
SOME COMMENTS ON THE STABLE BERNSTEIN CENTER

SANDEEP VARMA

Abstract. We study the stable Bernstein center of a connected reductive p-adic group G,

following Vogan, Haines and others. We give a proof that some of its conjectured properties,

such as the stable center conjecture, and its realization in the quasi-split case as the ring of
regular functions on the variety of infinitesimal characters for G, follow from expected properties

of the local Langlands correspondence, which are known when G is quasi-split classical. We

then formulate a general form of Haines’ Z-transfer conjecture, which we prove to follow from
expected properties of endoscopic transfer of tempered L-packets. Towards these results, we

introduce a notion of atomically stable discrete series L-packets, and discuss criteria for detecting

them. We also prove a weak but unconditional variant of Shahidi’s constancy of the Plancherel
µ-function in an L-packet, as well as of its transfer across inner forms. We show that these

considerations can be used to give a weak form of the unrefined local Langlands correspondence
for inner forms of classical and odd general spin groups.

1. Introduction

1.1. The stable Bernstein center and three candidates for it. Let G be a connected re-
ductive group defined over a finite extension F of Qp, where p is a prime number. Let Z(G)
and Ω(G) respectively denote the Bernstein center and the Bernstein variety of G (see, e.g.,
[BDK86, Hai14, BKV15, BKV16]), so that Z(G) identifies with the ring C[Ω(G)] of regular func-
tions on Ω(G).
The stable Bernstein center Zst(G) of G is a subring of Z(G) that seems to inform the study of the
local Langlands conjectures and related topics such as stability and endoscopy. In fact, according
to [BKV15, the introduction], studying it can provide both a ‘supporting evidence’ and a ‘step in
the proof of the local Langlands conjecture’. At the end of this subsection, we will attempt to add
a brief commentary on this point.
Since the work of Vogan in [Vog93], which is the earliest reference on this topic that the author is
aware of, several conjectural descriptions of what should deserve to be called the stable Bernstein
center have emerged, only some of which are obviously contained in Z(G). In this paper, we will
study the ‘equality’ of three such candidates, of which the first two are the harmonic analytically
defined complex vector spaces Z1(G),Z2(G) ⊂ Z(G) below, and the third is the coordinate ring
C[Ω( LG)] of the variety of infinitesimal characters as defined by Vogan or Haines (see [Vog93],
[Hai14]; we will follow the treatment of the latter):

Definition 1.1.1. (i) Let Z1(G) ⊂ Z(G) be the vector subspace of elements z that, viewed
as distributions on G(F ), are stable.

(ii) Let Z2(G) ⊂ Z(G) be the C-subalgebra of elements z such that whenever f ∈ C∞c (G(F ))
is unstable, so is z ∗ f .

(iii) Let Ω( LG) denote the variety of infinitesimal characters for G, defined in [Hai14] (see
towards the end of [Hai14, Section 5.3], where this variety is denoted Y), and let C[Ω( LG)]
denote its coordinate ring. (Here and henceforth, all references to the paper [Hai14] will
follow the arxiv version of the paper, whose numbering system the author prefers).

Let us first discuss the relation between Z1(G) and Z2(G). We assume for the rest of this subsection
(to keep this introduction simple) that G is quasi-split.

Remark 1.1.2. (i) While a priori Z1(G) is only a C-vector subspace of Z(G), Z2(G) is a
C-subalgera of Z(G).

(ii) Z2(G) ⊂ Z1(G): since z(f) = z ∗ f̌(1), this follows from the fact that f 7→ f(1) is a stable
distribution (see [Kot88, Proposition 1]).

1



2 SANDEEP VARMA

A weak form of the stable center conjecture, namely [BKV15, Conjecture 3.1.4(a)], says:

Conjecture 1.1.3. Z1(G) ⊂ Z(G) is a subalgebra.

By Remark 1.1.2, this conjecture follows from the following conjecture, which is thus a stronger
form of the stable center conjecture:

Conjecture 1.1.4. Z2(G) = Z1(G).

As mentioned in the introduction of [BKV15], one expects Z1(G) to be the set of elements in
Z(G) with the property that, if π1, π2 are tempered representations of G(F ) belonging to the
same L-packet, then z acts as multiplication by the same scalar on π1 and π2. Note that this
would transparently yield Conjecture 1.1.3 as well. It is easy to turn this comment into an easy
proof of the stronger Conjecture 1.1.4, for those groups for which tempered L-packets have been
defined and shown to satisfy the appropriate stability properties.
Namely, according to the formalism of Langlands and Arthur, one expects that the set Irrtemp(G)
of isomorphism classes of irreducible tempered representations of G(F ) can be partitioned into
finite subsets, called tempered L-packets, such that each such packet Σ supports a nonzero stable
virtual character ΘΣ, and such that the ΘΣ form a basis for the space of stable tempered virtual
characters on G(F ). One makes a slightly more precise requirement: for each Levi subgroup M
of G, one asks for a partition of the set Irr2(M) of isomorphism classes of irreducible unitary
square-integrable (modulo center) representations of M(F ) into ‘discrete series L-packets’ Σ each
supporting a nonzero stable virtual character ΘΣ, and one asks for these ΘΣ to constitute a basis
for the space of stable elliptic virtual characters on M(F ). If this condition is satisfied, we will
say that G satisfies the existence of tempered L-packets (thus implicitly assumed to have the
appropriate stability properties). In the body of the present paper, this requirement is stated as
Hypothesis 2.7.1, and referred to as the existence of tempered L-packets. Let us remark that in the
body of the paper, including in Hypothesis 2.7.1, we work with a system {OM}M of automorphisms
of Levi subgroups of G (essentially to deal with outer automorphisms of groups such as SO2n or
GSO2n), but to keep the introduction simple, we will assume all these groups to be trivial.
Thus, one of the aims of this paper is to show the following fact, which is probably known to many
experts but which the author cannot find in literature:

Theorem 1.1.5. If G satisfies the existence of tempered L-packets, then Conjecture 1.1.4 is true,
i.e., Z2(G) = Z1(G) (and hence, so is Conjecture 1.1.3).

This theorem is contained in the more precisely stated Theorem 5.4.2.
As is well-known, in the case of quasi-split orthogonal and symplectic groups, the monumental
work of Arthur in [Art13] gives us such a description of tempered L-packets as well as a proof of
character identities satisfied by them, while the work of Mok [Mok15] adapts the work of Arthur
to quasi-split unitary groups. In [Xu18], Bin Xu proves analogous results for quasi-split general
symplectic groups, and a weaker version for even general special orthogonal groups involving
an outer automorphism. On the other hand, the work [Mg14] of Mœglin deals with quasi-split
general spin groups in addition to the quasi-split classical groups considered by Arthur and Mok,
and, proves a slightly weakened form of the character theoretic properties that these packets
are expected to satisfy; her results for even special orthogonal and even general spin groups too
involve an outer automorphism (and as far as the author understands, the results of [Mg14] do not
depend on the twisted weighted fundamental lemma for non-split groups, or the articles referred
to in [Art13] as [A25], [A26] or [A27]). All these results are strictly stronger than the hypotheses
necessary for Theorem 1.1.5, so that we can deduce Conjecture 1.1.4, and hence consequently also
Conjecture 1.1.3, for quasi-split symplectic, special orthogonal, unitary, general symplectic and
odd general spin groups, and a weaker result involving an outer automorphism for general special
orthogonal groups; see Corollary 7.4.1. However, due to some technical reasons, we do not treat
the case of even general spin groups (essentially because we do not yet know if certain transfer
factors relevant to it are invariant under the appropriate outer automorphism).
Having discussed the relation between the subrings Z1(G) and Z2(G) of C[Ω(G)] = Z(G), we now
discuss their relation with C[Ω( LG)], again following the treatment of Haines in [Hai14]. For this,
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let us first recall the identification Z(G) = C[Ω(G)]. Note that each z ∈ Z(G) acts by a scalar ẑ(π)
on each irreducible smooth representation π of G(F ), and hence determines a function ẑ : Irr(G)→
C, Irr(G) denoting the set of isomorphism classes of irreducible admissible representations of G(F ).
On the other hand, the Bernstein variety Ω(G) is the set of G(F )-conjugacy classes of cuspidal
pairs (M, σ) consisting of a Levi subgroup M ⊂ G and a supercuspidal representation σ ∈ Irr(M).
One can show that for each z ∈ Z(G), the associated function ẑ : Irr(G)→ C factors through the
cuspidal support map Irr(G)→ Ω(G), identifying Z(G) with the ring C[Ω(G)] of regular functions
in Ω(G).
On the other hand, assuming the existence of a local Langlands correspondence for G and its
Levi subgroups satisfying some reasonable extra compatibilities that Haines calls LLC+ for G
(see [Hai14, Definition 5.2.1]), one can show that the map sending π ∈ Irr(G) to its infinitesimal
character λ(ϕπ) ∈ Ω( LG), where ϕπ is the Langlands parameter of π and λ(ϕπ) is the well-defined

Ĝ-conjugacy class of homomorphisms WF → LG given by

(1) λ(ϕπ)(w) =

(
ϕπ

(
w,

(
‖w‖1/2

‖w‖−1/2

)))
,

descends to a regular morphism (i.e., morphism of algebraic varieties) p1 : Ω(G) → Ω( LG), that
is surjective (see [Hai14, Proposition 5.5.1] or Proposition 4.3.2 of this paper, recalling that G
is quasi-split for this introduction). Dually, we get the required embedding p∗1 : C[Ω( LG)] ↪→
C[Ω(G)] = Z(G) of coordinate rings.
Then a conjecture of Scholze and Shin, at least in its strong form as interpreted in [Hai14, Remark
5.5.4], says:

Conjecture 1.1.6. The image p∗1(C[Ω( LG)]) ⊂ C[Ω(G)] = Z(G) of p∗1 equals Z2(G).

See [Hai14, Remark 5.5.4] for an explanation of why expected properties relating the local Lang-
lands correspondence to stable characters imply the inclusion “⊂” in Conjecture 1.1.6. To deal
with this, we need at least three hypotheses: the existence of tempered L-packets (i.e., with ap-
propriate stability properties, as in Hypothesis 2.7.1), LLC+ for G (Hypothesis 2.10.3), and the
compatibility between LLC and tempered L-packets (Hypothesis 2.10.12).
However, the inclusion “⊃” does not seem clear from the discussion so far, so we make use of
a hypothesis that the Langlands parameters of L-packets that contain only supercuspidal repre-
sentations are trivial on the SL2(C)-factor of the Weil-Deligne group W ′F = WF × SL2(C) (see
Hypothesis 2.11.1); here again we recall that G is quasi-split. With these, we prove in Corollary
5.5.2:

Proposition 1.1.7. Assume the existence of tempered L-packets, LLC+, the compatibility between
LLC and tempered L-packets, and that the Langlands parameters of supercuspidal packets take the
expected form (see Hypotheses 2.7.1) 2.10.3, 2.10.12 and 2.11.1). Then Conjecture 1.1.6 is valid,
i.e., the image p∗1(C[Ω( LG)]) of p∗1 equals Z2(G) = Z1(G).

Since the hypotheses assumed in the proposition are known for classical groups by the work of
Arthur, Mœglin and Mok (see Proposition 7.2.4), up to an outer automorphism in the even special
orthogonal case, we conclude in Proposition 7.4.4:

Proposition 1.1.8. If G is a quasi-split symplectic, odd special orthogonal or unitary group, then
Conjecture 1.1.6 is valid, and the same holds up to an outer automorphism in the even special
orthogonal case.

To use in the proof of Proposition 1.1.7, assuming the existence of tempered L-packets, we in-
troduce a new hypothesis called the existence of a ‘stable cuspidal support’ (Hypothesis 2.11.4),
inspired by the notion of an extended cuspidal support due to Mœglin (see, e.g., [Mg14, Section 4])
but slightly different in its precise mechanics. Namely, if one starts with a pair (M,Σ) consisting
of a Levi subgroup M ⊂ G and an essentially square integrable packet Σ on M(F ), replaces it by
another such pair (M′,Σ′) such that M′ ⊂ M and such that some σ ∈ Σ is an irreducible subquo-
tient of a representation parabolically induced from some σ′ ∈ Σ′, and iterates this process, the
hypothesis says that the set of possibilities for the final pair (L,Υ) should constitute a single orbit
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under M(F )-conjugation (one can also consider more general packets instead of just essentially
square integrable ones). One can show that this hypothesis follows from Hypotheses 2.7.1, 2.10.3,
2.10.12 and 2.11.1. Assuming the existence of tempered L-packets as well as of stable cuspidal
supports, we define a map p2 : Ω(G)→ Ωst(G) from Ω(G) to a ‘harmonic analytic’ variant Ωst(G)
of Ω( LG) consisting of conjugacy classes of pairs (M,Σ) where M ⊂ G is a Levi subgroup and
Σ is a supercuspidal packet for M(F ), and prove that the hypothesis on the existence of a stable
cuspidal support implies that p∗2(C[Ωst(G)]) ⊂ C[Ω(G)] = Z(G) equals Z2(G) (see Proposition
5.5.1).
One might ask how far one could proceed in a direction converse to that of Theorem 1.1.5: how
much can we expect Z2(G) to tell us about tempered L-packets? For this, fix a C-algebra homo-
morphism % : Z2(G)→ C (one might refer to it as a ‘stable infinitesimal character’), and assume
that there exists at least one σ ∈ Irr2(G) on which Z2(G) acts via %. Then the set

Σ% := {σ ∈ Irr2(G) | ẑ(σ) = %(z)∀ z ∈ Z2(G)}

may be a priori infinite, but since its elements all have the same central character (because of an
obvious embedding of the center ZG(F ) of G(F ) in Z2(G)),

ΘΣ% :=
∑
σ∈Σ%

d(σ)Θσ

is well-defined (use Remark 2.2.5), where d(σ) denotes the formal degree of σ. Using the Plancherel
formula and the fact that f 7→ f(1) is a stable distribution, it is easy to see that ΘΣ% is stable.
The point is that, if we know all the hypotheses we have discussed so far (Hypotheses 2.7.1, 2.10.3,
2.10.12 and 2.11.1), so that Z2(G) = p∗1(C[Ω( LG)]), then it is easy to see that the discrete series
L-packets on G are precisely the ΘΣ% as above: in other words, a discrete series L-packet or more
generally a tempered L-packet is determined by its infinitesimal character, i.e., the set of tempered
Langlands parameters inject via the map ϕ 7→ λ(ϕ) of (1) into the set Ω( LG), just as the set of
Arthur parameters injects into that of Langlands parameters.
A variant of this last assertion in the context of classical groups is [Mg14, Remark 4.1], where
(up to accounting for a possible outer automorphism for even special orthogonal and general spin
groups) one has, in place of the infinitesimal character, an equivalent notion in the form of the
extended cuspidal support: [Mg14, Theorem 4.14] uses precisely the extended cuspidal support to
determine discrete series packets on classical groups. Looking at discrete series packets this way
also seems analogous to the fact that Harish-Chandra’s classification of discrete series packets for
real groups was by means of their infinitesimal character.
From this perspective, one could also ask if one can define a local Langlands correspondence
by defining homomorphisms %ϕ : Z2(G) → C dictated by infinitesimal characters of Langlands
parameters ϕ, and realize the L-packet Σϕ corresponding to a discrete series parameter ϕ as
simply Σ%ϕ . But this is already a well-known idea: at least if one replaces Z2(G) by a possibly
different ring, this is the pattern seen in the local Langlands correspondence as defined by Scholze
for GLn ([Sch13]), by Genestier and Lafforgue over local function fields ([GL17]), and by Fargues
and Scholze over local fields including those over characteristic zero, with one key difference: the
elements of the Bernstein center constructed in [GL17] and [FS21], using excursion operators, are
not known to be stable (though this may be known by the work of Bertoloni Meli, Hamann and
Nguyen, for odd unitary groups associated to an unramified extension of Qp as well as for GSp4;
see Remark 7.4.5).
Going back to the Σ%, it may be fair to say that the reason we cannot define a useful notion
of discrete series L-packets using Z2(G) yet, is that we do not know Z2(G) to be large enough.
On the other hand, it is probably easier to produce elements in Z1(G) than in Z2(G), though to
use Z1(G) to define Σ% as above we would also need to know that Z1(G) is an algebra, and not
just a subspace, of Z(G), as asserted by the weaker form of the stable center conjecture, namely,
Conjecture 1.1.3. In [BKV16], R. Bezrukavnikov, D. Kazhdan and Y. Varshavsky show that if p
is ‘very good’ for G, then for all r ≥ 0, what they call the depth r projector (and denote by Er)
belongs to Z1(G). Let us remark as an aside that, in future work with Li and Oi, we hope to
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prove that when p � 0, the depth r projector of [BKV16] belongs to Z2(G), which will at least
imply that each Σ% defined as above, with % : Z2(G)→ C a ring homomorphism, is finite.

1.2. The Z-transfer conjecture. Haines formulated forms of the Z-transfer conjecture (see
[Hai14, Conjectures 6.2.2 and 6.2.3]) to study how the Bernstein center behaves with respect to
endoscopy. Let H be a connected reductive group over F that is endoscopic to G. One knows that
there is a ‘transfer’ of functions from C∞c (G(F )) to C∞c (H(F )) dictated by a certain matching
of orbital integrals, under simplifying hypotheses for this introduction to let us avoid having to
involve a z-extension. Dually, distributions on H(F ) that are stable transfer to distributions
on G(F ). It is a nontrivial consequence of [Art96], generalized in [MW16, Chapter XI] to the
twisted setting, that under this map, stable virtual tempered characters on H(F ) transfer to
virtual tempered characters on G(F ). In contrast, the elements of the stable Bernstein center,
when looked at as elements of the Bernstein center rather than as distributions, work differently:
at least when G is quasi-split, one can expect a ring homomorphism Z2(G)→ Z2(H) (i.e., in the
opposite direction), which has the following property: if z 7→ zH according to this homomorphism,
and if f ∈ C∞c (G(F )) and fH ∈ C∞c (H(F )) have matching orbital integrals, then so do z ∗ f and
zH ∗ fH. As Haines explains in [Hai14, Section 6.2], the Z-transfer conjecture contains, formally,
the “the fundamental lemma implies spherical transfer” result, and hopefully, more generally and
using slightly different terminology, results of the “the fundamental lemma for the unit elements
implies the fundamental lemma for the entire Hecke algebra” type results. Thus, it should also
give some ‘philosophical explanation’ for why a result of Lemaire and Mishra ([LM20]), with the
Weyl-averaging in its formulation, looks the way it does. In this context, Haines remarks that
this conjecture should help study the transfer of the test functions that lend their name to the
test function conjecture (see [Hai14, Conjecture 6.1.1]). However, without the luxury of a local
Langlands correspondence, we are unable to see a description for such a transfer z 7→ zH that is
at least as transparent as that of matching of orbital integrals.
It is also worth mentioning that a sub-case of the Z-transfer conjecture concerns the endsocopic
‘Jacquet-Langlands-type’ or ‘Deligne-Kazhdan-Vigneras-type’ transfer from a quasi-split form G∗

of G to G. In this case, one expects a ring homomorphism Z2(G∗)→ Z2(G) (thus, this time the
source is on the side of the endoscopic group) with the following property: if z∗ has image z and if
f ∈ C∞c (G(F )) and f∗ ∈ C∞c (G∗(F )) have matching orbital integrals, then so do z ∗f and z∗ ∗f∗.
This reversal of direction is not surprising, because it is for quasi-split groups that the condition
of relevance for Langlands parameters is automatic, and hence for a possibly non-quasi-split group
G, it is Z2(G∗) and not Z2(G) that C[Ω( LG)] can be expected to equal. We are not even sure if
Z2(G∗) has a greater claim than Z2(G) does for being called the stable Bernstein center of G.
Moreover, in this case, the description of the map z∗ 7→ z should be no less transparent than
the transfer of stable distributions from G∗ to G: if e(G) denotes the Kottwitz sign of G, and
the measures on G∗(F ) and G(F ) are chosen compatibly (see [Kot88, page 631]), then z, as
a distribution, should simply be the product of e(G) and the endoscopic transfer of the stable
distribution z∗ from G∗ to G, though in practice it is not at all obvious that this transfer belongs
to Z(G).
There are at least two situations in which the Z-transfer conjecture is known completely: the
case of base-change for GLn, proved in [Hai14, Proposition 6.2.4], and the Jacquet-Langlands or
Deligne-Kazhdan-Vigneras transfer between GLn and an inner form of it (see [Coh18]).
In [Hai14], the Z-transfer conjecture is stated only in two situations: in the situation of standard
(‘untwisted’) endoscopy and for the subring of Z(G) that Haines calls the ‘geometric Bernstein
center’ (see [Hai14, Definition 6.2.1]), and also in the situation of base-change, but for all elements
of the stable Bernstein center in its C[Ω( LG)] realization. In [Hai14, Section 6.2.1], Haines remarks
that one could formulate a general Z-transfer conjecture involving a map C[Ω( LG)]→ C[Ω( LH)]
dual to the obvious map Ω( LH)→ Ω( LG), provided one can show that the latter map is algebraic.
We study the Z-transfer conjecture in Section 6 in a general twisted endoscopic setting, considering
an endoscopic datum (H,H, s̃) for a pair (G, G̃,a), with a a cocycle giving to a unitary character
ω : G(F )→ C×, where H may not be isomorphic to LH. Choosing auxiliary data that includes a
z-extension H1 → H of H with kernel C1 and a unitary character µ of C1(F ), we show that the
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embedding H ↪→ LG yields a map Ω( LH1)µ → Ω( LG) of varieties, where Ω( LH1)µ ⊂ Ω( LH1)
is the closed subvariety defined by a condition reflecting the stipulation that the central charac-
ter should restrict to µ on C1(F ). Thus, assuming various conjectures, the corresponding map
C[Ω( LG)]→ C[Ω( LH1)µ] of coordinate rings should identify with a map Z2(G)→ Z2(H1)µ, where
Z2(H1)µ is a quotient of Z2(H1) with which the latter ring acts on those smooth representations
of H1(F ) on which C1(F ) acts via µ.
In any case, assuming various conjectures, let us make C[Ω( LG)] (resp., C[Ω( LH1)µ]) act on
functions, distributions and representations of G(F ) (resp., functions, distributions and represen-
tations of H1(F ) on which C1(F ) acts via µ) through its map to Z2(G) (resp., to Z2(H1)µ). We
then prove the following theorem, which we state very informally, referring to Theorem 6.2.3 and
Proposition 6.3.1 for more precise statements and the body of the paper for the notation.

Theorem 1.2.1. (i) If we assume that G and H1 satisfy the existence of tempered L-packets,
an LLC+ that is compatible with these tempered L-packets as well as with the endo-
scopic transfer SDµ(H̃1) → D(G̃, ω) of tempered characters, and z 7→ z1 denotes the

map C[Ω( LG)]→ C[Ω( LH1)µ], then whenever f ∈ C∞c (G̃(F )) and f1 ∈ C∞µ (H̃1(F )) have
matching orbital integrals, so do z ∗ f and z1 ∗ f1.

(ii) Assume that G and a quasi-split inner form G∗ satisfy the existence of tempered L-packets,
and that these packets transfer in the expected way between (Levi subgroups of) G∗ and
G. Give G(F ) and G∗(F ) compatible Haar measures. Then the map D∗ 7→ e(G)D, where
the distribution D on G(F ) is the endoscopic transfer of the stable distribution D∗ on
G∗(F ), and e(G) is the Kottwitz sign of G, restricts to a map Z2(G∗) → Z2(G) that
is a ring homomorphism, and satisfies the property that whenever f ∈ C∞c (G(F )) and
f∗ ∈ C∞c (G∗(F )) have matching orbital integrals, so do z ∗ f and z∗ ∗ f∗.

(i) of the theorem is very soft and formal modulo deep results of [Art96] and [MW16], while (ii)
can be viewed as a generalization of a result in [Coh18].
Let us make some comments on the case where F is replaced by the field R. In this case, one
might be interested in the center of the category of (g,K)-modules with a given central character.
This ring accepts a homomorphism from the center Z(g) of the universal enveloping algebra of G.
Therefore, at least a partial analogue of the Z-transfer conjecture in this situation could be [MW16,
I.2.8, Corollary], which shows that endoscopic transfer respects an appropriate homomorphism
Z(g) → Z(h) of universal enveloping algebras. However, D. Prasad pointed us to the paper
[MS08] by Muic and Savin, which shows that if G is quasi-split but not split, then the center
of the category of (g,K)-modules with central character χ is much larger than the center of the
enveloping algebra. We do not know if, accordingly, a more general archimedean analogue of the
Z-transfer conjecture exists.
Another interesting and unconditional “Z-transfer” result is that of Waldspurger in [Wal21], that
the depth zero projector behaves well with respect to endoscopy: if H is endoscopic to G, p is large
enough, and f ∈ C∞c (G(F )) and fH ∈ C∞c (H(F )) have matching orbital integrals, then so do E0∗f
and E0,H ∗ fH, where E0 and E0,H are respectively the depth zero projectors on G(F ) and H(F )
(this follows from [Wal21, Theorem 1 and Theorem 2]). In other words, maps Z2(G)→ Z2(H) as
discussed earlier should take the depth zero projector to the depth zero projector. In future work
with Li and Oi, we hope to prove similar results for depth r projectors with r > 0, and for other
Bernstein projectors.

1.3. Other results: atomically stable packets, Plancherel measures, inner forms of
classical groups, and depth preservation. Let us describe a few more results in the paper,
that were arrived at while making the above considerations. The proof of Theorem 1.1.5 fol-
lows Shahidi’s proof of the constancy of the Plancherel µ-function on discrete series L-packets of
Levi subgroups, under an assumption almost equivalent to (perhaps slightly weaker than) our as-
sumption on the existence of tempered L-packets (see [Sha90, Proposition 9.3]). Indeed, Shahidi
studied the Plancherel expansion of f 7→ f(1) to show that if Σ is a discrete series packet on
a Levi subgroup M ⊂ G, then µ(σ1) = µ(σ2) for all σ1, σ2 ∈ Σ, where µ is the Plancherel µ-
function associated to the parabolic induction from M to G (see [Wal03, Section V]). Similarly,
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given z ∈ Z1(G), the proof that z ∈ Z2(G) (under the assumption that tempered L-packets exist)
goes through first showing that if Σ is a discrete series packet on a Levi subgroup M ⊂ G, then
ẑ(σ1) = ẑ(σ2) for all σ1, σ2 ∈ Σ, where ẑ(σi) refers to the value of ẑ on any irreducible subquotient
of a representation of G(F ) parabolically induced from σi. The reason this helps is that one can
then combine this with Arthur’s deep result that if f ∈ C∞c (G(F )) satisfies that Θ(f) = 0 for
all stable tempered virtual characters Θ on G(F ), then f is unstable, i.e., all its stable orbital
integrals vanish (this follows from [Art96, Theorems 6.1 and 6.2], but it may be more convenient
to see this from the statement of the twisted version given in [MW16, Corollary XI.5.2]), and
the fact that the existence of tempered L-packets gives a simple description for the set of stable
tempered virtual characters. While Shahidi considers the Plancherel expansion of f 7→ f(1), here
one considers the expansion of f 7→ z(f∨) = z ∗ f(1), where f∨ is given by f∨(g) = f(g−1), to get
the constancy of σ 7→ ẑ(σ)µ(σ) on Σ, from which the constancy of σ 7→ ẑ(σ) on Σ follows (using
Shahidi’s result mentioned above, which can be recovered by taking z to be the Dirac measure at
the identity element).
We find it convenient to use the above Plancherel expansion argument to prove the following
unconditional result on the way, one that does not depend on a strong assumption like the existence
of tempered L-packets (see Corollary 5.2.11(i) for more details):

Proposition 1.3.1. Let z ∈ Z1(G). Let ζ : AM(F ) → C× be a smooth unitary character, where
AM is the maximal split torus contained in the center of M. Write Irrζ,2(M) for the subset of
Irr2(M) consisting of representations whose central character restricts to ζ on AM(F ). Then

(2)
∑

σ∈Irrζ,2(M)

d(σ)ẑ(σ)µ(σ)Θσ,

which makes sense as a distribution on G(F ) by Remark 2.2.5, is stable.

This suggests that, to conclude the equality ẑ(σ1)µ(σ1) = ẑ(σ2)µ(σ2) for two given representations
σ1, σ2 that belong to a candidate discrete series L-packet (such as a Kaletha packet), we might
not need the full strength of the existence of tempered L-packets: it will suffice if we know that
the function d(σ1)−1fσ1

− d(σ2)−1fσ2
is unstable, where fσi is a pseudocoefficient for σi among

those representations of M(F ) whose central character restricts to ζ on AM(F ).
Thus, we consider what we call ‘atomically stable’ discrete series L-packets, adapting terminology
from [MY20]: a finite subset Σ ⊂ Irr2(M) is atomically stable if it supports a nonzero stable
virtual character ΘΣ with the property that every stable elliptic virtual character Θ on M(F ) can
be uniquely written as cΘΣ + Θ′, where c is a scalar and Θ′ is supported outside Σ. This notion
is a natural one and hence is almost certainly well-known to experts, but we could not find a
reference in literature. We also warn the reader that it is different from the notion with the same
name in [Kal22, Conjecture 2.2] (we apologize for the clash of terminology). One then shows that
the Plancherel µ-function as well as ẑ, for any z ∈ Z1(G), are constant on any atomically stable
discrete series packet on a Levi subgroup of G. While pursuing these considerations, it is not hard
to see that for any atomically stable discrete series packet Σ, ΘΣ is a scalar multiple of

∑
d(σ)Θσ,

with σ running over Σ and d(σ) denoting the formal degree of σ.
If tempered L-packets are known to exist, then it is easy to see that every discrete series packet
on a Levi subgroup is atomically stable. It turns out that examples can be given even when
tempered L-packets are not known to exist. We describe two ways to check that a given finite
set of discrete series representations constitutes an atomically stable discrete series packet. Again,
this should be known to experts, since these two results are very simple consequences of [Art96],
but we were unaware of them and could not find them in literature. It was a remark of Mœglin
in [Mg14, Section 4.8] that suggested the first to us, and it was [LMW18, Section 4.6, Lemma 3]
that suggested the second.
To describe the first, let M be a connected reductive group over F . Given a virtual discrete series
character Θ on M(F ), recalling that it is completely determined by the values it takes as a locally
constant function on the set M(F )ell of strongly regular elliptic semisimple elements of M(F ), let
us denote by Θst : M(F )ell → C the function that takes γ to the average of the Θ(γ′) as γ′ varies
over representatives for the conjugacy classes in the stable conjugacy class of γ. It is not obvious
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that Θst is the set of values taken by any virtual character on M(F )ell, but one knows from a deep
result of [Art96] that it is so. The first way to detect atomic stability is as follows (see Proposition
3.4.2):

Proposition 1.3.2. A finite subset Σ ⊂ Irr2(M) is an atomically stable discrete series packet if
and only if the following two conditions are satisfied:

• The Θst
σ , as σ varies over Σ, are all proportional to each other; and

• Some linear combination of the Θσ with all coefficients nonzero, as σ varies over Σ, is a
stable distribution.

As remarked earlier, the proof is not hard: if we assume for simplicity that M is semisimple,
the result follows easily once one computes that Θst

σ is the image of Θσ under the projection map
Dell(M)→ SDell(M), where Dell(M) is the space of elliptic virtual characters on M(F ), SDell(M) ⊂
Dell(M) is the subspace of stable elliptic virtual characters on M(F ), and the projection is with
respect to the elliptic inner product.
The second way to detect atomic stability is only a sufficient condition, which we state slightly
informally and imprecisely as follows; see Proposition 3.4.11 for the more precise statement:

Proposition 1.3.3. If a finite subset Σ ⊂ Irr2(M) has a crude ‘endoscopic decomposition’, in the
sense that we can write ∑

σ∈Σ

CΘσ =
∑
H

CΘM
H ,

where H runs over a set of distinct relevant elliptic endoscopic data for M and ΘM
H is the transfer

to M(F ) of some stable elliptic virtual character on (a z-extension of) H(F ) via H, then Σ is an
atomically stable discrete series packet.

This proposition follows easily from the result in [Art96] (though we follow the exposition in
[LMW18]) that endoscopic transfer from stable elliptic virtual characters on relevant elliptic endo-
scopic groups gives us a decomposition of Dell(M) that is orthogonal for the elliptic inner product.
This way of detecting atomic stability is harder to implement, but has the advantage that the
necessary work has already been done by Kaletha in the case of regular supercuspidal packets
when p� 0.
Thus, we conclude that when p � 0, Kaletha’s regular supercuspidal packets are atomically
stable. This implies (see Remark 3.4.13 for a few more details) a weak compatibility result,
comparing Kaletha’s local Langlands correspondence with those of Arthur, Mœglin and Mok: when
p � 0, Kaletha’s regular supercuspidal packets on quasi-split special orthogonal and symplectic
(resp., unitary) groups are also packets in the sense of [Art13] (resp., [Mok15]); an analogous
comment applies with [Mg14] in place of [Art13] and [Mok15], provided one accounts for an outer
automorphism in the case of even special orthogonal groups. However, we do not have any result
on the compatibility between the relevant Langlands parametrizations.
Recall that already in [Sha90], Shahidi had proposed that his proof of the constancy of the µ-
function on discrete series packets on Levi subgroups should generalize to transfer to inner forms,
and should thus make local Langlands-Shahidi L-functions available for inner forms, modulo the
generic packet conjecture. Such transfers have been known by the work of Choiy and Heiermann
(see [Cho14] and [Hei16]).
Inspired by the transfer of µ-functions across inner forms by Choiy and Heiermann, one can ask if
the stability of (2) given by Proposition 1.3.1 can be enhanced to a transfer between inner forms.
This leads to the following proposition, which we state informally and refer to Corollary 5.2.11(ii)
for more details:

Proposition 1.3.4. Given an inner twist between G and its quasi-split inner form G∗ that trans-
fers a Levi subgroup M ⊂ G to a Levi subgroup M∗ ⊂ G∗, (2) above generalizes to:

(3)
∑

σ∗∈Irrζ,2(M∗)

d(σ∗)ẑ(σ∗)µ(σ∗)Θσ∗ transfers to (scalar) ·
∑

σ∈Irrζ,2(M)

d(σ)ẑ(σ)µ(σ)Θσ.
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The scalar in the above proposition is given sort of explicitly in Corollary 5.2.11(ii). Among other
things, it involves the Kottwitz sign e(G) = e(M) of G.
While Proposition 1.3.1 used that f 7→ f(1) is stable (by [Kot88, Proposition 1]), Proposition
(1.3.4) uses that the distribution f∗ 7→ f∗(1) on G∗(F ) transfers to the product of e(G) and the
distribution f 7→ f(1) on G(F ) (by [Kot88, Proposition 2]). Instead of using the result of [Art96]
that the instability of a function can be checked on stable characters, one uses that whether or not
two functions have matching orbital integrals can be checked by seeing that various (non-explicit)
character identities are satisfied; this follows from [Art96, Lemma 6.3], as explained in [LM20]:
see the equivalence of the conditions (A) and (B) in page 587 of that reference.
Given Propositions 1.3.1 and 1.3.4, the following informally stated proposition, whose first (resp.,
second) assertion generalizes Shahidi’s constancy of the µ-function on discrete series L-packets
(resp., the transfer of µ-functions as in the works of Choiy and Heiermann), is not hard to see; we
refer to Corollary 5.2.12 for more details:

Proposition 1.3.5. (i) If Σ is an atomically stable discrete series packet on a Levi subgroup
M ⊂ G, and z ∈ Z1(G), then for all σ1, σ2 ∈ Σ we have µ(σ1) = µ(σ2) and ẑ(σ1) = ẑ(σ2).

(ii) In the setting of Proposition 1.3.4, if an atomically stable discrete series packet Σ∗ on
M∗ transfers to an atomically stable discrete series packet Σ on M in a sense that is not
hard to formulate, then for all σ ∈ Σ and σ∗ ∈ Σ∗, µ∗(σ∗) is the product of µ(σ) and an
explicit constant that does not depend on Σ∗ or Σ. If moreover z ∈ Z(G) is a transfer
of z∗ ∈ Z1(G∗) in the sense that as a distribution on G(F ), z is the product of e(G) and
the endoscopic transfer of z∗ viewed as a distribution on G∗(F ), then for all σ∗ ∈ Σ∗ and
σ ∈ Σ, we have

(4) ẑ∗(σ∗) = ẑ(σ).

In particular, when p � 0, the Plancherel µ-function associated to regular supercuspidal packets
on Levi subgroups transfers well across inner forms.
We discuss two applications for Proposition 1.3.5. First, the arguments of Shahidi following
[Sha90, Conjecture 9.4] should now make available the normalization of intertwining operators
using Langlands-Shahidi L-functions, for those atomically stable discrete series packets on G(F )
that transfer to atomically stable discrete series packets on the quasi-split form G∗(F ) that can
be shown to be generic, and in particular for regular supercuspidal packets when p� 0. For some
more explanation, see Subsubsection 5.3.1.
Let us also remark that there is a much more delicate and subtle strengthening of the aforemen-
tioned transfer of Plancherel µ-functions, called the local intertwining relation (and which is due to
Arthur), addressing which is beyond the scope of this paper. One can hope that forthcoming work
of Kaletha will shed light on it. Let us also take this opportunity to mention that a ‘relatively local’
approach towards proving some special cases of the local intertwining relation when the induced
representation is irreducible, is given by the Goldberg-Shahidi method of residues of intertwining
operators: see [Sha92] and [Var]. We hope that, at least in some very special situations, and
assuming p � 0, it could yield, by ‘relatively local’ methods, an answer to a question that the
above considerations bring to the fore: whether the Langlands-Shahidi L-functions and ε-factors
associated to regular supercuspidal packets on Levi subgroups agree with the corresponding Artin
L-functions and ε-factors associated to the Langlands parameters assigned to them by Kaletha.
To state the second application of Proposition 1.3.5, fix r ≥ 0 and let Er ∈ Z(G) be the depth r
projector in the sense of [BKV16]; thus, for an irreducible admissible representation σ of G(F ),

Êr(σ) equals 1 or 0 depending on whether or not the depth of σ is at most r. Assuming p� 0, the
second application of Proposition 1.3.5 gives the constancy of depth (see [MP96]) on atomically
stable discrete series L-packets, and the fact that transfer of atomically stable discrete series L-
packets across inner forms respects depth; we refer to Corollary 5.3.4 and Proposition 5.3.5 for
more details.

Proposition 1.3.6. (i) If p is very good for G in the sense of [BKV16], and Σ is an atomi-
cally stable discrete series packet on a Levi subgroup M ⊂ G, then the elements of Σ have
the same depth.
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(ii) Let G∗ be a quasi-split inner form of G, and let E∗r be the depth r projector on it. Assume
p to be very good for G, and that g has a bilinear form that behaves well with respect to
its Moy-Prasad filtrations (as in [AR00, Proposition 4.1]). Then:
(a) E∗r belongs to Z1(G∗) and transfers as a stable Bernstein center element to Er, in the

sense that when viewed as distributions, and with G(F ) and G∗(F ) given compatible
Haar measures, E∗r transfers to e(G)Er.

(b) Moreover, if we are in the setting of Proposition 1.3.4, and if an atomically stable
discrete series packet Σ∗ on M∗ transfers to an atomically stable discrete series packet
Σ on M, then for all σ ∈ Σ and σ∗ ∈ Σ∗, we have depth(σ) = depth(σ∗).

(i) of the above proposition is an immediate consequence of the stability of Er (as given by
[BKV16], since p is ‘very good’ for G) and Proposition 1.3.5(i). As for (ii) of the above proposition,
the assertion (a) is Proposition 5.3.5, while the assertion (b) follows from the assertion (a) and
Proposition 1.3.5(ii). In future joint work with Li and Oi alluded to above, we hope to generalize
(ii)(a) of the above proposition to an assertion about the behavior of the depth r projector with
respect to endoscopic transfer.
Now we come to the question of extracting more mileage from (2) and (3). The former can be
interpreted as saying that, if M is a Levi subgroup of G and ζ is a unitary smooth character of
AM(F ), then Θ and T (Θ) are stable, where

Θ =
∑

σ∈Irrζ,2(M)

d(σ)Θσ, and T (
∑

σ∈Irrζ,2(M)

aσΘσ) =
∑

σ∈Irrζ,2(M)

aσµ(σ)Θσ,

where Θ is interepreted as an element and T as a linear transformation, of the vector space
consisting of ‘possibly infinite linear combinations’ of characters of elements of Irrζ,2(M).
Thus, we can try to fix M and vary G, or rather fix G and realize it as a factor of Levi subgroups
of varying larger groups G+. This is not possible in all situations, but classical and general spin
groups and their inner forms are especially suited to such considerations: if G is such a group, it
can be written as some Gn for a series {Gm}m of groups of the same type as G, and for appropriate
m > n, Gm has Levi subgroups that are a product of G with either a product of inner forms of
general linear groups or a product of restrictions of scalars of general linear groups. Combining this
with the multiplicativity of the Plancherel measure ([Wal03, Lemma V.2.1]), one can get a ring
of operators on a vector space containing Θ as above. Taking simultaneous eigendecomposition
then yields ‘packets’ of discrete series representations of G(F ) such that σ1 and σ2 are in the same
packet if and only if a condition of the following form is satisfied: µ(σ1 ⊗ τ) = µ(σ2 ⊗ τ) for all τ
belonging to a certain collection of representations of inner forms of groups of GL-type.
This brings us to the consideration of characterizing Langlands parameters using Plancherel mea-
sures in the spirit of Gan and Takeda (see [GT11]). More precisely, the idea is to characterize
discrete series L-packets on the quasi-split inner form G∗ of G, as defined by Arthur, Mœglin or
Mok, up to an outer automorphism in the even special orthogonal case, by those expressions of
the form µ(σ∗ ⊗ τ∗) that transfer in an appropriate sense to G, and appeal to (3) to transfer
these packets to G. For a technical reason mentioned before, we do not consider even general spin
groups. These considerations give us the following very informally stated theorem, where we refer
to Theorems 7.3.3 and 7.3.10 for the more precise statements:

Theorem 1.3.7. If G is an inner form of a quasi-split classical or odd general spin group G∗

over F , and if G∗ is not even special orthogonal, there is a crude local Langlands correspondence
for discrete series representations of G(F ), which is characterized using Plancherel measures, and
whose fibers are atomically stable discrete series L-packets. When G∗ is even special orthogonal,
a weaker analogue involving an outer automorphism applies.

In the above theorem, even for a precise statement of the latter assertion, special care is needed for
those inner forms of even special orthogonal groups that Arthur refers to in [Art13, Chapter 9] as
not symmetric. We emphasize that much finer results on the local Langlands correspondence than
Theorem 1.3.7 are already known in all these cases except possibly for inner forms of odd general
spin groups, by [Art13, Chapter 9], the work of Mœglin and Renard ([MR18]), the work of Kaletha,
Minguez, Shin and White ([KMSW14]), and the work of Ishimoto ([Ish23]). For non-quasi-split
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inner forms of unitary groups, there is also a characterization using the theta correspondence, in
the work of Chen and Zou ([CZ20]). We also remark that if p � 0, and G is an inner form of a
quasi-split symplectic or odd special orthogonal group G∗ over F , regular supercuspidal L-packets
on G(F ) as defined by Kaletha are also L-packets in the sense of Theorem 1.3.7: see Remark
7.3.17 for more details.
A result of Oi in [Oi22] allows us to deduce from Proposition 1.3.6, but with some extra effort in
some cases related to inner forms of even special orthogonal groups, the following, where we refer
to Corollary 7.4.3 for more details:

Proposition 1.3.8. Let G be an inner form of a special orthogonal, symplectic or unitary group,
and assume that p is larger than a certain explicit constant depending only on the absolute root
datum of G. If G is quasi-split, the local Langlands correspondence for G as defined by Arthur,
Mœglin or Mok (defined up to an outer automorphism in the even special orthogonal case) preserves
depth. In general, the same applies to the crude local Langlands correspondence of Theorem 1.3.7.

