follows from (34). Therefore, it now suffices to
prove (34).
Thus, it is now enough to deduce (34) from the formula in [Wal03, Theorem VIII.1.1(3)]. In
[Wal03, Theorem VIII.1.1(3)], the sum is over a set of associate classes of pairs (O,P) as defined
in [Wal03, Remark VII.2.4], where P ⊂ G is a semistandard parabolic subgroup and O ∈ Ē2(M),
with M the unique semistandard Levi subgroup of P. Instead, we can clearly sum over pairs
(M,O) with M running over (a set of representatives for) L/W0, and O running over elements of
Ē2(M) up to the action of W (M) (which is the W (G|M) of [Wal03]): this is because, given pairs
(P1,O1) and (P2,O2), where both P1 and P2 have the same M ∈ L as their unique semistandard
Levi subgroup, these pairs are associate if and only if O1 and O2 are conjugate under W (M). It
is then easy to check that the expression of [Wal03, Theorem VIII.1.1(3)] agrees with that on the
right-hand side of (34), which adds the factors meas(KM) and meas(K) to account for not fixing
the measures on G(F ) and M(F ) as in [Wal03] (and we have also used our having normalized
meas(AM(F )c) = meas(AM(F ) ∩K) and meas(Xunr−uni(AM)) to 1). Note that the c(G|M)−2 of
[Wal03] equals our γ(G|M)2γ′(G|M). □

Remark 4.2.7. (i) We recall a decomposition of I(G) ((35) below) from the top of [Art96,
page 533], to which we refer for more explanation. Recall the subspace Icusp(M) ⊂ I(M)
defined to be the image of C∞

c,cusp(M(F )) ⊂ C∞
c (M(F )) in I(M), as in the proof of Propo-

sition 3.2.6 (and as in Remark 3.4.7(i)). One knows that Icusp(M) identifies via the Paley-

Wiener theorem (i.e., as in Remark 4.2.3) with the space of those functions T̃ (M) → C
in I(M) that are supported on T̃ell(M). Recall that for each Levi subgroup M ⊂ G, the
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map T̃ell(M) → T̃ (G) factors through an isomorphism from T̃ell(M)/W (M) onto its im-
age. Using this fact, we see that the trace Paley-Wiener theorem from [Art96] (recalled
in Remark 4.2.3) gives us a decomposition for I(G) of the form:

(35) I(G) =
⊕

M∈L/W0

(Icusp(M))W (M).

(ii) Concretely, given g : T̃ (G) → C in I(G), its projection gM to Icusp(M)W (M) is the unique

function T̃ (M) → C that is supported on T̃ell(M), and such that Θτ (gM) = ΘIndG
M τ (g)

for each τ ∈ Dell(M). This identifies Icusp(M)W (M) with the subspace of I(G) consisting

of the images of functions f ∈ C∞
c (G(F )) such that (IndGL Θ)(f) = 0 whenever L is not

G(F )-conjugate to M, and Θ ∈ Dell(L).
(iii) From (35), taking duals, we have a decomposition involving spaces of distributions:

(36) I(G)∗ =
⊕

M∈L/W0

(Icusp(M)∗)W (M).

Tautologically, the pairing of I(G) with D(G), after using the identifications of (35) and
(11), is obtained by taking a direct sum of the pairings between the Icusp(L)W (L) and

Dell(L)
W (L), as L ranges over L/W0.

(iv) By Proposition 3.2.10, SIcusp(M) (resp., SI(G)) is the quotient of Icusp(M) (resp., I(G))
by its subspace consisting of elements on which elements of SDell(M) (resp., SD(G))
vanishes. Therefore (35) induces a decomposition

(37) SI(G) =
⊕

M∈L/W0

(SIcusp(M))W (M).

This decomposition has a description analogous to that for (35) given in (ii) above. Taking
duals, we get a decomposition

(38) SI(G)∗ =
⊕

M∈L/W0

(SIcusp(M)W (M))∗

at the level of stable distributions, that extends (12), and clearly aligns with (36).
(v) Let us expand on (37) and (38), and their compatibility with (35) and (36). The terms

of (37) identify with quotients of the corresponding terms of (35); the derivation of (37)
tells us that (35) identifies the subspace of I(G) consisting of its unstable elements, with
the direct sum, over M ∈ L/W0, of the subspace of unstable elements of Icusp(M)W (M).
Quotienting (35) by this restricted isomorphism yields (37). Dualizing, (38) is a restric-
tion of (36) in an obvious way. While SI(G)∗ identifies with the space of stable dis-
tributions on G(F ), we can also interpret (Icusp(M)W (M))∗ and (SIcusp(M)W (M))∗ as
spaces of distributions on M(F ), using W (M)-averaging and the analogues of (36) and
(38) with G replaced by M. Thus, (Icusp(M)W (M))∗ can be identified with the space
of W (M)-invariant functionals on I(M) (i.e., invariant distributions on M(F )) that van-
ish on “Icusp(L)WM(L)” for each proper Levi subgroup L ⊂ M. A similar interpretation

applies to (SIcusp(M)W (M))∗. Clearly, (SIcusp(M)W (M))∗ is precisely the subspace of

(Icusp(M)W (M))∗ consisting of elements that when, viewed as distributions on M(F ), are
stable. Now it is easy to see the following: if, according to (36), Θ ∈ I(G)∗ has component
ΘM ∈ (Icusp(M)W (M))∗ for each M ∈ L/W0, then the distribution Θ on G(F ) is stable

if and only if each ΘM ∈ (Icusp(M)W (M))∗ ⊂ (I(M)W (M))∗ is stable as a distribution on
M(F ).

(vi) The compatibility between parabolic induction and endoscopic transfer (Remark 3.2.2(iii))
admits a slight generalization involving more general distributions than virtual characters,
as we now review in the case of transfer to the quasi-split inner form; this can perhaps
be viewed as an ‘endoscopic version’ of (v) above. Let G∗ be a quasi-split inner form of
G underlying an endoscopic datum G∗ for G, as in Notation 3.2.1(i). Let L∗ and L∗/W ∗

0

be analogues, for G∗, of L and L/W0. Choosing representatives, we identify L/W0 and
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L∗/W ∗
0 with subsets of L and L∗. Notation 3.2.1(v) gives us an injection L/W0 ↪→ L∗/W ∗

0 .
For each M ∈ L/W0 ⊂ L and its image M∗ ∈ L∗/W ∗

0 ⊂ L∗, M∗ is a quasi-split form of
M, and more precisely, a choice of ‘Levi subgroup matching data’ as in Notation 3.2.1(vi)
gives an endoscopic datum M∗ realizing M∗ as endoscopic to M. Now we make two easy
but useful observations:
(a) Let M ∈ L/W0 ⊂ L, and consider the corresponding M∗ ∈ L∗/W ∗

0 ⊂ L∗. Via
(35) and the analogue of (37) for G∗, the endoscopic transfer map I(G) → SI(G∗)
along G∗ takes Icusp(M)W (M) to SIcusp(M

∗)W (M∗), and moreover, the resulting map

Icusp(M)W (M) → SIcusp(M
∗)W (M∗) is obtained by restricting the endoscopic transfer

map I(M) → SI(M∗) along M∗. Indeed, using the concrete description in (ii) and its
analogue for (37) (as applied to G∗), both these assertions follow from the compatibil-
ity between parabolic induction and endoscopic transfer (Remark 3.2.2(iii)), together
with the fact that the endoscopic transfer maps I(G) → SI(G∗) and I(M) → SI(M∗)
are uniquely determined as dual to the endsocopic transfer maps SD(G∗) → SD(G)
and SD(M∗) → SD(M), by the density of characters in [Art96, Lemma 6.3] (or as
recalled in Proposition 3.2.10).

(b) The map SI(G∗)∗ → I(G)∗, via (36) and the analogue of (38) for G∗, restricts as
follows to each (SIcusp(M

∗)W (M∗))∗: If M∗ ∈ L∗/W ∗
0 is not the image of any element

of L/W0, then this restriction is zero; if not, say M∗ is the image of M ∈ L/W0, it is a
map (SIcusp(M

∗)W (M∗))∗ → (Icusp(M)W (M))∗ ⊂ I(G)∗ obtained as the restriction of
the endoscopic transfer map SI(M∗)∗ → I(M)∗ along M∗. This observation follows
by dualizing the observation (a) above (applied with M replaced by each L ∈ L/W0 ⊂
L).

4.2.2. Stability of certain distributions, and their transfer to inner forms.

Proposition 4.2.8. Suppose Θ ∈ I(G)∗, and that for each L ∈ L, µΘ = µΘ,L : Irr2(L) → C is a

continuous function that is invariant under W (L). Suppose that for all g : T̃ (G) → C in I(G) we
have:

(39) Θ(g) =
∑

L∈L/W0

∫
ζ∈Xuni(AL)

ΘL,ζ(g) dζ,

where ΘL,ζ ∈ Icusp(L)∗ ⊂ I(L)∗ is a distribution of the form:

(40) ΘL,ζ =
∑

σ∈Irr2(L)ζ

µΘ(σ)d(σ)Θ
L
σ,

and in (39) ΘL,ζ(g) refers to ΘL,ζ(gL), gL ∈ Icusp(L)W (L) being the projection of g via (35).
Suppose that Θ ∈ I(G)∗ is stable, and let M ∈ L. Then ΘM,ζ ∈ I(M)∗, for each ζ ∈ Xuni(AM).

Proof. By the compatibility between (36) and (38), the projection ΘM of Θ ∈ SI(G)∗ to (Icusp(M)∗)W (M) ⊂
Icusp(M)∗ ⊂ I(M)∗ under (36) belongs to (SIcusp(M)∗)W (M).