In the case of non-quasi-split unitary groups, the above proposition is already known by the work
of Oi ([Oi21]).
Now let us discuss the organization of this paper. After setting some notation and reviewing some
results (Subsections 2.1, 2.2, 2.3, 2.4, 2.5), we fix in Subsection 2.6 a system {OM}M indexed by
Levi subgroups M of a fixed arbitrary connected reductive group G over our p-adic field F , where
each OM is a subgroup of the group Aut(M) of (F -rational) automorphisms of M, imposing some
hypotheses on the collection {OM}M. In Subsection 2.7, we spell out our hypothesis on the exis-
tence of tempered L-packets with appropriate stability properties (Hypothesis 2.7.1), draw some
obvious consequences and set related notation. In Subsections 2.8 and 2.9 we set notation and
recall basic facts concerning Langlands parameters and infinitesimal characters. In Subsection
2.10, we state our LLC+ hypothesis (Hypothesis 2.10.3), which involves discrete series represen-
tations, and explain its extension to more general representations using Langlands classification.
In Subsection 2.11, we discuss the remaining main hypotheses — the ones on the compatibility
between stability and LLC, Langlands parameters for supercuspidal packets and the existence of
stable cuspidal support (Hypotheses 2.10.12, 2.11.1 and 2.11.4) — and show that the third of these
follow from the earlier hypotheses.
Section 3 deals with results about stable virtual elliptic characters and their endoscopic transfer,
as well as with atomically stable discrete series L-packets. We set some notation and review some
basic facts in Subsection 3.1. In Subsection 3.2, we discuss basic facts about stable distributions
on a non-quasi-split group, such as why for any f ∈ C∞c (G(F )), the vanishing of Θ(f) for every
stable tempered virtual character Θ implies that f is unstable. While these results are contained
in [Art96], only in the quasi-split case do these results seem to be stated in [Art96] in the exact
manner in which we want to use it, so what we do is to explain the process of deduction. We then
introduce atomically stable discrete series L-packets in Subsection 3.3, and explain in Subsection
3.4 two ways of detecting atomic stability that follow from Arthur’s formalism in [Art96].
Section 4 studies the three kinds of Bernstein varieties of inerest to this paper: the usual one Ω(G),
the variety Ω( LG) of Vogan where we follow the approach of Haines, and the harmonic analytic
variant Ωst(G) of the latter (under some hypotheses). The definitions are recalled (or given in the
case of Ωst(G)) in Subsection 4.1. Subsection 4.2 is an aside relating connected components of
Ω( LG) to inertial Langlands parameters. In Subsection 4.3, we study maps p1 : Ω(G)→ Ω( LG),
p2 : Ω(G) → Ωst(G) and p12 : Ωst(G) → Ω( LG), as well as their properties and relationship
between them, under varying combinations of hypotheses. p2 and p12 are only defined when G is
quasi-split.
Section 5 is where we study the relationship between Z1(G) and Z2(G). In Subsection 5.1, we
review basic facts concerning the Bernstein center Z(G) and review Z1(G) and Z2(G), and in-
troduce the variant Z2,O(G) that takes the presence of {OM}M in our hypotheses to account.
In Subsection 5.2, adapting Shahidi’s work, we prove (2) and (3), and deduce Shahidi-style con-
stancy on atomically stable discrete series packets for µ and ẑ with z ∈ Z1(G)O. In Subsection
5.3, we give two applications to atomically stable discrete series packets on Levi subgroups: to the
normalization of intertwining operators using Langlands-Shahidi L-functions, and the behavior
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of Moy-Prasad depth; the latter involves an easy proof showing that the of depth r projector of
[BKV16] transfers well across inner forms. In Subsection 5.4, we deduce consequences such as
Theorem 1.1.5. In Subsection 5.5, we relate these to the third candidate of our interest for the
stable Bernstein center, namely, we study combinations of our hypotheses that show these to be
the pull-back of C[Ω( LG)] under p∗1 (assuming in particular that G is quasi-split).
In Section 6, we study the Z-transfer conjecture. In Subsection 6.1, we discuss the aforementioned
map Ω( LH1)µ → Ω( LG) and show that it is a map of algebraic varieties; this involves showing
that Ω( LH1)µ is isomorphic to a variety Ω(H) that is defined analogously to Ω( LG), but with LG
replaced by the component H of the endoscopic datum under consideration. Using this map, and
under a large number of hypotheses, we give a proof of the Z-transfer conjecture in Subsection
6.2. In Subsection 6.3, we give a weak generalization of some of the work of Cohen in [Coh18] for
general linear groups; namely, we show that the existence of tempered L-packets with appropriate
stability properties for G and G∗, together with appropriate endoscopic transfers between them,
implies that the product of e(G) and endoscopic transfer at the level of distributions (where the
measures on G(F ) and G∗(F ) are compatibly chosen), gives us the expected ring homomorphism
Z2(G∗)→ Z2(G) that behaves well with respect to endoscopic transfer of functions.
Section 7 contains the results mentioned earlier concerning classical groups and their inner forms.
Subsection 7.1 consists of general remarks about Hypothesis 2.7.1, not specific to classical groups.
In Subsection 7.2, we explain how the work of Arthur, Mœglin and Mok give various hypotheses
of interest (Hypotheses 2.7.1, 2.10.3, 2.10.12 and 2.11.1, and hence also Hypothesis 2.11.4) for
quasi-split classical and odd general spin groups, up to an outer automorphism for even special
orthogonal groups (some additional cases are covered for Hypothesis 2.7.1). One also deduces
Hypothesis 2.7.1 for quasi-split general symplectic and even general special orthogonal groups
from the work of Xu ([Xu18]), the latter only up to an outer automorphism. In Subsection
7.3, we prove Hypotheses 2.7.1, 2.10.3 and 2.10.12 for inner forms of classical and general spin
groups, except that for inner forms of split even special orthogonal groups that are associated to a
division algebra (i.e., for those inner forms of classical groups that are not symmetric in the sense
of [Art13, Chapter 9]), one proves a slightly differently formulated version of these hypotheses,
because the nontrivial outer automorphism does not have an F -rational lift in these cases. In
Subsection 7.4, we summarize the consequences for classical groups and their inner forms in the
form of the identification of the three forms of stable Bernstein center considered here, as well
as depth preservation (and transfer of depth across inner forms under milder hypotheses). We
also explain how, using the Z-transfer conjecture, one can recover Mœglin’s result, for quasi-split
classical groups, that Langlands parameters of representations inside an Arthur packet all have
the same infinitesimal character.
Acknowledgements: This paper owes its existence to T. Haines introducing the stable Bernstein
center to me more than a decade ago. His preprint [Hai14] forms the basis for a good chunk of
what is done in this paper, and it was he who told me, among other things, about the form of
the stable center conjecture asserting the equality of Z1(G) and Z2(G) (Conjecture 1.1.4), and of
its relation to the form of the stable center conjecture as stated by Bezrukavnikov, Kazhdan and
Varshavsky (Conjecture 1.1.3). At an earlier stage of writing this paper, Y. Kim patiently went
through a lot of what I had written, and corrected several inaccuracies. This paper benefited from
discussions with and support from D. Prasad and F. Shahidi, as well as from helpful comments
given by A. M. Aubert and A. Bertoloni-Meli. It is a pleasure to thank all these people, as well as
W.-T. Gan, T. Kaletha, W.-W. Li and M. Oi for their interest and encouragement. Let me also
gratefully record this paper’s intellectual debt to several existing works in literature, especially
[Li13], [Mg14], [MW16] and [LMW18], which taught me several aspects of the beautiful paper
[Art96], that are crucially used in this paper and which I would have missed otherwise.

2. Some notation, preliminaries, preparation, and the main hypotheses

Throughout this paper, notation that we define for a group will be applied with obvious modifi-
cation to other groups. For instance, once we define the object D(M) or Ω(G) associated to the
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connected reductive group M or G, then for any connected reductive group G′, we will use D(G′)
or Ω(G′) to denote the analogous object associated to G′.

2.1. Some notation.

2.1.1. Miscellaneous notation. For an abstract group G that acts on a mathematical object X, we
will denote by XG (resp., XG ) the invariants (resp., the coinvariants) for the action of G on X,
provided such a thing makes sense. For any mathematical object X, we will write Aut(X) for the
group of automorphisms of X, when the meaning of ‘automorphisms’ is clear from the context. If
G is a topological group, Homcts(G ,C×) will denote the group of (quasi-)characters of G , i.e., of
continuous homomorphisms G → C×.
For a ring R, an R-algebra R′, a module M over R and a scheme X over R, we will write MR′ for
M ⊗R R′ and XR′ or X ×R R′ for the base-change of X from R to R′.
M0 will denote the identity component of an algebraic group M defined over a field. The Lie algebra
of an algebraic group denoted by a roman letter (e.g., G) will be denoted by the corresponding
fraktur letter (e.g., g). If X is a variety (resp., algebraic group) over a valued field F , X(F ) will be
viewed as a topologial space (resp., topological group) with the “Hausdorff topology” associated
to the valuation. Whenever X is a complex variety, we may abbreviate X(C) to X.

2.1.2. Tori. If T is a torus defined over a field F , we will denote by X∗(T) (resp., X∗(T)) the
character lattice (resp., the cocharacter lattice) of the base-change TF s of T to F s, and view it
together with the Gal(F s/F )-action on it, where F s will be a separable closure of F that will be
clear from the context. Moreover, given such a T, AT ⊂ T will denote the maximal split subtorus
and T→ ST the maximal split quotient torus.

2.1.3. Derived group, outer automorphisms etc. If M is a connected reductive group over a field
F , we will write Mder,Mad and Msc respectively for the derived group of M, the adjoint group of
M, and the simply connected cover of Mder, respectively. Moreover, Out(M) will denote the group
of outer automorphisms of the base-change MF̄ of M to a suitable algebraic closure F̄ of F (i.e.,
the group of all algebraic automorphisms of MF̄ quotiented by the normal subgroup of the inner
automorphisms Intm, with m ranging over M(F̄ )).

2.1.4. Twisted spaces, center and related notation. For any algebraic group M over a field F , M̃
will usually denote a twisted space for M — recall that this means that M̃ is an algebraic variety
over F that is given commuting left and right M-actions, which we will write as (m, δ) 7→ mδ and

(δ,m) 7→ δm, that are both simply transitive, and satisfying M̃(F ) 6= ∅. Note that m1δm2 has an

unambiguous meaning for m1,m2 ∈ M(F ) and δ ∈ M̃(F ), as either of the terms in the equality
(m1δ)m2 = m1(δm2).

If δ is an element of a twisted space M̃ over an algebraic group M over a field F , we will denote
by Int δ the unique automorphism of M such that δ ·m = Int δ(m) · δ. Ad δ will then denote the

derivative of Int δ. ZM̃ will denote the intersection of the kernels of the Int δ as δ ranges over M̃,
and AM̃ the maximal split torus contained in ZM̃.
Often, an algebraic group M over a field F will be implicitly considered as a twisted space over
itself using its left and right multiplication. The group ZM thus defined coincides with the center of
M, and, for each δ ∈ M, the automorphisms Int δ and Ad δ thus defined coincide with conjugation
by δ and the adjoint action of δ, respectively.

2.1.5. The p-adic field F and related notation. Henceforth we fix a finite extension F of Qp for
some prime p, an algebraic closure F̄ of F , and a uniformizer $ for the ring of integers of F . Let
O = OF ⊂ F be the ring of integers of F , and q the cardinality of the residue field of F . Let
| · | : F̄ → R denote the usual extension to F̄ of the normalized absolute value on F . We will
denote by Γ := Gal(F̄ /F ) and by WF ⊂ Γ the absolute Galois group and the Weil group of F ,
by IF ⊂WF the inertia subgroup, and by W ′F := WF × SL2(C) the Weil-Deligne group of F . Let
Fr ∈WF /IF stand for the element that induces the Frobenius automorphism of the residue field.
We denote by ‖ · ‖ : WF → R>0 the composite of the normalized absolute value on F× and the
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abelianization homomorphism WF → F× that is normalized to send (any representative for) Fr
to a uniformizer in the ring of integers of F .

2.1.6. Discrete series etc. For a connected reductive group M over F , a ‘discrete series represen-
tation of M(F )’ will refer to a unitary irreducible smooth representation of M(F ) whose matrix
coefficients are square-integrable modulo the center, while an ‘essentially square-integrable rep-
resentation of M(F )’ will refer to a twist of a discrete series representation of M(F ) by a (not
necessarily unitary) continuous (quasi-)character χ ∈ Homcts(M(F ),C×). If M is a connected
reductive group over F , we denote by Irr(M)(resp., Irrtemp(M); resp., Irr2(M); resp., Irr+

2 (M))
the set of isomorphism classes of irreducible representations of M(F ) that are admissible (resp.,
tempered; resp., discrete series; resp., essentially square-integrable).
If Z ⊂ M(F ) is a central subgroup that is understood from the context, and ζ : Z → C× is a smooth
character, then we denote by Irr2(M)ζ ⊂ Irr2(M), Irr+

2 (M)ζ ⊂ Irr+
2 (M), Irrtemp(M)ζ ⊂ Irrtemp(M)

and Irr(M)ζ ⊂ Irr(M) the subsets consisting of (isomorphism classes) of representations whose
central character restricts to ζ on Z.

2.1.7. Levi subgroups and parabolic induction. Let M be a connected reductive group over F . For
each Levi subgroup L ⊂ M, we denote by WM(L), and by W (L) when M is understood from the
context, the group of F -rational points of the quotient, of the normalizer of L in M, by L. Then
every element of W (L) can be represented by an element of M(F ), letting us identify W (L) with
the quotient of the normalizer of L(F ) in M(F ), by L(F ) (here is a quick argument: choosing
a parabolic subgroup Q of M with L as a Levi subgroup and having unipotent radical N, W (L)
acts freely on the set of parabolic subgroups of M that are M(F̄ )-conjugate to Q and have L as
a Levi subgroup; but the normalizer of L(F ) in M(F ) acts transitively on this set — use [Bor91,
Proposition 20.5], which gives both the surjectivity of M(F ) → (Q\M)(F ) and the fact that the
set of Levi subgroups of Q is a torsor under N(F )-conjugation).
Let M1 ⊂ M be a Levi subgroup (of a parabolic subgroup of M). Then for any parabolic subgroup

P1 ⊂ M with Levi subgroup M1, we will write IndM
P1

for the associated (normalized) parabolic
induction functor, taking smooth representations of M1(F ) to smooth representations of M(F ).

The map induced by the functor IndM
P1

at the level of virtual characters is independent of the choice

of P1, and hence will be written IndM
M1

. Sometimes we will refer to a subquotient of IndM
M1

σ, by

which we will mean a subquotient of IndP
P1
σ — this notion is independent of the choice of P1,

though IndM
P1
σ itself (and what its subrepresentations and quotient representations are) depends

on P1. We have not defined the twisted harmonic analytic version of the notation just introduced,
as we will not need it.

2.1.8. Twisted representations and virtual characters. In this subsubsection, let M be an arbitrary
reductive group over F and M̃ a twisted space associated to M, with the property that for some
δ ∈ M̃(F ), Int δ is a semisimple automorphism of M whose restriction to AM̃ is of finite order. Let
ω : M(F ) → C× be a continuous character attached to a cocycle a ∈ H1(WF ,ZM̂) (in the sense
referred to in Subsubsection 2.5.2 below). Assume that ω is unitary.

An ω-invariant distribution on M̃(F ) refers to a C-linear map C∞c (M̃(F )) → C such that D(f̃ ◦
Intm) = ω(m)D(f̃) for all m ∈ M(F ).

Recall that a representation of (M̃(F ), ω), or an ω-representation of M̃(F ), is a representation

(σ, V ) of M(F ) together with a map σ̃ : M̃(F )→ AutC(V ), such that σ̃(m1δm2) = ω(m2)σ(m1)σ̃(δ)σ(m2)

for all m1,m2 ∈ M(F ) and δ ∈ M̃(F ). We will refer to σ as the representation of M(F ) underlying
σ̃. We will say that σ̃ is smooth or admissible or M(F )-irreducible or of finite length if the repre-
sentation σ of M(F ) that underlies it, is (see [MgW18, Section 2.5]). Note that M(F )-irreducibility
is stronger than the ‘obvious’ notion of irreducibility. We will refer to σ̃ as tempered if σ̃ is unitary
and σ is tempered.
Given an admissible representation σ̃ of M̃(F ) (the underlying representation σ of M(F ) being sup-
pressed from the notation), we will denote by Θσ̃ the (easily checked to be ω-invariant) distribution
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C∞c (M̃(F ))→ C that takes f̃ ∈ C∞c (M̃(F )) to tr σ̃(f̃), where:

σ̃(f̃) =

(
v 7→

∫
M̃(F )

f̃(δ) · σ̃(δ)v dδ

)
,

for some fixed choice of a measure on M̃(F ) obtained by transferring a Haar measure on M(F )

via any isomorphism M(F )→ M̃(F ) obtained as m 7→ δ ·m or m 7→ m · δ for some δ ∈ M̃(F ). All

these isomorphisms indeed yield the same measure on M̃(F ) that is independent of δ. One knows

that any such Θσ̃ can be realized by integration against a locally integrable function on M̃(F )

that is locally constant on the set of regular semisimple elements of M̃(F ) (see [LH17, Corollary
5.8.3] and use, as discussed in [LMW18, Section 3.1], that F has characteristic zero). By abuse of
notation, we will use Θσ̃ to also denote this function, called the Harish-Chandra character of σ̃.
We can talk of formal complex linear combinations

∑
ciσ̃i of finite-length admissible ω-representations

σ̃i of M̃(F ), and thus make sense of character distributions or Harish-Chandra characters asso-
ciated to such formal linear combinations as well: Θ∑

ciσ̃i =
∑
ciΘσ̃i . Such distributions and

functions will be referred to as virtual characters associated to the ω-representation theory of
M̃(F ). Let Θ be such a virtual character. Θ is said to be supported on a set Σ of isomorphism

classes of M-irreducible admissible ω-representations of M̃(F ), if we can write Θ =
∑
i ciΘσ̃i with

σ̃i ∈ Σ for each i. Θ is said to be supported outside another such set Σ′, if Σ can be chosen so
that no M(F )-representation underlying an element of Σ underlies an element of Σ′.

2.1.9. Some spaces of distributions.

Notation 2.1.1. Let M, M̃, ω be as in Subsubsection 2.1.8.

(i) Following [LMW18, Section 3.1], or the definition of “Dtemp(G̃(F ), ω)” in [MgW18, Section

2.9], let D(M̃, ω) denote the complex vector space of ω-invariant distributions on M(F )

spanned by the characters of tempered M(F )-irreducible ω-representations of M̃(F ); it is
spanned by characters of representations σ̃τ associated to certain triplets τ as in [MgW18,
Section 2.9].

(ii) Following [MgW18, Section 2.12], we consider the subspace Dell(M̃, ω) ⊂ D(M̃, ω) spanned
by the characters of those σ̃τ such that the triplet τ is elliptic as defined in [MgW18, Section
2.11]; it is the twisted version of the analogous notion considered by Arthur.

(iii) We refer to [MW16] for the notion of orbital integrals O(γ, ω, ·), and their special cases

O(γ, ·) = O(γ,1, ·), defined on appropriate function spaces (like suitable C∞µ (M̃(F )) as
below).

(iv) Let Z ⊂ M(F ) be a central subgroup, and µ : Z → C× a continuous character. In such
a situation we will use the following notation, often suppressing from the notation the
dependence on Z when it is understood in the context.
• We will let C∞µ (M̃(F )) be the space of smooth functions f1 : M̃(F ) → C, com-

pactly supported modulo Z , such that f1(z1γ1) = µ(z1)−1f1(γ1) for all z1 ∈ Z and

γ1 ∈ M̃(F ). If Z is not clear from the context, or if Z = C1(F ) with C1 ⊂ M a
central subgroup the dependence on which we do not wish to suppress, we will write
C∞Z ,µ(M̃(F )) or C∞C1,µ

(M̃(F )) or C∞C1(F ),µ(M̃(F )) in place of C∞µ (M̃(F )).

• We will let DZ ,µ(M̃, ω) = Dµ(M̃, ω) (resp., DZ,µ,ell(M̃, ω) = Dµ,ell(M̃, ω)) denote the

subspace of D(M̃, ω) (resp., Dell(M̃, ω)) generated by characters of ω-representations

(π, π̃) of M̃(F ) with the property that π has a central character that restricts to µ on
Z ; this agrees with the notation in [LMW18, Sections 4.3 and 4.4].

(v) The above notation will be adapted, without further comment, to deal with usual in-

variant harmonic analysis — Dell(M̃), DZ ,µ(M̃), Dµ,ell(M̃) etc. will denote Dell(M̃,1),

DZ ,µ(M̃,1), Dµ,ell(M̃,1) etc., where 1 denotes the trivial character of M(F ). Further,

Dell(M), DZ ,µ(M), Dµ,ell(M) etc. will denote Dell(M̃
′), DZ ,µ(M̃′), Dµ,ell(M̃

′) etc., where

M̃′ equals M thought of as a twisted space over itself using left and right multiplication.
(vi) Now suppose further that we are in the case where M̃ has the property that, for all

δ ∈ M̃(F̄ ), the automorphism Int δ of M is inner (i.e., equal to Intm for some m ∈ Mad(F̄ )).
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The latter property is what [MW16] refers to as M̃ being ‘á torsion intérieure’. Further,
assume that ω is trivial, and that either M is quasi-split, or that we are in the case where
the twisted space M̃ is isomorphic to M acting on itself by left and right multiplication. 1

In this case:
• We refer to [KS99] or [MW16] for the notion of the stable orbital integrals SO(γ, ·).
• In the setting of twisted endoscopy, a function belonging to C∞c (M̃(F )) or some

suitable C∞µ (M̃(F )), whose stable orbital integrals all vanish, will be called unstable.
The condition that the stable orbitals vanish only needs to be checked at semisimple
elements that are strongly regular in the sense of having an abelian centralizer.
• A stable distribution is one that vanishes on unstable functions (in the context of an

appropriate space of distributions).
• Therefore, various spaces of distributions defined above have their stable variants,

which are their subspaces consisting of those distributions that are stable: SD(M̃) ⊂
D(M̃), SDell(M̃) ⊂ Dell(M̃), SDZ ,µ,ell(M̃) ⊂ DZ ,µ,ell(M̃) etc. Again, this makes sense
of SDell(M), SD(M) etc., thinking of M as a twisted space over itself under left and
right multiplication.

(vii) Let Z ⊂ M(F ) be a central subgroup. Any choice of a Haar measure on Z gives us

an obvious map C∞c (M̃(F )) → C∞µ (M̃(F )), through which the elements of Dµ(M̃, ω)

and Dµ,ell(M̃, ω) factor, letting us view Dµ(M̃, ω) and Dµ,ell(M̃, ω) as linear forms on

C∞µ (M̃(F )). We will similarly make sense of SDµ(M̃) and SDµ,ell(M̃) as linear forms on

C∞µ (M̃(F )), in those contexts in which we have defined SD (see (vi) above).

We will use the above notation only when µ is unitary.

2.2. Review of miscellaneous results. In this subsection, let M be a connected reductive group
over F .

Definition 2.2.1. Let Q ⊂ M be a parabolic subgroup, and χ : Q(F ) → C× an unramified
character (this notion is recalled in Notation 2.5.1 below). Then χ is said to be Q-dominant
if for some (or equivalently, any) maximal split torus A0 of M contained in Q, and any coroot
λ : Gm → A0 associated to a root of A0 in the unipotent radical of Q (one knows that the coroots
λ belong to X∗(A0) and not just to X∗(A0) ⊗ Q), the character χ ◦ λ : F× → C× is of the form
| · |s, where the complex number s, well-defined modulo 2πi(log q)−1Z ⊂ C, has a nonnegative real
part.

The following notation will be used only in this section.

Notation 2.2.2. Let L be a Levi subgroup of a parabolic subgroup Q of M, and let υ ∈ Irr+
2 (L).

One knows that one can write υ = υ′⊗χ′, where υ′ ∈ Irr2(L) and χ′ : L(F )→ C× is an unramified
character. We say that υ is Q-dominant if χ′, viewed as a character Q(F )→ C× by inflation, is.
This notion is independent of the decomposition υ = υ′⊗χ′, since given two such decompositions
υ′ ⊗ χ′ and υ′′ ⊗ χ′′ of υ, χ′(χ′′)−1 is unitary.

We now recall the version of the Langlands classification involving essentially square-integrable
representations:

Proposition 2.2.3. (i) Given σ ∈ Irr(M), there exists a pair (L, υ) consisting of a Levi
subgroup L of M and a representation υ ∈ Irr+

2 (L), uniquely determined up to M(F )-

conjugacy, such that σ is an irreducible quotient (not just subquotient) of IndM
Q υ, where

Q is a choice of a parabolic subgroup of M such that Q has L as a Levi subgroup and υ is
Q-dominant (it is standard that such a Q exists).

(ii) Sending σ to the M(F )-conjugacy class of (L, υ) as in (i) gives a finite-to-one map from
Irr(M) to the set of M(F )-conjugacy classes of pairs (L, υ) with L ⊂ M a Levi subgroup
and υ ∈ Irr+

2 (L). Thus, we get a finite-to-one surjective map

(5) Irr(M)→
⊔
L

Irr+
2 (L)/WM(L),

1This combination of assumptions may not be very natural, but we stick to it for simplicity.
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where L runs over any set of representatives for the M(F )-conjugacy classes of Levi sub-
groups of M (and WM(L) is as in Subsubsection 2.1.7).

(iii) For a pair (L, υ), with L occurring in (5) and υ ∈ Irr+
2 (L), the fiber of (5) over the image of

υ in Irr+
2 (L)/WL consists of all the irreducible quotients of IndM

Q υ, where Q is any choice
of a parabolic subgroup of M such that L is a Levi subgroup of Q and υ is Q-dominant.

Proof. We omit the proof, since it is well-known, and can be found in [ABPS14, Theorem 1.2].
Let us remark that the proof combines two ingredients, the first being [Wal03, Proposition III.4.1],
which asserts the existence of a finite-to-one surjective map defined similarly as in (5):

(6) Irrtemp(M)→
⊔
L

Irr2(L)/WM(L).

(6) is the restriction of (5) to Irrtemp(M), and its fibers have a description similar to the one
given for (5) in Proposition 2.2.3(iii). The second ingredient is the usual statement of Langlands
classification (e.g., [SZ18, Theorem 1.4]). �

Remark 2.2.4. We now recall some easy facts about stable virtual characters that we will use.
Let

∑
σ∈Σ cσΘσ be a stable virtual character on M(F ), for some Σ ⊂ Irr(M).

(i) For any central subgroup Z ⊂ M(F ) and any smooth character χ : Z → C×,
∑
σ∈Σχ

cσΘσ

is also a stable virtual character, where Σχ ⊂ Σ is the subset consisting of representations
whose central character restricts to χ on Z.

(ii) For any isomorphism M→ M′ of reductive groups over F , and any smooth character χ′ :
M′(F ) → C× that is trivial on M′der(F ),

∑
σ∈Σ cσΘ(σ◦β−1)⊗χ′ = ((

∑
σ∈Σ cσΘσ) ◦ β−1)χ′

is a stable virtual character on M′(F ).

Remark 2.2.5. Later, we will have use for distributions on M(F ) of the form:∑
σ∈Irr2(M)ζ

cσΘσ,

where ζ : Z → C× is a smooth character of a central subgroup Z of M(F ) containing AM(F ),
and cσ ∈ C for each σ ∈ Irr2(M)ζ . We claim that such infinite sums makes sense, i.e., for each
f ∈ C∞c (M(F )), or equivalently for each f ∈ C∞ζ (M(F )), Θσ(f) = 0 for all but finitely many

σ ∈ Irr2(M)ζ . This is easy to deduce from [Wal03, Theorem VIII.1.2] using standard facts, as
observed in [MW16, Corollary XI.4.1].

2.3. The root datum, the dual group and the L-group. For this subsection too, let M be
an arbitrary connected reductive group over F (which will vary in sentences where we discuss the
functoriality of constructions involving it). We refer to [MW16, Section I.1.2] for a review of the
notion of ‘the pinned Borel pair’ or ‘the pinning’ E∗M := (B∗M,T

∗
M, (E

∗
α)α∈∆) attached to M —

briefly, the pinnings in M ×F F̄ form an inverse system in a suitable way, and one thinks of the
inverse limit of this inverse system as ‘the’ pinning attached to M.

Notation 2.3.1. (i) We will denote by Ψ(M) the absolute based root datum of M obtained
from the pinning of M (independently of any choice of a Borel pair), which is a four
tuple (XM,∆M, X

∨
M,∆

∨
M) together with a Γ-action on it (i.e., a compatible collection of

Γ-actions on its entries). 2 We may often write Ψ(M) = (XM,∆M, X
∨
M,∆

∨
M), with the

Γ-action understood.
(ii) If Ψ(M) = (XM,∆M, X

∨
M,∆

∨
M), we let Ψ(M)∨ be the dual based root datum (X∨M,∆

∨
M, XM,∆M),

which gets a Γ-action from the Γ-action on Ψ(M).

(iii) Similarly, to each complex connected reductive group M̂, we can associate ‘the’ pinning of

that group, and a based root datum Ψ(M̂).

2This notation is justified by the fact that the set ∆M ⊂ XM of simple roots together with the set ∆∨
M ⊂ X∨

M

of the corresponding coroots completely determines all roots and coroots, as well as the bijection α 7→ α∨.
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(iv) Following [Bor79, Section 1.4], the assignment M 7→ Ψ(M) extends to a functor from the
category whose objects are connected reductive groups over F and whose morphisms are
normal homomorphisms (i.e., homomorphisms f : M→ M′ of connected reductive groups
such that f(M) is a normal subgroup of M′: since f has characteristic zero, the separability
condition of [Kot84, Section 1.8] is automatic), to a category whose objects are based root
data with a Γ-action and which has a suitable notion of morphisms, simplified in our
case because F has characteristic zero. We do not write out the relevant definition of
morphisms of root data precisely, but note that for isomorphisms f : M→ M′ of reductive
groups it is clear how to make sense of the associated maps Ψ(f) of root data and their
functoriality, and this is essentially the only case that we will need.

Remark 2.3.2. To go ahead, it will help us to know that, given any exact sequence

1→ G ′ → G → G ′′ → 1

of abstract groups (i.e., G → G ′′ is a surjection whose kernel is the image of G ′), we have a
homomorphism:

(7) G ′′ → Out(G ′)

from G ′′ to the group Out(G ′) of outer automorphisms of G ′, obtained by factoring the composite
of the conjugation action G → Aut(G ′) with the map Aut(G ′) → Out(G ′). For later use we also
note that, since we have a well-defined restriction map Out(G ′) → Aut(ZG ′), where ZG ′ is the
center of G ′, we also get, by composing with (7), an action:

(8) G ′′ → Aut(ZG ′)

of G ′′ on ZG ′ .
In what follows, we will encounter several situations of this kind, in each of which G ′′ will be
isomorphic to WF and G ′ will be a complex connected reductive group; the right-hand sides of
(7) and (8) will be interpreted in terms of algebraic morphisms. Often, but not always, G will be
a split L-group in the sense we now proceed to discuss.

We will take one of the well-known perspectives on dual groups and L-groups along the lines found
in Weissman’s work, and of which we learnt from D. Prasad.

Definition 2.3.3. (i) By a dual group of M, we mean a connected reductive group M̂ over

C, together with an isomorphism Ψ(M̂)→ Ψ(M)∨, which we will think of as the identity

so as to write Ψ(M̂) = (X∨M,∆
∨
M, XM,∆M), and using which we will view Ψ(M̂) as acted

on by Γ. Note that any two dual groups for M admit an isomorphism between them
that is determined up to composition with an inner conjugation, and that we have fixed
bijections:

(9) Out(M̂) ∼= Aut(Ψ(M̂))→ Aut(Ψ(M)) ∼= Out(M).

(ii) By an L-group equipped with preferred sections, or a split L-group in short, we mean the
following data:
• A topological group M together with a surjection M→WF of topological groups;
• a structure of a complex connected reductive group on the kernel ofM→WF , which

we will denote byM0, think of as a complex connected reductive group and refer to as
the identity component ofM, such that Intm restricts to an algebraic automorphism
of M0 for all m ∈M; and
• a choice of an M0-conjugacy class of sections s : WF → M to the map M → WF ,

which we will call preferred sections, satisfying the following property: for some (or
equivalently, any) preferred section s : WF →M, the action w 7→ Int s(w) of WF on
M0 is an L-action, i.e., one that preserves some pinning of M0 and factors through
the Weil group WE ⊂ WF of some finite extension E/F in F̄ , and hence extends to
an action of Γ on M0.
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(iii) By an L-group of M, we mean a split L-group LM, together with an isomorphism Ψ(M̂)→
Ψ(M)∨ where we write M̂ := ( LM)0, with the property that this isomorphism transports

the WF -action on Ψ(M̂) induced by w 7→ Int s(w), where s : WF → LM is some or
equivalently any preferred section, to the obvious WF -action on Ψ(M)∨. In particular,

(M̂,Ψ(M̂) → Ψ(M)∨) is a dual group for M. It is well-known that an L-group for M

exists: usually one chooses a dual group M̂, lifts the action of WF on Ψ(M̂) to one on

M̂ by forcing it to fix a pinning, and takes LM to be M̂ oWF . Conversely, any choice
of a preferred section gives us an action of WF on M̂ := ( LM)0, and then a realization
LM ∼= M̂ oWF . See Notation 2.3.4(iv) below for the sense in which an L-group of M is
unique.

(iv) If M is a split L-group, we will view Γ as acting on ZM0 by algebraic automorphisms as
follows. First, we get an action of WF ⊂ Γ on ZM0 through a chain of the following form,
obtained from the considerations of Remark 2.3.2 (i.e., from ‘algebrized’ versions of (7)
and (8) of that remark):

WF =M/M0 → Out(M0)→ ZM0 .

This action can also be described as given by Int ◦s, where s : WF → M is a preferred
section, and hence factors through the quotient WF /WE for some finite extension E/F ,
and hence extends to an action of Γ. Similarly, we also get an action of WF =M/M0 on
Ψ(M0), via WF =M/M0 → Out(M0) = Aut(Ψ(M0)).

We will often resort to standard abuse of notation, referring to a dual group of M as just M̂, or to
a split L-group as just M, or to an L-group of M as just LM, with the remaining data involved
considered as understood. We will typically work with fixed choices of M̂ and LM, and identify
( LM)0 = M̂, but will not work with any fixed preferred section of LM or identify LM with M̂oWF

unless otherwise stated.

Notation 2.3.4. (i) Let M1 and M2 be split L-groups. An isomorphism M1 → M2 of
topological groups over WF is said to be an isomorphism of split L-groups if it sends a
preferred section to a preferred section, and restricts to an isomorphism of algebraic groups
M0

1 → M0
2. Using [Kot84, Corollary 1.7], it is easy to see that, up to post-composition

with IntM0
2 or equivalently pre-composition with IntM0

1, such an isomorphism is deter-
mined by the map of root data Ψ(M0

1)→ Ψ(M0
2) induced by the restriction M0

1 →M0
2.

(ii) Suppose M1 → M2 is an isomorphism of connected reductive groups over F . We will refer
to an isomorphism LM2 → LM1 of split L-groups as dual to f : M1 → M2, if the induced
map Ψ(M̂2)→ Ψ(M̂1) is dual to Ψ(f) : Ψ(M1)→ Ψ(M2). By the discussion in (i) above,
the collection of isomorphisms of split L-groups LM2 → LM1 that are dual to a given
isomorphism M1 → M2 is a single orbit under post-composition by Int M̂1, or equivalently
under pre-composition by Int M̂2. Clearly, this definition generalizes to define what it
means for LM2 → LM1 to be dual to a Γ-equivariant isomorphism Ψ(M1)→ Ψ(M2).

(iii) Often, if β : M1 → M2 is an isomorphism of reductive groups, Lβ : LM2 → LM1 will

denote a choice of an element in the M̂1-conjugacy class of homomorphisms that are dual
to β in the sense of (ii) above.

(iv) It follows from the discussion above that, given any reductive group M, LM is unique up
to an isomorphism of split L-groups which itself is uniquely determined up to conjugation
by an element of its identity component M̂. Henceforth, we will implicitly fix a choice of
LM and hence of M̂ = ( LM)0 for every reductive group M over F that we will encounter
in what follows.

(v) We saw in (ii) above that to any isomorphism M1 → M2 of connected reductive groups
over F , we can functorially define a dual map LM2 → LM1, albeit considered up to
composition with Int M̂1. A similar but easier proof shows the same to be the case for
when M1 → M2 is either injective with image a central torus in M2, or surjective with
the image M2 a torus. In fact, one can do the same when M1 → M2 is any normal
homomorphism of connected reductive groups, but we will not need it.
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Langlands parameters and related constructions involving these groups will usually be ‘invariant
under conjugation’, so that the ambiguity of inner automorphisms mentioned in the above remark
will not matter.

Remark 2.3.5. Unlike [Bor79], we are using the Weil form of the L-group, which is what suits
the theory of endoscopy. But this difference is harmless for our purposes, and we will therefore use
results from [Bor79] without further comment, skipping the minor checks needed. Nevertheless,
this difference will occasionally reflect in our treatment, e.g., in that we will use preferred sections
to talk of temperedness for a Langlands parameter; in fact, it has already been reflected in our
requiring the preferred sections, in Definition 2.3.3(ii), to factor through WE for a finite extension
E/F in F̄ .

2.4. Parabolic subgroups of M and of LM. In this subsection, we let M be a connected
reductive group over F .

2.4.1. Conjugacy classes of parabolic subgroups of M and LM in terms of Ψ(M). Recall from
[Bor79, Section 3.3] (keeping in mind Remark 2.3.5) that a subgroup Q of LM is called parabolic

if Q0 := Q∩M̂ is a parabolic subgroup of M̂, and the projection LM→WF restricts to a surjection
Q →WF (in which case, Q is the normalizer of Q0 in LM). Recall that, in such a situation, a Levi
subgroup of Q refers to the normalizer L in Q of a Levi subgroup L0 of Q0 (and automatically
satisfies that Q is the semidirect product of L and the unipotent radical of Q0; in particular,
L →WF is surjective). Of course, by abuse of notation, a Levi subgroup of a parabolic subgroup
of LM will be called a Levi subgroup of LM.

Remark 2.4.1. If (Q,L) is a parabolic-Levi pair in MF̄ , it will help to note that the pinnings
E = (BM,TM, {Eα}α∈∆M) of MF̄ with BM ⊂ QF̄ are all Q(F̄ )-conjugate, and that the set of such
pinnings maps Int L(F̄ )-equivariantly onto the set of pinnings of LF̄ .

Notation 2.4.2. (i) For each parabolic-Levi pair (Q,L) in MF̄ or M, Remark 2.4.1 gives
subsets ∆Q = ∆QF̄ ⊂ ∆M and ∆∨Q = ∆∨QF̄ ⊂ ∆∨M, matching each other under the

bijection ∆M → ∆∨M and depending only on Q, as well as an identification:

(10) Ψ(L)
using (Q,L)

= (XM,∆Q, X
∨
M,∆

∨
Q).

For fixed L, this identification of Ψ(L) will be referred to as the embedding Ψ(L) ↪→ Ψ(M)
determined by the choice of Q (by abuse of notation: this is not an ‘embedding’, and
goes in the ‘wrong direction’). Note that if pairs (L,Q) and (L′,Q′) are M(F̄ )-conjugate,
then the resulting identification Ψ(L) → Ψ(L′), which is independent of any conjugating
element, is compatible with the embeddings of Ψ(L) and Ψ(L′) in Ψ(M) determined by
Q and Q′. Note also that (10) is Γ-equivariant if we started with Q,L ⊂ M (i.e., defined
over F ).

(ii) For each parabolic-Levi pair (Q0,L0) in M̂, an analogue of Remark 2.4.1 gives subsets
∆Q0 ⊂ ∆M̂ = ∆∨M and ∆∨Q0 ⊂ ∆∨

M̂
= ∆M, matching each other under the bijection

∆M̂ = ∆∨M → ∆M = ∆∨
M̂

and depending only on Q0, as well as an identification:

(11) Ψ(L0)
using (Q0,L0)

= (X∨M,∆Q0 , XM,∆
∨
Q0).

For fixed L0, this identification will be referred to as the embedding Ψ(L0) ↪→ Ψ(M̂)

determined by the choice of Q0. It enjoys a behavior with respect to M̂-conjugation, that
follows the lines of the discussion in (i) above. For a parabolic-Levi pair (Q,L) in LM,

we will write ∆Q = ∆Q0 and ∆∨Q = ∆∨Q0 , and refer to the identification Ψ(L0) ↪→ Ψ(M̂)

determined by Q0 also as the one determined by Q; note that in this case, (11) is Γ-
equivariant in an appropriate sense.

(iii) Thus, if (Q,L) and (Q0,L0) are parabolic-Levi pairs in MF̄ and M̂, respectively, such that

∆Q = ∆∨Q0 , then (i) and (ii) give us an identification Ψ(L̂) = Ψ(L)∨ = Ψ(L0), which we

will write as Ψ(L̂)
Q,Q0

= Ψ(L0). If further (Q,L) is a parabolic-Levi pair in M and (Q,L)

is a parabolic-Levi pair in LM, then this identification Ψ(L̂)
Q,Q0

= Ψ(L0) is Γ-equivariant.
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Recall from [Bor79, Sections 3.2 and 3.3] the bijection between the following collections of objects:

(i) Γ-stable M(F̄ )-conjugacy classes of parabolic subgroups of MF̄ (recall that such a conju-
gacy class may not contain a parabolic subgroup that is Γ-stable, though it does if M is
quasi-split);

(ii) Γ-invariant subsets ∆1 ⊂ ∆M;
(iii) Γ-invariant subsets ∆∨1 ⊂ ∆∨M;

(iv) M̂-conjugacy classes of parabolic subgroups Q ⊂ LM.

Here, the bijections (i) ↔ (ii) and (iii) ↔ (iv) are given respectively by Q ↔ ∆Q and ∆Q ↔ Q,
while (ii) ↔ (iii) is given by ∆1 ↔ ∆∨1 := {α∨ | α ∈ ∆1}.

Notation 2.4.3. Recall that a parabolic subgroup Q ⊂ LM is said to be relevant if the associated
Γ-stable M(F̄ )-conjugacy class of parabolic subgroups of MF̄ (as per the bijection between the
collections (iv) and (i) above) has an element that is Γ-stable, i.e., obtained by base-change from
a parabolic subgroup of M (defined over F ). A Levi subgroup L ⊂ LM is said to be relevant if it
is a Levi subgroup of a relevant parabolic subgroup of LM.

Remark 2.4.4. If M is quasi-split, then all parabolic subgroups of LM are relevant, so that
each of the above collections is in bijection with the set of M(F )-conjugacy classes of parabolic
subgroups Q of M.

2.4.2. Levi subgroups of LM as split L-groups.

Proposition 2.4.5. Let L be a Levi subgroup of LM. Then the preferred sections of LM whose
images are contained in L form a single L0-conjugacy class. Moreover, given any such section
s : WF → L, the action Int ◦s of WF on L0 is an L-action (see Definition 2.3.3(ii)).

Notation 2.4.6. (i) Once we prove Proposition 2.4.5, we may and shall view an arbitrary
Levi subgroup L of LM as canonically a split L-group in the sense of Definition 2.3.3(ii),
whose preferred sections are those preferred sections of LM whose images are contained
in L.

(ii) Given parabolic-Levi pairs (Q,L) in M and (Q,L) in LM, such that ∆Q = ∆∨Q, the

Γ-equivariant identification Ψ(L̂)
Q,Q0

= Ψ(L0) from Notation 2.4.2(iii), together with the
considerations of Notation 2.3.4(i), give us an identification

(12) ιM,L : LL
∼=→ L ⊂ LM

that is uniquely determined up to post-composition by an element of IntL0 or equivalently
pre-composition by an element of Int L̂. Here, we are suppressing Q,L and Q from the
notation ιM,L; this is because we will only be interested in the M̂-conjugacy class of ιM,L,
which we will see in Corollary 2.4.10 below to depend only on L.

Proof of Proposition 2.4.5. We will adapt much of the proof of [Kot84, Lemma 1.6]. We use a

preferred section s : WF → LM to get an isomorphism LM = M̂oWF , and recall that the resulting
action of WF on M̂, being an L-action, extends to an action of Γ which preserves a pinning of
M̂. We choose such a pinning, so that we can talk of standard parabolic and Levi subgroups of
LM. Without loss of generality, we may assume that L is a standard Levi subgroup of a standard
parabolic subgroup Q of LM, so that we can write L = L0 oWF , with WF ↪→ L agreeing with s.
Hence s : WF = {1} oWF ↪→ L0 oWF = L satisfies that Int ◦s preseres a pinning of L0, and it
is now easy to see that the second statement of the proposition follows if we prove the first.
Thus, it is enough to assume given x ∈ M̂ such that x−1(1 oWF )x ⊂ L0 oWF , and to show
that x−1(1 oWF )x = y−1(1 oWF )y for some y ∈ L0. In other words, we are given xσ ∈ L0

for all σ ∈ WF so that the identity x−1σ(x) = xσ holds, and we need to show that there exists
y ∈ L0 such that y−1σ(y) = xσ for all σ ∈WF (though we will not use it, note that this amounts

to showing that, for the map H1(WF ,L0) → H1(WF , M̂) of pointed sets, the preimage of the
distinguished point is singleton).