Note that for any g : T̃ (M) → C in I(M), ζ 7→ ΘM,ζ(g) is the push-forward of σ 7→ µΘ(σ)d(σ)g(σ)

along the AM(F )-central character map T̃ell(M) ⊃ Irr2(M) → Xuni(AM), which is a local homeo-
morphism, so that ζ 7→ ΘM,ζ(g) is continuous (use that g is supported on finitely many connected

components of Irr2(M) ⊂ T̃ell(M)). We claim that for all f ∈ C∞
c (M(F )), we have:

(41) ΘM(f) =

∫
ζ∈Xuni(AM)

ΘM,ζ(f) dζ.

The right-hand side of (41) represents a distribution in f that belongs to Icusp(M)∗ ⊂ I(M)∗, since
the ΘM,ζ are “supported” in discrete series representations. Therefore, (41) is tautological once
we see that the right-hand side of (41) is a W (M)-invariant distribution in f ∈ C∞

c (M(F )), which
in turn follows from the W (M)-invariance of σ 7→ µΘ(σ) (by hypothesis) and that of σ 7→ d(σ).
Using (41) and the stability of ΘM, let us show that ΘM,ζ is stable for each ζ ∈ Xuni(AM). For
all h ∈ C∞

c (AM(F )) and f ∈ C∞
c (M(F )), let h ∗ f ∈ C∞

c (M(F )) denote the left-regular action

of h on f . It is easy to see that σ(h ∗ f) = ĥ(ζσ)σ(f) for all unitary representations σ ∈ Irr(M),
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where ζσ is the AM(F )-central character of σ and ĥ ∈ C0(X
uni(AM)) is the Fourier transform of

h (C0 stands for functions that ‘vanish at ∞’). This implies that ΘM,ζ(h ∗ f) = ĥ(ζ)ΘM,ζ(f), for
all h ∈ C∞

c (AM(F )) and f ∈ C∞
c (M(F )).

It is immediately verified that if f ∈ C∞
c (M(F )) is unstable, then so is h ∗ f for all C∞

c (AM(F )).
It follows from the stability of ΘM that for unstable functions f ∈ C∞

c (M(F )):∫
ζ∈Xuni(AM)

ĥ(ζ)ΘM,ζ(f) dζ = 0.

Since the image of C∞
c (AM(F )) in C0(X

uni(AM)) ∩ L2(Xuni(AM)) under the Fourier transform
is dense in L2(Xuni(AM)) by Pontrjagin duality, it follows that (ζ 7→ ΘM,ζ(f)) ∈ Cc(X

uni(AM))
vanishes as an element of L2(Xuni(AM)), and hence as an element of Cc(X

uni(AM)). Since this is
true for all unstable f ∈ C∞

c (M(F )), the stability of ΘM,ζ follows. □

Remark 4.2.9. (i) The above proof can probably be adapted to prove a more general version
of the proposition, where µΘ = µΘ,M is allowed to be any continuous function on the larger

space T̃ell(M) ⊃ Irr2(M) that has an equivariance property opposite to that in the [Art96,
page 532, condition (iii)] (whose articulation we omitted from Remark 4.2.3). The sum
defining ΘM,ζ will then have to be over a set Tell(M)ζ ⊃ Irr2(M)ζ , the ‘ζ-part’ of the

quotient Tell(M) of T̃ell(M) as in [Art96, just before (4.2)].
(ii) The argument of the proof can be adapted to deduce a ‘version with central character’

of the Plancherel formula: if ζ : AG(F ) → C× is a smooth unitary character, and f ∈
C∞

AG(F ),ζ(G(F )), then for an appropriate choice of a measure on Xuni(AM/AG) we have a

formula analogous to that in Lemma 4.2.6:

(42) f(1) =
∑

M∈L/W0

γ′′′(G|M)meas(IM)

meas(I) ·#W (M)

∫
ζ′∈Xuni(AM/AG)

 ∑
σ∈Irr2(M)ζζ′

µ(σ)d(σ)ΘG
σ (f)

 dζ ′.

Proposition 4.2.10. Let G∗ be an inner form of G. Fix an endoscopic datum G∗ for G with
underlying group G∗, as in Notation 3.2.1(i). Let M ⊂ G be a Levi subgroup in L, and M∗ ⊂ G∗ a
Levi subgroup in an analogous set L∗ defined using a maximal split torus A∗

0 ⊂ G∗. Assume that
some choice of ‘Levi subgroup matching data’ as in Notation 3.2.1(vi) matches M and M∗, giving
an endoscopic datum M∗ for M with underlying group M∗. In particular, we have identifications
AM∗ = AM and AG∗ = AG. Let Θ = ΘG, the ΘL, the µΘ = µΘ,L and the ΘL,ζ be as in Proposition
4.2.8. Suppose that Θ∗ = ΘG∗ the ΘL∗ , the µΘ∗ = µΘ∗,L∗ and the

ΘL∗,ζ =
∑

σ∗∈Irr2(L∗)ζ

d(σ∗)µΘ∗(σ∗)ΘL∗

σ∗

are analogous objects associated to G∗; in particular, Θ and Θ∗ are stable, and the µΘ,L and the
µΘ∗,L∗ are invariant under the W (L) and the W (L∗), respectively. Assume that Θ∗ has image
Θ under the endoscopic transfer map SI(G∗)∗ → SI(G)∗. Then for each ζ ∈ Xuni(AM) =
Xuni(AM∗), the image of ΘM∗,ζ under the endoscopic transfer map SI(M∗)∗ → SI(M)∗ equals
ΘM,ζ .

Proof. We follow the proof of Proposition 4.2.8. As we saw in that proof, the projection ΘM

of Θ along I(G)∗ → (Icusp(M)W (M))∗ is stable, and and similarly we get the projection ΘM∗ ∈
(SIcusp(M

∗)W (M∗))∗ ⊂ SI(G∗)∗ of Θ∗ = ΘG∗ . By Proposition 4.2.8, ΘM,ζ and ΘM∗,ζ are stable
for each ζ ∈ Xuni(AM) = Xuni(AM∗). We have (41) expressing ΘM in terms of the ΘM,ζ , and a
similar equation relates ΘM∗ to the ΘM∗,ζ . Remark 4.2.7 (vi)(b) gives us the following claim:

Claim. The restriction of the endoscopic transfer map SI(G∗)∗ → SI(G)∗ ⊂ I(G)∗ to (SIcusp(M
∗)W (M∗))∗

is a map (SIcusp(M
∗)W (M∗))∗ → (Icusp(M)W (M))∗, obtained by restricting the endoscopic transfer

map SI(M∗)∗ → I(M)∗.
By this claim, ΘM∗ has image ΘM under SI(M∗)∗ → SI(M)∗. We then identify C∞

c (AM∗(F ))
and C∞

c (AM(F )) with each other, and consider their left-regular actions on C∞
c (M∗(F )) and

C∞
c (M(F )), as well as the induced actions on associated spaces such as I(M∗) and I(M) and
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SI(M∗) and SI(M). It is easy to see, using the arguments in the proof of Lemma 3.2.3(i), that
this action respects the map SI(M∗) → SI(M).
Now assume that f ∈ C∞

c (M(F )) and f∗ ∈ C∞
c (M∗(F )) have matching orbital integrals. We need

to show that ΘM∗,ζ(f
∗) = ΘM,ζ(f) for all ζ ∈ Xuni(AM). For all h ∈ C∞

c (AM(F )) = C∞
c (AM∗(F )),

we have that h ∗ f and h ∗ f∗ have matching orbital integrals, and (as in the proof of Proposition

4.2.8) that ΘM∗,ζ(h ∗ f∗) = ĥ(ζ)ΘM∗,ζ(f
∗), and that ΘM,ζ(h ∗ f) = ĥ(ζ)ΘM,ζ(f). Therefore,∫

Xuni(AM∗ )=Xuni(AM)

ĥ(ζ)ΘM∗,ζ(f
∗) dζ = ΘM∗(h∗f∗) = ΘM(h∗f) =

∫
Xuni(AM∗ )=Xuni(AM)

ĥ(ζ)ΘM,ζ(f) dζ.

Using Pontrjagin duality on Xuni(AM∗) = Xuni(AM) as in the proof of Proposition 4.2.8, it is now
easy to see that ΘM∗,ζ(f

∗) = ΘM,ζ(f) for each ζ ∈ Xuni(AM), as desired. □

Corollary 4.2.11. (i) Let M ⊂ G be a Levi subgroup. Then for each ζ ∈ Xuni(AM) and
z ∈ Z1(G), the distribution∑

σ∈Irr2(M)ζ

d(σ)µ(σ)ẑ(σ)ΘM
σ ∈ I(M∗)

is stable. In particular,
∑
σ∈Irr2(M)ζ

d(σ)µ(σ)ΘM
σ is stable.

(ii) Let G∗ be a quasi-split inner form of G, and let G∗ be as in Notation 3.2.1(i). As in
Proposition 4.2.10, let M∗ ⊂ G∗ and M ⊂ G be ‘compatible Levi subgroups’, i.e., related
by an endoscopic datum M∗ obtained using ‘Levi subgroup matching data’ as in Notation
3.2.1(vi). Assume that the measures on M∗(F ) and M(F ) are compatible in the sense
explained in [Kot88, page 631], and that the identification AM∗(F ) = AM(F ) is measure
preserving. Let TM∗ denote the endoscopic transfer map SI(M∗)∗ → SI(M)∗. Assume
that z∗ ∈ Z1(G

∗) and z ∈ Z1(G) are related by TG∗(z∗) = e(G)z, where TG∗ is the
endoscopic transfer map SI(G∗)∗ → SI(G)∗, normalized using compatible measures on
G∗(F ) and G(F ) as in [Kot88, page 631]. Then for each ζ ∈ Xuni(AM∗) = Xuni(AM) we
have that, and SI(G∗)∗ → SI(G)∗ we have:

γ′′′(G∗|M∗)·TM∗

 ∑
σ∗∈Irr2(M∗)ζ

d(σ∗)µ(σ∗)ẑ∗(σ∗)ΘM∗

σ∗

 = e(G)γ′′′(G|M)

 ∑
σ∈Irr2(M)ζ

d(σ)µ(σ)ẑ(σ)ΘM
σ

 .

In particular, we have

γ′′′(G∗|M∗) ·TM∗

 ∑
σ∗∈Irr2(M∗)ζ

d(σ∗)µ(σ∗)ΘM∗

σ∗

 = e(G)γ′′′(G|M)

 ∑
σ∈Irr2(M)ζ

d(σ)µ(σ)ΘM
σ

 .

Proof. In (i), the latter assertion (i.e., the one starting with ‘In particular’) can be deduced from
the former, by letting z ∈ Z(G) be the Dirac delta distribution at the identity, which ensures
that ẑ(σ) = 1 for all σ ∈ Irr2(M). A similar comment applies to (ii): if we take z∗ ∈ Z(G∗) to
be the Dirac delta measure at the identity, then by [Kot88, Proposition 2] (which assumes the
compatibility of measures between G∗(F ) and G(F )), we can take z to be the Dirac delta at the
identity too (this is the reason for adding the Kottwitz sign e(G) in the condition TG∗(z∗) =
e(G)z). Therefore, in both (i) and (ii), we will only prove the former assertion.
To prove (i), we first note that Lemma 4.2.6 and the equality ΘG

τ (z ∗ f) = ẑ(σ)ΘG
τ (f) for L ∈ L

and τ = (L, σ, 1) ∈ Irr2(L) ⊂ T̃ (G) (use (27)) imply:
(43)

z(f∨) = z ∗ f(1) =
∑

L∈L/W0

γ′′′(G|L)meas(IL)

meas(I) ·#W (L)

∫
ζ∈Xuni(AL)

 ∑
σ∈Irr2(L)ζ

µ(σ)d(σ)ẑ(σ)ΘG
σ (f)

 dζ.

Let Θ = ΘG ∈ I(G)∗ be given by f 7→ z(f∨) = z ∗ f(1). We claim that the hypotheses of
Proposition 4.2.8 are satisfied for Θ, if we take, for each L ∈ L/W0 and σ ∈ Irr2(L):

(44) µΘ(σ) = µΘ,L(σ) =
γ′′′(G|L)meas(IL)

meas(I) ·#W (L)
ẑ(σ)µ(σ).
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By Proposition 4.2.8 (and using the expression (40)), proving this claim will yield (i). Given (43),
using that Θ is stable (since z ∈ Z1(G)), this follows from the following three observations applied
to each L ∈ L:

• If f ∈ C∞
c (G(F )) maps to g in I(G), then for each σ ∈ Irr2(L), Θ

G
σ (f) = ΘG

σ (g) = ΘL
σ(gL),

where gL is, as in Proposition 4.2.8, the projection of g to Icusp(L)W (L) as per (35).
• µΘ,L is continuous, since for each σ ∈ Irr2(L), χ 7→ ẑ(σ⊗χ) and χ 7→ µ(σ⊗χ) are rational

functions on Xunr(L) that are regular on Xunr−uni(L) (for the latter, see [Wal03, Lemma
V.2.1]).

• µΘ,L isW (L)-invariant, since σ 7→ ẑ(σ) and σ 7→ µ(σ) are (for the latter, again use [Wal03,
Lemma V.2.1]).

This gives (i). The proof of (ii) will implicitly use the observations made in the proof of (i).
Without loss of generality, M∗ belongs to the set L∗ analogous to L, defined using a chosen split
maximal torus A∗

0 ⊂ G∗. We apply Proposition 4.2.10 with the Θ∗ = ΘG∗ ∈ SI(G∗) of that
proposition taken to be the distribution f∗ 7→ z∗((f∗)∨) = (z∗ ∗ f∗)(1). It is easy to see from
Remark 3.2.2(i) that f∨ and (f∗)∨ have matching orbital integrals whenever f and f∗ do, so
that the image Θ := ΘG := TG∗(Θ∗) of Θ∗ under endoscopic transfer with respect to G∗ equals
f 7→ e(G)z(f∨) = e(G)(z ∗ f)(1).
Combining Proposition 4.2.10 with (44) and its analogue with G replaced by G∗, we get

γ′′′(G∗|M∗)meas(IM∗)

meas(IG∗) ·#W (M∗)
·TM∗

 ∑
σ∗∈Irr2(M∗)ζ

d(σ∗)µ(σ∗)ẑ∗(σ∗)ΘM∗

σ∗


=
γ′′′(G|M)meas(IM)

meas(IG) ·#W (M)
·

 ∑
σ∈Irr2(M)ζ

d(σ)µ(σ) · e(G)ẑ(σ)ΘM
σ

 ,

for each ζ ∈ Xuni(AM) = Xuni(AM∗), where IG = I is as in Notation 4.2.5(iii), IG∗ is the
analogous subgroup of G∗(F ). Note that IM = I ∩M(F ) and IM∗ = IG∗ ∩M∗(F ) is are Iwahori
subgroups of M(F ) and M∗(F ). This much is what we get without imposing any compatibility
between the measures on G∗(F ) and G(F ), and between the ones on M∗(F ) and M(F ). Since
#W (M∗) = #W (M) by the discussion of Notation 3.2.1(viii), (ii) will follow if we show that, for
our choices of measures, we have:

(45)
meas(IM)

meas(IG)
=

meas(IM∗)

meas(IG∗)
.

As in [Kot88, page 632], we may and do choose the measures on G(F ),M(F ),G∗(F ) and M∗(F )
to be integral and with nonzero reduction for the integral models of the parahoric group scheme
structures associated to IG, IM, IG∗ and IM∗ . It is then enough to show that meas(IG) = meas(IM);
for then we will similarly have meas(IG∗) = meas(IM∗), and (45) will follow. But this equality
is an easy consequence of the discussion in [Kot88, page 633]; one has a formula |S1(Fq)|q− dimS1

describing both meas(IG) and meas(IM), where S1 ⊂ M is an F -torus that becomes a maximal
split torus over the maximal unramified extension of F in F̄ (this does not need that G is simply
connected, and is implicitly used for general reductive groups in a discussion in [Gro97, page 295,
near (4.11)]). □

4.2.3. Consequences for unitarily stable packets.

Corollary 4.2.12. (i) Let M ⊂ G be a Levi subgroup. Let O′
M ⊂ Aut(M) be a subgroup

that acts trivially on AM, consists of elements that extend to automorphisms of G, and
has finite image in Out(M). Let Σ be an O′

M-unitarily stable discrete series L-packet on
M(F ). Then µ is constant on Σ, and for all z ∈ Z1(G) such that σ 7→ ẑ(σ) is O′

M-invariant
on Irr2(M), σ 7→ ẑ(σ) is constant on Σ.

(ii) Suppose we are in the situation of Corollary 4.2.11(ii), with various measures chosen as
in that corollary. Assume that for some subgroups O′

M ⊂ Aut(M) and O′
M∗ ⊂ Aut(M∗)

that act trivially on AM = AM∗ and consist of elements that extend to automorphisms of
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G and G∗, respectively, the images Ō′
M of O′

M and Ō′
M∗ of O′

M∗ in Out(M) = Out(M∗)
are finite and equal. Assume that O′

M and O′
M∗ in Σ is an O′

M-unitarily stable discrete
series L-packet on M(F ) and Σ∗ is an O′

M∗-unitarily stable discrete series L-packet on
M∗(F ). Assume that Σ is a transfer of Σ∗, in the sense that some nonzero virtual character

ΘΣ∗ ∈ SDell(M
∗)O

′
M∗ supported on Σ∗ transfers to a virtual character ΘΣ ∈ SDell(M)O

′
M

supported on Σ. Then for all σ∗ ∈ Σ∗ and σ ∈ Σ, we have:

γ′′′(G∗|M∗)µ(σ∗) = γ′′′(G|M)µ(σ).

Moreover, for all z∗ ∈ Z∗
1 (G

∗) and z ∈ Z1(G) such that z∗ maps to e(G)z under SI(G∗)∗ →
SI(G)∗, and such that σ 7→ ẑ(σ) is O′

M-invariant on Irr2(M) and σ∗ 7→ ẑ∗(σ∗) is O′
M∗-

invariant on Irr2(M)∗, we have ẑ∗(σ∗) = ẑ(σ).