Let B ⊂ Q be the standard Borel subgroup underlying our pinning of M̂. By the Bruhat decom-
position, we can write M̂ as the disjoint union of the B0wQ0, as w ranges over minimal length
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representatives for the right WL0 -cosets in WM̂, where we write WL0 and WM̂ for the Weyl groups

of L0 and M̂ with respect to the maximal torus underlying our pinning, and where we use B0 to
specify the simple roots and hence the length function. Since x−1σ(x) = xσ ∈ L0 for all σ ∈WF ,
it follows that the coset B0xQ0 is σ-invariant, and hence so is the minimal length representative
determining it. This representative is the image of a Γ-fixed element w of M̂, by [Bor79, Lemma
6.2] (which applies though M is not split over a cyclic extension of F ; e.g., the set of Weyl group
representatives determined by our standard pinning is Γ-invariant, since Γ preserves the pinning).
We use this representative w to write x as uwvy, where u, v respectively belong to the unipotent
radicals of B0 and Q0, and y ∈ L0. Such a decomposition is not unique, but it is unique once we
also require u, as we may, to lie in the Γ-invariant subgroup wU−w−1, where U− is the unipotent
radical of the parabolic subgroup of M̂ that contains L0 and is opposite to Q0. Thus, applying
the uniqueness of this decomposition to the equality σ(x) = xxσ, we conclude that σ(y) = yxσ,
as desired. �

Corollary 2.4.7. Suppose L1,L2 ⊂ LM are Levi subgroups, and suppose Intx(L1) = L2 for some

x ∈ M̂. Then Intx : L1 → L2 is an isomorphism of split L-groups.

Proof. This is obvious from Proposition 2.4.5 and the definition (see Notation 2.3.4(i)). �

The following lemma, at least in the special case where L1 = L2,Q1 = Q2 and Q1 = Q2, is part
of the set up in the theory of R-groups:

Lemma 2.4.8. Assume that L1,L2 ⊂ M and L1,L2 ⊂ LM are Levi subgroups. For i = 1, 2, let
Qi be a parabolic subgroup of M with Li as a Levi subgroup and Qi a parabolic subgroup of LM
with Li as a Levi subgroup, such that ∆Qi = ∆∨Qi , yielding by Notation 2.4.2(iii) an identification

Ψ(L̂i)
Qi,Q0

i= Ψ(L0
i ). Define

W (L1,L2) := {m ∈ M(F ) | Intm(L1) = L2}/L1(F ), and W (L2,L1) := {m̂ ∈ M̂(F ) | Int m̂(L2) = L1}/L0
2,

where the quotients have an obvious interpretation. Then:

(i) The obvious map from W (L1,L2) to the group Isom(Ψ(L1),Ψ(L2)) of isomorphisms from
Ψ(L1) to Ψ(L2) is injective, as is the map from W (L2,L1) to the analogously defined group
Isom(Ψ(L0

2),Ψ(L0
1)).

(ii) There is a unique bijection W (L1,L2)→W (L2,L1) under which w ∈W (L1,L2) and ŵ ∈
W (L2,L1) correspond if and only if their images in Isom(Ψ(L1),Ψ(L2)) and Isom(Ψ(L0

2),Ψ(L0
1))

are dual to each other, as made sense of by the above identifications Ψ(L̂1) = Ψ(L0
1) and

Ψ(L̂2) = Ψ(L0
2).

Before proving the lemma, let us restate it as a corollary:

Corollary 2.4.9. Assume the scenario of Lemma 2.4.8. Define ιM,Li : LLi → LM as in Notation

2.4.6(ii) for i = 1, 2, using (Qi,Li) and (Qi,Li). Let W̃ ( LL2,
LL1) be the set of all isomorphisms

LL2 → LL1 that are dual to Intm|L1 , for some m ∈ M(F ) such that Intm(L1) = L2. Let

W̃ (L2,L1) be the set of all isomorphisms of split L-groups L2 → L1 of the form Int m̂ for some

m̂ ∈ M̂. Then:

(i) Under the identifications ιM,L1
: LL1 → L1 and ιM,L2

: LL2 → L2, W̃ ( LL2,
LL1) is

transported to W̃ (L2,L1).

(ii) L1 and L2 are M(F )-conjugate if and only if L1 and L2 are M̂-conjugate (note that this
statement is independent of Q1,Q2,Q1 and Q2).

Proof. (i) follows from Lemma 2.4.8 (both (i) and (ii); combine these with the considerations of
Notation 2.3.4(i)). (ii) is immediate from (i). �

Proof of Lemma 2.4.8. The injectivity of W (L1,L2) → Isom(Ψ(L1),Ψ(L2)) follows from the fact
that if m ∈ M(F ) normalizes L1(F ), but does not belong to L1(F ), then it acts nontrivially on
ZL1(F ), and hence is not an inner automorphism. A similar argument involving the Levi subgroup
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L0
2 ⊂ M̂ gives the injectivity of W (L2,L1)→ Isom(Ψ(L2),Ψ(L1)), and hence finishes the proof of

(i).
[MW16, Section I.3.1, (8)] constructs a bijection W (L1,L2) → W (L2,L1); one can check that it
satisfies the prescription of (ii). While this suffices, for the convenience of the reader we will sketch
a version of this verification here that has the disadvantage of being lengthier and more informal,
but whose outline the author finds it easier to relate to.
Let W denote the Weyl group of Ψ(M) — or equivalently of M, defined as an inverse limit over
pinnings. The Weyl groups W (L1) of L1 and W (L2) of L2 identify, using the choices of Q1

and Q2, with the subgroups W (∆Q1) and W (L2) = W (∆Q2) of W generated respectively by

reflections about the elements of ∆Q1
and ∆Q2

. We similarly have the Weyl group Ŵ of M̂, and

W (L1) = W (∆Q1),W (L2) = W (∆Q2) ⊂ Ŵ . All of these carry compatible Γ-actions, and we have

a ‘root by root’ Γ-equivariant identificationW = Ŵ takingW (Li) = W (∆Qi) toW (Li) = W (∆Qi)
for i = 1, 2. Let ΦQi (resp., ΦQi) stand for the set of roots in the Z-span of ∆Qi (resp., ∆Qi).
We may M(F )-conjugate (Q1,L1) and separately also (Q2,L2), to assume that both of these con-
tain a fixed minimal parabolic-Levi pair (P0,M0). We choose a Borel pair (B,T) ⊂ (P0,F̄ ,M0,F̄ ).

For any σ ∈ Gal(F̄ /F ), it is easy to see that there exists m0,σ ∈ M0(F̄ ) such that σ(B,T) =
(Intm0,σ(B), Intm0,σ(T)).
It is now easy to see using conjugacy of maximal tori that there exists an injection:

W (L1,L2) ↪→W (L2,F̄ ,T)\{w ∈W (MF̄ ,T) | w(L1,F̄ ) = L2,F̄ }/W (L1,F̄ ,T)

∼= W (∆Q2
)\{w ∈W | w(ΦQ1

) = ΦQ2
}/W (∆Q1

) ∼= {w ∈W | w(∆Q1
) = ∆Q2

},
(13)

where the first map sends the image of m ∈ M(F ) in W (L1,L2) to the image of m2m, for any
m2 ∈ L2(F̄ ) such that m2mTm−1m−1

2 = T. Here, the last identification in (13) involves minimal
length representatives, as made sense of using (B,T). It is easy to see that (13) is Γ-equivariant,
i.e., each element of its image is Γ-fixed: use the computation that for each σ ∈ Gal(F̄ /F ),
Intm−1

0,σ(σ(m2m)) ∈ L2(F̄ )m. Further, we claim that the image of (13) is simply the set of Γ-fixed

points of the target: this is easily verified using the fact that M(F ) → (L2\M)(F ) is a surjection
(which follows since M(F )→ (Q2\M)(F ) is a surjection, and since the unipotent radical of Q2 is
split unipotent).
Now we study the dual variant of (13). Using a preferred section s : WF → LM, identify
LM = M̂oWF . We choose a Borel pair (B, T ) in LM such that (B0, T 0) underlies a WF -invariant

pinning of M̂. Again, we may M̂-conjugate (Q1,L1) and (Q2,L2) separately, and assume without
loss of generality that these contain (B, T ). We get a map analogous to (13) involving a set
W (L1,L2), defined just like W (L2,L1) but with L1 and L2 swapped:

W (L1,L2) ↪→W (L0
2, T 0)\{w ∈W (M̂, T 0) | w(L1) = L2}/W (L0

2, T 0)

∼= W (∆Q2)\{w ∈ Ŵ | w(ΦQ1) = ΦQ2}/W (∆Q1) ∼= {w ∈ Ŵ | w(∆Q1) = ∆Q2},
(14)

again using minimal length representatives as made sense of using (B0, T 0). Since we assumed
that (Q1,L1) and (Q2,L2) are standard with respect to (B, T ), it is easy to verify that the image

is contained in (Ŵ )Γ, and then, using that elements of (Ŵ )Γ have Γ-fixed representatives (as we
saw in the proof of Proposition 2.4.5), that the image of (14) is just the set of Γ-fixed elements of
the target.
The Γ-equivariant identification W = Ŵ , which is a ‘transpose inverse’ at the level of automor-
phisms of character lattices, clearly takes the target of (13) to the target of (14). It is immediately
verified that the composition of this identification with (w 7→ w−1), which is a ‘transpose’ at the
level of automorphisms of character lattices, is exactly as in (ii): (13) and (14) respect maps of
based root data in an obvious sense, which at the level of the targets of these maps have naive
descriptions thanks to the conditions w(∆Q1

) = ∆Q2
and w(∆Q1

) = ∆Q2
. �

The following corollary is well-known (e.g., it is mentioned just below [Hai14, Definition 5.2.1]),
though not obvious:
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Corollary 2.4.10. Let L be a Levi subgroup of M. The collection of embeddings ιM,L : LL→ LM
obtained as in (12), for varying pairs (Q,L) and (Q,L) as in Notation 2.4.6(ii) but involving our

fixed Levi subgroup L, forms a single conjugacy class for M̂-conjugation.

Proof. Given a Levi subgroup L ⊂ M, it is immediate that Q and (Q,L) as in Notation 2.4.6(ii)
exist, so the collection of the ιM,L is nonempty. Given an embedding ι1 : LL ↪→ LM defined using
pairs (L,Q1) and (L1,Q1), and another embedding ι2 defined using pairs (L,Q2) and (L2,Q2),
set Li := ιi(

LLi), and apply Corollary 2.4.9(i) with L1 = L2 = L, considering the identity map
( LL2 = LL → LL = LL1) ∈ W ( LL2,

LL1). What this gives us is precisely that there exists

m̂ ∈ M̂ such that Int m̂ ◦ ι2 = ι1, as desired. �

Notation 2.4.11. Given any Levi subgroup L ⊂ M, ιM,L : LL → LM will denote a (typically

implicitly fixed) choice of a member of the M̂-conjugacy class of embeddings LL → LM as in
Corollary 2.4.10, or equivalently, as in (12). We emphasize that each Q and L as in Notation
2.4.6(ii) are automatically relevant, so ιM,L( LL) ⊂ LM is always a relevant Levi subgroup. Each
time we make a statement or an argument involving such a map ιM,L, the reader will be implicitly
expected to note it to be independent, in an appropriate sense, of the choice of ιM,L.

The following corollary is well-known (e.g., see [SZ18, 2.3(6) and the remark following it]):

Corollary 2.4.12. Sending a Levi subgroup L ⊂ M to the conjugacy class of ιM,L( LL), induces a

bijection from the set of M(F )-conjugacy classes of Levi subgroups of M to the set of M̂-conjugacy
classes of relevant Levi subgroups of LM.

Proof. It follows from Corollary 2.4.9(ii) that sending L to ιM,L( LL) indeed gives a well-defined

injection from the set of M(F )-conjugacy classes of Levi subgroups of M to the set of M̂-conjugacy
classes of Levi subgroups of LM. It is easy to see that the image consists precisely of conjugacy
classes of relevant Levi subgroups: for instance, if (Q,L) is a parabolic-Levi pair in LM with Q
relevant, so that ∆Q = ∆∨Q for some parabolic subgroup Q ⊂ M, it follows that for any Levi
subgroup L ⊂ Q, we have a choice of ιM,L with image equal to L. �

Corollary 2.4.13. Let L ⊂ M be a Levi subgroup. Then ZM̂ ⊂ L := ιM,L(L̂), and ι−1
M,L : L → LL

restricts to an embedding ZM̂ ↪→ ZL̂ that is independent of the choice of ιM,L within its M̂-conjugacy
class.

Proof. Since L0 = ιM,L(L̂) ⊂ M̂ is a Levi subgroup, it contains ZM̂, and gives an embedding

ZM̂ ↪→ ZL0

ι−1
M,L→ ZL̂. Since ZM̂ is centralized by M̂, it is easy to see that this embedding does not

change when ιM,L is replaced by an M̂-conjugate. �

2.4.3. Functoriality of the ιM,L and some further consequences.

Construction 2.4.14. In the situation of Notation 2.4.11, it is sometimes convenient to have an
explicit choice of an embedding ιM,L, which we now describe, following [Bor79, Section 3.4]. Let
Q ⊂ M be a choice of a parabolic subgroup with L as a Levi subgroup, giving by Notation 2.4.2 a Γ-
equivariant identification Ψ(L̂) ∼= (X∨M,∆

∨
Q, XM,∆Q). We realize LM as M̂oWF using a preferred

section s : WF → LM, and choose an Int s(WF )-invariant pinning in M̂. We do the same with
LL. Let (Q,L) be the unique standard (for the chosen pinning) parabolic-Levi pair in LM, with

the property that ∆Q = ∆∨Q. This gives us a unique Γ-equivariant identification Ψ(L̂) ∼= Ψ(L0),

and hence a unique Γ-invariant isomorphism L̂→ L0 respecting the standard pinnings of the two
groups. Thus, we also get the embedding LL = L̂oWF

∼= L0 oWF = L ↪→ LM, which is a choice
for ιM,L.

Proposition 2.4.15. Suppose L1,L2 are Levi subgroups of M with L1 ⊂ L2. Then ιM,L2
◦ ιL2,L1

:
LL1 ↪→ LM necessarily belongs to the M̂-conjugacy class of ιM,L1 .

Proof. The result being well-known, we will be slightly informal. By Corollary 2.4.10, it is enough
to find a single choice of each of ιM,L2 , ιM,L1 and ιL2,L1 , such that ιM,L1 = ιM,L2 ◦ ιL2,L1 . Using
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Construction 2.4.14, it is easy to see that this follows if we can choose parabolic subgroups Q1,Q2 ⊂
M, with Levi subgroups L1,L2, respectively, such that the resulting “embeddings” Ψ(L1) ↪→
Ψ(L2),Ψ(L2) ↪→ Ψ(M) and Ψ(L1) ↪→ Ψ(M) in the sense mentioned in Notation 2.4.2 satisfy that
the third of these is the ‘composite’ of the first two in an appropriate sense. It is easy to see that
this compatibility of “embeddings” follows automatically if Q1 ⊂ Q2. For such a choice, e.g., first
choose Q2, and let Q1 be generated by the unipotent radical of Q2 together with any parabolic
subgroup of L2 having L1 as a Levi subgroup. �

Lemma 2.4.16. Suppose L1,L2 are Levi subgroups of reductive groups M1,M2 over F , and sup-
pose β : M1 → M2 is an isomorphism of reductive groups such that L2 = β(L1). If Lβ : LM2 →
LM1 and L(β|L1

) : LL2 → LL1 are dual to β : M1 → M2 and β|L1
: L1 → L2 (in the sense of

Notation 2.3.4(ii)), then:

(i) If ιM1,L1
is defined using pairs (Q1,L1) and (Q1,L1), and ιM2,L2

using pairs (β(Q1),L2)
and ( Lβ−1(Q1), Lβ−1(L1)), then the identifications induced by (ιM1,L1

, ιM2,L2
) transport

L(β|L1
) to Lβ|L2

up to IntL0
2 or equivalently Int L̂2, i.e.,

Lβ ◦ ιM2,L2 ∈ ιM1,L1 ◦ L(β|L1) ◦ Int L̂2.

(ii) More generally, Lβ ◦ ιM2,L2
is M̂1-conjugate to ιM1,L1

◦ L(β|L1
).

Proof. (i) is straightforward diagram-chasing, while (ii) follows from (i) and Corollary 2.4.10. �

Corollary 2.4.17. The bijection between the set of M(F )-conjugacy classes of Levi subgroups of

M and the set of M̂-conjugacy classes of relevant Levi subgroups of LM, induced by L 7→ ιM,L( LL)
(see Corollary 2.4.12), respects the action of Aut(M) on either set (where β ∈ Aut(M) takes the

M̂-conjugacy class of a Levi subgroup L ⊂ LM to that of ( Lβ)−1(L) for any Lβ ∈ Aut( LM) dual
to β).

Proof. This is immediate from Lemma 2.4.16. �

The following proposition uses Lemma 2.4.8 or equivalently Corollary 2.4.9 to slightly generalize
it to a statement involving automorphisms.

Proposition 2.4.18. Let OM ⊂ Aut(M) be a subset, and let O+
M = {β ◦ Intm | β ∈ OM,m ∈

M(F )}. Let L1,L2 ⊂ M be Levi subgroups. For i = 1, 2, fix choices of ιM,Li : LLi → LM, and let
Li = ιM,Li(

LLi) ⊂ LM. Then, via the isomorphisms ιM,L1 : LL1 → L1 and ιM,L2 : LL2 → L2,
the first of the two sets below is transported to the second:

• The set OM( LL1,
LL2) of isomorphisms LL2 → LL1 that are dual to β|L1 : L1 → L2 for

some β ∈ O+
M such that β(L1) = L2;

• The set OM(L1,L2) of isomorphisms L2 → L1 obtained by restricting automorphisms
LM→ LM that are dual to some element of OM (or equivalently, O+

M).

Proof. Without loss of generality, we may and do assume that OM = {β} is singleton. Note
that OM( LL1,

LL2) 6= ∅ if and only if β(L1) and L2 are M(F )-conjugate, which by Corollary

2.4.12 is equivalent to ιM,β(L1)(
L(β(L1))) and ιM,L2

( LL2) = L2 being M̂-conjugate, which in

turn, by Lemma 2.4.16, is equivalent to ( Lβ)−1 ◦ ιM,L1
( LL1) = ( Lβ)−1(L1) being M̂-conjugate to

ιM,L2( LL2) = L2 for some (or any) Lβ : LM→ LM dual to β, which in turn is equivalent to the
condition that O(L1,L2) 6= ∅.
Thus, we now assume that O(L1,L2) 6= ∅ and O(L1,L2) 6= ∅, in which case we may replace β with
some Intm ◦ β and assume that β(L1) = L2. We can also fix Lβ : LM → LM that is dual to β,
and such that Lβ(L2) = L1. Now the task is to show that the set of isomorphisms LL2 → LL1

dual to some (Intm ◦β)|L1 with m ∈ M(F ) normalizing L2, is transported by (ιM,L1 , ιM,L2) to the

set of isomorphisms L2 → L1 of the form Lβ ◦ Int m̂ for some m̂ ∈ M̂ normalizing L2.
Note that the statement of the proposition does not change if we replace ιM,L2

by a different choice

with image L2; this is because such choices differ by M̂2-conjugacy, which can be absorbed into
the possibilities for Int m̂. Thus, we assume without loss of generality that, if ιM,L1

is defined
using the datum (L1,Q1,L1,Q1), then ιM,L2 is defined using (β(L1) = L2, β(Q1), Lβ−1(L1) =
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L2,
Lβ−1(Q1)). This choice has the advantage that, by Lemma 2.4.16(i), Lβ ◦ ιM2,L2

∈ ιM1,L1
◦

L(β|L1
) ◦ Int L̂2, i.e., (ιM,L1

, ιM,L2
) transports L(β|L1

) to Lβ|L2
, up to IntL0

2.
With this, our task becomes to show that (ιM,L2 , ιM,L2) transports the set of isomorphisms LL2 →
LL2 that are dual to Intm for some m ∈ M(F ) normalizing L2, to the set of isomorphisms L2 → L2

of the form Int m̂ for some m̂ ∈ M̂(F ) normalizing L2. But this is Corollary 2.4.9(i). �

2.5. Complex characters of p-adic reductive groups and Langlands duality.

2.5.1. Unramified characters.

Notation 2.5.1. Suppose P is a linear algebraic group over F , which is not necessarily reductive.

(i) We denote by SP the maximal split torus quotient of P.
(ii) Recall that a character χ : P(F )→ C× is said to be unramified if χ(x) = 1 for all x ∈ P(F )

such that |µ(x)| = 1 for all algebraic characters µ : P → Gm. We denote by Xunr(P) the
group of unramified characters P(F )→ C×. Then Xunr(P) ⊂ Homcts(P(F ),C×).

(iii) Let Xunr−uni(P) ⊂ Xunr(P) be the subgroup of unitary characters, and Xunr(P)>0 ⊂
Xunr(P) the subgroup consisting of characters taking values in the multiplicative group
R>0 of positive real numbers.

(iv) Xunr(P) will be viewed as a complex torus in the usual way (see Remark 2.5.2(ii) below).
The product map

Xunr(P)>0 ×Xunr−uni(P)→ Xunr(P)

is easily seen to be an isomorphism, identifying Xunr(P)>0 with the set of hyperbolic
elements of Xunr(P) in the sense of [SZ18, Section 5.1], and Xunr−uni(P) with the maximal
compact subgroup of Xunr(P).

Remark 2.5.2. (i) Pull-back gives an isomorphism Xunr(M) ∼= Xunr(P), where M is a Levi
quotient of P.

(ii) Recall that Xunr(SP) → Xunr(P) is surjective with finite kernel. Indeed, for surjectivity,
combine the injectivity of the abelian group C× with the fact that for any χ ∈ Xunr(P)
and p ∈ P(F ), χ(p) depends only on the image of p under P(F )→ SP(F )→ SP(F )/SP(O)
(use that any algebraic character µ : P→ Gm factors through P→ SP). For the finiteness
of the kernel, one immediately reduces to the case where P = M is reductive, and notes
that we have a chain of restriction maps Xunr(SM) → Xunr(M) → Xunr(AM), whose
composite has finite kernel since AM → SM is an isogeny.

Since Xunr(SP) ∼= Hom(X∗(SP),C×) is a complex torus, it follows that so is Xunr(P).
Clearly, Xunr(SP)→ Xunr(P) restricts to an isomorphism Xunr(SP)>0 → Xunr(P)>0.

(iii) If χ ∈ Homcts(P(F ),C×) is valued in R>0, then χ ∈ Xunr(P) — assuming without loss
of generality that P is reductive, and using that R>0 is torsion free, this follows from
the well-known fact that the subgroup of p ∈ P(F ) such that |µ(p)| = 1 for all algebraic
characters µ : P → Gm, is generated by the compact subgroups of P(F ) (e.g., [FP21,
Lemma 4.8]).

2.5.2. Two constructions of Langlands from [Bor79, Section 10.1 and Section 10.2]. Recall that,
if M is a connected reductive group over F , Γ acts on ZM̂ through algebraic automorphisms (see
Definition 2.3.3(iv)).

Notation 2.5.3. Let M be a connected reductive group over F . We will occasionally refer to,
but not use substantially, the set S (WF ,

LM) of continuous sections to LM → WF . If we use

a preferred section s : WF → LM to make WF act on M̂ via Int ◦s, then S (WF ,
LM) identifies

with H1(WF , M̂), where an element of H1(WF , M̂) represented by a cocycle α identifies with the
section w 7→ α(w)s(w) inside S (WF ,

LM).

Notation 2.5.4. For any reductive group M over F , we have a homomorphism of groups:

(15) S (WF ,
LM)/(Int M̂)→ Homcts(ZM(F ),C×)
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and an isomorphism of groups (which we normalize using the “Fr goes to a uniformizer” convention,
analogous to [Hai14, footnote 2]) involving the group S (WF ,ZM̂ oWF ) of continuous sections to
ZM̂ oWF →WF :
(16)

S (WF ,ZM̂oWF )/(Int ZM̂) = H1(WF ,ZM̂)
∼=→ Homcts(coker(Msc(F )→ M(F )),C×) ⊂ Homcts(M(F ),C×),

which are constructions of Langlands (see [Bor79, Section 10.1 and Section 10.2] and also [Kal15,
Section 5.5]). We will denote these by ϕ 7→ ζϕ and α 7→ χα, respectively.

Remark 2.5.5. We are not describing ϕ 7→ ζϕ or α 7→ χα explicitly, because we will have very
little use for the former, and only need an easy case of the latter (to be explicated in Subsubsection
2.5.3 below). But it is easy to give parts/cases of these definitions, which we now do, in terms of
local Langlands duality for tori:

• χα is easy to define if α is the image of some α0 under H1(WF ,Z
0
M̂

) → H1(WF ,ZM̂):

Z0
M̂

with its Γ-action can be checked to be Langlands dual to the maximal torus quotient

M/Mder of M, and χα is obtained by pulling back the character of (M/Mder)(F ) that is
Langlands dual to α0.

• ζϕ|Z0
M(F ) is easy to define: pushing ϕ ∈ S (WF ,

LM)/(Int M̂) forward under any morphism
LM → L(Z0

M) dual to Z0
M ↪→ M (in the sense of Notation 2.3.4(v)) gives one an element

of S (WF ,
L(Z0

M))/(Int Ẑ0
M) ∼= H1(WF , Ẑ0

M), to which ζϕ|Z0
M(F ) is Langlands dual.

Remark 2.5.6. We will use the following two standard properties of these constructions.

(i) They are functorial for normal homomorphisms of reductive groups.

(ii) Suppose L ⊂ M is a Levi subgroup, and ϕL ∈ S (WF ,
LL)/(Int L̂). Making a choice of ι =

ιM,L : LL→ LM, we have a map ι◦− =: ι∗ : S (WF ,
LL)/(Int L̂)→ S (WF ,

LM)/(Int M̂).
Then ζι∗(ϕL) = ζϕL

|ZM(F ). Moreover, for all αM ∈ H1(WF ,ZM̂), denoting by αL its image

in H1(WF ,ZL̂) under the embedding ZM̂ ↪→ ZL̂ obtained from ιM,L (see Corollary 2.4.13),
we have χαM |L(F ) = χαL .

Remark 2.5.7. Let M be a connected reductive group over F . If ϕ ∈ S (WF ,
LM)/(Int M̂) and

α ∈ H1(WF ,ZM̂), then we have a well-defined element α · ϕ ∈ S (WF , M̂)/(Int M̂), defined using
pointwise product at the level of cocycles. One can show, along the lines of [Bor79, Equation (4),
Section 10.2], that ζα·ϕ = ζϕ · (χα|ZM(F )).

2.5.3. Langlands duality for characters and the Kottwitz homomorphism. The following lemma is
given a more insightful derivation, based on standard results in literature, in [Hai14, Section 3.3.1].
We nevertheless give a proof (based on some standard results), because it helps illustrate the role
that SM will play.

Lemma 2.5.8. Let M be a connected reductive group over F . Then, via the chain of inclusions

(ZIF
M̂

)0
Fr := ((ZIF

M̂
)Fr)

0 ↪→ (ZIF
M̂

)Fr

∼=→ H1(WF /IF ,Z
IF
M̂

) ↪→ H1(WF ,ZM̂),

where the last map is given by inflation and the map before that is inverse to evaluating at the
Frobenius element Fr, and the inclusion

Xunr(M) ↪→ Homcts(M(F ),C×),

(16) restricts to an isomorphism (a restriction of the Kottwitz isomorphism):

(17) (ZIF
M̂

)0
Fr
∼= Xunr(M).

Moreover, (17) is an isomorphism of complex tori, and is functorial in M.

Remark 2.5.9. In the above lemma, we have stipulated, for relative lightness of notation, that the
ambiguous (ZIF

M̂
)0
Fr be read as ((ZIF

M̂
)Fr)

0, rather than as ((ZIF
M̂

)0)Fr. As we learnt from a discussion

with D. Prasad, the quotient map ((ZIF
M̂

)0)Fr → (ZIF
M̂

)0
Fr = ((ZIF

M̂
)Fr)

0 is not an isomorphism when

M is an unramified but non-split form of GSO2n. This convention will be applicable henceforth:
in case of ambiguity as to whether to take Fr-coinvariants or the identity component first, one
should take Fr-coinvariants first.
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Proof of Lemma 2.5.8. The functoriality in M is a special case of the well-known functoriality of
(16), so let us prove that (17) is indeed a restriction of (16) as well as an isomorphism. If M is a
split torus, this is easy to see explicitly (use Remark 2.5.5). In this case, (17) is the isomorphism

Xunr(M) = Hom(X∗(M),C×) = Hom(X∗(M̂),C×) = M̂ = ZΓ,0

M̂
= (ZIF

M̂
)0
Fr

of complex tori, where the first map is given by χ 7→ (µ 7→ χ(µ($))) in accordance with our
normalization of (16). In particular, (17) holds with M replaced by SM. Since Xunr(SM) →
Xunr(M) is surjective with finite kernel, as we mentioned in Remark 2.5.2(ii), we will be done by
the functoriality of (16) if we show that the image of

(18) ŜM = ZΓ,0

M̂
→ H1(WF ,ZM̂)

equals (ZIF
M̂

)0
Fr ⊂ H1(WF /IF ,Z

IF
M̂

), where we used Lemma 2.5.10 below to identify ŜM with ZΓ,0

M̂
.

It is immediate, from the cocycle-level, that this image is contained in H1(WF /IF , (ZM̂)IF ) =

(ZIF
M̂

)Fr. The image of (18) is therefore that of ZΓ,0

M̂
= (ZIF

M̂
)Fr,0 → (ZIF

M̂
)Fr, which by the finiteness

of the kernel and comparison of dimension is easily seen to be (ZIF
M̂

)0
Fr: the group of Fr-invariants

and the group of Fr-coinvariants of the complex torus (ZIF
M̂

)0 have the same dimension, as Fr

induces an automorphism of X∗((ZIF
M̂

)0)⊗Q that has finite order and is hence semisimple. �

Lemma 2.5.10. The (central and hence unique) map ŜM → M̂ dual to M → SM identifies ŜM

with ZΓ,0

M̂
.

Proof. Note that SM is also the maximal split torus quotient of M/Mder, and use the identification
X∗(M) = X∗(ZM̂) from [Kot84, (1.8.2)], to get:

X∗(SM) = X∗(M/Mder)
Γ = X∗(M)Γ = X∗(ZM̂)Γ = X∗(Z

Γ,0

M̂
).

�

As a summary of sorts, we have a commutative diagram:
(19)

H1(WF /IF ,Z
Γ,0

M̂
) ∼= ZΓ,0

M̂
//

∼=
��

(ZIF
M̂

)0
Fr
� � //

∼=
��

(ZIF
M̂

)Fr
∼= H1(WF /IF ,Z

IF
M̂

) // H1(WF ,ZM̂)

α7→χα
��

Xunr(SM) // Xunr(M) // Homcts(M(F ),C×),

for a discussion of whose maps we refer to the preceding discussion.

Notation 2.5.11. If α ∈ ZΓ,0

M̂
= H1(WF /IF ,Z

Γ,0

M̂
), we will use χα to denote two different objects:

the image of α in Xunr(SM) under the Kottwitz homomorphism, or the image of this image under

Xunr(SM) → Xunr(M), namely χα′ , where α′ is the image of α in (ZIF
M̂

)0
Fr ⊂ H1(WF ,ZM̂). The

context will make it clear as to which of these two objects we are referring to.

2.6. Groups of automorphisms ‘up to which’ we will work. We will now fix our connected
reductive group G over F , as well as a collection {OM}M indexed by Levi subgroups M ⊂ G
(subject the to some conditions), where each OM is a subgroup of Aut(M).

Notation 2.6.1. (i) For the rest of this paper, let G be a fixed connected reductive group
over F .

(ii) We fix a collection {OM}M indexed by Levi subgroups M ⊂ G, where OM ⊂ Aut(M) is
a group of (F -rational algebraic) automorphisms of M, subject to the conditions of (iv)
below; we will abbreviate OG to O.

(iii) Given Levi subgroups L,L1,L2 ⊂ M ⊂ G and Levi subgroups L,L1,L2 ⊂ LM, we define
groups O+

M(L2,L1),O+
M( LL1,

LL2),O+
M(L1,L2),O+

M,L,O
+
M,O

+
M,LL

and O+
M,L as follows:

• We let O+
M(L2,L1) be the set of all β|L1 : L1 → L2, as β runs over the elements of

OM ◦ Int M(F ) (which we will soon abbreviate to O+
M) such that β(L1) = L2. We

abbreviate O+
M(L,L) to O+

M,L and O+
M,M = OM ◦ Int M(F ) to O+

M;
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• Consistently with Proposition 2.4.18, we let O+
M( LL1,

LL2) be the set of all maps
LL2 → LL1 that are dual to some element ofOM(L2,L1), and we abbreviateO+

M( LL, LL)

to O+
M,LL

;

• Consistently with Proposition 2.4.18, we let O+
M(L1,L2) be the set of all Lβ|L2

:
L2 → L1 as Lβ : LM→ LM varies over maps that are dual to some element of OM

and such that Lβ(L2) = L1, and we abbreviate O+
M(L,L) to O+

M,L.

(iv) We subject the collection {OM}M to the following conditions:
(a) For each M, each element of OM acts as the identity on AM;
(b) If L,M ⊂ G are Levi subgroups, and β ∈ O+

G = OG ◦ Int G(F ) satisfies that β(L) ⊂
M, then under the map Aut(L) → Aut(β(L)) given by transport by β, the image
of O+

L = OL ◦ Int L(F ) is contained in O+
M,β(L) (so, as an important special case,

OL ⊂ O+
L ⊂ O

+
M,L);

(c) The image of OG in Out(G) is finite.
(v) Since the dual of an automorphism β of a connected reductive group M over F is a

well-defined M̂-conjugacy class of automorphisms Lβ : LM → LM, any group of auto-
morphisms of M acts on the set of M̂-conjugacy classes of maps X → LM, where X is any
set, topological space etc.: β ∈ Aut(M) takes the M̂-conjugacy class of ϕ̇ : X → LM to
( Lβ)−1 ◦ ϕ̇. We will apply these considerations to let groups such as OM and O+

M,L etc.
defined above act on appropriate spaces of Langlands parameters.

Remark 2.6.2. (i) An important example of a collection {OM}M as above is the one where
each OM is trivial. We get another example by fixing any group O of automorphisms of
G with finite image in Out(G), and taking OM to be the group of automorphisms of M
induced by those elements of O+

G = O◦Int G(F ) that act as the identity on ZM (and hence
preserve the centralizer M of ZM).

(ii) The typical example we have in mind for a nontrivial collection {OM} is in the case where
G is a quasi-split form of SO2n, GSO2n or GSpin2n, with O = OG a two element group
of automorphisms of G, one of which is outer, and the OM as in the latter example of (i)
above (i.e., consisting of those automorphisms of M induced by elements of O+

G that act
as the identity on ZM).

(iii) As (ii) suggests, the reason for introducing the collection {OM}M is to be able to make a
weaker statement in cases where we don’t have a ‘canonical’ local Langlands correspon-
dence for the M as such, but only one up to the action of the OM; this applies to the study
of quasi-split forms of SO2n in [Art13], of GSO2n in [Xu16] and [Xu18], and of GSpin2n

in [Mg14]. A reader who is not particular about cases of this sort may assume each OM

to be trivial or to be simply the group of all inner conjugations Intm with m ∈ M(F ), in
which case a lot of the definitions and results below simplify.

(iv) For each Levi subgroup of M ⊂ G, O+
G,M contains the group of conjugations of M by

the elements of the normalizer NG(M)(F ) of M(F ) in G(F ). If OG is trivial, then this
containment is easily checked to be an equality.

(v) If one wishes to impose the ‘twisting by a character desideratum’ and the ‘central character
desideratum’ (see Remark 2.10.4 below) on a ‘local Langlands correspondence for M up
to the OM’, one would need to additionally impose on the collection {OM}M the following
condition:
Stronger condition: For each β ∈ OM, β acts trivially on ZM, and further, each Lβ :
LM→ LM dual to β is the identity on ZM̂.
We will impose only the desideratum of twisting by unramified characters, which explains
our condition in Notation 2.6.1(iv) that OM acts as the identity on AM.

(vi) We will only consider the action of OM on objects related to invariant harmonic analysis
on M, so replacing OM by O+

M will not change any of the analysis that follows. The only

reason we write OM instead of O+
M in what follows, is that it can be convenient to think of

a finite group of automorphisms (which O+
M almost never is, while OM is allowed, though

not required, to be trivial).
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(vii) A lot of the time we will consider only the action ofOM on objects such as a set of L-packets
or a set of (non-enhanced) Langlands parameters associated to M, so our dependence on
OM will often, though not always, be only through its image in Out(M).

Lemma 2.6.3. Let L ⊂ M ⊂ G be Levi subgroups, and let β ∈ O+
G = O ◦ Int G(F ).

(i) β transports O+
M,L isomorphically onto O+

β(M),β(L).

(ii) Int M(F ) ⊂ O+
G,M is of finite index. Equivalently, the image of O+

G,M in Out(M) is finite.

(iii) For any Levi subgroup M′ ⊂ G, the collection {OL′}L′ , as L′ varies over the Levi subgroups
of M′, satisfies the analogues, for M′ in place of G, of the hypotheses imposed on the
collection {OM}M in Notation 2.6.1(iv).

Proof. By (iv)b of Notation 2.6.1, β transports O+
M,M = O+

M into O+
β(M),β(M) = O+

β(M). In doing so,

it clearly transports the set O+
M,L of automorphisms in O+

M that preserve L to the set O+
β(M),β(L) of

automorphisms in O+
β(M) that preserve β(L). By making a similar argument with β−1, (i) follows.

Since O+
G has finite image in Out(G), and Int G(F ) has finite index in Int Gad(F ), Int G(F ) has

finite index in O+
G. Thus, some finite-index subgroup of O+

G,M acts on M by restrictions of elements

of Int G(F ). Since the normalizer of M(F ) in G(F ) has finite image in Out(M), some smaller finite-
index subgroup of O+

G,M acts on M by elements of Int M(F ). From this, (ii) follows. Now (iii) is

easy to verify (using (ii)). �

Lemma 2.6.4. Let M be a Levi subgroup of G. Suppose β ∈ Aut(G) preserves M and restricts
to an element of O+

M on it. Then for each parabolic subgroup P ⊂ G with M as a Levi subgroup,
β(P) = P.

Proof. If P ⊂ G is a parabolic subgroup with M as a Levi subgroup, there exists a homomorphism
µ : Gm → AM such that Lie P is the subspace of Lie G on which Ad ◦µ acts by nonnegative weights.
Hence the lemma follows from the fact that O+

M acts trivially on AM. �

Lemma 2.6.5. Suppose M is a Levi subgroup of G. Then the obvious actions of O+
M on ZΓ,0

M̂
, (ZIF

M̂
)0
Fr, X

unr(M)

and Xunr(SM) are trivial.

Proof. It suffices to prove the assertions involving Xunr(SM) and Xunr(M), for then one can

conclude those involving ZΓ,0

M̂
and (ZIF

M̂
)0
Fr by the functoriality of the Kottwitz isomorphism (see

Lemmas 2.5.8 and 2.5.10). The assertion for Xunr(SM) follows from the fact that AM → SM is an
isogeny, so that the elements of O+

M induce the identity automorphism of SM. The assertion for
Xunr(M) follows from the assertion for Xunr(SM), since the restriction map Xunr(SM)→ Xunr(M)
is surjective and respects the action of O+

M. �

2.7. L-packets from the point of view of stability of distributions.

2.7.1. The main hypothesis for L-packets to be defined from the perspective of stability. In much of
what follows, Remark 2.6.2(vi) can be helpful to keep in mind. Informally, the following hypothesis
says that ‘O-coarsened’ tempered L-packets can be defined based on the notion of stability of
distributions (see also [Sha90, Section 9], and the notion of atomic stability in [MY20, Section 4]).

Hypothesis 2.7.1 (Existence of tempered L-packets). For each Levi subgroup M of G, there
exists a collection Φ2(M) of finite subsets of Irr2(M) partitioning it, and a virtual character ΘΣ

for each Σ ∈ Φ2(M), such that the following two properties are satisfied:

(i) For each Σ ∈ Φ2(M), ΘΣ is a nonzero stable OM-invariant (or equivalently, O+
M-invariant)

virtual character on M(F ) of the form
∑
σ∈Σ cσΘσ (thus, Σ is O+

M-invariant as well).

(ii) {ΘΣ | Σ ∈ Φ2(M)} is a complex vector space basis for the subspace SDell(M)OM =

SDell(M)O
+
M of SDell(M) fixed by OM or equivalently by O+

M.

Proposition 2.7.2. Suppose Hypothesis 2.7.1 is satisfied. Then ΘΣ is a multiple of
∑
σ∈Σ d(σ)Θσ,

where d(σ) stands for the formal degree of σ. In particular, if ΘΣ =
∑
σ∈Σ cσΘσ, then cσ 6= 0 for

each σ ∈ Σ.
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Proof. This is proved exactly as in Proposition 3.3.6(ii) below, and in fact follows from it. Note
that, while we do not prove Proposition 3.3.6(ii) either, its proof is an easier variant of the proof
of Proposition 3.3.7(ii) below it. �

Lemma 2.7.3. Assume Hypothesis 2.7.1. Let M ⊂ G be a Levi subgroup.

(i) Φ2(M) can be described as the set of Σ ⊂ Irr2(M) satisfying the following condition: there
exists a nonzero stable OM-invariant virtual character Θ′Σ supported on Σ, with the prop-
erty that every stable OM-invariant virtual character Θ ∈ SDell(M)OM can be uniquely
written in the form c1Θ′Σ + c2Θ′ for a (automatically stable and OM-invariant) virtual
character Θ′ supported outside Σ, and complex numbers c1, c2.

(ii) If β ∈ O+
G and M′ = β(M), and χ′ : M′(F )→ C× is a smooth unitary character on which

OM′ acts trivially (this is automatic if χ is unramified, by Lemma 2.6.5), then we have a
bijection Φ2(M) → Φ2(M′) sending each Σ ∈ Φ2(M) to Σ′ := {(σ ◦ β−1) ⊗ χ′ | σ ∈ Σ}.
Moreover, ΘΣ′ is a scalar multiple of (ΘΣ ◦ β−1)χ′.

Remark 2.7.4. (i) of the lemma implies that, when Hypothesis 2.7.1 is satisfied, Φ2(M) is uniquely
determined, and not a choice made along with assuming the hypothesis. On the other hand, each
ΘΣ is uniquely determined up to a nonzero scalar.

Proof of Lemma 2.7.3. (i) is immediate, but it needs that cσ 6= 0 whenever Σ ∈ Φ2(M) and σ ∈ Σ
(to prevent proper subsets of such a Σ from satisfying the condition of (i)), a consequence of
Proposition 2.7.2. (ii) follows from (i) and the fact that β transports O+

M to (OM′)
+ (see Lemma

2.6.3(i)) and SDell(M) to SDell(M
′), etc. �

We will now define analogous sets Φ(M), Φtemp(M) and Φ+
2 (M), using the Langlands classification

of Proposition 2.2.3, or rather its corollary in the form of the following OM-invariant version:

Corollary 2.7.5. Let M ⊂ G be a Levi subgroup.

(i) The map (5) induces a finite-to-one surjective map

(20) Irr(M)/OM = Irr(M)/O+
M →

⊔
L

Irr+
2 (L)/O+

M,L,

where the L runs over a set of representatives for the O+
M-orbits of Levi subgroups of M.

It restricts to an analogously defined map:

(21) Irrtemp(M)/OM = Irrtemp(M)/O+
M →

⊔
L

Irr2(L)/O+
M,L.

(ii) For a pair (L, υ), with L occurring in (20) and υ ∈ Irr+
2 (L), the fiber of (20) over the

image of υ in Irr+
2 (L)/O+

M,L is the union of the O+
M-orbits (or equivalently the OM-orbits)

of the irreducible quotients of IndM
Q υ, where Q is a choice as in Proposition 2.2.3(iii). An

analogous description applies to the fibers of (21).