Proof. Let us first prove (i). Since O′
M acts trivially on AM, Proposition 3.3.6 implies that the

elements of Σ have a common AM(F )-central character, which we denote by ζ ∈ Xuni(AM).
It is easy to see from the definition (see [Wal03, Section V.2]) that the µ-function on Irr2(M)
is invariant under automorphisms of M that extend to automorphisms of G, and hence that
σ 7→ d(σ)µ(σ)ẑ(σ) is O′

M-invariant on Irr2(M). By Corollary 4.2.11(i) and Proposition 3.3.6(iii),
it follows that σ 7→ µ(σ)ẑ(σ) is constant on Σ. Applying this with z replaced by the Dirac delta
measure z0 at 1, so that ẑ0(σ) = 1 for all σ, we get the constancy of σ 7→ µ(σ) on Σ. If µ(σ) ̸= 0
for σ ∈ Σ, the constancy of σ 7→ ẑ(σ) follows from that of σ 7→ µ(σ)ẑ(σ). In general, since
χ 7→ µ(σ⊗ χ)ẑ(σ⊗ χ) is meromorphic on Xunr(M) and holomorphic at points of Xunr−uni(M) by
[Wal03, Lemma V.2.1], and since χ 7→ µ(σ⊗χ) is not identically zero on Xunr−uni(AM) (otherwise
it would be so on Xunr(AM), contradicting that intertwining operators are holomorphic on a
dense open subset of the vector space on which they are defined), it suffices to show that for all
χ ∈ Xunr−uni(M), σ 7→ µ(σ ⊗ χ)ẑ(σ ⊗ χ) is constant on Σ. This in turn follows from applying
the above considerations with Σ replaced by Σ⊗χ, which is an O′

M-unitarily stable discrete series
L-packet by Lemma 3.3.8, and the fact that O′

M acts trivially on Xunr(M) (since it does so on
Xunr(AM) and hence on Xunr(SM), which surjects to Xunr(M)).
Now let us prove (ii). By Lemma 3.2.3(i), the common AM-central character ζ ∈ Xuni(AM) =
Xuni(AM∗) of the elements of Σ is also the common AM∗ -central character of the elements of
Σ∗. This time, one similarly has the O′

M-invariance of σ 7→ d(σ)µ(σ)ẑ(σ) on Irr2(M) and the
O′

M∗ -invariance of σ∗ 7→ d(σ∗)µ(σ∗)ẑ(σ∗) on Irr2(M
∗). Thus, we apply Corollary 4.2.11(ii) and

Proposition 3.3.7(iii) to get:

(46) e(M)γ′′′(G∗|M∗)µ(σ∗)ẑ∗(σ∗) = e(G)γ′′′(G|M)µ(σ)ẑ(σ).

Applying this with z∗ replaced by the Dirac measure at the identity, which transfers to e(G)
times the Dirac measure at the identity by [Kot88, Proposition 2], we get γ′′′(G∗|M∗)µ(σ∗) =
e(G)e(M)−1γ′′′(G|M)µ(σ), which gives the first assertion of (ii), since e(G) = e(M) (see [Kot83,
Corollary, (6)]). If µ(σ∗) ̸= 0, so that µ(σ) ̸= 0 as well, the remaining assertion of (ii) follows
from (46). The case where we allow µ(σ∗) to be 0 then follows by twisting by various χ ∈
Xunr−uni(M∗) = Xunr−uni(M), as in the proof of (i). □

Corollary 4.2.13. For some p≫ 0 depending on G, the following holds.

(i) Let M ⊂ G be a Levi subgroup. Let Σ be a regular supercuspidal packet on M(F ), in the
sense of Kaletha. Then µ is constant on Σ.

(ii) Let G∗ be a quasi-split reductive group over F , and assume that there exists an inner twist
from G∗ to G that restricts to an inner twist from a Levi subgroup M∗ ⊂ G∗ to M ⊂ G.
Let Σ∗ be a regular supercuspidal packet on M∗(F ) with the same Langlands parameter as
Σ. Then for all σ ∈ Σ and σ∗ ∈ Σ∗, we have

γ′′′(G∗|M∗)µ(σ∗) = γ′′′(G|M)µ(σ).

Proof. Since p ≫ 0, Σ and Σ∗ are unitarily stable (Corollary 3.4.12). By Kaletha’s endoscopic
character identities, Σ is a transfer of Σ∗. Now the corollary is a special case of Corollary 4.2.12. □

4.3. Two applications.
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4.3.1. Normalizing intertwining operators using Langlands-Shahidi L-functions.

Lemma 4.3.1. Let G,M,G∗,M∗,Σ,Σ∗ be as in Corollary 4.2.12(ii); in particular we used the
discussion of (i) and (vi) of Notation 3.2.1 to fix inner twists ψG∗ from G∗ to G and ψM∗ from
M∗ to M, using fixed parabolic subgroups, say P∗ ⊂ G∗ and P ⊂ G (the analogues of Q∗ and Q in
Notation 3.2.1(vi)), with M∗ and M respectively as Levi subgroups. Without loss of generality, we
assume that ψM∗ is a restriction of ψG∗ (and not just a restriction of an element of IntG(F̄ )◦ψG∗).
Let P∗,− ⊂ G∗ and P− ⊂ G be parabolic subgroups that are opposite to P∗ and P and contain M∗

and M. Let N∗,N∗,−,N and N− be the unipotent radicals of P∗,P∗,−,P and P−. Note that
ψG∗ takes N∗

F̄
to NF̄ and N∗,−

F̄
to N−

F̄
, letting us transfer top-degree differential forms (defined

over F̄ ) between these groups, and therefore lets us transfer Haar measures from N∗(F ) to N(F )
and N∗,−(F ) to N−(F ) (using either the absolute value on F̄ or a nontrivial continuous additive
character ψF : F → C×). We choose Haar measures on N∗(F ) and N∗,−(F ), and transfer them
to N(F ) and N−(F ) using ψG∗ , as just explained. For σ∗ ∈ Σ∗ and σ ∈ Σ, let the intertwining
operators JP∗,−|P∗(σ∗), JP∗|P∗,−(σ∗), JP−|P(σ) and JP|P−(σ) be defined as in [Art89, around (1.1)]
or equivalently as in [Wal03, just before Theorem IV.1.1], but using the choices of measures just
fixed. Then, as meromorphic functions in χ ∈ Xunr(M∗) = Xunr(M), we have:

(47) JP∗|P∗,−(σ∗ ⊗ χ) ◦ JP∗,−|P∗(σ∗ ⊗ χ) = JP|P−(σ ⊗ χ) ◦ JP−|P(σ ⊗ χ)

— here, the operators on either side are scalar multiplications, and hence viewed as complex
numbers, for a dense subset of χ ∈ Xunr−uni(M∗) = Xunr−uni(M), which is automatically Zariski
dense in Xunr(M∗) = Xunr(M).

Proof. Recall K = KG, I = IG,KM,KN,KN− , IM, IN and IN− from Notation 4.2.5(iii); here HL =
H ∩ L(F ) for each compact open subgroup H ⊂ G(F ) and algebraic subgroup L ⊂ G. We
choose analogous objects for G∗: K∗ = KG∗ , I∗ = IG∗ ,KM∗ = K∗ ∩M∗(F ),KN∗ ,KN∗,− , IM∗ , IN∗

and IN∗,− . We give M∗(F ) and M(F ) Haar measures that are compatible under ψM∗ . We give
G∗(F ) and G(F ) the unique Haar measures such that the multiplication maps N∗(F )×M∗(F )×
N∗,−(F ) → G∗(F ) and N(F )×M(F )×N−(F ) → G(F ) are measure preserving near the identity. It
is then easy to see that G∗(F ) and G(F ) have measures that are compatible under ψG∗ . Therefore,
the equality (45) proved in the proof of Corollary 4.2.11 holds, and gives:

(48) meas(IN)meas(IN−) =
meas(I)

meas(IM)
=

meas(I∗)

meas(IM∗)
= meas(IN∗)meas(IN∗,−).

By the definitions in [Wal03, Sections IV.3 and V.2] and (31), the reciprocal of the left-hand side
(resp., the reciprocal of the right-hand side) of (47) equals

γ′(G∗|M∗)µ(σ∗⊗χ)meas(KN∗)−1 meas(KN∗,−)−1 = γ′′′(G∗|M∗)µ(σ∗⊗χ)meas(IN∗)−1 meas(IN∗,−)−1

(resp., γ′(G|M)µ(σ ⊗ χ)meas(KN)
−1 meas(KN−)−1 = γ′′′(G|M)µ(σ ⊗ χ)meas(IN)

−1 meas(IN−)−1).

Now the lemma follows from (48) and Corollary 4.2.12(ii), the latter applied with Σ∗ and Σ
replaced by Σ∗ ⊗ χ and Σ ⊗ χ, as justified by Lemmas 3.3.8 and 3.2.3(i) (and the fact that
O′

M,O′
M∗ act trivially on AM,AM∗). □

Remark 4.3.2. In Lemma 4.3.1, it is an easy exercise to see that replacing ψG∗ by a different inner
twist, while yielding different measures on N(F ) and N−(F ), yields the same product measure on
N(F )×N−(F ), and hence does not change the right-hand side of (47).

Remark 4.3.3. Assume that we are in the setting of Lemma 4.3.1, and assume for simplicity
that O′

M and O′
M∗ are trivial. Let r∗i denote the representations of LM∗ = LM associated to

M∗ ⊂ P∗ ⊂ G∗ as in [Sha90]. Assume also that Σ∗ contains a generic representation σ∗. Thus,
the definition of the Langlands-Shahidi L-functions and ϵ-factors extend to representations σ ∈ Σ,
as explained in [Sha90, shortly before Theorem 9.5] (with the difference that we are stopping at
discrete series packets and not invoking Langlands classification):

L(s, σ, ri) = L(s, σ∗, r∗i ),
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and for any continuous nontrivial additive character ψF : F → C×,

ϵ(s, σ, ri, ψF ) = ϵ(s, σ∗, r∗i , ψF ).

It should be possible to use Lemma 4.3.1 to deduce from [Sha90] that these L-functions and ϵ-
factors give a normalization of intertwining operators as in [Art89, Theorem 2.1]. We will skip
exploring the precise details.

4.3.2. Consequences for depth preservation.

Corollary 4.3.4. Suppose the residue characteristic p of F is a very good prime for G in the
sense of [BKV16, Section 8.10]. Let M ⊂ G be a Levi subgroup. Let O′

M ⊂ Aut(M) be a subgroup
that acts trivially on AM, consists of elements that extend to automorphisms of G, and has finite
image in Out(M).

(i) The elements of Σ all have the same depth in the sense of Moy and Prasad (see [MP96]).
(ii) Assume that G∗,O′

M,O′
M∗ ,Σ and Σ∗ are as in the situation of Corollary 4.2.12(ii). As-

sume additionally that there exists a nice bilinear form B on g, in the sense of Definition
4.3.6(iii) below. Then for each σ ∈ Σ and σ∗ ∈ Σ∗, we have

depth(σ) = depth(σ∗).