Proof. One gets (i) from Proposition 2.2.3(ii) simply by quotienting with O+
M ⊃ Int M(F ). The

finite-to-one-ness follows from the fact that Int M(F ) ⊂ O+
M is of finite index (see Lemma 2.6.3(ii)).

(ii) is an immediate consequence of Proposition 2.2.3(iii). �

Notation 2.7.6. Henceforth, whenever Hypothesis 2.7.1 is satisfied, in addition to fixing the ΘΣ

as in it (the Φ2(M) being automatically fixed — see Remark 2.7.4), we also define the following
objects:

(i) For each Levi subgroup M ⊂ G, we define Φ+
2 (M) = {Σ⊗ χ | Σ ∈ Φ2(M), χ ∈ Xunr(M)}.

(ii) If L ⊂ M ⊂ G are Levi subgroups and Υ ∈ Φ+
2 (L) (as defined in (i)), then we let ΥM be

the preimage, under (20), of the image of Υ in Irr+
2 (L)/O+

M,L: here we assume without

loss of generality that L occurs on the right-hand side of (20). In other words, ΥM is the

collection of the OM-conjugates of the irreducible quotients of IndM
Q υ, where υ runs over

Υ and Q is as in Proposition 2.2.3(iii): note that the same Q works for all υ ∈ Υ. If
Υ ∈ Φ2(L), then by unitarity, we can replace the word ‘quotients’ by ‘subquotients’ in the
previous sentence.
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(iii) For M ⊂ G a Levi subgroup, we let Φ(M) (resp., Φtemp(M)) be the set of all ΥM as (L,Υ)
ranges over pairs consisting of a Levi subgroup L ⊂ M and Υ ∈ Φ+

2 (L) (resp., Υ ∈ Φ2(L)).

(iv) If Σ ∈ Φtemp(M), choosing (L,Υ) such that Σ = ΥM, we let ΘΣ = AvgOM
(IndM

L ΘΥ),
where AvgOM

refers to averaging with respect to the action of OM (which acts through

the finite quotient O+
M/ Int M(F )). Note that ΘΣ, which is a virtual character supported

on Σ, is well-defined, since (L,Υ) is well-defined up to O+
M-conjugation by (20).

Lemma 2.7.7. Let M ⊂ G be a Levi subgroup.

(i) Φ(M), Φ+
2 (M) and Φtemp(M) consist of O+

M-invariant sets, and they are partitions of Irr(M), Irr+
2 (M)

and Irrtemp(M), respectively.
(ii) ΘΣ is well-defined for each Σ ∈ Φtemp(M), and the collection of the ΘΣ forms a basis for

SD(M)OM .

Proof. Since every element of Irr+
2 (M) can be written as σ⊗χ with σ ∈ Irr2(M) and χ ∈ Xunr(M),

it is immediate that the union of the Φ+
2 (M) equals Irr+

2 (M). By Lemma 2.6.5, each element of
Φ+

2 (M) is also O+
M-invariant. If Σ1,Σ2 ∈ Φ+

2 (M), χ1, χ2 ∈ Xunr(M) and Σ1⊗χ1 intersects Σ2⊗χ2,

then χ1χ
−1
2 ∈ Xunr(M) restricts to a unitary character on ZM(F ) and is hence unitary, so that

Σ1 ⊗ χ1 = Σ2 ⊗ χ2 by Lemma 2.7.3(ii).
Thus, we have proved the assertion of (i) for Φ+

2 (M). Applying this with M replaced by various
Levi subgroups L ⊂ M, the assertion of (i) for Φ(M) (resp., Φtemp(M)) then follows from (20)
(resp., (21)) and the fact that the elements of O+

M,L permute Φ+
2 (L) (resp., Φ2(L)), by Lemma

2.7.3(ii).
(ii) follows from Proposition 3.2.8 later below, applied with M in place of G, and the corresponding
restriction of the collection {OM}M (as justified by Lemma 2.6.3(iii)). �

Remark 2.7.8. Thus, Hypothesis 2.7.1 also has the consequence that each SD(M)OM and in
particular SD(G)OG = SD(G)O, has a basis consisting of virtual characters whose supports are
pairwise disjoint and together exhaustive. By the same argument as in Lemma 2.7.3(i), the
elements of such a basis are uniquely determined up to scaling, and hence Φtemp(M) has an
alternate characterization as in Lemma 2.7.3(i).

Notation 2.7.9. Henceforth, for any Levi subgroup M ⊂ G, the elements of Φ2(M) (resp.,
Φtemp(M)) will be referred to as the discrete series L-packets (resp., tempered L-packets) on
M(F ) up to the action of OM in the sense of Hypothesis 2.7.1.

Remark 2.7.10. Suppose that Hypothesis 2.7.1 is satisfied with the collection {OM}M replaced
by a collection {O′M}M satisfying analogous conditions, where O′M is a normal subgroup of OM for
each Levi subgroup M ⊂ G. Since we may assume that cσ > 0 for each σ ∈ Σ by Proposition 2.7.2,
it is easy to see by averaging and using the idea of the proof of Lemma 2.7.3, that Hypothesis
2.7.1 is satisfied (without replacing {OM}M by {O′M}M).

2.8. Langlands parameters. In this subsection, let M be a connected reductive group over F .

Definition 2.8.1. (i) An element x ∈ LM is said to be semisimple if Intx preserves a max-

imal torus of M̂.
(ii) By a Langlands parameter for M, we will mean the M̂-conjugacy class of a homomorphism

ϕ̇ : W ′F := WF × SL2(C) → LM that is admissible relevant. Here, ϕ̇ being ‘admissible’
means that ϕ̇ satisfies the following three properties: ϕ̇ is continuous; ϕ̇|SL2(C) is an

algebraic map SL2(C) → M̂; and for all w ∈ WF we have that ϕ̇(w) ∈ LM is semisimple
and maps to w under LM → WF . ϕ̇ being ‘relevant’ means that ϕ̇(WF ) (M if M is a
Levi subgroup of LM which is not relevant in the sense of Notation 2.4.3.

(iii) Let Φ(M) denote the set of Langlands parameters for M. Let Φtemp(M) denote the subset
of those ϕ ∈ Φ(M) with the property that some (or equivalently, any) ϕ̇ : W ′F → LM
representing ϕ is a bounded homomorphism, i.e., for some (or equivalently, any) preferred

section s : WF → LM, there exists a bounded subset C ⊂ M̂ such that ϕ(WF ) ⊂ Cs(WF ).
Let Φ2(M) (resp., Φ+

2 (M)) denote the subset of Φtemp(M) (resp., Φ(M)) consisting of



SOME COMMENTS ON THE STABLE BERNSTEIN CENTER 33

those Langlands parameters ϕ which (have representatives that) do not factor through any
proper Levi subgroup of LM. Elements of Φtemp(M) (resp., Φ2(M)) or their representatives
will be referred to as tempered or bounded parameters (resp., discrete series parameters).

(iv) Let x ∈ LM be semisimple in the sense of (i) above. Then x is called elliptic if for some (or

equivalently, any) preferred section s : WF → LM, there exists a compact subset C ⊂ M̂
such that the subgroup of LM generated by x is contained in Cs(WF ). Further, x is called

hyperbolic if it belongs to M̂ and is hyperbolic as an element of M̂ (in the sense recalled
in [SZ18, Section 5.1]).

The definitions above agree with the usual ones, by Lemma 2.8.5 below.

Remark 2.8.2. In the spirit of the parenthetical ‘have representatives that’ in (iii) above, we will
often describe properties of Langlands parameters in terms of their representatives, the indepen-
dence of the choice of which will be implicitly left to the reader to check.

Remark 2.8.3. If we fix a preferred section s : WF → LM, yielding an identification LM ∼=
M̂oWF and in particular an action of WF on M̂, and hence also an action of W ′F via W ′F →WF ,
we can use the identification from [Bor79, Section 8.2] (analogous to that in Notation 2.5.3) to

view the set of Langlands parameters for M as a subset of H1(W ′F , M̂): a Langlands parameter
represented by w′ 7→ a(w′)s(w), where w is the image of w′ in WF , is represented by the image in

H1(W ′F , M̂) of a : W ′F → M̂, which is verified to be a cocycle of W ′F in M̂.

Notation 2.8.4. (i) Through W ′F →WF , the prescription of Definition 2.3.3(iv) also defines
an action of W ′F on ZM̂, independently of any choice of a preferred section.

(ii) Now that we can talk of H1(WF ,ZM̂) (or H1(W ′F ,ZM̂)), we can also make it act on
Φ(M), as in [Bor79, Section 8.5]: if ϕ is a Langlands parameter for M represented by a
homomorphism ϕ̇ : W ′F → LM, and if (the inflation to H1(W ′F ,ZM̂) of) α is represented
by a cocycle α̇, then α ·ϕ ∈ Φ(M) is represented by the admissible relevant homomorphism
W ′F → LM given by w 7→ α̇(w)ϕ̇(w) ∈ ZM̂ · LM = LM. Note that there is a similarly

defined action of ZΓ,0

M̂
= H1(WF /IF ,Z

Γ,0

M̂
) on Φ(M), which factors through the above

action via the map ZΓ,0

M̂
→ (ZIF

M̂
)0
Fr ⊂ H1(WF ,ZM̂).

(iii) Restriction along the naive inclusion WF → W ′F (given by w 7→ (w, 1)) gives a map

Φ(M) → S (WF ,
LM)/(Int M̂), composing which with (15) gives us a map Φ(M) →

Homcts(ZM(F ),C×), which we denote by ϕ 7→ ζϕ as well. It is easy to check that this
construction agrees with that in [Bor79, Section 10.1]. It is easy to see that Remark 2.5.6
and Remark 2.5.7 also admit obvious variants with the S (WF ,−) replaced by the Φ(−);
in what follows, when we invoke either of these remarks, it is to be understood that this
variant is also being referenced.

Lemma 2.8.5. Realize LM as M̂ oWF using a preferred section s : WF → LM. Let x ∈ LM.

(i) x is semisimple in the sense of Definition 2.8.1(i) if and only if it is semisimple in the
usual sense (as explained in [Kot84, Section 10] or [SZ18, Section 5.1], and recalled in the
proof).

(ii) Assume that x is semisimple. Then x is elliptic (resp., hyperbolic) in the sense of Defini-
tion 2.8.1(iv) if and only if it is elliptic (resp., hyperbolic) in the usual sense (explained
in [SZ18, Section 5.1]).

(iii) Assume that x is semisimple. Then there exist unique xe ∈ LM and xh ∈ M̂ such that xe
is elliptic, xh is hyperbolic, and xexh = x = xhxe.

(iv) An admissible relevant homomorphism ϕ̇ : W ′F → LM represents an element ϕ ∈ Φtemp(M)
if and only if ϕ̇(WF ) ⊂ LM consists entirely of elliptic elements.

Proof. First we prove (i). Recall that if K/F is an extension in F̄ splitting M, the semisimplicity

of x in the usual sense is equivalent to that of its image, call it x̄, in the quotient M̂ o Gal(K/F )

of M̂ o WF = LM. Let us prove the implication “⇒” first, so assume that Intx and hence
Int x̄ preserves a maximal torus of M̂. Then some power of x̄ belongs to M̂ and centralizes a
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maximal torus of M̂, and hence belongs to this torus. This forces x̄ to be semisimple, since C has
characteristic zero. To prove the sufficiency, note that if x is semisimple in the usual sense, so is
the automorphism Int x̄ of M̂ (by the definition of a semisimple automorphism, as given shortly
before [Ste68, Theorem 7.5]). Therefore, by [Ste68, Theorem 7.5], Int x̄ and hence Intx preserves

a Borel pair in M̂.
We now sketch a proof of (ii). The assertion dealing with hyperbolic elements is tautological (the
relevant definitions in [SZ18, Section 5.1] and Definition 2.8.1(iv) agree). It is easy to see that x

is elliptic in the sense of [SZ18, Section 5.1] if and only if its image in each factor M̂ o Gal(K/F )

as in the proof of (i) is contained in a compact subgroup of M̂oGal(K/F ), which is easily seen to
be equivalent to x being elliptic in the sense of Definition 2.8.1(iv). This proves (ii), given which
(iii) follows from the discussion in [SZ18, Section 5.1]. The implication “⇒” of (iv) is immediate.
On the other hand, if w ∈ WF is a lift of Fr, then it is easy to see from the compactness of IF ,
and the fact that ϕ̇|WF

is continuous and hence smooth, that the ellipticity of ϕ̇(w) is already
sufficient for the temperedness of ϕ. �

2.9. Infinitesimal characters. Now let us recall the notion of an infinitesimal character from
[Hai14, Section 5.1]. For this subsection too, M is an arbitrary reductive group over F .

Definition 2.9.1. By an infinitesimal character for M we refer to the M̂-conjugacy class of a
homomorphism λ : WF → LM, which is admissible (see Definition 2.8.1), though we do not
impose any condition of relevance. Let Ω( LM) denote the set of infinitesimal characters of M.

Notation 2.9.2. If a homomorphism ϕ̇ : W ′F → LM represents a Langlands parameter ϕ for M,

we will denote by λ(ϕ) the well-defined Int M̂-orbit of the homomorphism WF → LM given by:

w 7→ ϕ̇

(
w,

(
‖w‖1/2 0

0 ‖w‖−1/2

))
.

It is easy to see that λ(ϕ) ∈ Ω( LM).

Remark 2.9.3. Using the discussion of Notation 2.6.1(v), we get an action of Aut(M) on Φ(M)
and Ω( LM). The action of Aut(M) on Φ(M) preserves Φ2(M),Φ+

2 (M) and Φtemp(M). Further,
the map Φ(M) → Ω( LM) given by ϕ 7→ λ(ϕ) is Aut(M)-equivariant. Note that if L ⊂ M ⊂ G
are Levi subgroups, then since O+

L ⊂ O
+
M,L (see (iv)b in Notation 2.6.1), we have a surjection

Φ(L)/OL = Φ(L)/O+
L � Φ(L)/O+

M,L, and similarly with Ω(L) in place of Φ(L).

Remark 2.9.4. The following lemma is well-known to experts and reflects in results found in
the literature, e.g., in the first remark of [Mg14, Section 4], with the consequence that the L-
packet of a tempered representation of a quasi-split classical group is determined (up to an outer
automorphism) by the cuspidal support of its transfer to the appropriate general linear group.

Lemma 2.9.5. Any tempered Langlands parameter for M is determined by its infinitesimal char-
acter, i.e., if ϕ1, ϕ2 ∈ Φtemp(M) satisfy that λ(ϕ1) = λ(ϕ2) ∈ Ω( LM), then ϕ1 = ϕ2 ∈ Φ(M).

Proof. The proof is the same as for the assertion that the “ψ 7→ φψ” map defines an injection
from the set of Arthur parameters for M into the set of Langlands parameters for M (see [Art84,
Proposition 1.3], or alternatively [Sha11, Section 3]), but we give the details for the convenience
of the reader.
We confuse ϕ1, ϕ2 with homomorphisms W ′F → LM that represent them, and similarly with
λ(ϕ1) and λ(ϕ2). Conjugating one of these representatives if necessary, we may and do assume
that λ(ϕ1) = λ(ϕ2) : WF → LM, so that for all w ∈WF :

(22) ϕ1

(
w,

(
‖w‖1/2

‖w‖−1/2

))
= ϕ2

(
w,

(
‖w‖1/2

‖w‖−1/2

))
.

We claim that ϕ1|WF
= ϕ2|WF

: this is a very special case of the Langlands classification for
L-parameters, as in [SZ18, Lemma 5.2], as we now explain.
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For each w ∈WF and i ∈ {1, 2}, ϕi(w) is elliptic by Lemma 2.8.5(iv), while ϕi

(
1,

(
‖w‖1/2

‖w‖−1/2

))
∈

M̂ ⊂ LM is hyperbolic (because it lies in the image of the identity component of the group of
real points of the diagonal maximal torus of SL2(C)). Therefore, by the uniqueness of the polar

decomposition (Lemma 2.8.5(iii)), both ϕi(w) and ϕi

(
1,

(
‖w‖1/2

‖w‖−1/2

))
are determined

as the elliptic and hyperbolic parts, respectively, of their product. Applying this to (22), it follows
that ϕ1|WF

= ϕ2|WF
.

For the rest of this proof alone, write T for the diagonal maximal torus of the SL2(C)-factor of
W ′F . Thus, ϕ1, ϕ2 agree on WF as well as on T, and it suffices to show that the homomorphisms

ϕ1|SL2(C) and ϕ2|SL2(C), valued in the connected centralizer C of ϕ1(WF ) = ϕ2(WF ) in M̂, are
C-conjugate. A result of Mal’cev (see [CM93, Theorem 3.4.12]) says that if C′ is a connected
reductive group over C and if ϕ′1, ϕ

′
2 : SL2(C)→ C′ are algebraic homomorphisms such that ϕ′1|T

and ϕ′2|T are C′-conjugate, then so are ϕ′1 and ϕ′2. Applying this with C′ = C and ϕ′i = ϕi|SL2(C)

for i = 1, 2, and using that ϕ1|T = ϕ2|T, it follows that ϕ1|SL2(C) and ϕ2|SL2(C) are C-conjugate,
as needed. �

2.10. Hypothesis on the local Langlands correspondence. Before stating our hypothesis
on the local Langlands correspondence, we need to make sure to account for the fact that certain
constructions are well-defined modulo the action of the groups OM.

Remark 2.10.1. Let M ⊂ G be a Levi subgroup.

(i) We claim that for all α ∈ (ZIF
M̂

)0
Fr ⊂ H1(WF /IF ,Z

IF
M̂

) ⊂ H1(WF ,ZM̂), and hence also for

α ∈ ZΓ,0

M̂
= H1(WF /IF ,Z

Γ,0

M̂
), ϕ 7→ α ·ϕ (see Notation 2.8.4(ii)) descends to a well-defined

map Φ(M)/OM → Φ(M)/OM. This follows from Lemma 2.6.5 and the fact that the
map (α,ϕ) 7→ α · ϕ is clearly equivariant for OM or equivalently for O+

M. If the stronger
condition on the OM discussed in Remark 2.6.2(v) holds, then the same applies to all
α ∈ H1(WF ,ZM̂).

(ii) Recall the assignment ϕ 7→ ζϕ (ϕ ∈ H1(W ′F , M̂)) from Notation 2.8.4(iii). By the func-
toriality of this assignment, replacing ϕ by an element in its O+

M-orbit replaces ζϕ by an

element in its O+
M-orbit, and hence leaves ζϕ unchanged under the stronger condition on

the OM discussed in Remark 2.6.2(v). Thus, under this stronger condition we may talk of
ζϕ for ϕ ∈ Φ(M)/OM.

Remark 2.10.2. (i) We will use the following without further remark: if L ⊂ M ⊂ G are
Levi subgroups, then since OL ⊂ O+

M,L (see (iv)b in Notation 2.6.1), it follows from Lemma

2.4.16(ii) that ιM,L ◦− descends to well-defined maps Φ(L)/OL → Φ(M)/O+
M = Φ(M)/OM

and Ω( LL)/OL → Ω( LM)/OM, and then further to well-defined maps Φ(L)/O+
M,L →

Φ(M)/OM and Ω( LL)/O+
M,L → Ω( LM)/OM. These maps are clearly independent of the

choice of ιM,L in its M̂-conjugacy class.
(ii) Let β ∈ O+

G, and let M ⊂ G be a Levi subgroup. Then β transports O+
M to O+

β(M) (see

Lemma 2.6.3(i)). Compatibly with this transport, any choice of L(β|M) : Lβ(M) → LM
(see Notation 2.3.4(iii)) transports the O+

β(M)-action on Φ(β(M)) to the O+
M-action on

Φ(M). Hence L(β|M)◦− induces a well-defined map Φ(β(M))/Oβ(M) = Φ(β(M))/O+
β(M) →

Φ(M)/O+
M = Φ(M)/OM.

(iii) Suppose L ⊂ M ⊂ G are Levi subgroups, and let β ∈ O+
M, so that we have L(β|L) ◦ − :

Φ(β(L))→ Φ(L). By Lemma 2.4.16(ii), we have an equality of two maps Φ(β(L))→ Φ(M):

ιM,L ◦ L(β|L) ◦ − = Lβ ◦ ιM,β(L) ◦ − : Φ(β(L))→ Φ(M).

This can also be viewed as an equality of two maps Φ(β(L))/Oβ(L) → Φ(M)/OM, thanks
to (i) and (ii) above.
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The following conjecture is a variant of what is called LLC+ for G in [Hai14, Section 5.2]; unlike
in [Hai14, Section 5.1] we state it only for discrete series representations, and use Langlands
classification to extend it to its ‘admissible dual’ version (which we do in Theorem 2.10.10 below):

Hypothesis 2.10.3. (LLC+)

(i) For each Levi subgroup M ⊂ G, there is a finite-to-one surjective map Irr2(M)/OM →
Φ2(M)/OM, which we will denote by σ 7→ ϕσ (suppressing M from the notation), satisfying
the desideratum of compatibility with twisting by unramified unitary characters: for all

α belonging to H1(WF /IF ,Z
Γ,0

M̂
) = ZΓ,0

M̂
such that χα ∈ Xunr(M) is unitary, we have

ϕσ⊗χα = α · ϕσ ∈ Φ2(M)/OM (see Notation 2.5.11 for χα, Remark 2.10.1(i) for α · ϕσ).
Thus, unlike in [Hai14], we do not impose a lot of the desiderata from [Bor79].

(ii) (A variant of [Hai14, Conjecture 5.2.2]) “Infinitesimal character is preserved by parabolic
induction”: Let L,M be Levi subgroups of G with L ⊂ M. Suppose σ ∈ Irr2(M) is a

subquotient of the representation IndM
Q (υ ⊗ χα) of M(F ), for some unitary supercuspidal

representation υ of L(F ), some parabolic subgroup Q of M with L as a Levi subgroup,

and the character χα associated to some α ∈ ZΓ,0

L̂
= H1(WF /IF ,Z

Γ,0

L̂
) (note that χα ∈

Xunr(L)). Then ιM,L ◦ λ(α · ϕυ) = λ(ϕσ), in the sense that the map ιM,L : Ω( LL)/OL →
Ω( LM)/OM from Remark 2.10.2(i) takes λ(α ·ϕυ) to λ(ϕσ). Here, α ·ϕυ is as in Remark
2.10.1(i).

(iii) (Compare with [Hai14, Conjecture 5.2.7]) If M ⊂ G is a Levi subgroup and β ∈ O+
G, and

L(β|M) : Lβ(M) → LM is dual to β|M : M → β(M), then for all σ ∈ Irr2(M), we have
L(β|M) ◦ ϕσ◦β−1 = ϕσ (see Remark 2.10.2(ii) for the meaning of L(β|M) ◦ −).

Remark 2.10.4. The conditions imposed by the desiderata (1)-(4) of [Bor79, Section 10.3] on
the maps σ 7→ ϕσ in (i) of the above hypothesis are as follows. Let M ⊂ G be a Levi subgroup
and σ a discrete series representation of M(F ). Then:

(i) Central character. The central character of σ equals the character ζϕσ (see Remark
2.10.1(ii)). We haven’t imposed this.

(ii) Twisting by a character. For all α ∈ H1(WF ,ZM̂) such that ϕσ⊗χα makes sense and OM

fixes χα, ϕσ⊗χα = α ·ϕσ (here χα is as in Subsubsection 2.5.2, and α ·ϕσ is as in Remark
2.10.1(i)). In the restricted context of Hypothesis 2.10.3, ϕσ⊗χα makes sense only when
σ⊗χα is a discrete series representation, or equivalently only when χα is unitary; we have
imposed this condition only when χα ∈ Xunr−uni(M).

(iii) L-packets of essentially square-integrable representations. σ is essentially square-integrable
if and only if ϕσ ∈ Φ+

2 (M)/OM. This is automatic in the restricted setting of Hypoth-
esis 2.10.3, since σ is a discrete series representation and ϕσ is hypothesized to lie in
Φ2(M)/OM.

(iv) Tempered L-packets. σ is tempered if and only if ϕ ∈ Φtemp(M). This too is automatic in
the our restricted setting of Hypothesis 2.10.3.

2.10.1. Extending the local Langlands correspondence to the admissible dual using Langlands clas-
sification.

Notation 2.10.5. Let M ⊂ G be a Levi sugbgroup. If L ⊂ LM is a relevant Levi subgroup, write
Φ+

2 (L) for the set of L0-conjugacy classes of admissible homomorphisms ϕ̇ : W ′F → LM, such that
L is minimal among the Levi subgroup of LM containing ϕ̇(W ′F ). Φ+

2 (L) is acted on by the group
O+

M,L of Notation 2.6.1(iii).

Lemma 2.10.6. Let M ⊂ G be a Levi subgroup.

(i) Let ϕi ∈ Φ+
2 (Li) for i = 1, 2, where L1,L2 ⊂ LM are Levi subgroups. Then the images of

ϕ1 and ϕ2 in Φ(M)/OM are equal if and only if ϕ1 = Lβ ◦ϕ2 for some Lβ ∈ O+
M(L1,L2)

(see Notation 2.6.1(iii)).
(ii) The obvious maps Φ+

2 (L)→ Φ(M) give us decompositions:

(23) Φ(M) =
⊔
L

Φ+
2 (L)/WM̂(L),
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where L runs over a set of representatives for the M̂-conjugacy classes of relevant Levi
subgroups of LM, and

(24) Φ(M)/OM =
⊔
L

Φ+
2 (L)/O+

M,L,

where L runs over a set of representatives for the orbits of relevant Levi subgroups of LM
under the group O+

M,LM
= O+

M( LM, LM) (i.e., for the OM-orbits of M̂-conjugacy classes

of relevant Levi subgroups of LM).

Proof. (24) is immediate once we prove (i), while (23) is the special case of (24) where each OL is
trivial. Therefore, it suffices to prove (i).
The “⇒” implication of (i) is immediate, so let us prove “⇐”. Φ(M)/OM is also the quotient, by
O+

M,LM
, of the set of all admissible relevant homomorphisms W ′F → LM. Thus, replacing ϕ2 and

L2 by Lβ′ ◦ ϕ2 and Lβ′(L2) for some β′ ∈ OM, we may and do assume without loss of generality
that ϕ1 = ϕ2, and that ϕ̇ : W ′F → LM represents ϕ1 = ϕ2.
Now use [Bor79, Proposition 3.6], which says that the Levi subgroups of LM which are minimal

among those that ϕ̇(W ′F ) form a single conjugacy class under the centralizer of ϕ̇(W ′F ) in M̂;

this gives us an M̂-conjugation between ϕ1 and ϕ2 taking L2 to L1, finishing the proof of the
lemma. �

Corollary 2.10.7. Let M ⊂ G be a Levi subgroup.

(i) Let ϕi ∈ Φ+
2 (Li) for i = 1, 2, where L1,L2 ⊂ M are Levi subgroups. Then ιM,L1

◦ϕ1, ιM,L2
◦

ϕ2 ∈ Φ(M)/OM (made sense of using Remark 2.10.2(i)) are equal if and only if ϕ1 =
Lβ ◦ ϕ2 for some Lβ ∈ O+

M( LL1,
LL2) (see Notation 2.6.1(iii)).

(ii) The maps Φ(L)→ Φ(M) given by ιM,L ◦ − (see Remark 2.10.2(i)) induce decompositions:

(25) Φ(M) =
⊔
L

Φ+
2 (L)/W (L),

where L runs over a set of representatives for the M(F )-conjugacy classes of Levi subgroups
of M, and

(26) Φ(M)/OM =
⊔
L

Φ+
2 (L)/O+

M,L,

where L runs over a set of representatives for the O+
M-orbits of Levi subgroups of M.

Proof. Given any Levi subgroup L ⊂ M and a choice of ιM,L with ιM,L( LL) = L, ιM,L ◦− induces
a bijection Φ+

2 (L) ∼= Φ+
2 (L). Now (i) (resp., (ii)) of the corollary easily follows from combining

the corresponding assertion of Lemma 2.10.6 with Proposition 2.4.18 (resp., with Corollary 2.4.17
and Proposition 2.4.18). �

Remark 2.10.8. Let β ∈ O+
G. Let M ⊂ G be a Levi subgroup, and recall that L(β|M) : Lβ(M) :=

L(β(M))→ LM is a choice of a dual to β|M.

(i) Since β transports O+
M to O+

β(M) and each O+
M,L to O+

β(M),β(L) (Lemma 2.6.3(i)), it follows

that applying β to (20) gives an analogue of (20) with M replaced by β(M).
(ii) We can get a decomposition as in (24) by applying L(β|M) to an analogous decomposition

for Lβ(M): this uses that, since β takes O+
M to O+

β(M), for each Levi subgroup L′ ⊂ Lβ(M),
L(β|M) transports O+

β(M),L′ isomorphically to O+
M,L(β|M)(L′).

(iii) For each Levi subgroup L ⊂ M, since ιM,L◦ L(β|L) and L(β|M)◦ιβ(M),β(L) are M̂-conjugate
(Lemma 2.4.16(ii)), it is easy to see that a decomposition as in (26) for M can be obtained
from that for β(M), by mapping Φ(β(M)) to Φ(M) using L(β|M) on the one hand, and
mapping, for each Levi subgroup L ⊂ M, Φ+

2 (β(L)) to Φ+
2 (L) by applying L(β|L), on the

other.
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Notation 2.10.9. Whenever we assume Hypothesis 2.10.3, we will assume that the maps Irr2(M)/OM →
Φ2(M)/OM as in that hypothesis have been chosen, and that they are extended to maps

(27) Irr+
2 (M)/OM → Φ+

2 (M)/OM

and

(28) Irr(M)/OM → Φ(M)/OM,

still denoted σ 7→ ϕσ, as follows:

(i) (27) is defined by requiring that ϕσ⊗χα = α · ϕσ for each α ∈ H1(WF /IF , Z
Γ,0

M̂
) or

equivalently each α ∈ (ZIF
M̂

)0
Fr ⊂ H1(WF /IF ,Z

IF
M̂

): to see that this is well-defined, use

(a)-(d) that follow: (a) every element of Irr+
2 (M) is of the form σ ⊗ χ for a unique pair

(σ, χ) ∈ Irr2(M) ×Xunr(M)>0; (b) Xunr(SM)>0
∼= Xunr(M)>0

∼= Xunr(AM)>0 acts freely
on Irr(M) (look at central characters); (c) the map α 7→ χα is an OM-equivariant surjective

map ZΓ,0

M̂
→ Xunr(M) ∼= Xunr(M)>0 × Xunr−uni(M) with all the actions of OM being

trivial (see Lemma 2.6.5); (d) the compatibility ϕσ⊗χα = α ·ϕσ has already been imposed
whenever σ ∈ Irr2(M) and χα ∈ Xunr−uni(M).

(ii) We define (28) by:

(29) Irr(M)/OM →
⊔
L

Irr+
2 (L)/O+

M,L →
⊔
L

Φ+
2 (L)/O+

M,L → Φ(M)/OM,

where the first map is given by (20), the third map is from (26), and the middle map
is obtained by factoring (27) with M replaced by L: note that (27) with M replaced
by L is equivariant for O+

M,L ⊃ OL, by (iii) of Hypothesis 2.10.3 and the fact that the

surjectionH1(WF /IF ,Z
Γ,0

L̂
)→ Xunr(L) given by α 7→ χα is equivariant for Aut(L) ⊃ O+

M,L

(though the O+
M,L-actions involved are not trivial). A similar argument shows that (28) is

independent of the choices of the representatives L involved.

In what follows, it may be helpful to keep in mind notation from Remark 2.10.2. One form of
the well-known Langlands classification amounts to most assertions of the following theorem, and
compensates for our having stated Hypothesis 2.10.3 only for discrete series representations, unlike
in [Hai14].

Theorem 2.10.10. Assume Hypothesis 2.10.3, so that we have the maps Irr+
2 (M)/OM → Φ+

2 (M)/OM

and Irr(M)/OM → Φ(M)/OM of (27) and (28), denoted σ 7→ ϕσ, as in Notation 2.10.9 (as M
ranges over Levi subgroups of G). These maps have the following properties, parallel to those in
Hypothesis 2.10.3:

(i) The maps Irr+
2 (M)/OM → Φ+

2 (M)/OM and Irr(M)/OM → Φ(M)/OM are finite-to-one
and surjective, and satisfy that ϕσ⊗χα = α · ϕσ (for σ in Irr+

2 (M) or Irr(M), and α ∈
Z0
LM = ZΓ,0

M̂
= H1(WF /IF ,Z

Γ,0

M̂
); see Notation 2.5.11). Moreover, these maps satisfy the

desiderata (iii) and (iv) of Remark 2.10.4, i.e., Irr+
2 (M)/OM and Irrtemp(M)/OM are the

full preimages of Φ+
2 (M) and Φtemp(M), respectively, under Irr(M)/OM → Φ(M)/OM.

(ii) (A generalization of Hypothesis 2.10.3(ii); compare with [Hai14, Conjecture 5.2.2]). Let
M′,M be Levi subgroups of G with M′ ⊂ M, and σ′ and σ irreducible admissible rep-
resentations of M′(F ) and M(F ) with σ an irreducible subquotient of IndM

M′ σ
′. Then

ιM,M′(λ(ϕσ′)) = λ(ϕσ) ∈ Ω( LM)/OM.
(iii) (A generalization of Hypothesis 2.10.3(iii); compare with [Hai14, Conjecture 5.2.7]). If

M ⊂ G is a Levi subgroup, β ∈ O+
G, and L(β|M) : Lβ(M) → LM is dual to β|M : M →

β(M), then for all irreducible admissible representations σ of M(F ), L(β|M) ◦ ϕσ◦β−1 =
ϕσ ∈ Φ(M)/OM.

Proof. Since the arguments involved are standard, parts of the proof will be only sketched. Let
us prove (i), fixing a Levi subgroup M ⊂ G.
The surjectivity of (27) and that of (28) are immediate from the surjectivity assumption in Hy-
pothesis 2.10.3(i), once we show that for each Levi subgroup L ⊂ M, every element ϕ′ ∈ Φ+

2 (L)
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is of the form α · ϕ for some α ∈ ZΓ,0

M̂
and ϕ ∈ Φ2(L). To see this, apply [SZ18, Proposition 5.3]

(essentially, Langlands classification for paramemters) with L in place of the group G there, and

note that the group denoted “Z(CĜ(Im(φ)))0” there is simply ZΓ,0

L̂
in our situation: if not, then

by [Bor79, Lemma 3.5], ϕ′(WF ) would be contained in a proper Levi subgroup of LL, contra-
dicting that ϕ′ ∈ Φ+

2 (L). The maps Irr+
2 (M)/OM → Φ+

2 (M)/OM are finite-to-one, since the maps
Irr2(M)/OM → Φ2(M)/OM are, and since the action of Xunr(M)>0 on Irr+

2 (M)/OM and that of the

group (ZΓ,0

M̂
)h := {α ∈ ZΓ,0

M̂
| χα ∈ Xunr(M)>0} of hyperbolic elements in ZΓ,0

M̂
on Φ+

2 (M)/OM are

free; for the assertion involving Xunr(M)>0, use that Xunr(SM)>0 → Xunr(M)>0 → Xunr(AM)>0

are bijections, and for the assertion involving (ZΓ,0

M̂
)h, use that (ZΓ,0

M̂
)h injects into the group

(M̂/(M̂)der)Γ of Γ-coinvariants of M̂/M̂der, since ZΓ,0

M̂
→ (M̂/(M̂)der)Γ is an isogeny, on whose

target OM acts trivially by Lemma 2.6.5. Since the maps (20) and (26) are also finite-to-one,
it follows that each of the three maps that are used to define (29) is finite-to-one, so the map
Irr(M)→ Φ(M) is finite-to-one.
The desideratum (iii) of Remark 2.10.4 is immediate from the construction. For the desideratum
(iv) of Remark 2.10.4: combine (21) from Corollary 2.7.5 (Langlands classification for tempered
representations) with the analogous equality that (26) clearly restricts to:

Φtemp(M)/OM =
⊔
L

Φ2(L)/O+
M,L.

This proves (i) of the theorem.
Now let us prove (iii) of the theorem. The equality L(β|M) ◦ ϕσ◦β−1 = ϕσ is automatic if σ ∈
Irr2(M), by Hypothesis 2.10.3(iii). If σ ∈ Irr+

2 (M), the same follows by the definition of (27)

and the equality χα ◦ β−1 = χL(β|M)−1(α) ∈ Xunr(Sβ(M)) for α ∈ ZΓ,0

M̂
, obtained by applying the

functoriality of the local Langlands correspondence for tori to the map Sβ(M) → SM induced by

β−1, whose dual is the map ZΓ,0

M̂
→ ZΓ,0

β̂(M)
obtained by restricting L(β|M)−1 (use Lemma 2.5.10).

Since this applies with M replaced by any Levi subgroup L ⊂ M, (iii) of the theorem follows from
(i) and (iii) of Remark 2.10.8, together with the definition of the map Irr(M)/OM → Φ(M)/OM

in (29).
Now let us verify (ii) of the theorem, which is a strengthening of Hypothesis 2.10.3(ii).
For this, let us first reduce to the case where the inducing representation σ′ is supercuspidal. Let
(L, υ) be a cuspidal support for σ′; it is then also a cuspidal support for σ. Use Proposition 2.4.15
to assume without loss of generality that ιM,L = ιM,M′ ◦ ιM′,L. Therefore, once we prove the case
where the inducing representation is supercuspidal, we can apply it to σ being a subquotient of

IndM
L υ as well as to σ′ being a subquotient of IndM′

L υ, to get:

λ(ϕσ) = ιM,L(λ(ϕυ)) = ιM,M′ ◦ ιM′,L(λ(ϕυ)) = ιM,M′(λ(ϕσ′)).

Thus, we now assume that σ′ is supercuspidal, i.e., (M′, σ′) is a cuspidal support of σ. In what
follows, we will use the following observation:
Observation: If ιM,M′(λ(ϕσ′)) = λ(ϕσ), then for all χ ∈ Xunr(M), ιM,M′(λ(ϕσ′⊗χ|M′(F )

)) =

λ(ϕσ⊗χ).

To see this observation, assume that χ = χα for some α ∈ ZΓ,0

M̂
, and denote by α′ its im-

age in ZΓ,0

M̂′
under the embedding ZM̂ ↪→ ZM̂′ obtained from ιM,M′ (see Corollary 2.4.13), i.e.,

ιM,M′(α
′) = α. From Remark 2.5.6(ii), it follows that χα′ = χα|M′(F ). Using that ϕσ⊗χα = α · ϕσ

and ϕσ′⊗χα′ = α′ · ϕσ′ , as given by (i) of the theorem, we get:

λ(ϕσ⊗χ) = λ(α·ϕσ) = ιM,M′(α
′)·ιM,M′(λ(ϕσ′)) = ιM,M′(λ(α′·ϕσ′)) = ιM,M′(λ(ϕσ′⊗χα′ )) = ιM,M′(λ(ϕσ′⊗χ|M′(F )

)),

proving the observation.
In the case where σ ∈ Irr2(M) and σ′ is supercuspidal, the claim of (ii) is almost the same as

Hypothesis 2.10.3(ii): writing σ′ = σ′′⊗χα′′ , where σ′′ is unitary supercuspidal and α′′ ∈ ZΓ,0

M̂′
, so

that ϕσ′ = α′′ · ϕσ′′ , we get from Hypothesis 2.10.3(ii) that:

λ(ϕσ) = ιM,M′ ◦ λ(α′′ · ϕσ′′) = ιM,M′ ◦ λ(ϕσ′).
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The case where σ ∈ Irr+
2 (M) and σ′ is supercuspidal then follows by the observation above.

Recall that ϕσ is defined using (29). Let L,Q and υ ∈ Irr+
2 (L) be associated to σ as in Langlands

classification, i.e., as in Proposition 2.2.3(i). Thus, σ is an irreducible quotient of IndM
Q υ, and

the O+
M-orbit of σ corresponds to the O+

M,L-orbit of (L, υ) under (20) (which we may assume

features L on its right-hand side). A cuspidal support of υ is then also a cuspidal support of σ,
and hence M(F )-conjugate to (M′, σ′). Since (iii) has been proved and since Int M(F ) ⊂ O+

G, we
M(F )-conjugate (L, υ) without loss of generality to assume that (M′, σ′) is a cuspidal support for
υ.
Thus, we have:

λ(ϕσ) = ιM,L ◦ λ(ϕυ) = ιM,L ◦ ιL,M′ ◦ λ(ϕσ′) = ιM,M′ ◦ λ(ϕσ′),

where the first step uses the definition of ϕσ as ϕσ = ιM,L ◦ ϕυ ∈ Φ(M), the second step uses
the known case where σ′ is supercuspidal and σ is essentially square-integrable (but applied with
(L, υ) in place of (M, σ)), and the third step uses Proposition 2.4.15. �

2.10.2. The local Langlands correspondence and L-packets.

Notation 2.10.11. Let M ⊂ G be a Levi subgroup.

(i) For any ϕ ∈ Φ(M)/OM, we will denote by Σ(ϕ) the set of all (isomorphism classes of)
irreducible admissible representations σ of M(F ) with the property that ϕ = ϕσ; it is
finite by Theorem 2.10.10.

(ii) We will also refer to each of the finite sets Σ(ϕ) obtained in this way, where ϕ ∈ Φ(M)/OM,
as an L-packet on M(F ) in the sense of Hypothesis 2.10.3, up to the action of OM (although
this involves the implicit choice of the maps σ 7→ ϕσ, which we fixed in Notation 2.10.9).

(iii) Given an L-packet Σ(ϕ) on M(F ) up to the action of OM in the sense of Hypothesis 2.10.3,
with ϕ ∈ Φ(M), we will call Σ a discrete series L-packet (resp., an essentially square-
integrable L-packet; resp., a tempered L-packet) if ϕ ∈ Φ2(M) (resp., ϕ ∈ Φ+

2 (M); resp.,
ϕ ∈ Φtemp(M)). Note that, by the desiderata (iii) and (iv) of Remark 2.10.4 (proved in
Theorem 2.10.10), Σ(ϕ) is a discrete series L-packet (resp., an essentially square-integrable
L-packet; resp., a tempered L-packet) if and only if some or equivalently any represen-
tation in it belongs to the discrete series (resp., is essentially square-integrable; resp., is
tempered).

The following hypothesis, which is also expected to be satisfied by the local Langlands correspon-
dence, addresses the potential conflict between the notion of discrete series L-packets according
to Notation 2.10.11 and the one according to Notation 2.7.9:

Hypothesis 2.10.12. (LLC+ and stability) Assume that Hypotheses 2.7.1 and 2.10.3 and are
satisfied with the following compatibility between them: for each Levi subgroup M ⊂ G, the map
ϕ 7→ Σ(ϕ) defines a bijection Φ2(M)/OM → Φ2(M).

Lemma 2.10.13. Assume Hypothesis 2.10.12 (and in particular Hypotheses 2.7.1 and 2.10.3),
and let M ⊂ G be a Levi subgroup. Then the map ϕ 7→ Σ(ϕ) defines bijections Φ+

2 (M)/OM →
Φ+

2 (M) and Φ(M)/OM → Φ(M).

Proof. Since Φ+
2 (M) is a partition of Irr+

2 (M) (see Lemma 2.7.7(i)), and so is the set of all Σ(ϕ) with
ϕ ranging over Φ+

2 (M)/OM (by the surjectivity of Irr(M)→ Φ(M)/OM and the desideratum (iii)
of Remark 2.10.4, proved in Theorem 2.10.10(i)), the claim regarding the bijection Φ+

2 (M)/OM →
Φ+

2 (M) follows if we show that each Σ(ϕ) with ϕ ∈ Φ+
2 (M)/OM belongs to Φ+

2 (M). But each

such ϕ can be written as α′ · ϕ′ with α′ ∈ ZΓ,0

M̂
and ϕ′ ∈ Φ2(M)/OM, as observed in the proof of

Theorem 2.10.10(i), so that Σ(ϕ) = Σ(ϕ′) ⊗ χα, which belongs to Φ+
2 (M) by Hypothesis 2.10.12

and the definition of Φ+
2 (M) (Notation 2.7.6(i)). This proves the assertion involving the bijection

Φ+
2 (M)/OM → Φ+

2 (M). The assertion involving the bijection Φ(M)/OM → Φ(M) follows from
this, together with the definition of Φ(M) (Notation 2.7.6(iii)), and the definition of the map
Irr(M)→ Φ(M)/OM in (29). �
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Remark 2.10.14. We emphasize that even when Hypothesis 2.10.3 is satisfied, the choice of
the maps σ 7→ ϕσ will in general be too random to be compatible with ‘the’ local Langlands
correspondence for the relevant Levi subgroups, though ‘the’ local Langlands correspondence is
expected to fit the description of that hypothesis. Even when Hypotheses 2.7.1 and 2.10.12 are
satisfied in addition, the maps σ 7→ ϕσ will be determined up to barely more than a permutation
of the various Φ(M)/OM (which they will be thanks to Lemma 2.7.3). It is in cases where ‘the
correct’ local Langlands correspondence (up to some {OM}M) is established, and the maps σ 7→ ϕσ
are chosen to be compatible with it, that the theorems we prove will be ‘really’ meaningful, rather
than just technically valid.

2.11. Additional hypotheses on the local Langlands correspondence. To ensure that var-
ious proposed descriptions of the stable Bernstein center agree with each other, certain statements
about supercuspidal supports of representations in L-packets need to be proved, as pointed out by
Haines in [Hai14, Remark 5.5.4]. In this subsection, assuming G to be quasi-split, we will instead
make two such statements into hypotheses.

2.11.1. Langlands parameters of L-packets consisting entirely of supercuspidal representations.

Hypothesis 2.11.1. (Supercuspidal packets) (Applicable only when G is quasi-split). Assume the
LLC+ hypothesis (Hypothesis 2.10.3). For each Levi subgroup M ⊂ G and each ϕ ∈ Φ+

2 (M)/OM,
the following are equivalent:

(a) Σ(ϕ) consists entirely of (not necessarily unitary) supercuspidal representations; and
(b) (Any representative ϕ̇ : W ′F → LM for) ϕ factors through the projection from W ′F =

WF × SL2(C) to its first factor.

As Bertoloni-Meli pointed out to us, this hypothesis is related to [Hai14, Proposition 5.6.1]. Nev-
ertheless, it does not seem to follow from that proposition.

Remark 2.11.2. In fact, the implication (b)⇒ (a) in the above hypothesis follows from the LLC+
hypothesis (Hypothesis 2.10.3), as in the easy implication “⇐” of [Hai14, Proposition 5.6.1]; let
us recall this argument. Suppose that ϕ factors through the projection to the WF -factor, but that
Σ(ϕ) contains a nonsupercuspidal representation σ. Consider a cuspidal support (M′, σ′) for σ.
Then ϕ = ϕσ equals λ(ϕ) = λ(ϕσ), which equals ιM,M′(λ(ϕσ′)) by Theorem 2.10.10(ii), and hence
factors through the proper Levi subgroup ιM,M′(

LM′) of LM, contradicting the desideratum (iii)
of Remark 2.10.4.

2.11.2. Stable cuspidal support.

Notation 2.11.3. Assume that G is quasi-split, and assume Hypothesis 2.7.1.

(i) Given pairs (M,Σ) and (M′,Σ′) with M,M′ Levi subgroups of G, Σ ∈ Φ(M) and Σ′ ∈
Φ(M′), we write (M,Σ) � (M′,Σ′) if M′ ⊂ M, and there exist σ ∈ Σ and σ′ ∈ Σ′ such that

σ is an irreducible subquotient of IndM
M′ σ

′. We write (M,Σ) � (M′,Σ′) if (M,Σ) � (M′,Σ′)
and (M,Σ) 6= (M′,Σ′).

(ii) Let L,M ⊂ G be Levi subgroups, and let Υ ∈ Φ(L) and Σ ∈ Φ(M). We say that (L,Υ) is
a potential stable cuspidal support for (M,Σ) if there exists a maximal chain

(30) (M,Σ) = (M0,Σ0) � (M1,Σ1) � · · · � (Mn,Σn) = (L,Υ).

(iii) Given (M,Σ) as in (ii), we say that it has a stable cuspidal support if its potential stable
cuspidal supports belong to a single orbit under O+

M, in which case each potential stable
cuspidal support of (M,Σ) will also be referred to as a stable cuspidal support of (M,Σ).

Hypothesis 2.11.4. (Existence of stable cuspidal support; applicable only when G is quasi-split).
Assume that G is quasi-split, and assume Hypothesis 2.7.1. We assume that every pair (M,Σ),
where M ⊂ G is a Levi subgroup and Σ ∈ Φ(M), has a stable cuspidal support.

Remark 2.11.5. (i) Note that every (M,Σ) has a potential stable cuspidal support, and that
for any such potential stable cuspidal support (L,Υ), Υ consists entirely of supercuspidal
representations. Thus, the nontrivial assumption in Hypothesis 2.11.4 is the uniqueness
of the potential stable cuspidal supports up to the action of O+

M.
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(ii) It is easy to see from the definition of Φ(M) (involving Langlands classification) that
Hypothesis 2.11.4 needs to only be checked for pairs (M,Σ) with Σ ∈ Φ2(M).

Proposition 2.11.6. Assume that G is quasi-split, and assume the hypotheses on the existence
of tempered L-packets, LLC+, LLC+ and stability, and supercuspidal packets (Hypotheses 2.7.1,
2.10.3, 2.10.12 and 2.11.1). Then the hypothesis on the existence of stable cuspidal support (Hy-
pothesis 2.11.4) holds.

Proof. Let (L1,Υ1) and (L2,Υ2) be potential stable cuspidal supports for (M,Σ), and let υi ∈ Υi

for i = 1, 2. Thus, for i = 1, 2, Υi consists entirely of supercuspidal representations, so that by
Hypothesis 2.11.1, we can identify ϕυi with λ(ϕυi). Hence it follows from Lemma 2.10.13 and
repeated applications of Theorem 2.10.10(ii) that the image of ϕυ1

in Φ+
2 (L1)/O+

M,L1
and that of

ϕυ2
in Φ+

2 (L2)/O+
M,L2

define the same element of Φ(M)/OM as per (26), namely, λ(ϕσ), where σ

is any element of Σ (note that λ(ϕσ) automatically satisfies the relevance condition as G is quasi-
split). Therefore, by Corollary 2.10.7(i), there exists an element of O+

M that transports (L1, ϕυ1
)

to (L2, ϕυ2
). By the property in (iii) of Theorem 2.10.10 (together with the inclusion O+

M ⊂ O
+
G,M)

and by Lemma 2.10.13, this element transports (L1,Υ1) to (L2,Υ2). �

3. Some results on stable virtual characters and atomically stable packets

3.1. Elliptic characters and endoscopic transfer. We will typically assume the three hy-
potheses stated in [MW16, Section I.1.5]:

Notation 3.1.1. Let (M, M̃,a) be a triple where (M, M̃) is a twisted space (see Subsubsection
2.1.1), and a is a cocycle representing an element of H1(WF ,ZM̂). Let ω : M(F ) → C× be the
quasi-character associated to a (see Subsubsection 2.5.2), which we assume to be unitary. The
purpose of this notation is to record the following hypothesis (to be imposed later):

(i) M̃(F ) 6= ∅;
(ii) θ∗ has finite order, where θ∗ is the object constructed towards the end of [MW16, Section

I.1.2], as an automorphism of ‘the pinned Borel pair’ attached to M (see Subsection 2.3).
(iii) ω is trivial on ZM̃(F ) (else the theory is empty).

Notation 3.1.2. For a triple (M, M̃,a) and the associated character ω : M(F ) → C× as in
Notation 3.1.1, satisfying the hypotheses of that notation, we will often use the following notation:

(i) As in [MW16, I.4.11], E(M̃,a) will denote the set of isomorphism classes of relevant elliptic

endoscopic data for (M̃,a). If we simply write E(M), it will stand for the set E(M,1), where
M is thought of as a twisted space over itself with respect to left and right multiplication,
and 1 stands for the zero element of H1(WF ,ZM̂) (thus, E(M) consists of endoscopic data
for standard, untwisted, endoscopy).

(ii) We will write a typical element of E(M̃,a) or E(M) as H, and given such an H, write H for
its underlying endoscopic group. This is an abuse of notation, since H does not determine
H.

(iii) For each endoscopic datum H = (H,H, s̃) ∈ E(M̃,a) (the notation is chosen as in [MW16,
Section I.1.5] — we will recall more of it in a later section when it becomes necessary), we

will denote by (H, H̃) the associated twisted space as in [MW16, Section I.1.7]; it has the

property that for each γ ∈ H̃(F̄ ), Int γ is of the form Inth for some h ∈ Had(F̄ ) (this is the
meaning of ‘est á torsion intérieure’ in (3) of [MW16, Section I.1.7]). For each such H, we
will also often choose some auxiliary data as in [MW16, Section I.2.1], but also satisfying
the extra condition of [MW16, Section I.7.1, (3)] (which may be imposed as ω is unitary);

these yield for us a 5-tuple (H1 → H, ξ̂1, H̃1 → H̃,C1, µ), where:
• H1 → H is a z-extension, i.e., its kernel is an induced torus and the derived group of

H1 is simply connected;

• ξ̂1 will be recalled later when it becomes necessary;
• C1 is the kernel of H1 → H (and is hence an induced torus);
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• µ : C1(F ) → C× is a character (this is the λ1 of [MW16, Section I.2.1]), which is
unitary since we have imposed [MW16, Section I.7.1, (3)] (see towards the end of
[MW16, Section I.7.1]);

• H̃1 is a twisted space with underlying group H1, satisfying H̃1(F ) 6= ∅, and the map

H̃1 → H̃ is compatible in the obvious way with the homomorphism H1 → H.
Typically, when we make these choices, we will suppress the dependence of these objects
on H for lightness of notation.

(iv) There is a notion of endoscopic transfer of functions, which is a linear map from C∞c (M̃(F ))

to the quotient of C∞µ (H̃1(F )) by the subspace consisting of the unstable functions in it,
i.e., functions whose stable orbital integrals all vanish (see, e.g., [MW16, Section 1.2.4]).
By [MW16, Corollary XI.5.1] (keeping in mind the convention from [MW16, Section
XI.1] of calling an ω-representation just a representation), dual to this map is a map

TH : SDµ(H̃1) → D(M̃, ω), restricting to a map TH,ell : SDµ,ell(H̃1) → Dell(M̃, ω) (thus,

one can show that pulling back under endoscopic transfer of functions takes SDµ(H̃1) to

D(M̃, ω) and SDµ,ell(H̃1) to Dell(M̃, ω)). As explained around [LMW18, Section 4.4,

(4)], the latter factors through the projection SDµ,ell(H̃1) → SDµ,ell(H̃1)Aut(H) from

SDµ,ell(H̃1) to its space of coinvariants for an action of a certain outer automorphism

group Aut(H) of H determined by the endoscopic datum H ∈ E(M̃, ω) (this group Aut(H)
is recalled in [MW16, I.1.5]), and these add together to give us an isomorphism of complex
vector spaces :

(31)
⊕

H∈E(M̃,a)

TH =
⊕

H∈E(M̃,a)

TH,ell :
⊕

H∈E(M̃,a)

SDµ,ell(H̃1)Aut(H) → Dell(M̃, ω).

For Θ ∈ Dell(M̃, ω) and H ∈ E(M̃,a), we will let ΘH denote the component of Θ along the subspace

of Dell(M̃, ω) obtained from the contribution of H in the above decomposition of Dell(M̃, ω).

Remark 3.1.3. We emphasize that, in (31), each H contributes a different ‘µ’, i.e., the ‘µ’ of

SDµ,ell(H̃1)Aut(H) depends on H as well. This dependence is suppressed from notation for lightness.

Remark 3.1.4. Fix (M, M̃,a), ω,H and (H1 → H, ξ̂1, H̃1 → H̃,C1, µ) as in Notation 3.1.2, except
that we do not yet assume that H is elliptic.

(i) Suppose H is elliptic and relevant. Let (LH, L̃H) be a Levi subspace of (H, H̃), and (L1, L̃1)

its inverse image in (H1, H̃1). We now state the compatibility between parabolic induction
and endoscopic transfer as follows.
• If LH ⊂ H is not relevant in the sense described in [MW16, Section I.3.4], then under

the endoscopic transfer map SDµ(H̃1)→ D(M̃, ω), the image of any virtual character

parabolically induced from L̃1 is zero.
• Suppose LH is relevant in the sense described in [MW16, Section I.3.4]. Thus, [MW16,

Section I.3.4] constructs a Levi subspace (L, L̃) ⊂ (M, M̃) and an elliptic relevant en-

doscopic datum LH for (L̃,aL̃) with underlying group LH, where aL̃ is a cocycle

representing the image of a in H1(WF ,ZL̂). Then (L1, L̃1, µ) is part of a choice
of auxiliary data for LH obtained from those for H, as discussed in [MW16, Sec-

tion I.3.3 or Section I.3.4]. For any virtual character Θ1 ∈ SDµ(L̃1) parabolically

inducing to IndH̃1

L̃1
Θ1 =: ΘH̃1

1 ∈ Dµ(H̃1) and endoscopically transferring via LH to

Θ ∈ D(L̃, ω|L(F )), ΘH̃1
1 belongs to SDµ(H̃1), and its endoscopic transfer to D(M̃, ω)

under H equals the parabolically induced character IndM̃
L̃

Θ =: ΘM̃.
These assertions are present in [MW16, Section I.4.11]. Slightly more precisely, recall-
ing that parabolic induction is dual to the ‘constant term’ map, and using the assertion
from the discussion below [MW16, Proposition I.4.11] that the image of the map [MW16,

I.4.11(4)] is contained in the space denoted IE+(G̃(F ), ω) there, the former (resp., the lat-
ter) assertion follows from the condition (3) (resp., the condition (2)) in the definition of

IE+(G̃(F ), ω) given at the beginning of [MW16, Section I.4.11].
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(ii) For simplicity, we now assume that we are in the situation of standard endoscopy, and

suppose that H is not elliptic, i.e., the obvious injection ZΓ,0

M̂
→ ZΓ,0

Ĥ
is not bijective.

Thus, dim AH > dim AM, and it is easy to see that no elliptic strongly regular semisimple
element of M(F ) matches any semisimple element of H(F ). Therefore, the image of the
endoscopic transfer map SDµ(H1) → D(M) consists of virtual characters that vanish
on the set M(F )ell of elliptic strongly regular elements of M(F ). This implies (using a
standard fact, (34) below) that this image is contained in the span of virtual characters
that are fully induced from proper Levi subgroups of M.

3.2. Unstable functions and stable characters on a non-quasi-split group.

Notation 3.2.1. (i) In this subsection, given a connected reductive group M over F , we will
denote by M∗ its quasi-split inner form, and implicitly fix an inner twist ψM∗ : M∗

F̄
→ MF̄

from M∗ to M unless otherwise specified. Note that ψM∗ fixes an identification LM∗ =
LM, helping realize M∗ as the endoscopic group underlying some M∗ ∈ E(M), which is
uniquely determined up to isomorphism. For H = M∗, we may and shall assume that the
associated auxiliary data as in Notation 3.1.2(iii) satisfy µ = 1, H̃ = H and H̃1 = H1, and

identify C∞µ (H1(F )) with C∞c (M∗(F )), SDµ,ell(H̃1) with SDell(M
∗) etc. When we talk of

endoscopic transfer between M and M∗ (i.e., between C∞c (M(F )) and C∞c (M∗(F )) or the
pull-back from SD(M∗) to D(M)), the reference will be to such a fixed endoscopic datum.

(ii) It is easy to see that the inner twist ψM∗ fixed in (i) above identifies AM∗ , ZM∗ , SM∗ ,
Xunr(M∗), Xunr−uni(M∗) etc. with AM,ZM,SM, X

unr(M), Xunr−uni(M) etc. We will use
this to transfer central characters, unramified characters etc. between M∗(F ) and M(F ).

(iii) Sometimes we will consider a ‘variant with central character’ of these notions: if Z ⊂ M
is a central subgroup and ζ : Z(F )→ C× is a unitary character, then endoscopic transfer
also defines a map from C∞Z,ζ(M(F )) to the quotient of C∞Z,ζ(M

∗(F )) by its subspace of

unstable functions, where these function spaces are as in Notation 2.1.1(iv), and where Z is
also viewed as a central subgroup of M∗ as described in (ii) above. The map SDZ,ζ(M

∗)→
SDZ,ζ(M) dual to this transfer (between C∞Z,ζ(M(F )) and C∞Z,ζ(M

∗(F ))) is also obtained

by restricting the dual map SD(M∗) → SD(M) for the transfer between C∞c (M(F )) and
C∞c (M∗(F )).

(iv) Sometimes, we will give M(F ) and M∗(F ) measures that are compatible in the sense
explained in [Kot88, page 631]: this means that, for some scalar c > 0 and some top-
degree differential form ω on M defined over F , these measures are c|ω| and c|(ψM∗)

∗(ω)|.
(v) There is an injection from the set of M(F )-conjugacy classes of Levi subgroups of M to

the set of M∗(F )-conjugacy classes of Levi subgroups of M∗, under which the conjugacy
class of M1 ⊂ M maps to that of M∗1 ⊂ M∗ if and only if ψM∗((M

∗
1)F̄ ) is M(F̄ )-conjugate

to (M1)F̄ , or equivalently, the bijection of Corollary 2.4.12 takes M∗1 and M1 to the same
conjugacy class of Levi subgroups of LM∗ = LM (this identification LM∗ = LM obtained
from ψM∗ or equivalently from M∗). Here, to make sense of the former description of this
injection, we use Solleveld’s result that conjugacy of Levi subgroups may be checked after
base-changing to F̄ (see [Sol20, Theorem A]). A Levi subgroup M∗1 ⊂ M∗ is said to be
M∗-relevant if its conjugacy class lies in the image of this map; this agrees with the notion
of relevance from [MW16, Section I.3.4], that we used earlier.

(vi) Now let M1 ⊂ M be a Levi subgroup, and consider inner twists ψ∗ in ψM∗ ◦ Int M∗(F̄ ) =
Int M(F̄ ) ◦ ψM∗ such that (ψ∗)−1 takes, for some or equivalently any parabolic subgroup
Q ⊂ M with Levi subgroup M1, (QF̄ , (M1)F̄ ) to (Q∗

F̄
, (M∗1)F̄ ) for some parabolic-Levi pair

(Q∗,M∗1) in M∗: to see that this condition is independent of Q, note that these are precisely
the inner twists ψ∗ ∈ ψM∗ ◦ Int M∗(F̄ ), that satisfy the property that σψ∗ ◦ (ψ∗)−1 ∈
Int M1(F̄ ) for all σ ∈ Gal(F̄ /F ), and hence satisfy the same property with Q replaced
by any other parabolic subgroup Q′ ⊂ M with M1 as a Levi subgroup. Given any such
inner twist ψ∗, (ψ∗)−1((M1)F̄ ) is of the form (M∗1)F̄ for some Levi subgroup M∗1 ⊂ M∗.
Thus, any such ψ∗ restricts to an inner twist ψM∗1

from such an M∗1 to M1, realizing an
endoscopic datum M∗1 for M1 with M∗1 as the unerlying group. Here is a second way



SOME COMMENTS ON THE STABLE BERNSTEIN CENTER 45

to describe the resulting identification LM1 = LM∗1 up to Int M̂1-conjugacy. We can
choose parabolic subgroups Q ⊂ M and Q∗ ⊂ M∗ with ψ∗(Q∗

F̄
) = QF̄ , so that Q and

Q∗ correspond to the conjugacy class of a common parabolic subgroup Q ⊂ LM = LM∗.
Choosing a Levi subgroup L ⊂ Q, we get using the pairs (Q,M1), (Q∗,M∗1) and (Q,L)
embeddings ιM,M1 : LM1 → LM and ιM∗,M∗1 : LM∗1 → LM∗ with the same image L,
and using these embeddings, a realization of M∗1 as an elliptic endoscopic group of M1,
that can also be seen to agree with M∗1. Henceforth, given a Levi subgroup M1 ⊂ M as
above, we will often choose ‘Levi subgroup matching data’ consisting of a Levi subgroup
M∗1 ⊂ M∗ together with an inner twist ψ∗ = ψM∗ ◦ Intm∗ restricting to ψM∗1

as above,
and the resulting realization M∗1 of M∗1 as an elliptic endoscopic group of M1. Sometimes,
we will also fix auxiliary choices Q,Q∗,Q, ψM∗1

etc. as above. This endoscopic datum
and the resulting map SD(M∗1) → D(M1), as well as various isomorphisms such as the
map W (M∗1) → W (M1) considered in (vii) below, depend on these auxiliary choices, but
in a harmless way. In what follows, this dependence will be suppressed for lightness of
notation.

(vii) Suppose M1 ⊂ M is a Levi subgroup, and a pair (M∗1, ψM∗1
) is assigned to M1 as in

(vi) above. Let us study the impact of changing the choice of (M∗1, ψM∗1
) to a different

one, ((M∗1)′, ψ(M∗1)′). Choose a parabolic subgroup Q ⊂ M with M1 as a Levi subgroup,

and note that (M∗1, ψ
−1
M∗1

(QF̄ )) and ((M∗1)′, ψ−1
(M∗1)′(QF̄ )) are obtained by base-change from

conjugate parabolic pairs in M∗. It follows that ψ(M∗1)′ = ψM∗1
◦ Int(m∗1w) for some w ∈

M∗(F ) transporting (M∗1)′ to M∗1 and some m∗1 ∈ M∗1(F̄ ). It is then easy to see that the
identifications LM1 = LM∗1 and LM1 = L(M′1)∗ as in (vi) differ from each other by the
isomorphism LM∗1 = L(M′1)∗ that is dual to Intw : (M′1)∗ → M∗1.

(viii) It is easy to see that ψM∗1
, though not defined over F , induces an (F -)isomorphism

W (M1) ∼= W (M∗1) between the Weyl groups of M1 in M and M∗1 in M∗, where W (M∗1) and
W (M1) are described in terms of F̄ -points using the discussion of Subsubsection 2.1.7.

Remark 3.2.2. Let M be a connected reductive group over F . We collect a few useful facts
concerning the endoscopic transfer between M and M∗ (see Notation 3.2.1).

(i) The transfer factors between M∗ and M can be normalized such that, if the stable conju-
gacy classes of γ∗ ∈ M∗(F ) and γ ∈ M(F ) correspond to each other, then ∆(γ∗, γ) = 1
(while this surely exists somewhere in the literature, since we have managed to not be able
to locate a reference, here is a summary: as per [LS87], the transfer factor ∆I and the
relative transfer factor ∆1 = ∆III,1 are trivial because the element ‘s’ in the endoscopic
datum is the identity, the transfer factors ∆II and ∆IV are trivial because all roots of M
come from M∗, and the transfer factor ∆2 = ∆III,2 is trivial because, in the notation of
[LS87, (3.5)], we have ξ ◦ ξTH = ξT ).

(ii) (i), together with the fact that the set of stable conjugacy classes of strongly regular
semisimple elements of M(F ) injects into the analogous set for M∗(F ) under the matching
of semisimple elements in the theory of endoscopy (see [Kot82, Section 6]), implies that:
• If Z ⊂ M is a central torus and ζ : Z(F )→ C× is a unitary character, then a function
f ∈ C∞c (M(F )) (resp., C∞Z,ζ(M(F ))) is unstable if and only if some or equivalently

any endoscopic transfer f∗ ∈ C∞c (M∗(F )) (resp., f∗ ∈ C∞Z,ζ(M∗(F ))) of f to M∗(F )
is unstable.
• At the level of distributions, it follows that endoscopic transfer takes stable distribu-

tions on M∗(F ) to stable distributions on M(F ), and SD(M∗) to SD(M) ⊂ D(M).
Restricting to SDell(M) and using [MW16, Theorem XI.4], it also induces a map
SDell(M)→ SDell(M

∗).
(iii) The compatibility between parabolic induction and endoscopic transfer (see Remark 3.1.4)

simplifies in this situation. Let M∗1 ⊂ M∗ be a Levi subgroup, and Θ∗ ∈ SD(M∗1) a stable

tempered character on M∗1(F ). First, IndM∗

M∗1
Θ∗ is then a stable tempered character on

M∗(F ), so it transfers to a distribution on M(F ) under SD(M∗) → SD(M). There turn
out to be two cases, depending on whether or not M∗1 ⊂ M∗ is M∗-relevant.
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• If M∗1 is not M∗-relevant, the assertion is that the image of IndM∗

M∗1
Θ∗ under SD(M∗)→

SD(M) is 0.
• Suppose M∗1 is relevant, and let the Levi subgroup M1 ⊂ M and various auxiliary

choices be as in Notation 3.2.1(vi). The assertion in this case is that Θ∗ transfers
to some tempered character Θ on M1(F ) under the resulting transfer SD(M∗1) →
SD(M1), and moreover, the stable character IndM∗

M∗1
Θ∗ transfers to IndM

M1
Θ under

the transfer SD(M∗) → SD(M), independently of the auxiliary choices of parabolic
subgroups involved in Notation 3.2.1(vi).

(iv) Let Levi subgroups M∗1 ⊂ M∗ and M1 ⊂ M and Levi subgroup matching data be chosen
as in Notation 3.2.1(vi). It is now easy from the definitions in [LS87] that the transfer
of stable conjugacy classes from M∗1 to M1, and hence by (i) also the endoscopic transfer
map SD(M∗1)→ SD(M1), respects conjugacy under W (M1) = W (M∗1).

Lemma 3.2.3. Let M be a connected reductive group over F . Then:

(i) The map SD(M∗) → SD(M) respects ‘central characters’, i.e., the eigendecomposition
with respect to ZM(F ) = ZM∗(F ) ⊃ AM∗(F ) = AM(F ), as well as twisting by Xunr−uni(M∗) =
Xunr−uni(M) (see Notation 3.2.1(ii) for these identifications).

(ii) Let M∗1 ⊂ M∗,M1 ⊂ M be as in Notation 3.2.1(vi). Let O′M1
⊂ Aut(M1),O′M∗1 ⊂ Aut(M∗1)

be subgroups with the same image Ō′M1
= Ō′M∗1 in Out(M1) = Out(M∗1) (e.g., we could

have Ō′M1
= W (M1) and Ō′M∗1 = W (M∗1), by the discussion in Notation 3.2.1(viii)). Then

the transfer of stable conjugacy classes from M∗1(F ) to M1(F ), as well as the endoscopic
transfer map SD(M∗1)→ SD(M1), are equivariant under Ō′M1

= Ō′M∗1 (through which the

actions of O′M1
and O′M∗1 clearly factor).

Remark 3.2.4. Of course, one can prove a more general version of (i) of the above lemma,
involving twisting by a group of characters that is larger than Xunr−uni(M), but we will not need
it.

Proof of Lemma 3.2.3. These assertions being well-known (part of (i) was used in Notation 3.2.1(iii)),
we will only sketch the proof. In what follows, we will use that the ‘correspondence’ of semisimple
conjugacy classes between M(F ) and M∗(F ) has the following easy description: the conjugacy
classes of semisimple elements m ∈ M(F ) and m∗ ∈ M∗(F ) correspond if and only if m is M(F̄ )-
conjugate to ψ(m∗).
The assertion in (i) concerning central characters follows from Remark 3.2.2(i) together with
the easy observation that the left-regular action of ZM(F ) = ZM∗(F ) respects the transfer of
stable conjugacy classes from M∗(F ) to M(F ). For the assertion in (i) concerning twisting by
Xunr−uni(M∗) = Xunr−uni(M), combine Remark 3.2.2(i) with the easy observation that the inner
twist ψM∗ gives us an identification of the map M∗ → SM∗ with the map M → SM that is
manifestly compatible with the transfer of stable conjugacy classes. For (ii), note that if β ∈ O′M1

and β∗ ∈ O′M∗1 have the same image in Ō′M1
= Ō′M∗1 , then strongly regular semisimple elements

m ∈ M1(F ) and m∗ ∈ M∗1(F ) match if and only if β(m) and β∗(m∗) do; now use Remark
3.2.2(i). �

Remark 3.2.5. Let M∗1, (M
′
1)∗ etc. and w ∈ M(F ) be as in the setting of Notation 3.2.1(vii), from

where we recall that the identifications LM1 = LM∗1 and LM1 = L(M′1)∗ differ by an isomorphism
LM∗1 → L(M′1)∗ dual to Intw. On the other hand, it is easy to see from Remark 3.2.2(i), as in the
proof of the assertions of Lemma 3.2.3, that the maps SD(M∗1) → SD(M1) and SD((M′1)∗) →
SD(M1), and hence their restrictions SDell(M

∗
1) → SDell(M1) and SDell((M

′
1)∗) → SDell(M1),

differ by Intw.

Proposition 3.2.6. Let M be a connected reductive group over F , and let D ∈ Dell(M) have the
property that its restriction to the set M(F )ell,srss ⊂ M(F ) consisting of elliptic strongly regular
semisimple elements is stable — in other words, recalling that D can be viewed as a function
M(F )→ C that is locally constant on the set M(F )srss of strongly regular semisimple elements of
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M(F ) and locally integrable on M(F ), D(γ) = D(γ′) whenever γ, γ′ ∈ M(F )ell,srss are such that γ′

is M(F̄ )-conjugate to γ. Then:

(i) D is stable, i.e., D ∈ SDell(M).
(ii) D is the transfer of a stable distribution D∗ ∈ SDell(M

∗) (in the sense of Notation 3.2.1).

Proof. In the case where M is quasi-split, (i) (and hence trivially also (ii)) is a well-known result
of Arthur; see [MW16, Theorem XI.3]. The general case can be easily deduced from this and some
standard facts, as we will see now.
By the discussion in Remark 3.2.2(ii), (ii) implies (i), so it suffices to prove (ii).
As before, we will write H for a typical element of E(M) and, given H, H for the corresponding
endoscopic group. (31) specializes to an isomorphism:

(32)
⊕

H∈E(M)

TH :
⊕

H∈E(M)

SDµ,ell(H1)AutH → Dell(M).

Recall that, when H equals the endoscopic datum M∗ ∈ E(M) as in Notation 3.2.1, we identify
the factor SDµ,ell(H1)AutH with SD(H)AutH = SDell(M

∗). It suffices to show that D belongs to
TM∗(SDell(M

∗)) under (32).
For this, we recall more specific details on the realization of (32). In this proof, write C∞c,cusp(M(F )) ⊂
C∞c (M(F )) for the subspace consisting of cuspidal functions in the sense of [MgW18, Section 7.1],
i.e., whose nonelliptic strongly regular semisimple orbital integrals all vanish. Let Icusp(M) be
the quotient of C∞c,cusp(M(F )) by the subspace consisting of those functions all of whose strongly
regular semisimple orbital integrals vanish; this agrees with the notation in [MW16, towards the
end of I.3.1]. Similarly, by [MW16, towards the end of Section I.3.1 and towards the end of Sec-
tion I.2.5], for each H ∈ E(M), we have a space SIcusp(H), a space of stable orbital integrals for
functions, not on H(F ), but lying in a space C∞µ (H1(F )) associated to a fixed choice of auxiliary
data as in Notation 3.1.2(iii), which we now make.
By [Art96, Proposition 3.5], or by [MW16, Proposition I.4.11], as invoked in [LMW18, Section 4.4,
(3)], endoscopic transfer from M along the H, as H varies over E(M), descends to an isomorphism
of vector spaces:

(33) Icusp(M)
∼=→

⊕
H∈E(M)

SIcusp(H)Aut(H),

where Aut(H) is as in (31) (implicit in this isomorphism is the assertion that, if the orbital integrals
of f ∈ C∞c (M(F )) at strongly regular nonelliptic semisimple elements of M(F ) all vanish, then for
any H ∈ E(M), the stable orbital integrals of any transfer fH ∈ C∞µ (H1(F )) of f satisfy a similar
property).
We have a map Dell(M) → HomC(Icusp(M),C), obtained by restricting an element of Dell(M) to
the space C∞c,cusp(M(F )) ⊂ C∞c (M(F )). As recalled in [LMW18, Section 4.3, a bit below (5)], this
map lets us identify Dell(M) as a linear subspace of HomC(Icusp(M),C). A similar prescription
identifies SDµ,ell(H1) with a linear subspace of HomC(SIcusp(H),C), for each H ∈ E(M). Moreover,
with these identifications, as explained in [LMW18, Section 4.4, (4)], (32) is obtained by restricting
the isomorphism

HomC(Icusp(M),C)
∼=→

⊕
H∈E(M)

HomC(SIcusp(H)Aut(H),C)

obtained by applying HomC(−,C) to (33) (because TH is dual to endoscopic transfer).
Using this and the fact that (33) is an isomorphism, it now suffices to show that D, viewed inside
HomC(Icusp(M),C), factors as the composite of the projection Icusp(M) → SIcusp(M∗)Aut(M∗)

and some element of HomC(SIcusp(M∗)Aut(M∗),C) (a priori not necessarily the one obtained from
D using (32)). Thus, by Remark 3.2.2(i), it suffices to show that if f ∈ C∞c,cusp(M(F )), then D(f)
depends only on the set of stable orbital integrals of f at strongly regular semisimple elements of
M(F ). This follows from the hypothesis on D (that its restriction to the set of elliptic strongly
regular semisimple elements is stable), the fact that f belongs to C∞c,cusp(M(F )), and the Weyl
integration formula. �
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Corollary 3.2.7. Let M be a connected reductive group over F . The transfer SD(M∗)→ D(M),
in the sense of Notation 3.2.1, takes SDell(M

∗) isomorphically onto SDell(M).

Proof. The map SDell(M
∗) → SDell(M) is injective, since (32) isi an isomorphism, and since

Aut(M∗) is trivial (use the identification LM∗ = LM). The surjectivity of this map SDell(M
∗)→

SDell(M) follows from Proposition 3.2.6. �

The above proof has the following corollary, in which W (M) is as in Subsubsection 2.1.7:

Proposition 3.2.8. Let L̃ denote the set of all Levi subgroups of G. Then, inside the space:

(34) D(G) =
⊕

M∈L̃/G(F )

IndG
MDell(M)W (M)

(this identification is defined by parabolic induction; for a proof, see [MgW18, Proposition 2.12]),
we have compatibly an equality

(35) SD(G) =
⊕

M∈L̃/G(F )

IndG
M SDell(M)W (M).

Moreover we also have the following compatible equality, where we recall our abbreviation O = OG:

SD(G)O =
⊕

M∈L̃/O+
G

AvgO

(
IndG

M SDell(M)OM

)
,

where AvgO refers to averaging with respect to the action of O (which makes sense as O acts via
a finite quotient; see the proof of Lemma 2.6.3(ii)).

Proof. It is easy to deduce the latter assertion from the former, noting that

o · IndG
M SDell(M)W (M) = o · IndG

M SDell(M) = IndG
o·M SDell(o ·M) = IndG

o·M SDell(o ·M)W (o·M),

for each o ∈ O+
G and each M ∈ L̃. Therefore let us prove the former.

As observed in [MW16, VIII.2.4] and [LMW18, Remark 3.4, around (2)], when M is quasi-split,
this assertion (and even a twisted version of it) follows from [MW16, Corollary XI.3.1]. What we
describe will be essentially the proof in [MgW18, Corollary XI.3.1], with only a slight variance, so
we will be brief.
The inclusion ‘⊃’ is immediate, since parabolic induction preserves the stability of virtual char-
acters (a convenient reference for which is [KV16, Corollary 6.13]). To prove the inclusion ‘⊂’,

fix Θ ∈ SD(G), and, using fixed representatives for L̃/G(F ), chosen so as to contain a common

minimal Levi subgroup, write Θ =
∑

M IndG
M ΘM according to the decomposition in (34). It is

enough to show that the element ΘM of Dell(M) is stable for each M. By an easy induction ar-

gument involving L̃, partially ordered under reverse inclusion up to conjugacy (see [MgW18, the

proof of Corollary XI.3.1]), we may assume that for some fixed L ∈ L̃, ΘM = 0 if M contains a

conjugate of L properly, and then prove that ΘL is stable. If M ∈ L̃ is such that gγg−1 ∈ M(F ) for
some g ∈ G(F ) and some γ in the set L(F )ell,srss of elliptic strongly regular semisimple elements
of L(F ), then g−1Mg ⊃ L by hypothesis (because AL equals the maximal split torus in the cen-
tralizer of γ by ellipticity, and hence contains g−1AMg), and hence ΘM = 0 unless M = L. Using
this, the fact that ΘL was chosen to be fixed under W (L), and van Dijk’s formula for induced
characters ([vD72, Theorem 3], which takes a particularly simple form at elliptic elements of the
Levi subgroup under consideration), it follows that up to a ratio of discriminant factors, which is
invariant under W (L) and under stable conjugacy, Θ equals a multiple of ΘL on L(F )ell,srss. Thus,
ΘL is stable when restricted to L(F )ell,srss, in the sense explained in Proposition 3.2.6. Hence
Proposition 3.2.6 implies that ΘL is stable, as desired. �

Corollary 3.2.9. Let M be a connected reductive group over F . The transfer SD(M∗)→ D(M),
in the sense of Notation 3.2.1, takes SD(M∗) surjectively onto SD(M).

Proof. In view of the compatibility between endoscopic transfer and parabolic induction (see
Remark 3.2.2(iii)), this follows from Proposition 3.2.8 and Corollary 3.2.7. �
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Proposition 3.2.10. Let M be a connected reductive group over F . Let Z ⊂ M be a central
induced torus, and ζ : Z(F ) → C× a smooth unitary character. Recall the space C∞Z,ζ(M(F )),

and for each Levi subgroup L ⊂ M, the space SDZ,ζ,ell(L) := SDZ(F ),ζ,ell(L) (see Notation 2.1.1).

Suppose f ∈ C∞Z,ζ(M(F )) has the property that
(

IndM
L Θ

)
(f) = 0 for every Levi subgroup L ⊂ M

and every stable elliptic virtual character Θ ∈ SDZ,ζ,ell(L). Then f is unstable.

Remark 3.2.11. If M is quasi-split, this is immediate from [Art96, Lemma 6.3], as explained in
[LM20, page 587]. When Z is trivial, an alternative reference that is more convenient to cross-check
(in this quasi-split case) is the combination of [MW16, Corollary XI.5.2(i)] and the description in
[MW16, Corollary XI.3.1], invoked earlier, of the space SD(M).

Proof of Proposition 3.2.10. We choose a quasi-split form M∗ of M, and fix an endoscopic datum
M∗ and an inner twist from M∗ to M as in Notation 3.2.1(i). By Remark 3.2.2(ii), it is enough
to show that any transfer f∗ ∈ C∞Z,ζ(M

∗(F )) of f to the quasi-split form M∗ of M is unstable

(recall from Notation 3.2.1(iii) that Z is viewed, using the fixed inner twist, as a subgroup of
M∗ as well). The proposition being already known with M replaced by the quasi-split group M∗

([Art96, Lemma 6.3] — here we use that Z is an induced torus), it suffices to show that for any

Levi subgroup L∗ ⊂ M∗ and any Θ ∈ SDZ,ζ,ell(L
∗), we have (IndM∗

L∗ Θ)(f∗) = 0. This follows
from the hypothesis of the proposition together with the fact that endoscopic transfer between M
and M∗ is compatible with parabolic induction (see Remark 3.2.2(iii)), as well as with the central
character condition involving (Z, ζ) (see the discussion in Notation 3.2.1(iii)), and takes stable
virtual characters to stable virtual characters. �

The following corollary will be useful later:

Corollary 3.2.12. Assume Hypothesis 2.7.1. Suppose f ∈ C∞c (G(F )) has O-invariant image in
the space I(G) of coinvariants for the G(F )-conjugation action on C∞c (G(F )), and suppose that

D(f) = 0 whenever D is a virtual character on G(F ) obtained by O-averaging IndG
M Θ for some

Levi subgroup M ⊂ G and some Θ ∈ SDell(M)OM . Then f is unstable.

Proof. Let M ⊂ G be a Levi subgroup, and let Θ′ ∈ SDell(M). By Proposition 3.2.10, it suffices

to show that D′(f) = 0, where D′ = IndG
M Θ′. Let Θ ∈ SDell(M)OM be the OM-average of Θ′, and

let D0 = IndG
M Θ.

Let D be the O-average of D′. Since elements of OM are obtained by restricting from O+
G (by (iv)b

of Notation 2.6.1), and since O and O+
G have the same orbit on the space of invariant distributions

on G(F ), D is also the O-average of D0 = IndG
M Θ, so that D(f) = 0. Therefore, using that f has

O-invariant image in I(G), we have D′(f) = D(f) = 0, as desired. �

Later, we will need the following variant of Proposition 3.2.10.

Proposition 3.2.13. Suppose H1 is a quasi-split reductive group over F , and H̃1 is a twisted
space over H1 with the property that for all γ1 ∈ H̃1(F ), the automorphism Int γ1 of H1 is inner
in the sense of being given by conjugation under an element of H1,ad(F ). Assume further that

H̃1(F ) 6= ∅. Let C1 ⊂ H1 be a central induced torus, and µ : C1(F ) → C× a unitary character.

Suppose f1 ∈ C∞µ (H̃1(F )) has the property that Θ1(f1) = 0 for all Θ1 ∈ SDµ(H̃1). Then f1 is
unstable.

Proof. Since H̃1(F ) 6= ∅, by [MW16, Proposition III.2.3], one has an embedding H1 ↪→ H2 of H1

into a quasi-split reductive group H2 with the same derived group as H1, and with the property
that, as an H1-bitorsor, H̃1 can be identified with a coset of H1 in H2 (and hence with a fiber of
H2 → H2/H1). We can find a compact (usually not open) subgroup Z2 of ZH2

(F ), containing the

identity, with the property that the multiplication map H̃1(F )×Z2 → H2(F ) identifies the product

H̃1(F )× Z2, as a topological space, with an open subset of H2(F ). Let f2 be the pushforward of

f1 ⊗ 1Z2 ∈ C∞µ (H̃1(F )× Z2) to an element of C∞µ (H2(F )), where C∞µ (H2(F )) is defined just like

C∞µ (H̃1(F )), using the same subgroup C1(F ).
For appropriate choices of measures, it is easy to see that the stable orbital integral of f2 at any
strongly regular semisimple element of H2(F ) is either zero or equal to the stable orbital integral
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of f1 at some strongly regular semisimple element of H1(F ). Therefore, it suffices to show that
f2 ∈ C∞µ (H2(F )) is unstable.
Since H2 is quasi-split and C1 is an induced torus, this in turn follows from [Art96, Lemma 6.3] if
we show that Θ2(f2) = 0 for all stable tempered virtual characters Θ2 ∈ SDµ(H2).
Viewing Θ2 as a locally integrable function on H2(F ), it is easy to see that its restriction to

H̃1(F ), call it Θ1, belongs to SDµ(H̃1): if (π2, V2) is an irreducible smooth representation of

H2(F ), the restriction of Θπ2 to H̃1(F ) is the character of H̃1(F ) acting on the subspace of V2 that

is spanned by those irreducible H1(F )-subrepresentations that are preserved by H̃1(F ). Therefore,
Θ1(f1) = 0. On the other hand, it is easy to see that Θ2(f2) is some scalar multiple of Θ1(f1), so
that Θ2(f2) = 0 as well, as desired. �

3.3. Atomically stable discrete series L-packets. In many situations where Hypothesis 2.7.1
hasn’t been proved, we do have finite sets of representations that deserve to be called discrete
series L-packets, in the sense that they satisfy an ‘atomic stability’ property as in [MY20, Section
4], and hence are necessarily automatically elements of Φ2(M) the moment Hypothesis 2.7.1 is
true. We will see that this is the case with the notion of L-packets given in Definition 3.3.2 below.

Notation 3.3.1. (i) Henceforth, for a connected reductive group M over F , e(M) denotes
its Kottwitz sign (see [Kot83]).

(ii) For this subsection alone, we fix a pair (M,O′M) consisting of reductive group M over F ,
and a group O′M of automorphisms of M with finite image in Out(M). For example, M
could be a Levi subgroup of G and O′M could equal OM.

Definition 3.3.2. Let Σ ⊂ Irr2(M) be finite. We say that Σ is an O′M-atomically stable L-
packet of discrete series representations of M(F ), if there exists a nonzero stable virtual character
ΘΣ =

∑
σ∈Σ cσΘσ on M(F ) supported on Σ, such that Σ and ΘΣ are preserved under the action of

O′M, and such that every O′M-invariant stable elliptic virtual character Θ ∈ SDell(M)O
′
M on M(F )

can be uniquely written in the form c1ΘΣ + c2Θ′ for a (automatically stable and O′M-invariant)
virtual character Θ′ supported outside Σ and complex numbers c1, c2. By an atomically stable
discrete series L-packet, we refer to an O′′M-atomically stable discrete series L-packet in the sense
just defined, but with O′′M ⊂ Aut(M) taken to be the trivial group.