The proof of (ii) of the corollary will use:

Proposition 4.3.5. Suppose p is a very good prime for G in the sense of [BKV16, Section 8.10],
and that there exists a nice bilinear form on g, in the sense of Definition 4.3.6(iii) below. Let G∗

be a quasi-split inner form for G, underlying an endoscopic datum G∗ for G defined using an inner
twist ψG∗ as in Notation 3.2.1(i). Let r ≥ 0, and let Er ∈ Z(G) and E∗

r ∈ Z(G∗) be the depth
r projectors in the sense of [BKV16]. Then the distribution Er on G(F ) and the distribution E∗

r

on G∗(F ) are stable. Moreover, E∗
r transfers to the distribution e(G)Er on G(F ), provided G(F )

and G∗(F ) are given measures that are compatible with respect to ψG∗ .

Now we make some preparations for the proof of Proposition 4.3.5.

Definition 4.3.6. (i) For a finite extension F1/F , we will denote by B(G/F1) the reduced
Bruhat-Tits building of GF1

, and abbreviate B(G/F ) to B(G). F unr will denote the
maximal unramified extension of F in F̄ , and for each extension F1 of F in F unr, B(G/F1)
will be realized as B(G/F unr)Gal(Funr/F1). As usual, the notation that follows will be
adapted to more general groups and fields in place of G and F .

(ii) For x ∈ B(G) and r ≥ 0 (resp., r ∈ R), we have the Moy-Prasad filtration subgroups
G(F )x,r,G(F )x,r+ ⊂ G(F ), and the Moy-Prasad filtration lattices g(F )x,r, g(F )x,r+ ⊂
g(F ) and ǧ(F )x,r, ǧ(F )x,r+ ⊂ ǧ(F ), where ǧ is the dual vector space of g, which is given the
coadjoint action. We also have the Moy-Prasad G-domains G(F )r =

⋃
xG(F )x,r,G(F )r+ =⋃

xG(F )x,r+ ⊂ G(F ), g(F )r =
⋃
x g(F )x,r, g(F )r+ =

⋃
x g(F )x,r+ ⊂ g(F ) and ǧr =⋃

x ǧ(F )x,r, ǧr+ =
⋃
x ǧ(F )x,r+ ⊂ ǧ(F ), where each of these unions is over x ∈ B(G). Thus,

G(F )x,r+ = G(F )x,r+ϵ for all small enough ϵ > 0, and similarly with g(F )x,r+, ǧ(F )x,r+,
G(F )r+, g(F )r+ and ǧ(F )r+. Here and in the rest of this subsection, we will often write
g(F ) despite it being also denoted by g, to distinguish it from g(F1) for another field F1.

(iii) A bilinear form B : g(F ) × g(F ) → F will be called nice if it is symmetric, nondegener-
ate, AdG-invariant and identifies each Moy-Prasad filtration lattice g(F )x,r in g(F ) with
ǧ(F )x,r; this translates to requiring that for all x ∈ B(G) and r ∈ R we have

(49) {X ∈ g(F ) | B(X, g(F )x,(−r)+) ⊂ ϖOF } = g(F )x,r.

(iv) For the rest of this subsection G∗ will denote a quasi-split inner form of G, and ψG∗ and
the endoscopic datum G∗ will be as in Notation 3.2.1(i). Note that g∗ = LieG∗ should
not be confused with ǧ.

(v) If B is an AdG-invariant bilinear form on g(F ), then its transport by ψG∗ refers to the bi-
linear formB∗ on g∗ such that for allX∗, Y ∗ ∈ g∗(F̄ ), B∗(X∗, Y ∗) = B(ψG∗(X∗), ψG∗(Y ∗)):
that this prescription descends to a bilinear form on g∗ follows from the AdG-invariance
of B and the fact that ψG∗ is an inner twisting. In fact, B∗ is the transfer of B to g∗ via
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the endoscopic datum G∗ as in [Wal95, Section VIII.6] (see also the discussion after the
proof of Remark 2 of that reference).

(vi) For this subsection, given r ≥ 0, Er (resp., E∗
r ) will denote the depth r projector for G

(resp., G∗).

Lemma 4.3.7. Assume that G is not ‘bad’ in the sense of [BKV16, Section 3.13], i.e., either p is
odd, or (Gsc)Funr does not have a restriction of scalars of an odd special unitary group over F unr

as a factor. Given a symmetric nondegenerate AdG-invariant bilinear form on g, the following
are equivalent:

(i) B is nice.
(ii) For some x ∈ B(G) and all r ∈ R, (49) holds.
(iii) For some finite unramified extension F1 of F , the base-change of B to F1 is nice with

respect to GF1
.

Proof. (i) ⇒ (ii) is immediate. Let us prove (ii) ⇒ (i); we refer to the condition in (ii) as x-nice.
For this, it is enough to show that if x, y ∈ B(G), and if B is x-nice, then B is y-nice as well.
Choose an apartment in B(G) containing x and y, associated to some split maximal torus S in
G, and let M0 be the centralizer of S in G. Then we have (see [BKV16, Proposition 3.10(b)]) an
expansion:

g(F )x,r = m0(F )r ⊕
⊕
α

uα(F )x,r,

where α runs over the set of roots of S in G, and uα(F )x,r is the union of the affine root lattices
uψ ⊂ uα(F ) as ψ runs over the affine roots associated to the apartment of S that have gradient α
and satisfy ψ(x) ≥ r. We have a similar expression for g(F )x,r+, where the definition of uα(F )x,r+
involves the condition ψ(x) > r.
Thus, it is clear, using the S-equivariance of B, that B is x-nice if and only if the following two
conditions are satisfied:

• {X ∈ m0 | B(X,m0(F )(−r)+) ⊂ ϖO} = m0(F )r for all r ∈ R; and
• {X ∈ uα(F ) | B(X, u−α(F )x,(−r)+) ⊂ ϖO} = uα(F )x,r, for each root α of S in G and
each r ∈ R.

Since similar considerations apply to y, it suffices to show that the above conditions are satisfied
if and only if they are satisfied with x replaced by y. This is clear since the first condition is
x-agnostic, while if y = x + λ with λ ∈ X∗(S) ⊗ R, then it is easy to see that u−α(F )y,(−r)+ =
u−α(F )x,−(r−⟨α,λ⟩)+ and uα(F )y,r = uα(F )x,r−⟨α,λ⟩.
This gives the equivalence of (i) and (ii). Given this, for the equivalence of either of these no-
tions with (iii), assuming without loss of generality that F1 ⊂ F unr so that B(G) ⊂ B(G/F1) ⊂
B(G/Funr), it suffices to check that for some x ∈ B(G) and each r ∈ R, (49) holds if and only if it
does with F replaced by F1. In turn, this is easy to see using ‘dual bases’ with respect to B if we
can show that for each r ∈ R, g(F )x,r ⊗OF

OF1
= g(F1)x,r, where OF and OF1

are the rings of
integers of F and F1, respectively. Since g(F )x,r is the Gal(F unr/F )-fixed points of g(F1)x,r (see
[Adl98, Proposition 1.4.1] and [BKV16, Lemma 3.14] and use that G is not ‘bad’), this should in
turn follow from some sort of unramified descent.
Being naive about this sort of descent, let us give an elementary argument instead; it is enough to
show that for each finitely generated OF1

-lattice L with a semilinear action of Gal(F1/F ), the map
LGal(F1/F ) ⊗OF

OF1 → L is surjective. Let Gal(F1/F ) = {σ1 = id, . . . , σn}, and let a1, . . . , an be
an OF -basis for OF1

. The matrix A = [σi(aj)]1≤i,j≤n has determinant in O×
F1
, since trF1/F (aiaj)

is the (i, j)-th entry of tAA, and trF1/F is a perfect pairing OF1
×OF1

→ OF . Therefore there

exist b1, . . . , bn ∈ OF1 such that
∑n
l=1 σi(al)bl equals δ1,i for each i, i.e., 1 if i = 1, and 0 otherwise.

Thus, given v ∈ L,

v = σ1(v) =

n∑
i=1

δ1,iσi(v) =

n∑
i=1

(
n∑
l=1

blσi(al)

)
σi(v) =

n∑
l=1

bl ·

(
n∑
i=1

σi(alv)

)
,

which lies in the image of LGal(F1/F ) ⊗OF
OF1 → L. □
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Corollary 4.3.8. If B is a nice bilinear form on g, then the associated bilinear form B∗ on g∗

(obtained by transporting B via ψG∗) is nice as well.

Proof. We reduce to the situation where ψG∗ is defined over the maximal unramified extension
F unr of F . Recall that the inner twists of G∗ are parameterized by H1(F,G∗

ad). By the inflation-
restriction sequence and the theorem of Steinberg which says that H1(Funr, (G

∗
ad)Funr) is trivial,

the class of the inner twist ψG∗ arises from an element of H1(Gal(F unr/F ),G∗
ad(F

unr)). This has
the consequence that we may modify ψG∗ to ensure that it is defined over F unr, and hence over
a finite extension F1 of F contained in F unr. Since the condition ‘niceness’ behaves well under
isomorphisms of algebraic groups, it follows that the base-change of B to F1 is nice if and only if
the base-change of B∗ to F1 is. Therefore, the corollary follows from Lemma 4.3.7. □

From [BKV16] we have:

Lemma 4.3.9. Suppose G1 → G2 is an isogeny of connected reductive groups over F , whose degree
is prime to p. Then it induces analytic isomorphisms G1(F )x,r+ → G2(F )x,r+ and G1(F )r+ →
G2(F )r+ for all x ∈ B(G1) = B(G2) and r ≥ 0. Moreover, the depth r projector for G2, which (as
a distribution) is supported on G2(F )r+, when pulled back along G1(F )r+ → G2(F )r+, equals the
depth r projector for G1, which is supported on G1(F )r+.

Proof. The first assertion is [BKV16, Lemma 8.12]. The second assertion is implicit in the proof
of [BKV16, Corollary 8.13], and follows from the first assertion together with the Euler-Poincare
formula for the depth r projector given in [BKV16, Corollary 1.9]. □

Lemma 4.3.10. Let r > 0 (resp., r ∈ R). If strongly regular semisimple elements γ∗ ∈ G∗(F )
and γ ∈ G(F ) (resp., regular semisimple elements X∗ ∈ g∗(F ) and X ∈ g(F )) match with
respect to G∗, we have γ∗ ∈ G∗(F )r if and only if γ ∈ G(F )r (resp., X∗ ∈ g∗(F )r if and only
if X ∈ g(F )r). Consequently, for r ∈ R, the stable distribution 1g∗(F )r transfers to 1g(F )r under
endoscopic transfer with respect to G∗ (a similar assertion involving the 1G∗(F )r and the 1G(F )r

holds, but we will not need it).

Proof. By [BKV16, Lemma B.3], g(F )r ⊂ g(F ) and g∗(F )r ⊂ g∗(F ) are stable, justifying the
stability of 1g∗(F )r . Given the simple description of transfer factors for G∗ (Remark 3.2.2(i)), and
since g(F )r ⊂ g(F ) and g∗(F )r ⊂ g∗(F ) are open and closed, the latter assertion of the lemma
follows from the former, which is a “G∗-endoscopic” form of the stability of the G(F )r and the
g(F )r. Thus, we will adapt the proof of the stability assertion in [BKV16, Lemma B.3].
We will prove the assertion involving γ and γ∗; the proof of the assertion involving X and
X∗ is similar. As in the proof of Corollary 4.3.8, we may and do assume that ψG∗ is de-
fined over a finite extension F1 of F contained in F unr. We have γ = Ad g(ψG∗(γ∗)) for some
g ∈ G(F̄ ). Since γ, δ := ψG∗(γ∗) ∈ G(F1), letting T be the centralizer of δ in GF1

and using
that H1(Gal(F unr/F1),T(F

unr)) → H1(F1,T) is an isomorphism (by Steinberg’s theorem that
H1(F unr,TFunr) is trivial) and that H1(Gal(F unr/F1),G(F unr)) → H1(F1,GF1) is injective, we
may assume without loss of generality that g ∈ G(F unr). Thus, there exists a finite extension F2

of F1 (and hence of F ) in F unr such that g ∈ G(F2). It follows that γ∗ ∈ G∗(F2)r if and only if
γ ∈ G(F2)r.
Using [AD04, Lemma 2.2.3] and the fact that the finite extension F2/F is unramified, we have
G∗(F2)r ∩ G∗(F ) = G∗(F )r and G(F2)r ∩ G(F ) = G(F )r, so that γ∗ ∈ G∗(F )r if and only if
γ ∈ G(F )r, as desired. Let us remark that the assertion involving X and X∗ uses the Lie algebra
version of [AD04, Lemma 2.2.3] (for arbitrary r), which can be proved similarly (it is a simple
application of the Bruhat-Tits fixed point theorem also found in the proof of [BKV16, Lemma
B.3]). □

Proof of Proposition 4.3.5. Since p is a very good prime for G and hence also for G∗, the isogenies
Z0
G × Gsc → G and Z0

G∗ × G∗
sc → G∗ have degrees prime to p, as observed in [BKV16, the proof

of Theorem 1.23]. Therefore, by Lemma 4.3.9, Z0
G × Gsc → G induces an isomorphism from

C∞
c (ZG0(F )r × Gsc(F )r) ⊂ C∞

c (ZG0(F ) × Gsc(F )) to C∞
c (G(F )r) ⊂ C∞

c (G(F )), which clearly
preserves stable orbital integrals (for compatible choices of measures). A similar comment applies
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to the isogeny Z0
G∗×G∗

sc → G∗. Since ψG∗ induces an isomorphism Z0
G∗ → Z0

G as well as determines
a unique inner twist from G∗

sc to Gsc, and since the transfer factors all have a simple description
in our setting, it is now easy to reduce, using Lemma 4.3.9 and Lemma 4.3.10, to the case where
G is simply connected.
Moreover, as in the proof of Corollary 4.3.8, we may and do assume that ψG∗ is defined over a
finite extension F1 of F contained in F unr.
Since G and G∗ are simply connected, and since p is a very good prime for G, it follows from
[BKV16, Corollary 8.11] that G admits an r-logarithm in the sense of [BKV16, Section 1.21], which
is an AdG(F )-equivariant homeomorphism G(F )r+ → g(F )r+ restricting to a homeomorphism
G(F )x,r+ → g(F )x,r+ for each x ∈ B(G). The same applies to G∗. Moreover, by [BKV16,
Corollary 1.9(b)], Er and E

∗
r are supported in G(F )r+ and G∗(F )r+, respectively, and by [BKV16,

Corollary 1.22], the push-forwards of Er and E∗
r to g(F )r+ ⊂ g(F ) and g∗(F )r+ ⊂ g∗(F ) are the

restrictions of the Lie algebra versions Er and E∗
r of the depth r projectors to g(F )r+ and g∗(F )r+,

respectively. Again using Lemma 4.3.10 and the fact that the transfer factors are particularly
simple in our situation, it suffices to show that the transfer of the distribution E∗

r on g∗(F ) equals
the distribution Er on g(F ), where we use measures on g∗ and g that are compatible via ψG∗ (which,
being an innner twist, even induces an F -rational map at the level of top-degree differential forms).
By [BKV16, (b) of Section 1.19], Er is the inverse Fourier transform of the characteristic function of
ǧ(F )−r, where the Fourier transform is defined as in [BKV16, Section 1.18], using a fixed additive
character Λ : F → C× that is nontrivial on the ring OF of integers of F but trivial on the maximal
ideal pF of OF . We identify g with ǧ using the nice bilinear form B, so that the Fourier transform
is a map from the space of distributions on g(F ) to itself, and Er is the inverse Fourier transform
of the characteristic function 1g(F )−r

of g(F )−r. The transfer B∗ of B to g∗ is nice by Corollary
4.3.8, using which we similarly realize E∗

r as the inverse Fourier transform of the characteristic
function 1g∗(F )−r

. Moreover, we may and do use measures on g(F ) and g∗(F ) that are self-dual
for Λ ◦ B and Λ ◦ B∗: this is because B∗ is the transfer of B, and hence this use of self-dual
measures satisfies the constraint that the measure on g∗(F ) is the transfer of the measure on g(F )
via ψG∗ .
Given this choice of measures, one knows the commutativity of endoscopic transfer and Fourier
transform (see [Wal95, Conjecture 1], which has been proved since, as explained in [KV12, Theorem
4.1.3]): if a distribution Θ∗ on g∗(F ) transfers to a distribution Θ on g(F ), then the Fourier
transform (resp., the inverse Fourier transform) of Θ∗ transfers to γΛ(B)/γΛ(B

∗) times the Fourier
transform of Θ (resp., γΛ(B

∗)/γΛ(B) times the inverse Fourier transform of Θ), where γΛ(B) and
γΛ(B

∗) are Weil constants as in [Wal95, Section VIII.1].
Now we are reduced to showing that the distribution 1g∗(F )−r

on g∗(F ) transfers to the distri-

bution e(G)γΛ(B) · γΛ(B∗)−1 · 1g(F )−r
on g(F ), or equivalently to 1g(F )−r

, since one knows that
e(G)γΛ(B

∗)/γΛ(B) = 1: see [KV12, Proposition 4.2.2], whose restrictions are unnecessary in our
setting as mentioned in the first sentence of [KV12, Section 4.2.9, the proof of Proposition 4.2.2],
or use [Kal15, Lemma 4.8 and Proposition 4.3].
It remains to note that 1g∗(F )r transfers to 1g(F )r , which we already know from Lemma 4.3.10. □

Proof of Corollary 4.3.4. Let us prove (i). Since the depth of a representation is the same as that
of its cuspidal support by [MP96, Theorem 5.2(1)], it follows that for each σ ∈ Irr(M) and r ≥ 0,

Êr(σ) = Êr((M, σ)) equals 1 if the depth of σ is at most r, and 0 otherwise. Thus, (i) follows if we

prove that for each r ≥ 0, Êr takes the same value on each element of Σ. But since Er ∈ Z1(G) by

[BKV16, Theorem 1.23] and the hypothesis that p is a very good prime for G, and since σ 7→ Êr(σ)
is O′

M-invariant on Irr2(M) (since the action of Aut(M) on Irr(M) preserves depth), this follows
from Corollary 4.2.12(i).
For (ii), by the observation at the beginning of (i), it suffices to prove that for all r ≥ 0, σ ∈ Σ

and σ∗ ∈ Σ∗, we have Êr(σ) = Ê∗
r (σ

∗). But using the invariance of σ 7→ Êr(σ) and σ
∗ 7→ Ê∗

r (σ
∗)

under O′
M and O′

M∗ , this follows from combining Proposition 4.3.5 with Corollary 4.2.12(ii). □
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4.4. Consequences for Z1(G) and Z2(G). Let us now deduce from Corollary 4.2.12(i) that
Z1(G)O = Z2,O(G) (see Notation 4.1.7) when the hypothesis on the existence of tempered L-
packets (Hypothesis 2.5.1) is satisfied. Let us begin by restating Corollary 4.2.12(i) in the special
case that concerns us here.

Corollary 4.4.1. Suppose Σ is an OM-unitarily stable discrete series L-packet (see Definition
3.3.2). Then:

(i) The Plancherel measure σ 7→ µ(σ) ([Wal03, Section V.2]) is constant on Σ.
(ii) For all z ∈ Z1(G)O and σ1, σ2 ∈ Σ, and any parabolic subgroup P of G with M as a Levi

subgroup, z acts by the same scalar on IndGP σ1 and IndGP σ2. In other words, if (M1, σ1)
and (M2, σ2) are cuspidal supports of elements of Σ, then ẑ((M1, σ1)G) = ẑ((M2, σ2)G).