Remark 3.3.3. We warn the reader that our use of the term ‘atomically stable’ clashes with the
more appropriate use of the same term in [Kal22, Conjecture 2.2].

Remark 3.3.4. Later, we will see in Proposition 3.4.11, that any finite set Σ of discrete series
representations of M(F ) for which one can establish an ‘endoscopic decomposition’ (in the sense
of Definition 3.4.9) satisfies the above property. Thanks to the fact that Kaletha and others have
established endoscopic decompositions for various supercuspidal L-packets they have constructed
(e.g., see [Kal15]), the scope of the above definition is not subordinate to that of Hypothesis 2.7.1.

Remark 3.3.5. Assume that O′M fixes AM pointwise, Then the following lemma says that, for
any Σ as in Definition 3.3.2, one can take ΘΣ =

∑
σ∈Σ d(σ)Θσ, where d(σ) ∈ R>0 is the formal

degree of σ with respect to any choice of Haar measure on M(F )/AM(F ).

Proposition 3.3.6. Suppose Σ and ΘΣ are as in Definition 3.3.2, and assume that O′M fixes AM

pointwise. Fix any Haar measure on M(F )/AM(F ). Then:

(i) The central characters of the elements of Σ agree on ZM(F )O
′
M ⊃ AM. In particular, there

exists a smooth character ζ : AM(F )→ C× such that the central character of each σ ∈ Σ
restricts to ζ on AM(F ).

(ii) For some c ∈ C \ {0}, ΘΣ = c
∑
σ∈Σ d(σ)Θσ, where d(σ) denotes the formal degree of σ

with respect to the chosen Haar measure.
(iii) Suppose we are in the situation of (ii), and let ζ : AM(F )→ C× be as in (i). Suppose that

Θ is an O′M-invariant distribution on M(F ) defined by a possibly infinite sum:

Θ =
∑

σ∈Irr2(M)ζ

c(σ)Θσ,
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where c(σ) ∈ C for each σ (see Remark 2.2.5 for why this infinite sum is well-defined). If
further Θ is stable, then for all σ1, σ2 ∈ Σ we have c(σ1)d(σ1)−1 = c(σ2)d(σ2)−1.

Proof. (i) is an easy consequence of the definitions together with Remark 2.2.4(i).
The proofs of (ii) and (iii) are easier versions of the proofs of (ii) and (iii) of Proposition 3.3.7 that
we will prove below, so we will be brief, referring the reader to the proof of Proposition 3.3.7 for
more details including of some of the notation. Let us first prove (ii). Write ΘΣ =

∑
σ∈Σ c(σ)Θσ.

Suppose σ1, σ2 ∈ Σ; (ii) follows if we show that c(σ2)d(σ1) = c(σ1)d(σ2). For i = 1, 2, we let
fσi ∈ C∞AM(F ),ζ(M(F )) be a pseudocoefficient for σi from among those representations of M(F )

whose central character restricts to ζ on AM(F ), and let fi ∈ C∞AM(F ),ζ(M(F )) be the average

of the pseudocoefficients fσi ◦ β−1 of the representations σi ◦ β−1 ∈ Σ, as β runs over a set of
representatives in O′M for the finite group O′M · Int M(F )/ Int M(F ).
We claim that c(σ2)f1 − c(σ1)f2 ∈ C∞AM(F ),ζ(M(F )) is unstable; this is the analogue of Claim 1

in the proof of Proposition 3.3.7 below. By Proposition 3.2.10, this claim follows if we show that
Θ(c(σ2)f1 − c(σ1)f2) = 0 for all Θ ∈ SD(M). More precisely, the same proposition, together
with the fact that σ1, σ2 ∈ Irr2(M), in fact implies that this needs to be checked only for Θ ∈
SDell(M). Moreover, by the “O′M-averaging” process used to define the fi, we may assume that

Θ ∈ SDell(M)O
′
M , and then using Definition 3.3.2, that either Θ = ΘΣ, or Θ is supported outside Σ.

If Θ = ΘΣ, then we have Θ(c(σ2)f1−c(σ1)f2) = Θ(c(σ2)fσ1−c(σ1)fσ2) = c(σ2)c(σ1)−c(σ1)c(σ2) =
0, while if Θ is supported outside Σ we have Θ(c(σ1)f1 − c(σ2)f2) = 0− 0 = 0; in both cases, we
used the definition of pseudocoefficients and the O′M-invariance of Θ.
This proves that c(σ2)f1 − c(σ1)f2 is unstable. By [Kot88, Section 3, Proposition 1], we get
c(σ2)f1(1)− c(σ1)f2(1) = 0, and since O′M-averaging of functions preserves evaluation of functions
at the identity, we get c(σ2)fσ1(1)− c(σ1)fσ2(1) = 0. But it is easy to see that fσi(1) = d(σi) 6= 0
for i = 1, 2 (see [DKV84, Proposition A.3.g]), so we get c(σ2)d(σ1) = c(σ1)d(σ2), as desired.
This proves (ii). Coming to (iii), (ii) and its proof now give us that d(σ2)f1 − d(σ1)f2 is unstable,
applying which, along with the O′M-invariance of Θ, we get:

c(σ1)d(σ2) = Θ(d(σ2)fσ1) = Θ(d(σ2)f1) = Θ(d(σ1)f2) = Θ(d(σ1)fσ2) = c(σ2)d(σ1),

which yields c(σ1)d(σ1)−1 = c(σ2)d(σ2)−1, as desired. �

Proposition 3.3.7. Let the quasi-split form M∗ of F and various auxiliary data such as the
inner twist ψM and the endoscopic datum M∗ be as in Notation 3.2.1(i). Let O′M∗ ⊂ Aut(M∗) be a
subgroup with finite image in Out(M∗). Let Σ be an O′M-atomically stable discrete series L-packet
on M(F ), and Σ∗ an O′M∗-atomically stable discrete series L-packet on M∗(F ). Assume that O′M
and O′M∗ fix AM and AM∗ pointwise, and that their finite images Ō′M and Ō′M∗ in Out(M) =

Out(M∗) are equal. Let ΘΣ ∈ SDell(M)O
′
M and ΘΣ∗ ∈ SDell(M

∗)O
′
M∗ be as in Definition 3.3.2.

Assume that the image of ΘΣ∗ under the isomorphism SDell(M
∗) → SDell(M) (see Corollary

3.2.7) is supported in Σ.

(i) There exists a smooth character ζ : AM(F ) = AM∗(F )→ C× (the identification AM = AM∗

made using the inner twist ψM), such that each σ ∈ Σ and σ∗ ∈ Σ∗ has a central character
restricting to ζ on AM(F ) = AM∗(F ).

(ii) We normalize the transfer factors as in Remark 3.2.2(i), and give M∗(F ) and M(F ) com-
patible Haar measures (see Notation 3.2.1(iv)), and similarly with AM∗(F ) and AM(F ),
so that we get compatible quotient measures on (M∗/AM∗)(F ) and (M/AM)(F ). If we use
Proposition 3.3.6(ii) to choose ΘΣ =

∑
σ∈Σ d(σ)Θσ and ΘΣ∗ =

∑
σ∗∈Σ∗ d(σ∗)Θσ∗ , the

image of ΘΣ∗ under the isomorphism SDell(M
∗)→ SDell(M) equals e(M)ΘΣ.

(iii) Suppose we are in the situation of (ii). Suppose Θ is an O′M-invariant stable distribution
on M(F ), and Θ∗ an O′M∗-invariant stable distribution on M∗(F ), defined by infinite but
well-defined (by [Wal03, Theorem VIII.1.2], as explained in Remark 2.2.5) sums:

Θ =
∑

σ∈Irr2(M)ζ

c(σ)Θσ, and Θ∗ =
∑

σ∈Irr2(M∗)ζ

c(σ∗)Θσ∗ ,
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where each c(σ), c(σ∗) ∈ C. If further Θ is the image of Θ∗ under the endoscopic transfer
of distributions between M and M∗, then we have c(σ) = e(M) · d(σ)c(σ∗) · d(σ∗)−1 for
each σ ∈ Σ and σ∗ ∈ Σ∗.

Proof of Proposition 3.3.7. (i) immediately follows from Lemma 3.2.3(i).
Now let us prove (ii), for which we write Z = AM(F ) = AM∗(F ), this identification made using
ψM; it will not create confusion, though Z is being viewed as a subgroup of two different groups.
Let ‘Z -central character’ stand for ‘the restriction of the central character to Z ’, so that ζ is
the common Z -central character of the elements of Σ as well as of σ∗. For σ ∈ Σ, let fσ ∈
C∞Z ,ζ(M(F )) be a pseudocoefficient for σ from among those representations of M(F ) with Z -

central character ζ, i.e., for every σ′ ∈ Irrtemp(F ) with Z -central character ζ, we have that
trσ′(fσ) equals 0 if σ′ 6∼= σ, and that it equals 1 otherwise (here σ′(fσ) is defined using an integral
over M(F )/Z = (M/AM)(F )). Similarly, we can talk of pseudocoefficients fσ∗ ∈ C∞Z ,ζ(M

∗(F ))

for each σ∗ ∈ Σ∗. Let f ∈ C∞Z ,ζ(M(F )) be the average of the pseudocoefficients fσ ◦ β−1 of the

representations σ ◦ β−1 ∈ Σ, as β runs over a set of representatives in O′M for the finite group
O′M · Int M(F )/ Int M(F ). Similarly, define f∗ by averaging the fσ∗ ◦ β−1, as β runs over a set of
representatives for O′M∗ · Int M∗(F )/ Int M∗(F ).
We can talk of elements in C∞Z ,ζ(M(F )) and C∞Z ,ζ(M

∗(F )) having matching orbital integrals.

Further, by Lemma 3.2.3(i), the map SD(M∗) → SD(M) takes SDζ(M
∗) to SDζ(M). Note that

the actions of O′M and O′M∗ on SDζ(M) and SDζ(M
∗) (which are well-defined as O′M and O′M∗ fix

Z pointwise) each factor through Ō′M = Ō′M∗ , and the map SDζ(M) → SDζ(M
∗) is equivariant

for Ō′M = Ō′M∗ by Lemma 3.2.3(ii). Thus, the image of ΘΣ∗ under SDell(M
∗)→ SDell(M), which

is supported in Σ by hypothesis, is also O′M-invariant, and nonzero (by Corollary 3.2.7), and can
hence be written as aΘΣ for some nonzero a ∈ C.

Claim 1. a−1 · d(σ)−1f ∈ C∞Z ,ζ(M(F )) and d(σ∗)−1f∗ ∈ C∞Z ,ζ(M
∗(F )) have matching orbital

integrals.
Since AM = AM∗ is split and in particular induced, it is an easy consequence of [Art96, Lemma
6.3], as explained in [LM20, page 587] (see the equivalence of the conditions (A) and (B) there),
that Claim 1 follows if we show that for every Θ∗ ∈ SDζ(M

∗) with image Θ ∈ SDζ(M), we have

(36) Θ∗(d(σ∗)−1f∗) = Θ(a−1d(σ)−1f).

f and f∗ are linear combinations of pseudocoefficients of discrete series representations. Therefore,
using Proposition 3.2.8 and the compatibility between endoscopic transfer and parabolic induction
(see Remark 3.2.2(iii)), we may assume without loss of generality that Θ∗ ∈ SDζ,ell(M

∗) and Θ ∈
SDζ,ell(M). The image of f∗ in the space IZ ,ζ(M

∗) of Int M∗(F )-coinvariants for C∞Z ,ζ(M
∗(F ))

is O′M∗ -invariant. Combining this the analogous observation for f , the hypothesis Ō′M = ŌM∗ ,
and Lemma 3.2.3(ii), we may and do replace Θ∗ by its well-defined Ō′M∗ -average and Θ by its

Ō′M-average, to assume that Θ∗ ∈ SDζ,ell(M
∗)O

′
M∗ and Θ ∈ SDζ,ell(M)O

′
M . Using Definition 3.3.2,

we can write Θ∗ = bΘΣ∗ + Θ∗1, where b ∈ C, and Θ∗1 ∈ SDζ,ell(M
∗) is supported outside Σ∗.

Accordingly, we can write Θ = abΘΣ + Θ1, where Θ1 is the image of Θ∗1 under SDζ,ell(M
∗) →

SDζ,ell(M). On the other hand, we can instead apply Definition 3.3.2 to Θ ∈ SDζ,ell(M)O
′
M , to

write Θ = b′ΘΣ + Θ′1, where b′ ∈ C, and Θ′1 ∈ SDζ,ell(M) is supported outside Σ. Using the
O′M∗ -invariance of Θ∗, the O′M-invariance of Θ and the definition of pseudocoefficients, we get:

bΘΣ∗(d(σ∗)−1f∗) = bΘΣ∗(d(σ∗)−1fσ∗) = b = (abΘΣ)(a−1d(σ)−1fσ) = (abΘΣ)(a−1d(σ)−1f).

From this, and recalling that Θ∗ = bΘΣ∗ + Θ∗1 and Θ = abΘΣ + Θ1, (36), and hence also Claim 1,
follows if we show that Θ∗1(d(σ∗)−1f∗) = 0 = Θ1(a−1d(σ)−1f). The definition of pseudocoefficients
gives us Θ∗1(d(σ∗)−1f∗) = 0 = Θ′1(a−1d(σ)−1f) instead, so Claim 1 follows if we prove Claim 2
below.
Claim 2 . We have Θ1 = Θ′1 (and consequently we have ab = b′ as well).
Let us give a proof of Claim 2; it will involve some basic facts about the elliptic inner products
on SDζ,ell(M

∗) and Dζ,ell(M) ⊃ SDζ,ell(M), about which more references and explanation are
given in the proof of Proposition 3.4.11 below, which uses the same idea in a slightly more general
setting. Claim 2 follows if we show that Θ1 is orthogonal to ΘΣ under the elliptic inner product
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on Dζ,ell(M), a property that Θ′1 clearly satisfies (because ΘΣ and Θ′1 have disjoint supports). But
since Θ∗1 is orthogonal to ΘΣ∗ for the elliptic inner product on SDζ,ell(M

∗) (as it is a multiple of
the restriction of the elliptic inner product on Dζ,ell(M

∗), by [LMW18, Section 4.6, Lemma 3]),
Claim 2 follows from the fact that the map SDζ,ell(M

∗)→ Dζ,ell(M) is known to take the elliptic
inner product on the former space to a multiple of the elliptic inner product on the latter (again
by [LMW18, Section 4.6, Lemma 3]).
Thus, we have proved Claim 2, and hence also Claim 1. By [Kot88, Section 3, Proposition 2],
given that our choice of measures is compatible with that in [Kot88], we conclude that e(M) ·
a−1 · d(σ)−1f(1) = d(σ∗)−1f∗(1) (here, the Kottwitz sign e(M) comes from the definition of
singular stable orbital integrals in [Kot88, page 638]; the Kottwitz sign of M∗ equals 1 since M∗

is quasi-split). Since Aut(M) and Aut(M∗) preserve evaluation at the identity element, we get
e(M) · a−1 · d(σ)−1fσ(1) = d(σ∗)−1fσ∗(1). But it is easy to see that fσ(1) = d(σ) 6= 0 and
fσ∗(1) = d(σ∗) 6= 0 (see [DKV84, Proposition A.3.g]), so we get a = e(M), giving (ii).
To see (iii), apply Claim 1 to Θ and Θ∗; we then get:

c(σ)e(M)−1d(σ)−1 = Θ(e(M)−1d(σ)−1fσ) = Θ(e(M)−1d(σ)−1f) = Θ∗(d(σ∗)−1f∗) = Θ∗(d(σ∗)−1fσ∗) = c(σ∗)d(σ∗)−1,

giving (iii). �

Lemma 3.3.8. Suppose Σ,Σ′ are O′M-atomically stable discrete series L-packets on M(F ). As-
sume that O′M fixes AM pointwise. Then:

(i) The space of nonzero stable O′M-invariant virtual characters on M(F ) supported on Σ is
one-dimensional. Thus, Σ determines ΘΣ up to a nonzero complex multiple.

(ii) Σ and Σ′ are either equal or disjoint.
(iii) If M is a Levi subgroup of G, O′M = OM, and Hypothesis 2.7.1 is satisfied, then Σ ∈ Φ2(M).
(iv) Let θ be an F -rational automorphism of M normalizing O′M, and suppose χ belongs to the

group Homcts(M(F ),C×)O
′
M of (quasi-)characters of M(F ) fixed by O′M. Assume that χ

is unitary. Then

(Σ ◦ θ)⊗ χ := {(σ ◦ θ)⊗ χ | σ ∈ Σ}
is an O′M-atomically stable discrete series L-packet on M(F ), supporting the stable O′M-
invariant virtual character Θ(Σ◦θ)⊗χ := (ΘΣ ◦ θ)χ.

Proof. All assertions are easy. (i) is immediate from the definitions, and (iii) follows from Lemma
2.7.3(i). For (ii), if Σ ∩ Σ′ 6= ∅, then expanding ΘΣ′ as c1ΘΣ + c2Θ′ as in Definition 3.3.2 gives
the inclusion Σ ⊂ Σ′, where we use the consequence of Proposition 3.3.6(ii) that the coefficients
of Θσ′ in ΘΣ′ and Θσ in ΘΣ are nonzero for all σ ∈ Σ and σ′ ∈ Σ′; similarly Σ′ ⊂ Σ, so Σ = Σ′.
For (iv), one uses that Σ ◦ θ and χ are O′M-invariant, the former since θ normalizes O′M. �

Thanks to (ii) and (iv) of the above lemma, we get the following easy corollary:

Corollary 3.3.9. Let O′′M be some group of F -rational automorphisms of M normalizing O′M. Let
F0 be a set of O′M-atomically stable discrete series L-packets on M(F ) in the sense of Definition
3.3.2, and let

F = {(Σ ◦ θ)⊗ χ | Σ ∈ F0, θ ∈ O′′M, χ ∈ Homcts(M(F ),C×)O
′
M is unitary}

= {(Σ⊗ χ) ◦ θ | Σ ∈ F0, θ ∈ O′′M, χ ∈ Homcts(M(F ),C×)O
′
M is unitary}.

Extend the definition of ΘΣ to F as follows: for Σ ∈ F , make a choice of Σ0 ∈ F0, θ ∈ O′′M and

χ ∈ Homcts(M(F ),C×)O
′
M such that Σ = (Σ0 ◦ θ)⊗ χ, and set ΘΣ = (ΘΣ0

◦ θ)χ. Then:

(i) The (distinct) elements of F are all disjoint.

(ii) Given Θ ∈ SDell(M)O
′
M , write Θ = Θ1 + Θ2, where Θ1 (resp., Θ2) is supported outside

(resp., inside) the union of the members of F . Then Θ1,Θ2 ∈ SDell(M)O
′
M , and Θ2 is

uniquely a linear combination of the ΘΣ, as Σ runs over F .

Proof. (i) follows from (ii) and (iv) of Lemma 3.3.8. Given (i), and using that each element of F
is also an O′M-atomically stable discrete series L-packet (by (iv) of Lemma 3.3.8), (ii) then follows
by induction. �
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3.4. Arthur’s formalism and atomically stable discrete series L-packets. The main results
of this subsection are Propositions 3.4.2 and 3.4.11, each of which gives a ‘character theoretic’
criterion intended to help verify whether a given ‘candidate packet’, in the form of a finite set
of discrete series representations, forms an atomically stable discrete series L-packet. Proposition
3.4.2 is inspired by, and at least aspires to be a commentary on, a remark in [Mg14, Section
4.8]. We feel that it should be possible to check the criterion in this proposition whenever one
can verify stability for the given candidate packet. The criterion of Proposition 3.4.11 is more
involved, since it almost amounts to verifying the endoscopic character identities for the candidate
packet, but has the advantage that it has already been verified by Kaletha for regular supercuspidal
representations when p � 0. These two propositions should be well-known to experts, and the
proof of Propsition 3.4.11 seems to have some similarities with that of [MY20, Proposition 4.2].

Notation 3.4.1. (i) In this subsection, given a twisted space (M, M̃) over F , with M reduc-

tive, M̃(F )ell will denote the set of strongly regular semisimple elliptic elements of M̃(F );

it is an open subset of M̃(F ). In this subsection, given a triple (M, M̃,a) and the associ-

ated unitary character ω : M(F ) → C× as in Notation 3.1.1, an element Θ ∈ Dell(M̃, ω)

will be viewed by restriction as a locally constant function M̃(F )ell → C (this restriction

determines Θ, as follows from [MgW18, Theorem 7.3]). Thus, Dell(M̃, ω) can be viewed

as a collection of locally constant functions M̃(F )ell → C.

(ii) If (M, M̃) is a twisted space over F , with M quasi-split reductive and M̃ of inner torsion

(i.e., Int m̃ is an inner automorphism of M for each m̃ ∈ M̃(F )), then for each γ ∈ M̃(F )ell,
we let κ(γ) be the number of conjugacy classes in the stable conjugacy class of γ. Moreover,

given any virtual character Θ ∈ Dell(M̃(F )), we define Θst to be the function M̃(F )ell → C,
given by:

Θst(γ) = κ(γ)−1
∑
γ′

Θ(γ′),

where γ′ runs over a set of representatives for the M(F )-conjugacy classes in the stable
conjugacy class of γ.

(iii) For the rest of this subsection, let M be a connected reductive group over F ; we will put
ourselves in the situation of Notation 3.3.1, but with O′M trivial.

Now we can state the first main result of this subsection.

Proposition 3.4.2. Let Σ ⊂ Irr2(M) be a finite subset. Then Σ is an atomically stable discrete
series L-packet (see Definition 3.3.2) if and only if the following conditions are satisfied:

(a) The Θst
σ , as σ varies over Σ, are all proportional to each other; and

(b) There exist nonzero complex numbers cσ for each σ ∈ Σ, such that ΘΣ :=
∑
σ∈Σ cσΘσ is

stable, i.e., belongs to SDell(M) ⊂ Dell(M).

Moreover, when these conditions are satisfied, we have that d(σ)−1Θst
σ = d(σ′)−1Θst

σ′ for any
σ, σ′ ∈ Σ, and that for any σ0 ∈ Σ:(∑

σ∈Σ

d(σ)2

)−1

·
∑
σ∈Σ

d(σ)Θσ = d(σ0)−1 ·Θst
σ0
.

Remark 3.4.3. It would be satisfying if Proposition 3.4.2 could be interpreted as giving a ‘stable’
version of the classical result that orbital integrals of pseudocoefficients at elliptic strongly regular
elements yield character values (e.g., the much simpler elliptic untwisted case of [MgW18, Theorem
7.2]). However, we do not know if such an interpretation is appropriate.

We now proceed to do some preparations for the proof of Proposition 3.4.2.

Notation 3.4.4. Let a triple (M, M̃,a) and the associated unitary character ω : M(F )→ C× be
as in Notation 3.1.1, and assume notation from Notation 3.1.2. Note that for any closed subgroup
Z ⊂ ZM(F ) we have a decomposition

(37) Dell(M̃, ω) =
⊕
ζ

DZ ,ζ,ell(M̃, ω),
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where ζ varies over unitary characters of Z . We define an inner product 〈·, ·〉 on Dell(M̃, ω), using
(37) with Z taken to be by AM̃(F ): we require 〈·, ·〉 to restrict to the elliptic inner product (see

[MgW18, Section 7.3]) on each DAM̃(F ),ζ,ell(M̃, ω), and the DAM̃(F ),ζ,ell(M̃, ω) for distinct ζ to be

orthogonal to each other. If either M̃ = M or if M is quasi-split and M̃ is of inner torsion, and
if ω is trivial, we get by restriction an inner product on SDell(M̃) ⊂ Dell(M̃). We will use the
following well-known property of this inner product (see [MgW18, Theorem 7.3(i)]): if σ̃1, σ̃2 are

ω-representations of M̃(F ), whose underlying M(F )-representations σ1, σ2 belong to Irr2(M), then
〈Θσ1

,Θσ2
〉 = 0 unless σ1

∼= σ2.

The inner product on Dell(M) having been defined, we can now state the following lemma, modulo
which Proposition 3.4.2 is almost formal.

Lemma 3.4.5. If Θ ∈ Dell(M), then Θst is the image of Θ under the orthogonal projection
Dell(M)→ SDell(M). In particular, Θst ∈ SDell(M) (when viewed as in Notation 3.4.1(i)).

Proof of Proposition 3.4.2, assuming Lemma 3.4.5. Since the condition (b) concerning the stable
virtual character ΘΣ is clearly necessary, we may and do assume it.
It is easy to see from the definition of the elliptic inner product (see Notation 3.4.4) that Σ is
an atomically stable discrete series L-packet if and only if each Θ ∈ SDell(M) that is orthogonal
to ΘΣ in SDell(M) ⊂ Dell(M) is also orthogonal in Dell(M) to Θσ for each σ ∈ Σ. For each
Θ ∈ SDell(M) and each Θ′ ∈ Dell(M) with projection Θ̄′ in SDell(M), the elliptic inner product
〈Θ,Θ′〉 inside Dell(M) equals 〈Θ, Θ̄′〉 taken inside SDell(M). Therefore, using Lemma 3.4.5, we
conclude that Σ is an atomically stable discrete series L-packet if and only if each Θ ∈ SDell(M)
that is orthogonal to ΘΣ in SDell(M) is also orthogonal in SDell(M) to Θst

σ for each σ ∈ Σ. This
is clearly equivalent to ΘΣ being proportional to Θst

σ for each σ ∈ Σ, which is easily seen to be
equivalent to the condition (a). Here, we note that each Θst

σ is nonzero: this follows from Lemma
3.4.5 and [Mg14, Proposition 2.1].
For the last assertion, note from Proposition 3.3.6(ii) that

∑
d(σ)Θσ is stable, where σ runs over

Σ. Further, it is easy to see that d(σ)−1Θst
σ is independent of σ ∈ Σ: either use the argument

of [Mg14, Proposition 2.1], or note that for σ1, σ2 ∈ Σ, the constant of proportionality between
the Θst

σi equals that between the 〈Θst
σi ,
∑
d(σ)Θσ〉 = 〈Θσi ,

∑
d(σ)Θσ〉 = d(σi). Using these two

observations:∑
d(σ)Θσ = (

∑
d(σ)Θσ)st =

∑
d(σ)2 · (d(σ)−1Θσ)st =

(∑
d(σ)2

)
· d(σ0)−1Θst

σ0
,

where each sum is over σ ∈ Σ. This gives the last assertion of the lemma. �

We still need to prove Lemma 3.4.5 to complete the proof of Proposition 3.4.2, for which we now
make some further preparations.

Remark 3.4.6. In what follows, we will use a lot of observations from [LMW18]. In each case
it will be implicitly left to the reader to verify that, though the setting of [LMW18] involves an
unramified quasi-split group in place of our M, the observations that we will use do not depend
on these assumptions.

The following remark will also introduce some notation.

Remark 3.4.7. Let a triple (M, M̃,a) and the associated unitary character ω : M(F )→ C× be as
in Notation 3.1.1, and assume notation from Notation 3.1.2. Suppose Z is a closed subgroup of
ZM̃(F ), such that Z ∩AM̃(F ) is of finite index in AM̃(F ). Let ζ : Z → C× be a unitary character,

and fix Haar measures on Z and M(F ), the latter also giving a measure on M̃(F ).

(i) Let C∞ζ,cusp(M̃(F )) ⊂ C∞ζ (M̃(F )) be the subspace consisting of functions that are cus-

pidal in the sense of [MgW18, Sections 7.1 and 7.2] (i.e., whose nonelliptic strongly

regular semisimple orbital integrals vanish), and let IZ ,ζ,cusp(M̃, ω) be the quotient of

C∞ζ,cusp(M̃(F )) by the subspace consisting of functions whose strongly regular semisimple

ω-twisted orbital integrals vanish. When M is quasi-split and M̃ has inner torsion, and
ω is trivial, we define SIZ ,ζ,cusp(M̃) as the quotient of C∞ζ,cusp(M̃(F )) by the subspace
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consisting of functions whose strongly regular semisimple stable orbital integrals vanish
(this is a priori slightly different from the ‘variant with central character’ of the definition
in [MW16, page 57], but equivalent to it, thanks to the surjectivity of the obvious map

IZ ,ζ,cusp(M̃)→ SIZ ,ζ,cusp(M̃); see [MW16, Proposition I.4.11], or rather its variant with
central character, discussed below).

(ii) For γ ∈ M̃(F )ell, we will normalize, in this subsection alone, the ω-twisted orbital integral

of f ∈ C∞ζ,cusp(M̃(F )) at γ as:

(38) O(γ, ω, f) :=

∫
Z \M(F )

ω(m)f(m−1γm) dm,

where we use the measures on M(F ) and Z fixed in the present collection of notation (and
recall that ω is trivial on ZM̃(F ) ⊃ Z , since we are imposing the conditions of Notation
3.1.1). The integral defining O(γ, ω, f) is absolutely convergent by ellipticity. Recall that if
ω is trivial, we write O(γ, f) = O(γ, ω, f). Recall that the stable orbital integrals SO(γ, f),

when M is quasi-split and M̃ has inner torsion and ω is trivial, are defined by summing
the O(γ′, f) as γ′ runs over a set of representatives for the M(F )-conjugacy classes in the
stable conjugacy class of γ.

(iii) If a ∈ Iζ,cusp(M̃, ω) and γ ∈ M̃(F )ell, a(γ) will denoteO(γ, ω, f), for any f ∈ C∞ζ,cusp(M̃(F ))
with image a; it is independent of a by the density of strongly regular semisimple orbital
integrals in the space of invariant distributions.

(iv) For each H ∈ E(M̃,a), we fix associated auxiliary data such as the z-extension H1

of H (see Notation 3.1.2(iii)). Let us now recall from [LMW18, Section 4.5] a subset

E(M̃,a)ζ ⊂ E(M̃,a), and for each H ∈ E(M̃,a) a pair (Z1, ζ1) consisting of a closed sub-

group Z1 ⊂ ZH1
(F ) and a unitary character ζ1 : Z1 → C× (E(M̃,a)ζ is the CZ,µ defined in

[LMW18, Section 4.5, between (4) and (5)], while (Z1, ζ1) is denoted (Z ′1, µ′1) in [LMW18];
we suppress the dependence of these on H and the auxiliary choices for lightness of no-
tation). Z1 is the inverse image in ZH1(F ) of the image ZH of Z ↪→ ZM(F ) → ZH(F ).

E(M̃,a)ζ ⊂ E(M̃,a) is defined to be the subset consisting of H such that there exists a
(necessarily unitary) character ζ1 : Z1 → C× with the property that whenever strongly

regular semisimple elements δ1 ∈ H̃1(F ) and γ̃ ∈ M̃(F ) match (such δ1 and γ̃ exist as H
is relevant), we have an equality of transfer factors:

∆(z1δ1, zγ̃) = ζ1(z1)−1ζ(z)∆(δ1, γ̃),

for all z1 ∈ Z1 and z ∈ Z with the same image in ZH. In view of Remark 3.4.6, we
remark that the ‘λz’ of [LMW18, Section 4.5] is the ‘λC ’ of [KS99, page 53]. Note that it
follows from the ellipticity of H that Z1 ∩AH1

(F ) is of finite index in AH1
(F ).

(v) As in [LMW18, Section 4.5, (5)], endoscopic transfer ‘with Z -central character ζ’ defines
an isomorphism of vector spaces:

(39) IZ ,ζ,cusp(M̃, ω)→
⊕

H∈E(M̃,a)ζ

SIZ1,ζ1,cusp(H̃1)Aut(H).

Dually, as in [LMW18, Section 4.5, (6)], we get an isomorphism:

(40)
⊕

H∈E(M,a)ζ

TH =
⊕

H∈E(M,a)ζ

TH,ell : SDZ1,ζ1,ell(H̃1)Aut(H) → DZ ,ζ,ell(M̃, ω),

which is a restriction of (31) (any dependence on measures is at the level of the transfer
of functions, and not at the level of the transfer of Harish-Chandra characters).

(vi) As in [LMW18, Section 4.4, just below (4)], we average with respect to Aut(H) to identify

each SDZ1,ζ1,ell(H̃1)Aut(H) with the space SDZ1,ζ1,ell(H̃1)Aut(H) of Aut(H)-invariants. This

space gets an inner product from its inclusion in DZ1,ζ1,ell(H̃1) (which has an inner product

as in Notation 3.4.4), also denoted 〈·, ·〉. For Θ
H
1 ,Θ

H
2 ∈ SDZ1,ζ1,ell(H̃1)Aut(H), we have, by

[LMW18, Section 4.6, (5) and Lemma 3], an equality

(41) 〈TH(Θ
H
1 ),TH(Θ

H
2 )〉 = c(M̃,H)−1〈ΘH

1 ,Θ
H
2 〉,
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describing the behavior of the inner products we have defined with respect to TH; here,

c(M̃,H) is the constant from [LMW18, Section 4.6, just before Lemma 2].
Here, in view of Remark 3.4.6, let us add that the key point is the inner product formula

of [MW16, Proposition I.4.17], from which one deduces a ‘variant with central character’
involving (39) (see [LMW18, Section 4.6, Lemma 2]), which in turn by duality gives the
inner product formula of [LMW18, Section 4.6, (5)] for virtual characters.

(vii) It follows from (vi) above that the components TH(SDZ1,ζ1,ell(H̃1)Aut(H)) of the decom-

position of DZ ,ζ,ell(M̃, ω) given by (40) are orthogonal to each other.

(viii) Let us recall the antilinear isomorphism ιZ ,ζ : DZ ,ζ,ell(M̃(F ), ω) → IZ ,ζ,cusp(M̃, ω) de-
scribed in [LMW18, Section 4.6, between (2) and (3)], and denoted by ‘ιZ ,µ’ in that
reference (here, an antilinear isomorphism refers to a bijective additive map that is semi-
linear for complex conjugation). ιZ ,ζ is defined to satisfy:

(42)

∫
Z \M̃(F )

Θ(γ)f2(γ)(dγ/dz) =: Θ(f2) = (ιZ ,ζ(Θ), f2)Z ,ζ,ell,

where the (·, ·)Z ,ζ,ell on the right-hand side refers to the inner product on IZ ,ζ,cusp(M̃, ω)
as in [LMW18, Section 4.6, (2)]; thus, if h1, h2 map to f1, f2 under the obvious map

C∞cusp(M̃(F )) → C∞ζ,cusp(M̃(F )) → IZ ,ζ,cusp(M̃) (see the map pZ ,µ of [LMW18, page

315]), then we have a formula of the form:
(43)

(f1, f2)Z ,ζ,ell :=

∫
Z

∫
M̃(F )ell/ conj

DM̃(γ) meas(Z \Mγ(F ))−1O(γ, ω, h1)O(zγ, ω, h2)ζ(z) dγdz,

where Mγ denotes the centralizer of γ. To cross check this formula, use [LMW18, the
discussion shortly before (1) in Section 4.6, and (4) in Section 4.3], and take into ac-
count various slight differences in notation (such as the definition of orbital integrals, in
particular our using the unnormalized ones) between us and [LMW18]. [LMW18] itself
refers to [MW16, Section I.4.17] for some of the notation, such as the measure on the set

M̃(F )ell/ conj of M(F )-conjugacy classes in M̃(F )ell. Clearly, ιZ ,µ depends on the chosen
measures on M(F ) and Z .

(ix) The antilinear isomorphism ιZ ,ζ : DZ ,ζ,ell(M̃, ω)→ IZ ,ζ,cusp(M̃, ω) from (viii) above, we

claim, is described as follows: ιZ ,ζ(Θ) = f1 if and only if for all γ ∈ M̃(F )ell, we have:

(44) Θ(γ) = O(γ, ω, f1).

Write f1 = ιZ ,ζ(Θ), and let h1, h2 map to f1, f2 under the obvious map C∞cusp(M̃(F )) →
C∞ζ,cusp(M̃(F ))→ IZ ,ζ,cusp(M̃). Then (42) is equivalent to:

Θ(h2) =

∫
Z

∫
M̃(F )ell/ conj

DM̃(γ) meas(Z \Mγ(F ))−1O(γ, ω, h1)O(zγ, ω, h2)ζ(z) dγdz.

As far as the left-hand side is concerned, Θ(h2), which is an integral over M̃(F ), can be

evaluated in terms of an integral over M̃(F )ell/ conj using an equality given in [MW16,
Section I.4.17, shortly before (1)] (and keeping in mind that h2 is a cuspidal function and
that Θ(h2) has an ω-equivariance on conjugation). On the right-hand side, we first replace
γ by z−1γ and then change the order of integration and replace z by z−1, and use the
relation between h1 and f1 (and that ζ(z−1) = ζ(z)), to get that (42) is equivalent to:∫

M̃(F )ell/ conj

DM̃(γ)m−1
Z Θ(γ)O(γ, ω, h2) dγ =

∫
M̃(F )ell/ conj

DM̃(γ)m−1
Z O(γ, ω, f1)O(γ, ω, h2) dγ,

where mZ = meas(Z \Mγ(F )). From here, the claim involving (44) is easy to see.

(x) Suppose M is quasi-split and M̃ has inner torsion, and assume that ω is trivial. In this

case, one can view SIZ ,ζ,cusp(M̃) = SIZ ,ζ,cusp(M̃, ω) as a subspace of IZ ,ζ,cusp(M̃), using
the isomorphism (39) and noting that one has a principal endoscopic datum H with H = M

and H̃ = M̃, for which Aut(H) = 1 and SIZ1,ζ1,cusp(H̃1) identifies with SIZ ,ζ,cusp(M̃). As
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in the discussion in [LMW18, Section 4.6, between Lemma 1 and Lemma 2], this identifies

SIZ ,ζ,cusp(M̃) as the subspace of IZ ,ζ,cusp(M̃) consisting of all a such that a(γ) = a(γ′)
(using the notation of Notation 3.4.4(iii)) whenever γ and γ′ are stably conjugate. From

this perspective, if a ∈ SIZ ,ζ,cusp(M̃) ⊂ IZ ,ζ,cusp(M̃) is the image of f ∈ C∞ζ,cusp(M̃(F )),

then for all γ ∈ M̃(F )ell we have:

(45) SO(γ, f) = κ(γ)a(γ),

where, like in Notation 3.4.1(iii), κ(γ) denotes the number of conjugacy classes in the
stable conjugacy class of γ, and SO(γ, f) and a(γ) are as in (ii) and (iii) above.

(xi) Consider the setting of (v) above, but assume for simplicity that we are in the situation

of standard endoscopy. Fix H ∈ E(M̃,a)ζ = E(M)ζ ⊂ E(M), with associated data such as

Z1 and ζ1. The discussion of (x) above applies with (M, M̃,Z , ζ) replaced by (H1, H̃1 =
H1,Z1, ζ1), so we have SIZ1,ζ1,cusp(H1) ⊂ IZ1,ζ1,cusp(H1). Then, using (iii) above and
(45), the endoscopic transfer map IZ ,ζ,cusp(M)→ SIZ1,ζ1,cusp(H1) can now be described
as follows: a 7→ b if and only if for all strongly M-regular δ1 ∈ H1(F )ell, we have:

(46) b(δ1) = κ(δ1)−1
∑
γ

DH1(δ1)−1/2DM(γ)1/2∆(δ1, γ)a(γ),

where γ runs over a set of representatives for conjugacy classes in the (possibly empty)
stable conjugacy class in M(F ) matching δ. Here, we recall that our orbital integrals are
unnormalized, and we have used the convention wherein “∆IV ” is not part of ∆, but
is accounted for separately using the discriminant factors. Moreover, we have used the
discussion on the normalization of measures in [LMW18, the top of page 317], to justify our
use of the definition of orbital integrals in (ii) above without adding any extra normalizing

constants. Since we are in the case of standard endoscopy, the factors “d
1/2
θ ” and “d−1

γ ”
from [LMW18, Section 4.5, (2)] are trivial, and the local isomorphism “Z \Gγ(F ) →
Z ′1\G′1,δ1(F )” from [LMW18, page 317] is an isomorphism. Another standard fact we

have used is that for strongly regular semisimple elements δ1 ∈ H1(F ) and γ ∈ M(F ),
∆(δ1, γ) 6= 0 if and only if the stable conjugacy classes of δ1 and γ match, in which case
δ1 ∈ H1(F ) is elliptic if and only if γ ∈ M(F ) is.

Lemma 3.4.8. Let H ∈ E(M) (thus, we are considering standard endoscopy, not twisted en-

doscopy). Let H1 = H̃1,Z , ζ,Z1, ζ1 be as in Remark 3.4.7. Let Θ ∈ DZ ,ζ,ell(M), let ΘH be its pro-

jection to SDZ1,ζ1,ell(H1)Aut(H) = SDZ1,ζ1,ell(H1)Aut(H) as per (40), and write ΘH,M := TH(ΘH).
We have, for all γ ∈ M(F )ell:

ΘH,M(γ) = c(M,H)
∑
δ1

κ(δ1)−1∆(δ1, γ)
∑
γ′

∆(δ1, γ′)Θ(γ′),

where δ1 ranges over a set of representatives in H1(F ) for the M-regular stable conjugacy classes
in H(F )ell, γ

′ runs over a set of representatives for the M(F )-conjugacy classes in M(F )ell, and
c(M,H) is as in (41), i.e., as in [MW16, Section I.4.17] or equivalently [LMW18, Section 4.6].

Proof. In this proof, any sum over δ1 will range over representatives in H1(F ) for M-regular
stable conjugacy classes in H(F )ell, and any sum over γ′ will range over representatives for M(F )-
conjugacy classes in M(F )ell.
The first step is to study ΘH. We claim that for all δ1 ∈ H1(F )ell we have:

(47) ΘH(δ1) = c(M,H)κ(δ1)−1 ·
∑
γ′

DH1(δ1)−1/2DM(γ′)1/2 ·∆(δ1, γ′)Θ(γ′).

Consider the isomorphism ιZ1,ζ1 : DZ1,ζ1,ell(H1)→ IZ1,ζ1,cusp(H1) analogous to ιZ ,ζ : DZ ,ζ,ell(M)→
IZ ,ζ,cusp(M). It follows from Remark 3.4.7(ix) (specifically, (44)), and the discussion of Remark
3.4.7(x), that ιZ1,ζ1 carries SDZ1,ζ1,ell(H1) to SIZ1,ζ1,cusp(H1) ⊂ IZ1,ζ1,cusp(H1). More is true:
if ιZ ,ζ(Θ) = a ∈ IZ ,ζ,cusp(M) and ιZ1,ζ1(ΘH) = b ∈ SIZ1,ζ1,cusp(H1) ⊂ IZ1,ζ1,cusp(H1), then, as
explained in [LMW18, Section 4.6, slightly before (5)], then we have b = c(M,H)b′, where b′ is
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the image of a under the endoscopic transfer map IZ ,ζ,cusp(M) → SIZ1,ζ1,cusp(H1). Therefore,
we have, for all M-regular δ1 ∈ H1(F )ell:

ΘH(δ1) = b(δ1) = c(M,H)b′(δ1) = c(M,H)κ(δ1)−1
∑
γ′

∆(δ1, γ′)DH1(δ1)−1/2DM(γ′)1/2a(γ′),

where we used Remark 3.4.7(ix) (specifically (44)) at the first step, and and (46) at the third.

Noting that a(γ′) = Θ(γ′) by (44), (47) follows.
The computation of ΘH,M = TH(ΘH) in terms of ΘH can be done using [Art96, Lemma 2.3],
analogously to how [Li13, Proposition 5.3.2] is proved from [Li13, Lemma 5.3.1], and is what is
reflected in the ‘character value’ form of character identities found in, e.g., [Kal15, Theorem 6.6];
we merely state the result:

ΘH,M(γ) = TH(ΘH)(γ) =
∑
δ1

DH1(δ1)1/2DM(γ)−1/2∆(δ1, γ)ΘH(δ1).

Thus, using (47), ΘH(γ) equals:

c(M,H) ·
∑
δ1

κ(δ1)−1DH1(δ1)1/2DM(γ)−1/2∆(δ1, γ)
∑
γ′

DH1(δ1)−1/2DM(γ′)1/2∆(δ1, γ′)Θ(γ′).