Proof. Each OM from Notation 2.4.1 satisfies the hypotheses of Corollary 4.2.12(i), by the con-
ditions imposed in (iv) of Notation 2.4.1, and Lemma 2.4.3(ii). This also gives that for each
z ∈ Z(G)O, σ 7→ ẑ(σ) is OM-invariant in Irr2(M). Thus, the corollary follows from Corollary
4.2.12(i). □

We now prove Theorem 1.2.5, after restating it in a slightly more convenient way.

Theorem 4.4.2. Assume the hypothesis on the existence of tempered L-packets (Hypothesis 2.5.1).
Then for z ∈ Z(G), the following are equivalent:

(i) ẑ is constant on each Σ ∈ Φtemp(G) (see Notation 2.5.6 for the definition of Φtemp(G)).
(ii) z ∈ Z2,O(G).
(iii) z ∈ Z1(G)O.

Proof. Let us assume (i) and prove (ii). Since Φtemp(G) partitions Irrtemp(G) (see Lemma 2.5.7(i)),
and since each Σ ∈ Φtemp(G) is stable under the action of O, it follows that ẑ(π) = ẑ(π ◦β−1), for
all β ∈ O and π ∈ Irrtemp(G). Thus, ẑ ∈ C[Ω(G)] takes the same value on (M, σ) and β · (M, σ)
whenever (M, σ) is a cuspidal pair such that σ is unitary. But the images of such cuspidal pairs in
Ω(G) is Zariski dense (since Xunr−uni(M) ⊂ Xunr(M) is Zariski dense), so that ẑ factors through
Ω(G) → Ω(G) (use the discussion of Notation 4.1.1). From this and Lemma 4.1.4, we get that
z ∈ Z(G)O.
Now if M ⊂ G is a Levi subgroup and Σ ∈ Φ2(M), then the constancy of ẑ on ΣG ∈ Φtemp(G)
(see (ii) and (iii) of Notation 2.5.6) implies that f 7→ ΘΣG(z ∗ f) is a scalar multiple of ΘΣG

(where ΘΣG = AvgOG
(IndGM ΘΣ) as in Notation 2.5.6(iv), and we use the identity Θπ(z ∗ f) =

trπ(z ∗ f) = ẑ(π)Θπ(f)), which is stable as seen in Proposition 3.2.8. Hence by Hypothesis 2.5.1,

if D is the O-average of IndGM Θ′, where M ⊂ G is a Levi subgroup and Θ′ ∈ SDell(M)OM , then
f 7→ D(z ∗f) is stable. Therefore, by the implication (iv) ⇒ (i) of Proposition 4.1.9 (which applies
as z ∈ Z(G)O), we get z ∈ Z2,O(G), as desired.
The implication (ii) ⇒ (iii) is Lemma 4.1.8.
For any Levi subgroup M ⊂ G, Hypothesis 2.5.1 implies that the elements of Φ2(M) are all OM-
unitarily stable (use Lemma 2.5.3(i)). Therefore, the implication (iii) ⇒ (i) is immediate from
Corollary 4.4.1(ii) and the O-invariance of z (the latter is used to account for the fact that the
description of Φtemp(G) as given by (ii) and (iii) of Notation 2.5.6 involves taking a union of
O-orbits of quotients of parabolically induced representations). □

Lemma 4.4.3. Assume Hypothesis 2.5.1. Suppose z ∈ Z(G) is such that ẑ(π1) = ẑ(π2) whenever

π1, π2 are irreducible subquotients of IndGM σ1, Ind
G
M σ2, respectively, for some Levi subgroup M ⊂ G

and representations σ1, σ2 that belong to the same element of Φ2(M). Then ẑ(π1) = ẑ(π2) whenever

π1, π2 are irreducible subquotients of IndGM σ1, Ind
G
M σ2, respectively, for some Levi subgroup M ⊂ G

and representations σ1, σ2 that belong to the same element of Φ+
2 (M).

Proof. The proof is similar to the first step in that of the implication (i) ⇒ (ii) of Theorem 4.4.2.
Suppose M ⊂ G is a Levi subgroup, and σ1, σ2 belong to the same element Σ ∈ Φ+

2 (M). Since z
factors through the cuspidal support map, it is easy to see that χ 7→ ẑ(σ1⊗χ) and χ 7→ ẑ(σ2⊗χ) are
regular on Xunr(M), where for i = 1, 2, ẑ(σi⊗χ) is the scalar with which z acts on any irreducible

subquotient of IndGM σi ⊗ χ. By hypothesis, we have ẑ(σ1 ⊗ χ) = ẑ(σ2 ⊗ χ) whenever Σ ⊗ χ is
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unitary (and hence belongs to Φ2(M) ⊂ Φ+
2 (M)). Since the set of such χ is a coset of Xunr−uni(M)

in Xunr(M), and is hence Zariski dense in Xunr(M), it follows that ẑ(σ1 ⊗ χ) = ẑ(σ2 ⊗ χ) for all
χ ∈ Xunr(M). In particular ẑ(σ1) = ẑ(σ2). □

Corollary 4.4.4. Assume Hypothesis 2.5.1. If z belongs to Z1(G)O or Z2,O(G), M ⊂ G is a Levi
subgroup and σ, σ′ belong to the same element of Φ+

2 (M), then z acts by the same scalar on any

irreducible subquotient of Ind
G(F )
M(F ) σ as it does on any irreducible subquotient of Ind

G(F )
M(F ) σ

′.

Proof. This follows from Lemma 4.4.3, whose hypothesis is satisfied by either the implication (ii)
⇒ (i) (if z ∈ Z2,O(G)) or (iii) ⇒ (i) (if z ∈ Z1(G)O) of Theorem 4.4.2. □

Theorem 4.4.2 has the following corollary.

Corollary 4.4.5. Assume z ∈ Z(G). Denote by zM the image of z under what is called the
Harish-Chandra homomorphism Z(G) → Z(M) in [BDK86, Section 2.4], i.e., the homomorphism
of C-algebras that is dual to the obvious finite morphism Ω(M) → Ω(G) induced by inclusion at
the level of cuspidal supports. If Hypothesis 2.5.1 holds and z ∈ Z1(G)O, then zM ∈ Z1(M)OM .

Proof. If L ⊂ M is a Levi subgroup and υ1, υ2 ∈ Υ for some Υ ∈ Φ2(L), then

ẑM((L, υ1)M) = ẑ((L, υ1)G) = ẑ((L, υ2)G) = ẑM((L, υ2)M),

where the middle equality holds by the implication (iii) ⇒ (i) of Theorem 4.4.2. Here, as usual,
ẑM((L, υ1)M) refers to ẑM((L′, υ′1)M), where (L′, υ′1) is a cuspidal support of (L, υ1), and the other
terms are similar. Therefore, the corollary follows from the implication (i) ⇒ (iii) of Theorem
4.4.2 applied with (M, {OL}L) in place of (G, {OL}L) (L ranging over the set of Levi subgroups
of M or G, as appropriate): this application is justified by Lemma 2.4.3(iii), which ensures the
validity Hypothesis 2.5.1 for (M, {OL}L). □

Remark 4.4.6. As the phrasing of Corollary 4.4.5 above indicates, we are not able to prove that
z 7→ zM sends Z1(G) to Z1(M), without using Hypothesis 2.5.1. In contrast it is easy to show
that if z ∈ Z2(G), then its image zM ∈ Z(M) under the Harish-Chandra homomorphism belongs
to Z2(M). We do not prove this assertion, since we will not use it anywhere.

5. The case of quasi-split classical groups

5.1. The stable center conjecture and depth preservation for many ‘classical’ groups.
The following proposition describes how to go from Arthur’s endoscopic classification, which is
stated in terms of discrete series and tempered L-packets, to the statement of Hypothesis 2.5.1,
which is stated in terms of elliptic representations.

Proposition 5.1.1. Suppose, for each Levi subgroup M ⊂ G, we are given a partition Φtemp(M)
of Irrtemp(M) by OM-invariant subsets, such that the following properties are satisfied:

(a) Some subset Φ2(M) ⊂ Φtemp(M) partitions Irr2(M). Moreover, for each Levi subgroup
M ⊂ G and each Σ ∈ Φtemp(M), there exists a Levi subgroup L ⊂ M and some Υ ∈ Φ2(L),
such that Σ equals ΥM as defined in Notation 2.5.6(ii), i.e., Σ is the union of the sets of

OM-conjugates of the irreducible constituents of the unitary representation IndML υ, as υ
ranges over Υ.

(b) Let M ⊂ G be a Levi subgroup and Σ ∈ Φtemp(M), and choose (L,Υ) as in (a). Then:
• (Compare with Definition 3.4.9(i)) For each (not necessarily elliptic) relevant endo-
scopic datum H, with underlying endoscopic group H, choosing auxiliary data and

hence the 5-tuple (H1 → H, ξ̂1, H̃1 = H1 → H̃ = H,C1, µ) as in Notation 3.1.2(iii),

there exists a stable tempered virtual character ΘH ∈ SDµ(H1) on H̃1(F ) = H1(F ),
such that the following holds inside D(M):

(50)
∑
H

C ·TH(Θ
H) = (

∑
σ∈Σ

C ·Θσ)OM .
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• In (50), the contribution TM∗(ΘM∗
) from the ‘principal’ endoscopic datum M∗ as

in Notation 3.2.1(i) equals the OM-average AvgOM
(IndML ΘΥ) of a character induced

from some ΘΥ ∈ SD(L)OL .