Since the set of elements in M(F )srss that match a given δ1 ∈ H(F )srss form a single stable
conjugacy class, we have DM(γ′)1/2 = DM(γ)1/2 for each γ′ occurring in the above sum, so that
the above expression equals the one given in the lemma. �

Proof of Lemma 3.4.5. We apply Lemma 3.4.8 with H replaced by the principal endoscopic datum
M∗ attached to M as in Notation 3.2.1(i). It is easy to compute that (every factor in the definition,
in [MW16], of) c(M,M∗) equals 1, and then, assuming transfer factors to be normalized as in

Remark 3.2.2(i), that Θst
σ = Θ

M∗,M
σ ∈ SDell(M). It follows from Remark 3.4.7(vii), and the fact

that TM∗ defines an isomorphism SDell(M
∗)→ SDell(M) (see Corollary 3.2.7), that Θ

M∗,M
σ is the

projection of Θσ to SDell(M), and the lemma follows. �

The terminology in the following definition is ad hoc:

Definition 3.4.9. (i) By a discrete series L-packet for M equipped with an endoscopic de-
composition, we refer to a finite set Σ ⊂ Irr2(M) with the property that:
(a) There exists a nonzero complex number cσ for each σ ∈ Σ, such that

∑
σ∈Σ cσΘσ is

a stable distribution; and
(b) For each elliptic endoscopic datum H ∈ E(M), with underlying endoscopic group H,

choosing auxiliary data and hence the 5-tuple (H1 → H, ξ̂1, H̃1 → H̃,C1, µ) as in
Notation 3.1.2(iii), there exists a stable elliptic virtual character ΘH ∈ SDµ,ell(H1)

on H̃1(F ) = H1(F ), such that (letting H vary in E(M) now) the following holds inside
Dell(M):

(48)
∑
H

C ·TH(ΘH) =
∑
σ∈Σ

C ·Θσ.

We will refer to (48) as an endoscopic decomposition for Σ.

(ii) Suppose that the triple (M, M̃,a) and the associated character ω : M(F ) → C× are as in
Notation 3.1.1, and that they satisfy the hypotheses there. By a discrete series L-packet
for (M̃, ω) equipped with an endoscopic decomposition, we refer to a pair (Σ, Σ̃) such that:
(a) Σ is a discrete series L-packet for M together with an endoscopic decomposition, in

the sense of (i);

(b) Σ̃ is a finite set of (isomorphism classes of) representations of (M̃(F ), ω) such that

the map that takes an M̃(F )-representation to its underlying M(F )-representation

defines an injection Σ̃ ↪→ Σ; and
(c) For each H ∈ E(M̃,a) with underlying endoscopic group H, choosing auxiliary data

and hence the 5-tuple (H1 → H, ξ̂1, H̃1 → H̃,C1, µ) as in Notation 3.1.2(iii), there
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exists a stable elliptic virtual character ΘH ∈ SDµ,ell(H̃1) on H̃1(F ), such that the

following holds inside Dell(M̃, ω):

(49)
∑
H

C ·TH(ΘH) =
∑
σ̃∈Σ̃

C ·Θσ̃.

Remark 3.4.10. By [Kal19, Theorem 6.3.4], it follows that when p� 0, the regular supercuspidal
packets of Kaletha are equipped with an endoscopic decomposition in the sense of Definition
3.4.9(i). More generally, Kaletha-type results should give a large class of discrete series L-packets
equipped with an endoscopic decomposition.

Now we prove that a discrete series L-packet equipped with an endoscopic decomposition is auto-
matically atomically stable.

Proposition 3.4.11. Suppose that the triple (M, M̃,a) and the associated unitary character ω :
M(F )→ C× are as in Notation 3.1.1, and that they satisfy the hypotheses there.

(i) Suppose (Σ, Σ̃) is a discrete series L-packet for (M̃, ω) equipped with an endoscopic de-
composition given by (49) (which in particular involves choosing auxiliary data, and in-

volves some ΘH ∈ SDµ,ell(H̃1) for each H ∈ E(M̃,a)). Fix H0 ∈ E(M̃,a). Then any

Θ ∈ Dell(M̃, ω) that belongs to the image TH0
(SDµ,ell(H̃0,1)Aut(H0)) of TH0

can be uniquely

written as c0TH0
(ΘH0)+c◦Θ◦, where c0, c◦ ∈ C, and Θ◦ is supported on a set of represen-

tations each of whose underlying M(F )-representations lies outside the image of Σ̃ ↪→ Σ

(note that TH0
(ΘH0) is supported in Σ̃ by definition).

(ii) Suppose Σ is a discrete series L-packet for M with an endoscopic decompostion (48). Then
Σ is an atomically stable discrete series L-packet.

Proof. Let us see that (ii) follows from (i). By definition, (Σ,Σ) can be viewed as a discrete
series packet for (M,1) with an endoscopic decomposition. Fix M∗ and related objects as in
Notation 3.2.1(i); thus, M∗ is a quasi-split form of M. We also have ΘM∗ ∈ SDell(M

∗) associated
to Σ, as in (i), i.e., as in Definition 3.4.9(i). By the surjectivity assertion in Corollary 3.2.7,

SDell(M) = TM∗(SDell(M
∗)) = TH0

(SDµ,ell(H̃0,1)Aut(H0)), where H0 = M∗, for which we may

and do take H̃0,1 to be H0,1 and µ to be trivial. Applying (i) to an arbitrary stable distribution
in
∑

C ·Θσ (the sum being over σ ∈ Σ), and using the linear independence of characters, we see
that the space of stable distributions in

∑
C · Θσ is at most one dimensional, and spanned by

TM∗(Θ
M∗) if it is nonzero. But the requirement in Definition 3.4.9(i) that there exists a stable

distribution
∑
cσΘσ supported in Σ, with each cσ nonzero, then forces that this space is indeed

one dimensional with ΘΣ :=
∑
cσΘσ as a basis, which is therefore a scalar multiple of TM∗(Θ

M∗).
Applying (i) once again to an arbitrary stable virtual character Θ ∈ SDell(M) = TM∗(SDell(M

∗))
then shows that Σ satisfies the conditions of Definition 3.3.2, i.e., that it is atomically stable.
Thus, it remains to prove (i); we no longer have H0 = M∗. We can write the given Θ ∈
TH0

(SDµ,ell(H̃0,1)Aut(H0)) of (49) as c0TH0
(ΘH0) + Θ◦, where c0 ∈ C, and Θ◦ belongs to the

image of TH0
but is orthogonal in Dell(M̃, ω) to TH0

(ΘH0) (even if TH0
(ΘH0) is 0). By the def-

inition of the inner product on Dell(M̃, ω) (see Notation 3.4.4), it is enough to see that Θ◦ is

orthogonal to Θσ̃ for each σ̃ ∈ Σ̃, or, equivalently by the decomposition (49), that it is orthogonal

to each TH(ΘH) as H varies through E(M̃,a). By definition, this is so for H = H0, while, by
Remark 3.4.7(vii), this is so for all H 6= H0. This proves (i), as desired. �

Corollary 3.4.12. If p� 0, the regular supercuspidal L-packets constructed in [Kal19] are atom-
ically stable.

Remark 3.4.13. If G is a quasi-split special orthogonal, symplectic or unitary group over F ,
so that Hypothesis 2.7.1 is satisfied by the work of Arthur and Mok ([Art13] and [Mok15]; see
Proposition 7.2.2 for more details), then Corollary 3.4.12, in view of of Lemma 3.3.8(iii), implies
that regular supercuspidal L-packets for G in the sense of Kaletha are also L-packets in the sense of
Arthur and Mok (though we have no result comparing the relevant Langlands parametrizations).
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An analogous comment applies with the work [Mg14] of Mœglin in place of [Art13] and [Mok15],
provided one accounts for an outer automorphism in the even special orthogonal case.

Proof of Corollary 3.4.12. This follows from Remark 3.4.10 and Proposition 3.4.11. �

Remark 3.4.14. Lemma 3.4.8 is more involved than what was strictly needed to prove Lemma
3.4.5. The reason we went through Lemma 3.4.8 is to make the optimistic proposal that it might
be possible in principle to start with the character of a single discrete series representation, and
construct all the “unstable endoscopic characters” associated to the L-packet that contains it (for
nice enough representations and packets). However, we do not know how far this can be used in
practice to study, given the character of a single discrete series representation, the characters of
the representations that belong to its L-packet.

4. The variety of infinitesimal characters and its harmonic analytic variant

4.1. Cuspidal pairs and Bernstein varieties, and some variants. Recall the collection
{OM}M of groups, indexed by Levi subgroups M ⊂ G, from Notation 2.6.1.
In this section, we discuss three objects of relevance to us, Ω(G),Ω( LG), and (under Hypothesis
2.7.1) Ωst(G): the first of these is the usual Bernstein variety, the second the variety of infinitesimal
characters from [Hai14, Section 5], and the third a harmonic analytic variant of the second, the
dependence on {OM}M of which (coming from Hypothesis 2.7.1) is suppressed but pointed to by
the ‘underline’ in the notation.

Definition 4.1.1. (i) (see [Hai14, Section 3.3.1]) A cuspidal pair for G or for Ω(G) (which
we will soon define) is a pair (M, σ), where M ⊂ G is a Levi subgroup and σ is (the
isomorphism class of) a supercuspidal representation of M(F ). There is an obvious action
of O+

G on the set of these cuspidal pairs, which we will refer to as ‘conjugation’; it indeed

restricts to the usual conjugation action on Int G(F ) ⊂ O+
G. The G(F )-conjugacy class

of a cuspidal pair (M, σ) will be denoted by (M, σ)G, and its O+
G-conjugacy class will be

denoted by (M, σ). The set of G(F )-conjugacy classes of cuspidal pairs will be denoted by

Ω(G), and the set of their O+
G-conjugacy classes will be denoted by Ω(G).

(ii) (Based on the discussion in [Hai14, Section 5.3]) A cuspidal pair for Ω( LG) (which we will
soon define) is a pair (M, λ) consisting of a Levi subgroupM⊂ LG and a homomorphism
λ : WF → M ⊂ LG that is admissible (in the sense used in Definition 2.9.1), such that

M is minimal among Levi subgroups of LG that contain λ(WF ). Denote its Ĝ-conjugacy

class by (M, λ)Ĝ. It is easy to see that OG acts on the set of Ĝ-conjugacy classes of

cuspidal pairs; we denote the OG-orbit of (M, λ)Ĝ by (M, λ). Let Ω( LG) be the set of

Ĝ-conjugacy classes of these cuspidal pairs, and Ω( LG) the set of OG-orbits in Ω( LG).
This definition of Ω( LG) agrees with Definition 2.9.1; see Remark 4.1.3(a) below.

(iii) Assume Hypothesis 2.7.1. A cuspidal pair for Ωst(G) (which we will soon define) is a pair
(M,Σ), where M ⊂ G is a Levi subgroup, and Σ ∈ Φ+

2 (M) (see Notation 2.7.6(i)) is a
packet consisting entirely of supercuspidal representations. There is an obvious action of
O+

G on this set, thanks to Lemma 2.7.3(ii), which we will refer to as ‘conjugation’. Denote

the O+
G-conjugacy class of (M,Σ) in this sense by (M,Σ). Let Ωst(G) be the set of O+

G-

conjugacy classes of these analogues of cuspidal pairs. By (M,Σ)
M

and Ωst(M), we will

refer to the analogues of (M,Σ) and Ωst(G), where G and OG, are replaced by M and

OM, respectively. Note that for any Levi subgroup M ⊂ G, (M,Σ)
M

is singleton: this is

because, since Σ is OM-invariant, (M,Σ) is fixed by any automorphism of M of the form
β ◦ Intm ∈ O+

M with β ∈ OM and m ∈ M(F ).

Notation 4.1.2. In this subsection, we will often refer to Case (i), Case (ii) or Case (iii) to
describe the setting of (i), (ii) or (iii) of Definition 4.1.1 above. The term ‘cuspidal pair’ will refer
to a notion in (i), (ii) or (iii) above, and these cases will be distinguished by the context. Note that
Case (iii) only makes sense under Hypothesis 2.7.1, which will be implicitly assumed whenever we
talk of Case (iii). We warn that Ωst(G) may only be a meaningful construction (beyond technical
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validity) when G is quasi-split; we do not know if “Ωst(G∗)” is the correct thing to consider in its
place.

Remark 4.1.3. (a) In (ii) above, λ : WF → Ĝ does not determine M uniquely, but it
uniquely determines the conjugacy class (M, λ)Ĝ — this is because, as discussed a bit
before [Hai14, Lemma 5.3.1], any two possibilities for M associated to a given λ are

conjugate under the centralizer of λ(WF ) in Ĝ, by [Bor79, Proposition 3.6]. Thus Ω( LG)
is also the set of infinitesimal characters for G, agreeing with Definition 2.9.1.

(b) If O = OG is trivial, or if O ⊂ Int G(F ), then we could set Ωst(G) = Ωst(G) — this is the
object we are really interested in. Ωst(G) is what Ωst(G)/O = Ωst(G)/O+

G would be, if we
could also construct Ωst(G) by assuming Hypothesis 2.7.1 to hold with {OM}M replaced
by a similar collection {O′M}M, but satisfying that O′G ⊂ Int G(F ).

The following proposition is the main result of this subsection:

Proposition 4.1.4. (i) Ω(G) (resp., Ω(G)) has a unique structure as a countable union of
reduced affine varieties over C, such that for any variety X over C, a set-theoretic map
f : Ω(G) → X (resp., f : Ω(G) → X) is regular if and only if for each cuspidal pair
(M, σ), χ 7→ f((M, σ ⊗ χ)G) (resp., χ 7→ f((M, σ ⊗ χ))) is a regular map Xunr(M) → X

(or equivalently, a regular map Xunr(SM)→ X).
(ii) Ω( LG) (resp., Ω( LG)) has a unique structure as a countable union of reduced affine vari-

eties over C, such that for any variety X over C, a set-theoretic map f : Ω( LG)→ X (resp.,
f : Ω( LG)→ X) is regular if and only if for each cuspidal pair (M, λ), z 7→ f((M, z ·λ)Ĝ)

(resp., z 7→ f((M, z · λ))) is a regular map (ZIFM0)0
Fr → X (or equivalently, a regular map

Z0
M → X), where the actions of IF and Fr are as recalled in Notation 4.1.8 below, and

z · λ is as in Notation 4.1.11 below.
(iii) Ωst(G) has a unique structure as a countable union of reduced affine varieties over C, such

that for any variety X over C, a set-theoretic map f : Ωst(G) → X is regular if and only
if for each cuspidal pair (M,Σ), χ 7→ f((M,Σ⊗ χ)) is a regular map Xunr(M) → X (or

equivalently, a regular map Xunr(SM)→ X).

Remark 4.1.5. (i) The assertion (i) of Proposition 4.1.4 is due to Bernstein. (ii) is due to
Vogan and Haines. The formulation of (ii) given above follows the latter more closely

(see [Hai14, Section 5.3]), and is motivated by the isomorphisms Xunr(M)→ (ZIF
M̂

)0
Fr and

Xunr(SM)→ (ZM̂)Γ,0 recalled in (19).
(ii) In (i) and henceforth, for χ ∈ X∗(SM), σ ⊗ χ refers to the tensor product of σ and the

image of χ under Xunr(SM)→ Xunr(M). A similar comment applies to the objects Σ⊗ χ
in (iii). In each of the assertions, we have written X for X(C), since X is a complex variety.

Before proving Proposition 4.1.4, we need to complete its statement by being precise about two
of its ingredients (namely, Notation 4.1.8 and Notation 4.1.11 below). However, we can already
derive two corollaries:

Corollary 4.1.6. For any cuspidal pair (M, σ) (resp., (M, λ); resp., (M,Σ)) for Case (i) (resp.,
Case (ii); resp., Case (iii)), the maps from Xunr(SM) to Ω(G) and Ω(G) (resp., from Z0

M to Ω( LG)
and Ω( LG); resp., from Xunr(SM) to Ωst(G)) given by χ 7→ (M, σ⊗χ)G and χ 7→ (M, σ ⊗ χ) (resp.,

z 7→ (M, z · λ)Ĝ and z 7→ (M, z · λ); resp., χ 7→ (M,Σ⊗ χ)) are regular. Moreover, the preceding

statement also holds with Xunr(SM) replaced by Xunr(M) (resp., Z0
M replaced by (ZIFM0)0

Fr; resp.,
Xunr(SM) replaced by Xunr(M)).

Proof. This follows from applying Proposition 4.1.4 to the identity map(s) Ω(G) → Ω(G) and
Ω(G)→ Ω(G) (resp., Ω( LG)→ Ω( LG) and Ω( LG)→ Ω( LG); resp., Ωst(G)→ Ωst(G)). �

Corollary 4.1.7. The actions of either of O or O+
G on Ω(G) and Ω( LG) factor through a finite

quotient that acts algebraically. Moreover, the obvious maps Ω(G)→ Ω(G) and Ω( LG)→ Ω( LG)
(given by (M, σ)G → (M, σ) and (M, λ)Ĝ → (M, λ), respectively) identify with the quotients of
their sources by this finite group.
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Proof. The existence of the finite quotient in the first assertion follows from the fact that O+
G has

finite image in Out(G), and hence contains Int G(F ) with finite index. The algebraicity of this
action is an easy consequence of Proposition 4.1.4 together with Corollary 4.1.6. Since quotients
by finite abstract groups in characteristic zero are good and hence categorical, the second assertion
follows if we prove that the maps Ω(G)→ Ω(G) and Ω( LG)→ Ω(G) identify the coordinate ring
of their target with the ring of O+

G-invariants of the coordinate ring of their source. This in turn
follows from Proposition 4.1.4 and the set-theoretic version of the second assertion (note that this
set-theoretic version is immediate from the definitions). �

Notation 4.1.8. For any Levi subgroup M ⊂ LG, we will consider ZM0 as a WF -module as in
Remark 2.3.2, specifically, (8). This in fact makes ZM0 into a Γ-module, since the action of WF on
ZM0 can be realized by combining Proposition 2.4.5 with Definition 2.3.3(iv), and hence factors
through WF /WE for a finite extension E/F of F in F̄ . Thus, WF acts via a chain

WF =M/M0 → Aut(M0)→ Out(M0)→ Aut(ZM0).

This action does not arise ‘naively’ from some fixed identification LG = ĜoWF , but it does arise
from a preferred section WF →M as provided by Proposition 2.4.5 (see Notation 2.4.6).

Remark 4.1.9. If we identify LG with ĜoWF using a preferred section, and fix a pinning of Ĝ
preserved by WF , then given a standard Levi subgroup M of LG, the action of WF on ZM0 , as
defined using Notation 4.1.8, agrees with the ‘usual’ action of WF ⊂ ĜoWF = LG on Ĝ ⊃ ZM0 .
Moreover, ifM1 ⊂ LG is a Levi subgroup, we can choose a (non-unique) standard Levi subgroup

M2 ⊂ LG that is conjugate to M1 under some ĝ ∈ Ĝ, so that Int ĝ induces an isomorphism
from the WF -module ZM0

1
to the WF -module ZM0

2
. Using these two observations, it is easy to

see that in what follows, the considerations and definitions that we make concerning the action of
WF on ZM0 are consistent with analogous ones in [Hai14], which typically follows the approach of
reducing to the case of standard Levi subgroups of LG, and then using the ‘usual’ action of WF .

Notation 4.1.10. LetM⊂ LG be a Levi subgroup. We write Ω(M)0 for the set ofM0-conjugacy
classes of cuspidal pairs of the form (M, λ), and (M, λ)M0 for theM0-conjugacy class of a given
cuspidal pair of the form (M, λ). Moreover, we define an action of H1(WF ,ZM0) on Ω(M)0

as in Notation 2.8.4(ii): if α̇ ∈ Z1(WF ,ZM0) is a 1-cocycle representing α ∈ H1(WF ,ZM0),
then for any cuspidal pair of the form (M, λ), we have α · (M, λ)M0 = (M, α̇ · λ)M0 , where
α̇ · λ : WF → M ↪→ LG takes w to α̇(w)λ(w) ∈ ZM0 · M = M — it is easy to check that
(M, α̇ · λ)M0 is indeed a cuspidal pair, whose image in Ω(M)0 depends only on α and (M, λ)M0 .

Notation 4.1.11. Given a Levi subgroup M ⊂ LG, we get from Notation 4.1.10 actions of

Z0
M = ZΓ,0

M0 and (ZIFM0)0
Fr ⊂ H1(WF ,Z

0
M) (recall that (ZIFM0)0

Fr is interpreted as in Remark 2.5.9)
on Ω(M)0, via the chain of obvious maps:

(50) H1(WF /IF ,Z
0
M) = Z0

M = ZΓ,0
M0 � (ZIFM0)0

Fr ↪→ H1(WF /IF ,Z
IF
M0) ⊂ H1(WF ,ZM0).

IfM = ιG,M( LM) for a Levi subgroup M ⊂ G, these maps can be identified with those in the top
row of (19). The composite of this chain is the obvious map H1(WF /IF ,Z

0
M) → H1(WF ,ZM0).

Note that the action of Z0
M is even well-defined on the set of admissible homomorphisms λ : WF →

M⊂ LG, while that of (ZIFM0)0
Fr is only well-defined at the level of M0-conjugacy classes of such

λ.

The following lemma is more or less [Hai14, Lemma 5.3.7], and will be used in the proof of
Proposition 4.1.4.

Lemma 4.1.12. Let M ⊂ LG be a Levi subgroup. Then the actions of (ZIFM0)0
Fr and Z0

M on
Ω(M)0 (see Notation 4.1.11) have finite stabilizers.

Proof. Since the map Z0
M → H1(WF ,ZM0) (see (50)) clearly has finite kernel, it suffices to show

that the stabilizer of any element of Ω(M)0 in H1(WF ,ZM0) is finite. Such a stabilizer is easily
seen to be contained in the kernel of H1(WF ,ZM0) → H1(WF ,M0/(M0)der) (e.g., one can use
a preferred section to realize Ω(M)0 inside a suitably defined H1(WF ,M0), as in Remark 2.8.3),
which is finite, since ZM0 →M0/(M0)der is an isogeny. �



64 SANDEEP VARMA

Proof of Proposition 4.1.4. The uniqueness assertions are clear, since the relevant rings of regular
functions are determined by the given criterion. Thus, it is enough to prove the existence of the
claimed structures.
Let us prove (i). It is enough to prove the assertion for Ω(G) (the assertion for Ω(G) then follows
by considering the case where O is trivial). Further, it is enough to prove the assertion with
Xunr(SM) in place of Xunr(M), the latter being a quotient of the former by a finite subgroup. We
have a decomposition:

(51) Ω(G) =
⊔
M

Ω(M)0/O+
G,M,

where M runs over a set of representatives for the O+
G-orbits of Levi subgroups of G, O+

G,M as

in (the O+
M,L of (iii) of) Notation 2.6.1, and Ω(M)0 is the ‘cuspidal’ subset of Ω(M) consisting of

the images of cuspidal pairs for Ω(M) that are of the form (M, σ). This reduces to defining, for a
fixed Levi subgroup M ⊂ G, a structure on Ω(M)0/O+

G,M as a countable union of reduced affine
varieties, satisfying a description analogous to that in the proposition: to see this reduction, use
that for each cuspidal pair (M, σ), each β ∈ O+

G and each map f : Ω(G) → Y for some variety
Y over C, the map Xunr(SM) → Y given by χ 7→ f((M, σ ⊗ χ)) is regular if and only if the

map Xunr(Sβ(M)) → Y given by χ 7→ f((β(M), (σ ◦ β−1)⊗ χ)) is regular, since the former is the

pull-back of the latter under the isomorphism of varieties Xunr(SM) → Xunr(Sβ(M)) induced by

β−1.
Ω(M)0 identifies with the set of cuspidal pairs for Ω(M) of the form (M, σ), and has an action
of Xunr(SM) on it, given by χ · (M, σ) = (M, σ ⊗ χ). Ω(M)0 is a countable union of orbits for
this action of Xunr(SM). The stabilizers for this action are all finite (since Homcts(SM(F ),C×)→
Homcts(ZM(F ),C×) has finite kernel), giving each orbit the structure of an affine variety over C (in
fact that of a torsor under a complex torus), and giving Ω(M0) the structure of a countable union
of reduced affine varieties (the countability follows, e.g., from [Wal03, Theorem VIII.1.2]). Since
quotients by finite abstract groups over fields of characteristic zero are good and hence categorical,
it follows that given any variety X over C, a set-theoretic map f : Ω(M)0 → X is regular if and
only if for each cuspidal pair for Ω(M) of the form (M, σ), the map Xunr(SM) → X given by
χ 7→ f((M, σ ⊗ χ)M) is regular. Recall that Int M(F ) ⊂ O+

G,M is of finite index (see Lemma

2.6.3(ii)). Hence, again applying the fact that a quotient by a finite group in characteristic zero
is a good and hence categorical quotient, (i) follows (the reducedness of the coordinate rings of
these components follows from Xunr(SM) being reduced).
The proofs of (ii) and (iii) are similar, where we make the following additional remarks concerning
the proof of (ii). The analogue of (51) needed for that proof takes the form:

(52) Ω( LG) =
⊔
M

Ω(M)0/O+
G,M,

similar to (24) (but with the relevance condition absent), withM running over a set of representa-
tives for the orbits of Levi subgroups of LG under the group O+

G( LG, LG) of all automorphisms of
LG that are dual to an element of O+

G. Here, O+
G,M is as in Notation 2.6.1(iii), and is easily seen

to have finite image in Out(M0), and hence to act on Ω(M)0 through a finite quotient. Moreover,
for any Levi subgroup M ⊂ LG, the finiteness of the stabilizers for the action of Z0

M on Ω(M)0

was proved in Lemma 4.1.12 above. �

Remark 4.1.13. Let M⊂ LG be a Levi subgroup. For later use, we make a note of the variety
structure on Ω(M)0 imposed in the above proof: the complex torus Z0

M acts on Ω(M)0 with
finite stabilizers (by Lemma 4.1.12), realizing Ω(M)0 as a countable union of torsors for complex
tori. Thus, given any complex variety Y, a map f : Ω(M)0 → Y is regular if and only if for each
cuspidal pair for Ω( LG) of the form (M, λ), the map Z0

M → Y given by z 7→ f((M, z · λ)M0) is
regular.

Definition 4.1.14. In Case (i) (resp., Case (ii); resp., Case (iii)) of Definition 4.1.1, the connected
component of Ω(G) or Ω(G) (resp., Ω( LG) or Ω( LG); resp., Ωst(G)) containing the image of a
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cuspidal pair (M, σ) (resp., (M, λ); resp., (M,Σ)) will be denoted by Ω(M, σ) = Ω([M, σ]G) or
Ω(M, σ) = Ω([M, σ]) (resp., Ω(M, λ) = Ω([M, λ]Ĝ) or Ω(M, λ) = Ω([M, λ]); resp., Ω(M,Σ) =

Ω([M,Σ])).

Now let us explain why the variety structures on Ω(G) and Ω( LG) described in Proposition 4.1.4
agree with the ones in [Hai14].

Remark 4.1.15. (i) In Case (i), given a cuspidal pair (M, σ), it is easy to see that:

Ω(M, σ) = Ω([M, σ]G) = {(M, σ ⊗ χ)G | χ ∈ Xunr(SM)} = {(M, σ ⊗ χ)G | χ ∈ Xunr(M)}.
A similar description applies to Ω([M, σ]M) ⊂ Ω(M)0 ⊂ Ω(M), which we easily see from
the proof of Proposition 4.1.4 to be a torsor for a finite quotient of either of Xunr(SM) or
Xunr(M). It is also easy to see from the same proof that the the obvious map Ω([M, σ]M)→
Ω([M, σ]G) realizes its target as a quotient of the former by the finite group WG

[M,σ]M

obtained as the quotient by M(F ) of

{g ∈ G(F ) | g(M, σ) = (M, σ ⊗ χ) for some χ ∈ Xunr(M) (or some χ ∈ Xunr(SM))}.
This shows that the variety structure on Ω(G) ⊃ Ω([M, σ]G) as explained in Proposition
4.1.4 agrees with the one seen more commonly in literature, e.g., [Hai14, Section 3.3.1].

(ii) In Case (ii), given a cuspidal pair (M, λ), we define:

Ω([M, λ]M0) = {(M, zλ)M0 | z ∈ Z0
M} = {(M, zλ)M0 | z ∈ (ZIFM0)0

Fr} ⊂ Ω(M)0.

This is a finite quotient of Z0
M or equivalently of (ZIFM0)0

Fr, by Lemma 4.1.12. It is easy to
see from the proof of Proposition 4.1.4 that the obvious map Ω([M, λ]M0)→ Ω([M, λ]Ĝ)
taking (M, λ′)M0 to (M, λ′)Ĝ realizes its target as the quotient of its source by the finite

abstract group W Ĝ
[M,λ]M0

obtained as the quotient by M0 of

{n ∈ Ĝ | Intn(M) =M and ( n(M, λ))M0 = (M, zλ)M0 for some z ∈ (ZIFM0)0
Fr (or some z ∈ Z0

M)}.
This shows that the variety structure on Ω( LG) explained in Proposition 4.1.4 agrees with
the one defined in [Hai14], just after Lemma 5.3.8 of that reference.

4.2. Aside: Ω( LG) and inertial infinitesimal characters.

Definition 4.2.1. Given an admissible homomorphism λ : WF → LG, we denote its restriction
to IF by λi : IF → LG, and the Ĝ-conjugacy class of λi by (λi)Ĝ. Any such (λi)Ĝ will be called an
inertial infinitesimal character, and the set of all (λi)Ĝ as λ varies over admissible homomorphisms

WF → LG will be referred to as the set Ωi(
LG) of inertial infinitesimal characters.

Remark 4.2.2. Note that restriction from WF to IF gives us a map Ω( LG)→ Ωi(
LG), which is

clearly constant on each connected component of Ω( LG). It is well-known that if G = GLn, the
fibers of this map are precisely the connected components of Ω( LG) (we recover this in Corollary
4.2.4 below), but this is not true in general, e.g., it fails if G is an anisotropic torus over F whose
Néron model is not connected (use [Hai14, (3.3.2)] and the discussion around there).

The following lemma is almost certainly present in the literature in some form, e.g., some sentence
in [Dat17] may specialize to it, but we give a proof for the convenience of the reader.

Lemma 4.2.3. If λi : IF → LG is (a representative for) an inertial infinitesimal character, and

if the centralizer of λi(IF ) in Ĝ is connected, then the fiber of Ω( LG)→ Ωi(
LG) over (λi)Ĝ is a

single connected component of Ω( LG).

Proof. Suppose λ, λ′ : WF → LG are admissible homomorphisms that restrict to λi. Recall
that Fr also denotes a lift of itself to WF . Let C denote the centralizer of λi(IF ) in Ĝ, so that
λ(Fr), λ′(Fr) ∈ LG both normalize C = C0. We fix a Borel pair in C, whose underlying maximal
torus we denote by T. Since λ(Fr), λ′(Fr) ∈ LG are semisimple and clearly normalize C, we may
and do assume each of them to preserve the chosen Borel pair of C = C0 (e.g., use Lemma 2.8.5
and [Ste68, Section 7]). Let θ denote the automorphism of T given by Intλ(Fr). The centralizer
in LG of the identity component (Tθ)0 of the subgroup Tθ of T fixed by θ, contains λ(WF ), and is
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hence a Levi subgroupM′ ⊂ LG (use [Bor79, Proposition 3.5]). Thus, a Levi subgroupM⊂M′
of LG that minimally contains λ(WF ) satisfies that (Tθ)0 ⊂ Z0

M. Therefore, it suffices to show
that there exists z ∈ (Tθ)0 such that λ′(Fr) and zλ(Fr) are T-conjugate (and hence C-conjugate).
Since Intλ(Fr)◦λi and Intλ′(Fr)◦λi both equal λi◦Int Fr, we have that x := λ(Fr)−1λ′(Fr) belongs
to C = C0. Clearly x preserves the chosen Borel pair of C, so that x ∈ T. Thus, the T-conjugacy
of λ′(Fr) and λ(Fr), and hence also the lemma, follows from the fact that (Tθ)0 × ((1− θ)T)→ T
is surjective. �

Corollary 4.2.4. If G = GLn, then each fiber of Ω( LG)→ Ωi(
LG) is a single connected compo-

nent of Ω( LG).

Proof. This follows from Lemma 4.2.3 and the fact that the centralizer of a finite subgroup of
GLn(C) is a product of smaller general linear groups over C (associated to the multiplicity spaces
for the restriction of the standard representation of GLn(C) to this finite subgroup) and hence
connected. �

4.3. Maps between the (variants of) Bernstein varieties, Ω(G),Ω( LG) and Ωst(G). Under
appropriate hypotheses, one wishes to relate (C[Ω( LG)], or rather) C[Ω( LG)] and C[Ωst(G)] to
subrings of C[Ω(G)] (which can be identified with the Bernstein center Z(G)), by defining maps
p1 : Ω(G)→ Ω( LG) and p2 : Ω(G)→ Ωst(G).

4.3.1. A map p1 : Ω(G) → Ω( LG). For this subsubsection, we assume the LLC+ hypothesis,
Hypothesis 2.10.3. Recall from Remark 4.1.3(a) that Ω( LG) can be thought of as the set of
infinitesimal characters for G, so that Ω( LG) can be thought of as the set of OG-orbits of in-
finitesimal characters for G. Given a cuspidal pair (M, σ) for Ω(G), Theorem 2.10.10 associates
to it a well-defined element λ(ϕσ) ∈ Ω( LM) := Ω( LM)/OM, where λ(·) is as in Notation 2.9.2.
Choosing ιG,M, we get by Remark 2.10.2(i) a well-defined map (M, σ) 7→ ιG,M ◦ λ(ϕσ) from the

set of cuspidal pairs (M, σ) to Ω( LG) — here, for an infinitesimal character λ′ valued in Ĝ, we
denote its image in Ω( LG) by λ′. By Theorem 2.10.10(iii) and Remark 2.10.2(iii), ιG,M ◦ λ(ϕσ)

depends only on the O+
G-orbit (M, σ) of (M, σ), so this map factors through Ω(G), i.e., descends

to a well-defined map of sets p1 = p1,G : Ω(G) → Ω( LG), which will be also viewed as a map of
sets Ω(G)→ Ω( LG).
It is now easy to see from Remark 4.1.3(a) that the above description can be summarized as
follows:

Definition 4.3.1. Assume the LLC+ hypothesis, Hypothesis 2.10.3. We write p1 = p1,G for
either of the maps Ω(G)→ Ω( LG) or Ω(G)→ Ω( LG), such that for any cuspidal pair (M, σ):

(53) p1((M, σ)G) = p1((M, σ)) = (M, ιG,M ◦ λ(ϕσ)),

whereM is any Levi subgroup of LG minimally containing the image of ιG,M(λ(ϕσ)), viewed (up
to choices) as a map WF → LG. By Proposition 4.3.2 below, p1,G is a map of varieties and will
be viewed as such.

Proposition 4.3.2. (Under Hypothesis 2.10.3) p1 = p1,G is a map of varieties, which is surjective
at the level of C-points if G is quasi-split.

Proof. By Proposition 4.1.4, the first assertion follows if we show that for any cuspidal pair (M, σ),
χ 7→ p1((M, σ ⊗ χ)G) = p1((M, σ ⊗ χ)) is a regular map Xunr(SM)→ Ω( LG).

Let M be as in (53), i.e., minimal among the Levi subgroups of LG containing the image of
(a representative for) ιG,M(λ(ϕσ)) : WF → LG. Without loss of generality, we assume M ⊂
ιG,M( LM), so that ιG,M gives an injective homomorphism of tori ιG,M : Z0

LM
∼= Z0

ιG,M(LM) ↪→ Z0
M.

Write χ 7→ αχ for the isomorphism Xunr(SM) → ZΓ,0

M̂
= Z0

LM (see the left vertical arrow of

(19)), and set zχ = ιG,M(αχ) ∈ Z0
M. Thus, χ 7→ zχ is an injective homomorphism of tori

Xunr(SM)→ Z0
M. Write λ′ for ιG,M(λ(ϕσ)) to lighten the notation. We have for all χ ∈ Xunr(SM):

p1((M, σ ⊗ χ)G) = (M, ιG,M(λ(ϕσ⊗χ))) = (M, ιG,M(αχ · λ(ϕσ))) = (M, zχ · λ′),
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where the second equality uses the desideratum with respect to twisting by unramified characters,
from Theorem 2.10.10(i). Now the fact that χ 7→ zχ is an injective algebraic homomorphism of
tori from Xunr(SM) to Z0

M, together with Corollary 4.1.6, shows that χ 7→ p1((M, σ ⊗ χ)G) is
indeed a regular morphism Xunr(SM)→ Ω( LG), finishing the proof of the first assertion.
Now assume that G is quasi-split, and let (M, λ) be a cuspidal pair for Ω( LG). Then M is
automatically relevant, so M = ιG,M( LM) for some Levi subgroup M ⊂ G and some choice of
ιG,M (use Corollary 2.4.12). Moreover, M is also quasi-split, and hence we can write λ = ιG,M ◦ ϕ
for some admissible relevant homomorphism ϕ : WF → LM. Since M contains λ minimally, ϕ
represents an element of Φ+

2 (M), and hence by Theorem 2.10.10, we can write ϕ = ϕσ ∈ Φ+
2 (M)

for some σ ∈ Irr+
2 (M) (viewing ϕ as a homomorphism W ′F → LM trivial on the SL2(C)-factor and

confusing it with its M̂-conjugacy class). Using Theorem 2.10.10(ii), it is easy to see (as explained
in Remark 2.11.2) that σ is a supercuspidal representation of M(F ). Thus, (M, σ)G ∈ Ω(G), and
we have p1((M, σ)G) = (M, λ), finishing the proof that p1 is surjective at the level of C-points
when G is quasi-split. �

4.3.2. A map p2 = p2,G,O : Ω(G) → Ωst(G). We now (for this subsubsection) restrict to the case
where G is quasi-split, and Hypotheses 2.7.1, and 2.11.4 are satisfied, and use these define a map
of varieties p2 = p2,G,O : Ω(G)→ Ωst(G).

Definition 4.3.3. Assume that G is quasi-split, and assume the hypotheses on the existence
of tempered L-packets and stable cuspidal support (Hypotheses 2.7.1 and 2.11.4). We let p2 =
p2,G,O : Ω(G)→ Ωst(G) be the unique map of sets such that for any cuspidal pair (M, σ), letting
Σ be the unique element of Φ+

2 (M) containing σ, and letting (L,Υ) be a stable cuspidal support
for (M,Σ) (which exists by Hypothesis 2.11.4), we have:

p2((M, σ)G) = (L,Υ).

Here we used that, by Remark 2.11.5(i), Υ consists entirely of supercuspidal representations, so
that (L,Υ) makes sense as an element of Ωst(G). It is easy to see from the definition of stable

cuspidal support that p2 is well-defined, and that it descends to a map of sets Ω(G) = Ω(G)/O →
Ωst(G), which we will also denote by p2. By Proposition 4.3.4 below, p2 is a map of varieties, and
will be viewed as such.

Proposition 4.3.4. (When G is quasi-split and under Hypotheses 2.7.1 and 2.11.4) p2 : Ω(G)→
Ωst(G) (and hence also p2 : Ω(G)→ Ωst(G)) is a map of varieties, which is surjective at the level
of C-points.

Proof. The surjectivity assertion is clear: given (L,Υ) ∈ Ωst(G), since Υ consists entirely of super-

cuspidal representations as we observed in Remark 2.11.5(a), we have p2((L, υ)G) = p2((L, υ)) =

(L,Υ) for any υ ∈ Υ.

Let (M, σ) be a cuspidal pair for Ω(G). Let Σ ∈ Φ+
2 (M) be the packet containing σ, and let (L,Υ)

be a stable cuspidal support for (M,Σ). It is enough to show that p2 restricts to a well-defined
algebraic map Ω([M, σ])→ Ω([L,Υ]). Since maximal chains of the form (30) starting with a given

Levi subgroup M ⊂ G are stable under tensoring with some χ ∈ Xunr(SM), it is easy to see that
p2((M, σ ⊗ χ)) = (L,Υ⊗ (χ|SL(F ))), where χ|SL(F ) is the element of Xunr(SL) obtained by pulling

χ back under the homomorphism SL(F ) → SM(F ) obtained from the homomorphism SL → SM

induced by L ↪→ M→ SM.
Note that χ 7→ χ|SL(F ) is a homomorphism of complex tori Xunr(SM)→ Xunr(SL) (corresponding
to the morphism X∗(SL)→ X∗(SM) at the level of their character groups). Therefore, by Corollary
4.1.6, χ 7→ p2((M, σ ⊗ χ)) = (L,Υ⊗ (χ|SL(F ))) is a regular map Xunr(SM)→ Ωst(G). Since this is

true for each cuspidal pair (M, σ), it follows from Proposition 4.1.4 that p2 is a regular morphism
of varieties. �

4.3.3. A map p12 : Ωst(G)→ Ω( LG).

Notation 4.3.5. Assume that G is quasi-split, and assume the hypotheses on the existence of
tempered L-packets, LLC+, and LLC+ and stability (Hypotheses 2.7.1, 2.10.3 and 2.10.12). Define
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a set-theoretic map p12 : Ωst(G) → Ω( LG) as follows. Let (M,Σ) be a cuspidal pair for Ωst(G).
Choose σ ∈ Σ and define

(54) p12(M,Σ) = p1((M, σ)G) = ιG,M ◦ λ(ϕσ) ∈ Ω( LG).

Then p12(M,Σ) is independent of the choice of σ ∈ Σ, since ϕσ is (by Lemma 2.10.13, which
applies as we are assuming Hypotheses 2.7.1, 2.10.3 and 2.10.12). Since p1 is O-invariant (see
Proposition 4.3.2), it is easy from Lemma 2.7.3(ii) that p12(M,Σ) depends only on (M,Σ). Thus,

p12 descends to a map p12 : Ωst(G) → Ω( LG). By Proposition 4.3.6 below it is a regular map of
varieties, and will be viewed as such.

Proposition 4.3.6. Assume that G is quasi-split, and assume Hypotheses 2.7.1, 2.10.3 and
2.10.12, so that p12 is defined. Then p12 is a regular map of varieties Ωst(G)→ Ω( LG).

Proof. One can imitate the relevant part of the proof of Proposition 4.3.7 below. �

Proposition 4.3.7. Suppose that G is quasi-split, and assume Hypotheses 2.7.1, 2.10.3, and
2.10.12, together with the hypothesis on supercuspidal packets (Hypothesis 2.11.1). Note that
p1 : Ω(G) → Ω( LG) and p2 : Ω(G) → Ωst(G) are defined, the latter since, by Proposition 2.11.6,
Hypothesis 2.11.4 is also satisfied. Then p12 : Ωst(G) → Ω( LG) is an isomorphism of varieties,
and p1 = p12 ◦ p2.

Proof. The equality p1 = p12 ◦ p2 holds set-theoretically, because for all cuspidal pairs (M, σ) for
Ω(G), letting Σ ∈ Φ+

2 (M) be the packet containing σ, letting (L,Υ) be a stable cuspidal support
for (M,Σ), and letting υ be any element of Υ, we have:

p1((M, σ)G) = ιG,M ◦ λ(ϕσ) = ιG,M ◦ ιM,L ◦ λ(ϕυ)

= ιG,L ◦ λ(ϕυ) = p12((L,Υ)) = p12(p2((M, σ)G)),

where the second step uses that λ(ϕσ) = ιM,L ◦λ(ϕυ) (by repeated applications of Lemma 2.10.13,
Theorem 2.10.10(ii) and Proposition 2.4.15), and the third step uses Proposition 2.4.15.
If (M,Σ) is any cuspidal pair for Ωst(G) and σ ∈ Σ, we have by (54) that p12((M, σ)) =

p1((M, σ)G) = ιG,M ◦ λ(ϕσ) = ιG,M ◦ ϕσ ∈ Ω( LG), where the latter equality uses that λ(ϕσ)

identifies with ϕσ, a consequence of Hypothesis 2.11.1.
Let us first show that p12 is bijective. Since G is quasi-split, p12 is surjective by Proposition
4.3.2 and the fact that p1 = p12 ◦ p2. To see that p12 is injective, suppose that (M1,Σ1) and
(M2,Σ2) are cuspidal pairs for Ωst(G) such that p12((M1,Σ1)) = p12((M2,Σ2)). Let σ1 ∈ Σ1

and σ2 ∈ Σ2, so that ιG,M1
◦ ϕσ1

and ιG,M2
◦ ϕσ2

have the same image in Ω( LG)/O = Ω( LG).
By Corollary 2.10.7(i), there exists β ∈ O+

G such that β(M1) = M2, and such that for any map
L(β|M1) : LM2 → LM1 dual to β|M1 , we have L(β|M1)◦ϕσ2 = ϕσ1 . Hence ϕσ2 = L(β|M1)−1 ◦ϕσ1 ,
which by Theorem 2.10.10(iii) equals ϕσ1◦(β|M1 )−1 . By Lemma 2.10.13, Σ1 ◦ (β|M1)−1 = Σ2, so

that (M1,Σ1) and (M2,Σ2) are O+
G-conjugate, and hence represent the same element of Ωst(G).