Then the hypothesis on the existence of tempered L-packets, namely Hypothesis 2.5.1, is satisfied.

Proof. Let M ⊂ G be a Levi subgroup. For any Σ ∈ Φ2(M), note that any (L,Υ) as in (a) equals
(M,Σ), and that the ΘΣ := ΘΥ ∈ SD(M) as in (b) is supported on Σ. It suffices to show that
the ΘΣ, Σ varying over Φ2(M), form a basis for SDell(M)OM . Each such ΘΣ is clearly contained
in SD(M) ∩ Dell(M) = SDell(M), and it is also clear that the ΘΣ form a linearly independent
set as Σ varies over Φ2(M). It remains to show that their span SDell(M)′, which is contained in
SDell(M)OM , equals all of SDell(M)OM .
Let SD(M)′ ⊂ SD(M)OM denote the span of the contributions TM∗(ΘM∗

) from M∗ in (50) as Σ
varies over Φtemp(M). Write Dnon-ell(M) ⊂ D(M) for the span of tempered virtual characters fully
induced from proper Levi subgroups of M, and Dell,non-st(M) for the span of the TH(SDµ,ell(H1))
as H varies over the elliptic endoscopic data for M distinct from M∗. It follows from the second
condition of (b) that:

(51) SD(M)′ ⊂ SDell(M)′ +Dnon-ell(M).

The first condition of (b) gives us an expression of the form:

(52) D(M)OM ⊂ SD(M)′ +
∑

H̸=M∗

TH(SDµ(H1)),

where H runs over a set of relevant endoscopic data for M (taken up to isomorphism), and where

for each H we have implicitly chosen and fixed auxiliary data including µ and H1 = H̃1.
For any given endoscopic datum H for M, using (12), together with the compatibility between
endoscopic transfer and parabolic induction in the form of Remark 3.1.4(i) (if H is elliptic) or
Remark 3.1.4(ii) (otherwise), we have that :

TH(SDµ(H1)) ⊂ Dnon-ell(M) +Dell,non-st(M).

Combining this with (51) and 52, we get:

SDell(M)OM ⊂ D(M)OM∩SDell(M) ⊂ (SDell(M)′+Dnon-ell(M)+Dell,non-st(M))∩SDell(M) = SDell(M)′,

where the last equality uses (11) and (8), as desired. □

Proposition 5.1.2. Suppose G is a quasi-split symplectic, special orthogonal, unitary, general
symplectic, even general special orthogonal or odd general spin group: Sp2n,SOn,Un,GSp2n,GSO2n

or GSpin2n+1. Except in the GSO2n case, assume that each OM is trivial. When G = GSO2n(F ),
for any Levi subgroup M ⊂ G with the ‘GSO-part’ equal to GM, if GM is nonabelian (resp.,
abelian), assume that OM is a two element group contained in the restriction of IntO2n(F ) to M,
with nontrivial image in Out(GM) (resp., that GM is trivial). Then the hypothesis on the existence
of tempered L-packets (Hypothesis 2.5.1) is satisfied.

Proof. We will consider multiple cases, but these cases will overlap.
First assume that G is symplectic, special orthogonal, or unitary; in these cases we will use [Art13]
(in the special orthogonal and symplectic cases) or [Mok15] (in the unitary case). In these cases,
partitions Φ(M) as in Proposition 5.1.1 have been constructed by Arthur and Mok in [Art13] and
[Mok15]. Here, for the case of even special orthogonal groups, see [Art13, Theorem 8.4.1]. To see
that the latter assertions in (a) and (b) of Proposition 5.1.1 are satisfied, note that the tempered
L-packets on these groups and their endoscopic decompositions are defined in [Art13] or [Mok15]
starting from the discrete series case, using parabolic induction and the local intertwining relation:
see [Art13, the proof of Proposition 2.4.3 and Sections 6.5, 6.6 and 8.4] and [Mok15, the proof of
Proposition 3.4.4 and Section 7.6]. Thus, we are done in these cases by Proposition 5.1.1.
Now suppose that G equals GSp2n or GSO2n (and is quasi-split). Then partitions Φ(M) as in
Proposition 5.1.1 have been constructed by Xu in [Xu18], associated to the given collection {OM}M
(the analogue of OG for [Xu18] is the group Σ0 of [Xu18, Introduction, page 73]). Here, to see
that the latter assertions in (a) and (b) of the proposition are satisfied, note that the tempered
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L-packets on these groups and their endoscopic decompositions are defined in [Xu18] starting from
the discrete series case, using parabolic induction and the local intertwining relation: see [Xu18,
Lemma 4.10 and Section 6.4]. Thus, we are done in these cases by Proposition 5.1.1.
Thirdly, assume that G is odd special orthogonal, symplectic, unitary or odd general spin, i.e.,
SO2n+1,Sp2n,Un, or GSpin2n+1; in these cases, we will use [Mg14]. For use in a later paper, we
will also allow G to be an even special orthogonal group SO(V, q), but take OG to be IntO(V, q)(F )
and each OM to be the set of elements of O+

G that preserve M and act trivially on its center. Each
Levi subgroup M ⊂ G can be written as GLM × GM, where GLM is isomorphic to a product of
groups of the form ResE/F GLm for some trivial or quadratic extension E/F , and GM is a group of
the same type as G but of smaller rank (these groups can be possibly trivial). Hypothesis 2.5.1 is
trivial for GLM, because it is standard that SDell(GLM) equals Dell(GLM) and is spanned by the
characters of discrete series representations of GLM(F ). Therefore, the construction of Φ2(M) as
in Hypothesis 2.5.1 reduces to such a construction for Φ2(GM). The latter construction is trivial if
GM is abelian, while if GM is nonabelian it follows from [Mg14, Corollary 4.11], noting that what

is denoted I
G
cusp,st in that corollary is also what is noted IGcusp,st in that reference, since the group

Aut of automorphisms of the endoscopic datum G of that corollary is trivial in the cases that we
are currently considering. □

Remark 5.1.3. In Proposition 5.1.2, we have avoided discussing the case of quasi-split even
general spin groups GSpin2n. This is because, for our arguments to work in this case, we need
the relevant transfer factors ∆(·, ·) to be invariant under the conjugation action of O2n(F ) on the
first factor, so that the action of the group ‘Aut’ on the space noted IGcusp,st in [Mg14, Section
2.3], where G = GSpin2n(F ), can be defined simply through its action on G, without the more
complicated involvement of transfer factors as in [MW16, Section I.2.6]. It seems to us that the
relevant invariance property is likely to hold, and hence should give Hypothesis 2.5.1 up to the
action of the obvious outer automorphism group, but we have not verified it.

Corollary 5.1.4. If G is a quasi-split symplectic, special orthogonal, unitary, general symplectic
or odd general spin group (SOn,Sp2n,Un,GSp2n or GSpin2n+1), then G satisfies the stable center
conjecture, i.e., Z1(G) = Z2G). If G is a quasi-split even general special orthogonal group GSO2n,
then we have a weaker equality Z1(G)O = Z2,O(G), where O = OG is as in Proposition 5.1.2.

Proof. This follows from combining Theorem 4.4.2 with Proposition 5.1.2. □

Now we address questions related to depth preservation:

Proposition 5.1.5. Let G be as in Proposition 5.1.2, i.e., G is quasi-split and is of the form
Sp2n,SOn,Un,GSp2n,GSO2n or GSpin2n+1. Let Σ ∈ Φ2(G) be an OG-stable discrete series packet
as in Proposition 5.1.2, with OG nontrivial in the GSO2n-case, but not in any of the other cases
including the SO2n-case. Assume that p > 2 and that, in the unitary case, p is greater than the
rank of G. Then for each σ1, σ2 ∈ Σ, we have depth(σ1) = depth(σ2).

Proof. In each case, the assumptions on p imply that p is a very good prime for G in the sense of
[BKV16, Section 8.10], so the proposition follows from Corollary 4.3.4(i), since its hypotheses are
satisfied by Proposition 5.1.2. □

The work of M. Oi ([Oi22]) allows us to deduce the following corollary:

Corollary 5.1.6. Let G be a quasi-split symplectic, special orthogonal or unitary group. There
exists a constant NG > 2, depending only on the absolute root datum of G, such that the following
holds if p > NG. Let σ be a discrete series representation of G(F ), and let φσ be its Langlands
parameter (possibly well-defined only up to an outer automorphism). Then:

inf{r ≥ 0 | φ̇σ|Ir+F
= s|Ir+F

for a preferred section s :WF → LG} =: depthφσ = depthσ,

where φ̇σ :WF → LG is a representative for φσ.

Proof. If Σ is the packet in Φ2(G) (in the sense of Proposition 5.1.2) containing σ, then [Oi22,
Theorem 1.2] gives:

max{depthσ′ | σ′ ∈ Σ} = depthφσ.
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Therefore, the corollary follows from Proposition 5.1.5. We also remark that if G is a unitary
group, the corollary follows from [Oi22, Theorem 1.4] and [Oi21, Theorem 1.3] (without any need
for Proposition 5.1.5), and that the precise bounds for NG are given in [Oi21] and [Oi22]. □

Remark 5.1.7. Suppose that F = Qp, and that G is a unitary group in an odd number of
variables, associated to an unramified extension E/F . In this case, the work [MHN22] of Bertoloni
Meli, Hamann and Nguyen proves that the local Langlands correspondence for G constructed in
[Mok15] and [KMSW14] agrees with the local Langlands correspondence constructed by Fargues
and Scholze in [FS21]. It seems to us that for such a G, combining [MHN22] with Proposition 5.1.2
and Theorem 4.4.2 should show that the elements of Z(G) constructed by Fargues and Scholze
using excursion operators belong to the stable Bernstein center, i.e., to Z2(G). Given the work
of Hamann in [Ham21], it might also be interesting to ask a similar question when G is an inner
form of GSp4.
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