This proves the injectivity of p12. Thus, p12 is bijective; let us show that p12 and p−1
12 are regular

morphisms.
We fix a cuspidal pair (M,Σ) for Ωst(G), with Σ = Σ(ϕΣ) as in Notation 2.10.11(i) (as justified by
Lemma 2.10.13). Recall that ϕΣ identifies with λ(ϕΣ) by Hypothesis 2.11.1. Choose ιG,M, write
M = ιG,M( LM), and let λ = ιG,M ◦ ϕ̇Σ, where ϕ̇Σ : WF → LM is a representative for ϕΣ. Since
ϕΣ ∈ Φ+

2 (M), (M, λ) is a cuspidal pair for Ω( LG). Clearly, p12 takes (M,Σ) to (M, λ).
Recall that we have an isomorphism

(55) ZΓ,0

M̂
= H1(WF /IF ,Z

Γ,0

M̂
)→ Xunr(SM)

of tori denoted α 7→ χα. For α ∈ ZΓ,0

M̂
, write Σα = Σ⊗χα ∈ Φ+

2 (M) and λα = ιG,M(α) ·λ : WF →
M (where ιG,M(α) is viewed as an element of ZΓ,0

M0 = Z0
M, which acts on the set ofM0-conjugacy

classes of admissible homomorphisms WF → M ⊂ LG as in Notation 4.1.11). Thus, Ω([M,Σ])

consists of the (M,Σα), while Ω([M, λ]) consists of the (M, λα).
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It follows from the ‘twisting by unramified characters desideratum’ (the part of Remark 2.10.4(ii)

proved in Theorem 2.10.10(i)) that for each α ∈ ZΓ,0

M̂
, the bijection p12 takes (M,Σα) ∈ Ωst(G)

to (M, λα) ∈ Ω( LG). In particular, p12 restricts to a bijection Ω([M,Σ]) → Ω([M, λ]). It now
suffices to show that this restriction, call it p12,Σ, is an isomorphism of varieties.

We use α 7→ χα to identify ZΓ,0

M̂
with Xunr(SM), and we use α 7→ ιG,M(α) to identify ZΓ,0

M̂
with

Z0
M. By Corollary 4.1.6, the map α 7→ (M, λα) = p12,Σ((M,Σα)) is regular, so by Proposition

4.1.4, p12,Σ is regular. A similar argument gives that p−1
12,Σ, which takes (M, λα) to (M,Σα) for

each α ∈ ZΓ,0

M̂
, is regular. �

5. Different Bernstein centers and relations between them

5.1. Candidates for the stable Bernstein center, Z1(G) and Z2(G).

Notation 5.1.1. In this subsection, given f ∈ C∞c (G(F )), f∨ ∈ C∞c (G(F )) will stand for the
function x 7→ f(x−1). Given g ∈ G(F ) and f ∈ C∞c (G(F )), we will let lgf(x) = f(g−1x) and
rgf(x) = f(xg). We fix a Haar measure on G(F ), which will be used in the convolutions that
follow.

We recall some facts on convolutions from [Hai14, Section 3.1]. For a distribution D on G(F ) and
f ∈ C∞c (G(F )), D ∗ f ∈ C∞(G(F )) is given by g 7→ D((rgf)∨) = D(lgf

∨) — thus, this is defined
so as to satisfy:

(D ∗ rgf) = rg(D ∗ f) and D(f) = (D ∗ f∨)(1).

D is said to be essentially compact if D ∗ f ∈ C∞c (G(F )) for all f ∈ C∞c (G(F )). If D′ and D
are distributions and D is essentially compact, we can convolve them by letting (D′ ∗ D)(f) =
D′((D ∗ f∨)∨).
Now we recall the definition of the Bernstein center Z(G) of G.

Definition 5.1.2. The Bernstein center Z(G) of G is the C-vector space of essentially compact
invariant distributions on C∞c (G(F )), i.e., the space of (G(F )-conjugation) invariant distributions
C∞c (G(F )) → C with the property that for all f ∈ C∞c (G(F )), z ∗ f ∈ C∞(G(F )) belongs
to C∞c (G(F )). Convolution makes Z(G) into a commutative C-algebra (see [Hai14, Corollary
3.1.2]), and the work of Bernstein gives the following alternate descriptions of the ring Z(G):

(i) Via z 7→ (f 7→ z ∗ f), Z(G) identifies with the ring of endomorphisms of C∞c (G(F )) that
commute with left and right convolution.

(ii) One can uniquely make each z ∈ Z(G) act as an intertwining operator π(z) on π, for each
smooth representation π of G(F ), such that:
• Denoting temporarily by l the left-regular representation of G(F ) on C∞c (G(F )), we

have l(z)(f) = z ∗ f ;
• π 7→ π(z) respects morphisms of representations.

z 7→ (π 7→ π(z)) defines a homomorphism from Z(G) to the ring of endomorphisms of the
identity functor of the category of smooth representations of G(F ), which Bernstein’s work
shows to be an isomorphism. The action of Z(G) on a smooth representation (π, V ) can
typically be computed using the following: given v ∈ V , we have a map (l, C∞c (G(F )))→
(π, V ) given by f 7→ π(f)v, so that π(z)(π(f)v) = π(l(z)f)(v) = π(z ∗ f)(v). This also
gives:

(56) π(z ∗ f) = π(z)π(f).

(iii) By (ii) and Schur’s lemma, each z ∈ Z(G) acts on each irreducible admissible representa-
tion π of G(F ) by multiplication by some scalar, which can be shown to depend only on
the cuspidal support (M, σ)G ∈ Ω(G) of π. We denote this scalar by:

ẑ(π) = ẑ(M, σ) = ẑ((M, σ)G).

More generally, for any Levi subgroup M′ ⊂ G and σ′ ∈ Irr(M′) such that the cuspidal
supports of σ′ and π are G(F )-conjugate, we will write ẑ(π) = ẑ(σ′) = ẑ((M′, σ′)) =
ẑ((M′, σ′)G) when there is no scope for confusion, where in turn (M′, σ′)G denotes the
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G(F )-conjugacy class of (M, σ). By Bernstein’s work, sending z ∈ Z(G) to ẑ : Ω(G)→ C
gives an isomorphism of rings Z(G)→ C[Ω(G)].

It is clear that O acts on Z(G); we now explicate this action. O acts on C∞c (G(F )) and C∞(G(F )),
and on the space of distributions on G(F ): (β · f)(x) = f(β−1(x)) and (β ·D)(f) = D(β−1 · f).
For β ∈ O, one verifies the following equalities for each distribution D on G(F ), f ∈ C∞c (G(F ))
and β ∈ O:

(57) (βD)(βf) = D(f), and βD ∗ βf = β(D ∗ f).

It is now clear that the action of O on the space of distributions on G(F ) preserves the subspace
Z(G). The action of O on Irr(G), given by β · π = π ◦ β−1, is related to the action of O on Z(G)
as follows:

(58) β̂ · z(π) = ẑ(π ◦ β).

Indeed, using the identity π(z ∗ f) = ẑ(π)π(f) (which follows from (56)), the identity (π ◦β)(f) =
π(f ◦ β−1), and (57), this follows from:

ẑ(π◦β)·(π◦β)(f) = π◦β(z∗f) = π((z∗f)◦β−1) = π(β·(z∗f)) = π((β·z)∗(β·f)) = β̂ · z(π)π(f◦β−1) = β̂ · z(π)(π◦β)(f).

From (57) and (58), the following is easy to deduce:

Lemma 5.1.3. The isomorphism Z(G)→ C[Ω(G)] given by z 7→ ẑ is O-equivariant, and restricts
to an isomorphism Z(G)O → C[Ω(G)], where the inclusion C[Ω(G)] ⊂ C[Ω(G)] comes from the
quotient map Ω(G)→ Ω(G) of varieties (see Corollary 4.1.7). In particular, Z(G)O ⊂ Z(G) is a
subring.

Notation 5.1.4. In this subsection, I(G) will denote the space of coinvariants for G(F )-conjugation
on C∞c (G(F )). We will consider the actions of O and O+

G on I(G) inherited from their ac-
tions on C∞c (G(F )). Note that the space of invariant distributions on C∞c (G(F )) identifies with
HomC(I(G),C).

Remark 5.1.5. Since Int G(F ) is of finite index in O+
G by Notation 2.6.1(iv) (see Lemma 2.6.3(ii)),

O acts on I(G) through a finite quotient, and therefore, given f ∈ C∞c (G(F )), there exists
f ′ ∈ C∞c (G(F )) such that:

• f ′ is a sum of finitely many O-translates of f , and has O-invariant image in I(G).

It follows from (57) that for any such f ′, and any z ∈ Z(G)O, we have:

• z ∗ f ′ is a sum of finitely many O-translates of z ∗ f , and has O-invariant image in I(G)

(use the easy observation that, if f ′′ ∈ C∞c (G(F )) has O-invariant image in I(G), then so does
z ∗ f ′′: this is because f ′′ 7→ z ∗ f ′′ is O-equivariant by (57), and hence so is the map it induces
from I(G) to itself). It will also help to note that for any such f ′, since O acts by algebraic
automorphisms:

• If f (resp., z ∗ f) is unstable, then so is f ′ (resp., z ∗ f ′).

Now we recall the spaces Z1(G),Z2(G) ⊂ Z(G) from the introduction.

Notation 5.1.6. (i) Z1(G) ⊂ Z(G) is the (clearly O-invariant) C-vector subspace of Z(G)
consisting of all z ∈ Z(G) that are stable as a distribution on G(F ). We will also study
the O-fixed subspace Z1(G)O of Z1(G).

(ii) • Z2(G) ⊂ Z(G) is the C-sublgebra of Z(G) consisting of all z ∈ Z(G) with the
property that z ∗ f is unstable for every unstable function f ∈ C∞c (G(F )).
• More generally Z2,O(G) ⊂ Z2(G) is the C-subalgebra of Z(G)O consisting of all
z ∈ Z(G)O such that for every unstable function f ∈ C∞c (G(F )) whose image in
I(G) is fixed by O, z ∗ f is unstable.

Note that if O is trivial, then Z1(G) = Z1(G)O, and Z2(G) = Z2,O(G).

Lemma 5.1.7. We have Z2,O(G) ⊂ Z1(G)O. In particular, if O is trivial, then Z2(G) ⊂ Z1(G).
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Proof. Let z ∈ Z2,O(G) ⊂ Z(G)O, and let f ∈ C∞c (G(F )) be unstable. It is enough to show that

z(f) := z ∗ f∨(1) equals 0. Choose f ′ as in Remark 5.1.5. Then, by Remark 5.1.5, f ′
∨

is unstable.
Since z ∈ Z2,O(G), we conclude that z ∗ f ′∨ is unstable, from which it follows that z ∗ f ′∨(1) = 0
(as f ′′ 7→ f ′′(1) is a stable distribution, by [Kot88, Proposition 1]).
Since z ∗ f ′∨ is a finite sum of O-translates of z ∗ f∨ (see Remark 5.1.5), and since the action of
O+

G on C∞c (G(F )) preserves f ′′ 7→ f ′′(1), it follows that z ∗ f∨(1) = 0, as desired. �

Proposition 5.1.8. Let z ∈ Z(G)O. Then the following are equivalent:

(i) z ∈ Z2,O(G).
(ii) If D is a stable O-invariant distribution on G(F ), then the distribution f 7→ D(z ∗ f) is

stable.
(iii) If D ∈ SD(G)O, then the distribution f 7→ D(z ∗ f) is stable.

(iv) If D is the O-average of IndG
M Θ′, where M ⊂ G is a Levi subgroup and Θ′ ∈ SDell(M)OM ,

then the distribution f 7→ D(z ∗ f) is stable.

Remark 5.1.9. Using the formula D ∗ z(f) = D ((z ∗ f∨)∨) (see just below Notation 5.1.1), one
can show that each of the conditions (ii), (iii) and (iv) of the above proposition has an equivalent
variant where the distribution f 7→ D(z ∗ f) is replaced by the distribution D ∗ z.

Proof of Proposition 5.1.8. Let us prove (i) ⇒ (ii). Let z ∈ Z2,O(G) ⊂ Z(G)O, and let us show
that if D is an O-invariant distribution on G(F ), and f ∈ C∞c (G(F )) is unstable, then D(z∗f) = 0.
Let f ′ be as in Remark 5.1.5, so that f ′ is unstable, its image in I(G) is O-invariant, and z ∗ f ′ is
a finite sum of O-translates of z ∗ f . Therefore, z ∗ f ′ is unstable (by the definition of Z2,O(G)),
so that D(z ∗ f ′) = 0, while by the O-invariance of D, D(z ∗ f ′) is a nonzero integer multiple of
D(z ∗ f). Therefore, D(z ∗ f) = 0, and the implication (i) ⇒ (ii) follows.
Now it is clear that (i)⇒ (ii)⇒ (iii)⇒ (iv) (for (iii)⇒ (iv), use that parabolic induction preserves
stability of distributions, for which a nice reference is [KV16, Corollary 6.13]).
If f ∈ C∞c (G(F )) has O-invariant image in I(G), then so does z ∗ f (we observed this in Remark
5.1.5). This fact together with Corollary 3.2.12 gives the implication (iv) ⇒ (i). �

5.2. Using Shahidi’s argument on the Plancherel µ-function. Let M ⊂ G be a Levi sub-
group, and ζ : AM(F ) → C× a unitary character. One of the results that we will prove in this
subsection is Corollary 5.2.11, part (i) of which says that the distribution

∑
d(σ)µ(σ)Θσ is sta-

ble, and more generally so is
∑
d(σ)µ(σ)ẑ(σ)Θσ for any z ∈ Z1(G), where the sum ranges over

the subset Irr2(M)ζ ⊂ Irr2(M) of discrete series representations of M(F ) whose central charac-
ter restricts to ζ on AM(F ). Part (ii) of the corollary says that these distributions transfer well
across inner forms. These are weaker but unconditional results in the spirit of the constancy of
the Plancherel measure on L-packets as proved by Shahidi (see [Sha90, Section 9]), and that of
the transfer of Plancherel measures across inner forms as one sees in the works of Choiy (see,
e.g., [Cho14]) and Heiermann (see [Hei16, Appendix A]). We then use these results in Corollary
5.2.12 to show, in part (i) of the corollary, that the Plancherel measure or rather the µ-function,
is constant on atomically stable discrete series L-packets, and in part (ii) of the corollary that
whenever an atomically stable discrete series L-packet Σ on M transfers to an atomically stable
discrete series L-packet Σ∗ on the quasi-split inner form M∗ of M, we have µ(σ) = cµ(σ∗) for all
σ ∈ Σ and σ∗ ∈ Σ∗, where c is an explicit constant. We will use the Paley-Wiener theorem as
stated in [Art96], so we begin by reviewing it.

5.2.1. Review of the version of the Paley-Wiener theorem in [Art96].

Notation 5.2.1. (i) For this subsection, we fix a maximal split torus A0 ⊂ G, and let M0

be the minimal Levi subgroup of G obtained as the centralizer of A0 in G. Further,
let L denote the set of Levi subgroups of G that are semistandard, i.e., contain A0, or
equivalently, M0.

(ii) Set W0 = W (M0) (i.e., the WG(M0) in the sense of Subsubsection 2.1.7).
(iii) W0 acts on L, and we write L/W0 for the set-theoretic quotient. It is easy to see that

each G(F )-conjugacy class of Levi subgroups of G intersects L in a single W0-orbit, so
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that L/W0 can be identified with the set of G(F )-conjugacy classes of Levi subgroups of
G.

(iv) We let the topological space T̃ (G), the topological space T̃ell(M) for each Levi subgroup
M ∈ L, and the decomposition

(59) T̃ (G) =
⊔

M∈L/W0

(T̃ell(M)/W (M))

be as in [Art96, Section 4]. T̃ (G) ⊃ T̃ell(G) is formed of certain tuples (L, σ, r), where
L is a Levi subgroup of G and σ ∈ Irr2(L); we will recall a few more details below.

We will also occasionally use the quotients T (G) and Tell(G) of T̃ (G) and T̃ell(G) as in
[Art96, page 531]. For a smooth unitary character ζ : AG(F )→ C×, we also have subsets

T̃ζ(G) ⊂ T̃ (G), T̃ζ,ell(G) ⊂ T̃ell(G), Tζ(G) ⊂ T (G) and Tζ,ell(G) ⊂ Tell(G) represented
by tuples (L, σ, r) such that the central character of σ restricts to ζ on AG(F ) (slightly
differing in notation from [Art96, page 531]).

(v) If M ∈ L and τ = (L, σ, r) ∈ T̃ (M), we let ΘM
τ be the associated virtual character on M(F ):

for M = G, the ‘normalized version’ of ΘG
τ , obtained by multiplying it by the discriminant

factor γ 7→ |D(γ)|1/2 in the notation of [Art96], is what is denoted by γ 7→ I(τ, γ) in [Art96,

Section 4, near the top of page 532]. For τ ∈ T̃ (G), let Θτ = ΘG
τ . If τ = (L, σ, r) ∈ T̃ell(M),

where M ∈ L, and ΘG
τ is defined using the image of τ in T̃ (G), one knows, and we will

use without further comment in what follows, that ΘG
τ = IndG

M ΘM
τ : use [MgW18, Lemma

2.10] (which works in the twisted case). One also knows that for each M ∈ L, the ΘM
τ with

τ ∈ T̃ell(M) running over a set of representatives for Tell(M) form a basis for Dell(M).
(vi) In this section too, we will write I(G) for the space of Int G(F )-coinvariants of C∞c (G(F ));

it is also the quotient of C∞c (G(F )) by the subspace consisting of those functions whose
strongly regular semisimple orbital integrals all vanish. SI(G) will denote the quotient
of I(G) such that the kernel of C∞c (G(F )) → I(G) → SI(G) is the subspace of func-
tions whose strongly regular semisimple orbital integrals all vanish. Thus, I(G)∗ =
Hom(I(G),C) identifies with the space of invariant distributions on G(F ), and SI(G)∗ ⊂
I(G)∗ with the subspace of stable distributions. Of course, similar notation will apply
with G replaced by a Levi subgroup M or a quasi-split form G∗, etc. According to the
Paley-Wiener theorem, as stated in [Art96] and recalled in Remark 5.2.3 below, sending

f ∈ C∞c (G(F )) to the function T̃ (G) → C given by τ 7→ Θτ (f), induces an isomorphism

from I(G) to a concrete space of functions on T̃ (G). Once we describe this isomorphism
in Remark 5.2.3, it will be thought of as an identification.

We now partially recall (slightly more than) what we need concerning the objects of Notation

5.2.1(iv). The second page of [Art96, Section 4] defines the set T̃ (G) as the set of W0-orbits of
certain triples (L, σ, r). For each such triple (L, σ, r), L is an element of L, σ is a discrete series
representation of L(F ), and r is an element belonging to a certain central extension of the R-group
of (L, σ) in G (we will not need the exact definition of this group, and hence refer the reader to

[Art96] for more details). We refer to [Art96] for the definition of the subset T̃ell(G) ⊂ T̃ (G) of

elliptic elements, and the fact that we have a map from T̃ell(M) (the set obtained by substituting

M for G in the definition of T̃ell(G)) to T̃ (G), giving a decomposition of T̃ (G) as in (59).

For each M ∈ L, Xunr−uni(M) acts on T̃ell(M), where the action of a unitary character χ : M(F )→
C× in Xunr−uni(M) sends each (L, σ′, r) to (L, σ′ ⊗ χ, r). This action makes each orbit into a
torsor for a finite quotient of Xunr−uni(M), which being a compact torus topologizes the orbit.

The orbits obtained this way partition T̃ell(M), which we topologize by requiring this partition to

be topological. Moreover, T̃ell(M)/W (M) is then given the quotient topology. Allowing M to vary,

this topologizes T̃ (G) by requiring the partition (59) to be topological.

Notation 5.2.2. For any M ∈ L, we have an injection Irr2(M) ↪→ T̃ell(M) given by σ 7→ (M, σ, 1),

which will be thought of as an inclusion. Note that Irr2(M) ⊂ T̃ell(M) is a disjoint union of

connected components of T̃ell(M).
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We will need to know Θτ , where τ ∈ T̃ (G), only when it is the image of some (M, σ, 1) ∈ Irr2(M) ⊂
T̃ell(M), where M ∈ L and σ ∈ Irr2(M). In such a situation, Θτ is simply the Harish-Chandra

character of IndG
M σ, i.e., of IndG

P σ for any parabolic subgroup P ⊂ G with M as a Levi subgroup.

Remark 5.2.3. According to the trace Paley-Wiener theorem, as interpreted by Arthur in [Art96,

page 532], the map f 7→ (τ 7→ ΘG
τ (f)), from C∞c (G(F )) to some space of functions on T̃ (G),

quotients to an isomorphism from I(G) to the space of functions g : T̃ (G) → C satisfying the
following three conditions:

(i) g is supported on finitely many connected components of T̃ (G) (Condition (i) on [Art96,
page 532]);

(ii) For any M ∈ L and any τ ∈ T̃ell(M), the map Xunr−uni(M) → C given by χ 7→ g(χ · τ),

where χ · τ denotes the image of χ · τ ∈ T̃ell(M) in T̃ (G), is a finite complex linear com-
bination of continuous characters of Xunr−uni(M) (Condition (ii) on [Art96, page 532]);
and

(iii) Condition (iii) on [Art96, page 532], which only concerns the third component of a triple
τ = (L, σ, r), and is automatically satisfied for functions that are supported on the union

over M ∈ L/W0, of Irr2(M)/W (M) ⊂ T̃ell(M)/W (M) ⊂ T̃ (G).

As mentioned in Notation 5.2.1(vi), we will now start viewing I(G) also as the space of functions

T̃ (G)→ C satisfying the three conditions above.

Remark 5.2.4. In fact, the original version of the trace Paley-Wiener theorem in [BDK86] was
stated quite differently: it involved the set of cuspidal supports, rather than the triples τ = (L, σ, r)
above. It is the difference between these two formulations that necessitated the extra care taken in
the proof of [Sha90, Proposition 9.3] (as Shahidi mentions in the remark after that Proposition),
which the formulation of the Paley-Wiener theorem given by Arthur in [Art96] lets one avoid.
According to [MgW18, Sections 6.1 and 6.2], the version we use follows from [LH17, Section 3.2]
(which in fact handles the twisted case).

Notation 5.2.5. (i) We fix a Haar measure on G(F ), and more generally on M(F ) for each
M ∈ L. For each M ∈ L, as in [MgW18, Section 1.2], we give AM(F ) and Xunr−uni(AM)
Haar measures such that meas(AM(F )c) meas(Xunr−uni(AM)) = 1, where AM(F )c ⊂
AM(F ) is the maximal compact subgroup. We give M(F )/AM(F ) the quotient measure,
and use it to define the formal degree d(σ) for each σ ∈ Irr2(M).

(ii) Unless otherwise stated, for any compact open subgroup H ⊂ G(F ) and an algebraic
subgroup L ⊂ G, HL will denote H ∩ L.

(iii) Fix a maximal compact subgroup K = KG ⊂ G(F ), which is the stabilizer of a special
point belonging to the apartment of A0 in the Bruhat-Tits building of G. We let I =
IG ⊂ K be an Iwahori subgroup of G(F ) associated to a chamber in the same apartment.
Thus, I has an Iwahori decomposition I = INIMIN− , whenever M ⊂ G is a semistandard
Levi subgroup, and N and N− are unipotent radicals of opposite parabolic subgroups of
G that have M as a common Levi subgroup.

(iv) To each semistandard Levi subgroup M ⊂ G, we attach constants γ(G|M), γ′(G|M) and
γ′′(G|M) (the latter two are, notationally, nonstandard and ad hoc) as follows. We choose
opposite parabolic subgroups P and P− having M as a common Levi subgroup, with N
and N− as their unipotent radicals, and let γ(P) = γ(G|M) be as in [Wal03, page 241],
using the choices of the measures as fixed in that reference. Moreover, we set (ad hoc and
non-standard notation):

(60)

γ′(G|M) =

(∏
α

γ(Mα|M)−2

)
, γ′′(G|M) = [KN : IN]−1[KN− : IN− ]−1, and γ′′′(G|M) = γ′(G|M)γ′′(G|M),

where in the first product α runs over the set of reduced roots of AM (outside M), taken
up to a sign. It follows from [Wal03, Section I.1, (3)] that γ(G|M) and γ′(G|M) depend
only on M, and not on P and P−. That the same applies to γ′′(G|M) and hence also to
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γ′′′(G|M) follows from the relation

(61) γ(G|M) =
[K : H]

[KN : HN][KM : HM][KN− : HN− ]
,

which we claim holds for any compact open subgroup H ⊂ G(F ) with an Iwahori decom-
position H = HNHMHN− (and in particular for H = I, independently of P and P−). The
formula (61) follows from the latter equality of [Wal03, Section I.1, (2)], upon taking the f
there to be the characteristic function of H, and noting that our analogues of the measures
dg, dū, dm and du as in that equality are obtained by dividing arbitrarily chosen Haar mea-
sures on G(F ),N−(F ),M(F ) and N(F ) respectively by meas(K),meas(KN−),meas(KM)
and meas(KN).

(v) For each Levi subgroup M ∈ L, let Ē2(M) denote the set of connected components of

Irr2(M) ⊂ T̃ell(M), and for each σ ∈ Irr2(M), let

Oσ := Xunr−uni(M) · σ = Xunr−uni(M) · (M, σ) = Xunr−uni(M) · (M, σ, 1) ⊂ Irr2(M) ⊂ T̃ell(M)

be the element of Ē2(M) containing the image of σ ∈ Irr2(M) ⊂ T̃ell(M). As in [Wal03,
pages 239 and 302], we give each Oσ the unique measure such that the restriction map
Xunr−uni(M) → Xunr−uni(AM) and the obvious map Xunr−uni(M) → Oσ locally pre-
serve measures. In other words, the “AM(F )-central character” map from Irr2(M) to the
set Xuni(AM) of unitary characters AM(F ) → C× is locally measure preserving, where
Xuni(AM) is given the topology and measure such that each orbit map Xunr−uni(AM) →
Xuni(AM) is a measure preserving homeomorphism.

Here, the O in the orbit Oσ is not to be confused with the groups OM of automorphisms.
(vi) If M ∈ L and σ ∈ Irr2(L), we let µ(σ) = µG(σ) be the Harish-Chandra µ-function

evaluated on σ, as in [Wal03, Section 5.2].

Now let us recall the Plancherel formula as stated in [Wal03, Theorem VIII.1.1(3)], but in terms
of our different choice of measures, and in a form suited to our purposes:

Lemma 5.2.6. Let g : T̃ (G)→ C be an element of I(G) (identified as in Remark 5.2.3), and let

fg ∈ C∞c (G(F )) have image g; in other words, g(τ) = Θτ (fg) for all τ ∈ T̃ (G). Let f∨g be as in

Notation 5.1.1 (like what f̌g would be in the notation of [Wal03, page 236]). Then we have:

(62) fg(1) = f∨g (1) =
∑

M∈L/W0

γ′′′(G|M) meas(IM)

meas(I) ·#W (M)

∫
ζ∈Xuni(AM)

 ∑
σ∈Irr2(M)ζ

µ(σ)d(σ)g(σ)

 dζ,

where g(σ) = g((M, σ)) refers to the value of g on the image of σ ∈ Irr2(M) ⊂ T̃ell(M) in T̃ (G).

Proof. Given the constraint meas(AM(F )c) meas(Xunr−uni(AM)) = 1 (see Notation 5.2.5(i)), and
because d(σ) varies linearly with the measure on AM(F ), we may and do assume that AM(F )c
and Xunr−uni(AM) are given the normalized Haar measure, as in [Wal03].
Suppose we can prove:

(63) fg(1) = f∨g (1) =
∑

M∈L/W0

γ′(G|M)γ(G|M) meas(KM)

meas(K) ·#W (M)

∑
O∈Ē2(M)

∫
(M,σ)∈O

µ(σ)d(σ)g(σ) dσ.

Since the “AM(F )-central character map” from Irr2(M) ⊂ T̃ell(M) to Xuni(AM) preserves measures
locally, the fiber measure on each fiber of this map is the counting measure. Moreover, the fibers
have finite intersection with each O ∈ Ē2(M) (since Xunr(M) → Xunr(AM) is an isogeny). Using
this and the Fubini theorem (justified by g being continuous and supported on finitely many

connected components of T̃ (G), together with the finiteness of the map T̃ell(M)→ T̃ (G)), and the
equality

γ(G|M) meas(KM)

meas(K)
=
γ′′(G|M) meas(IM)

meas(I)

that follows from (61), it is easy to see that (62) follows from (63). Therefore, it now suffices to
prove (63).
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Thus, it is now enough to deduce (63) from the formula in [Wal03, Theorem VIII.1.1(3)]. In
[Wal03, Theorem VIII.1.1(3)], the sum is over a set of associate classes of pairs (O,P) as defined
in [Wal03, Remark VII.2.4], where P ⊂ G is a semistandard parabolic subgroup and O ∈ Ē2(M),
with M the unique semistandard Levi subgroup of P. Instead, we can clearly sum over pairs
(M,O) with M running over (a set of representatives for) L/W0, and O running over elements of
Ē2(M) up to the action of W (M) (which is the W (G|M) of [Wal03]): this is because, given pairs
(P1,O1) and (P2,O2), where both P1 and P2 have the same M ∈ L as their unique semistandard
Levi subgroup, these pairs are associate if and only if O1 and O2 are conjugate under W (M). It
is then easy to check that the expression of [Wal03, Theorem VIII.1.1(3)] agrees with that on the
right-hand side of (63), which adds the factors meas(KM) and meas(K) to account for not fixing
the measures on G(F ) and M(F ) as in [Wal03] (and we have also used our having normalized
meas(AM(F )c) = meas(AM(F ) ∩K) and meas(Xunr−uni(AM)) to 1). Note that the c(G|M)−2 of
[Wal03] equals our γ(G|M)2γ′(G|M). �

Remark 5.2.7. (i) We recall a decomposition of I(G) ((64) below) from the top of [Art96,
page 533], to which we refer for more explanation. Recall the subspace Icusp(M) ⊂ I(M)
defined to be the image of C∞c,cusp(M(F )) ⊂ C∞c (M(F )) in I(M), as in the proof of Propo-
sition 3.2.6 (and as in Remark 3.4.7(i)). One knows that Icusp(M) identifies via the Paley-

Wiener theorem (i.e., as in Remark 5.2.3) with the space of those functions T̃ (M) → C
in I(M) that are supported on T̃ell(M). Recall that for each Levi subgroup M ⊂ G, the

map T̃ell(M) → T̃ (G) factors through an isomorphism from T̃ell(M)/W (M) onto its im-
age. Using this fact, we see that the trace Paley-Wiener theorem from [Art96] (recalled
in Remark 5.2.3) gives us a decomposition for I(G) of the form:

(64) I(G) =
⊕

M∈L/W0

(Icusp(M))W (M).

(ii) Concretely, given g : T̃ (G)→ C in I(G), its projection gM to Icusp(M)W (M) is the unique

function T̃ (M) → C that is supported on T̃ell(M), and such that Θτ (gM) = ΘIndG
M τ (g)

for each τ ∈ Dell(M). This identifies Icusp(M)W (M) with the subspace of I(G) consisting

of the images of functions f ∈ C∞c (G(F )) such that (IndG
L Θ)(f) = 0 whenever L is not

G(F )-conjugate to M, and Θ ∈ Dell(L).
(iii) From (64), taking duals, we have a decomposition involving spaces of distributions:

(65) I(G)∗ =
⊕

M∈L/W0

(Icusp(M)∗)W (M).

Tautologically, the pairing of I(G) with D(G), after using the identifications of (64) and
(34), is obtained by taking a direct sum of the pairings between the Icusp(L)W (L) and

Dell(L)W (L), as L ranges over L/W0.
(iv) By Proposition 3.2.10, SIcusp(M) (resp., SI(G)) is the quotient of Icusp(M) (resp., I(G))

by its subspace consisting of elements on which elements of SDell(M) (resp., SD(G))
vanishes. Therefore (64) induces a decomposition

(66) SI(G) =
⊕

M∈L/W0

(SIcusp(M))W (M).

This decomposition has a description analogous to that for (64) given in (ii) above. Taking
duals, we get a decomposition

(67) SI(G)∗ =
⊕

M∈L/W0

(SIcusp(M)W (M))∗

at the level of stable distributions, that extends (35), and clearly aligns with (65).
(v) Let us expand on (66) and (67), and their compatibility with (64) and (65). The terms

of (66) identify with quotients of the corresponding terms of (64); the derivation of (66)
tells us that (64) identifies the subspace of I(G) consisting of its unstable elements, with
the direct sum, over M ∈ L/W0, of the subspace of unstable elements of Icusp(M)W (M).
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Quotienting (64) by this restricted isomorphism yields (66). Dualizing, (67) is a restric-
tion of (65) in an obvious way. While SI(G)∗ identifies with the space of stable dis-
tributions on G(F ), we can also interpret (Icusp(M)W (M))∗ and (SIcusp(M)W (M))∗ as
spaces of distributions on M(F ), using W (M)-averaging and the analogues of (65) and
(67) with G replaced by M. Thus, (Icusp(M)W (M))∗ can be identified with the space
of W (M)-invariant functionals on I(M) (i.e., invariant distributions on M(F )) that van-
ish on “Icusp(L)WM(L)” for each proper Levi subgroup L ⊂ M. A similar interpretation

applies to (SIcusp(M)W (M))∗. Clearly, (SIcusp(M)W (M))∗ is precisely the subspace of

(Icusp(M)W (M))∗ consisting of elements that when, viewed as distributions on M(F ), are
stable. Now it is easy to see the following: if, according to (65), Θ ∈ I(G)∗ has component
ΘM ∈ (Icusp(M)W (M))∗ for each M ∈ L/W0, then the distribution Θ on G(F ) is stable

if and only if each ΘM ∈ (Icusp(M)W (M))∗ ⊂ (I(M)W (M))∗ is stable as a distribution on
M(F ).

(vi) The compatibility between parabolic induction and endoscopic transfer (Remark 3.2.2(iii))
admits a slight generalization involving more general distributions than virtual characters,
as we now review in the case of transfer to the quasi-split inner form; this can perhaps
be viewed as an ‘endoscopic version’ of (v) above. Let G∗ be a quasi-split inner form of
G underlying an endoscopic datum G∗ for G, as in Notation 3.2.1(i). Let L∗ and L∗/W ∗0
be analogues, for G∗, of L and L/W0. Choosing representatives, we identify L/W0 and
L∗/W ∗0 with subsets of L and L∗. Notation 3.2.1(v) gives us an injection L/W0 ↪→ L∗/W ∗0 .
For each M ∈ L/W0 ⊂ L and its image M∗ ∈ L∗/W ∗0 ⊂ L∗, M∗ is a quasi-split form of
M, and more precisely, a choice of ‘Levi subgroup matching data’ as in Notation 3.2.1(vi)
gives an endoscopic datum M∗ realizing M∗ as endoscopic to M. Now we make two easy
but useful observations:
(a) Let M ∈ L/W0 ⊂ L, and consider the corresponding M∗ ∈ L∗/W ∗0 ⊂ L∗. Via

(64) and the analogue of (66) for G∗, the endoscopic transfer map I(G) → SI(G∗)
along G∗ takes Icusp(M)W (M) to SIcusp(M∗)W (M∗), and moreover, the resulting map

Icusp(M)W (M) → SIcusp(M∗)W (M∗) is obtained by restricting the endoscopic transfer
map I(M)→ SI(M∗) along M∗. Indeed, using the concrete description in (ii) and its
analogue for (66) (as applied to G∗), both these assertions follow from the compatibil-
ity between parabolic induction and endoscopic transfer (Remark 3.2.2(iii)), together
with the fact that the endoscopic transfer maps I(G)→ SI(G∗) and I(M)→ SI(M∗)
are uniquely determined as dual to the endsocopic transfer maps SD(G∗)→ SD(G)
and SD(M∗) → SD(M), by the density of characters in [Art96, Lemma 6.3] (or as
recalled in Proposition 3.2.10).

(b) The map SI(G∗)∗ → I(G)∗, via (65) and the analogue of (67) for G∗, restricts as
follows to each (SIcusp(M∗)W (M∗))∗: If M∗ ∈ L∗/W ∗0 is not the image of any element
of L/W0, then this restriction is zero; if not, say M∗ is the image of M ∈ L/W0, it is a
map (SIcusp(M∗)W (M∗))∗ → (Icusp(M)W (M))∗ ⊂ I(G)∗ obtained as the restriction of
the endoscopic transfer map SI(M∗)∗ → I(M)∗ along M∗. This observation follows
by dualizing the observation (a) above (applied with M replaced by each L ∈ L/W0 ⊂
L).

5.2.2. Stability of certain distributions, and their transfer to inner forms.

Proposition 5.2.8. Suppose Θ ∈ I(G)∗, and that for each L ∈ L, µΘ = µΘ,L : Irr2(L)→ C is a

continuous function that is invariant under W (L). Suppose that for all g : T̃ (G)→ C in I(G) we
have:

(68) Θ(g) =
∑

L∈L/W0

∫
ζ∈Xuni(AL)

ΘL,ζ(g) dζ,

where ΘL,ζ ∈ Icusp(L)∗ ⊂ I(L)∗ is a distribution of the form:

(69) ΘL,ζ =
∑

σ∈Irr2(L)ζ

µΘ(σ)d(σ)ΘL
σ,
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and in (68) ΘL,ζ(g) refers to ΘL,ζ(gL), gL ∈ Icusp(L)W (L) being the projection of g via (64).
Suppose that Θ ∈ I(G)∗ is stable, and let M ∈ L. Then ΘM,ζ ∈ I(M)∗, for each ζ ∈ Xuni(AM).

Proof. By the compatibility between (65) and (67), the projection ΘM of Θ ∈ SI(G)∗ to (Icusp(M)∗)W (M) ⊂
Icusp(M)∗ ⊂ I(M)∗ under (65) belongs to (SIcusp(M)∗)W (M).

Note that for any g : T̃ (M)→ C in I(M), ζ 7→ ΘM,ζ(g) is the push-forward of σ 7→ µΘ(σ)d(σ)g(σ)

along the AM(F )-central character map T̃ell(M) ⊃ Irr2(M) → Xuni(AM), which is a local homeo-
morphism, so that ζ 7→ ΘM,ζ(g) is continuous (use that g is supported on finitely many connected

components of Irr2(M) ⊂ T̃ell(M)). We claim that for all f ∈ C∞c (M(F )), we have:

(70) ΘM(f) =

∫
ζ∈Xuni(AM)

ΘM,ζ(f) dζ.

The right-hand side of (70) represents a distribution in f that belongs to Icusp(M)∗ ⊂ I(M)∗, since
the ΘM,ζ are “supported” in discrete series representations. Therefore, (70) is tautological once
we see that the right-hand side of (70) is a W (M)-invariant distribution in f ∈ C∞c (M(F )), which
in turn follows from the W (M)-invariance of σ 7→ µΘ(σ) (by hypothesis) and that of σ 7→ d(σ).
Using (70) and the stability of ΘM, let us show that ΘM,ζ is stable for each ζ ∈ Xuni(AM). For
all h ∈ C∞c (AM(F )) and f ∈ C∞c (M(F )), let h ∗ f ∈ C∞c (M(F )) denote the left-regular action

of h on f . It is easy to see that σ(h ∗ f) = ĥ(ζσ)σ(f) for all unitary representations σ ∈ Irr(M),

where ζσ is the AM(F )-central character of σ and ĥ ∈ C0(Xuni(AM)) is the Fourier transform of

h (C0 stands for functions that ‘vanish at ∞’). This implies that ΘM,ζ(h ∗ f) = ĥ(ζ)ΘM,ζ(f), for
all h ∈ C∞c (AM(F )) and f ∈ C∞c (M(F )).
It is immediately verified that if f ∈ C∞c (M(F )) is unstable, then so is h ∗ f for all C∞c (AM(F )).
It follows from the stability of ΘM that for unstable functions f ∈ C∞c (M(F )):∫

ζ∈Xuni(AM)

ĥ(ζ)ΘM,ζ(f) dζ = 0.

Since the image of C∞c (AM(F )) in C0(Xuni(AM)) ∩ L2(Xuni(AM)) under the Fourier transform
is dense in L2(Xuni(AM)) by Pontrjagin duality, it follows that (ζ 7→ ΘM,ζ(f)) ∈ Cc(Xuni(AM))
vanishes as an element of L2(Xuni(AM)), and hence as an element of Cc(X

uni(AM)). Since this is
true for all unstable f ∈ C∞c (M(F )), the stability of ΘM,ζ follows. �

Remark 5.2.9. (i) The above proof can probably be adapted to prove a more general version
of the proposition, where µΘ = µΘ,M is allowed to be any continuous function on the larger

space T̃ell(M) ⊃ Irr2(M) that has an equivariance property opposite to that in the [Art96,
page 532, condition (iii)] (whose articulation we omitted from Remark 5.2.3). The sum
defining ΘM,ζ will then have to be over a set Tell(M)ζ ⊃ Irr2(M)ζ , the ‘ζ-part’ of the

quotient Tell(M) of T̃ell(M) as in [Art96, just before (4.2)].
(ii) The argument of the proof can be adapted to deduce a ‘version with central character’

of the Plancherel formula: if ζ : AG(F ) → C× is a smooth unitary character, and f ∈
C∞AG(F ),ζ(G(F )), then for an appropriate choice of a measure on Xuni(AM/AG) we have a

formula analogous to that in Lemma 5.2.6:

(71) f(1) =
∑

M∈L/W0

γ′′′(G|M) meas(IM)

meas(I) ·#W (M)

∫
ζ′∈Xuni(AM/AG)

 ∑
σ∈Irr2(M)ζζ′

µ(σ)d(σ)ΘG
σ (f)

 dζ ′.

Proposition 5.2.10. Let G∗ be an inner form of G. Fix an endoscopic datum G∗ for G with
underlying group G∗, as in Notation 3.2.1(i). Let M ⊂ G be a Levi subgroup in L, and M∗ ⊂ G∗ a
Levi subgroup in an analogous set L∗ defined using a maximal split torus A∗0 ⊂ G∗. Assume that
some choice of ‘Levi subgroup matching data’ as in Notation 3.2.1(vi) matches M and M∗, giving
an endoscopic datum M∗ for M with underlying group M∗. In particular, we have identifications
AM∗ = AM and AG∗ = AG. Let Θ = ΘG, the ΘL, the µΘ = µΘ,L and the ΘL,ζ be as in Proposition
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5.2.8. Suppose that Θ∗ = ΘG∗ the ΘL∗ , the µΘ∗ = µΘ∗,L∗ and the

ΘL∗,ζ =
∑

σ∗∈Irr2(L∗)ζ

d(σ∗)µΘ∗(σ
∗)ΘL∗

σ∗

are analogous objects associated to G∗; in particular, Θ and Θ∗ are stable, and the µΘ,L and the
µΘ∗,L∗ are invariant under the W (L) and the W (L∗), respectively. Assume that Θ∗ has image
Θ under the endoscopic transfer map SI(G∗)∗ → SI(G)∗. Then for each ζ ∈ Xuni(AM) =
Xuni(AM∗), the image of ΘM∗,ζ under the endoscopic transfer map SI(M∗)∗ → SI(M)∗ equals
ΘM,ζ .

Proof. We follow the proof of Proposition 5.2.8. As we saw in that proof, the projection ΘM

of Θ along I(G)∗ → (Icusp(M)W (M))∗ is stable, and and similarly we get the projection ΘM∗ ∈
(SIcusp(M∗)W (M∗))∗ ⊂ SI(G∗)∗ of Θ∗ = ΘG∗ . By Proposition 5.2.8, ΘM,ζ and ΘM∗,ζ are stable
for each ζ ∈ Xuni(AM) = Xuni(AM∗). We have (70) expressing ΘM in terms of the ΘM,ζ , and a
similar equation relates ΘM∗ to the ΘM∗,ζ . Remark 5.2.7 (vi)(b) gives us the following claim:

Claim. The restriction of the endoscopic transfer map SI(G∗)∗ → SI(G)∗ ⊂ I(G)∗ to (SIcusp(M∗)W (M∗))∗

is a map (SIcusp(M∗)W (M∗))∗ → (Icusp(M)W (M))∗, obtained by restricting the endoscopic transfer
map SI(M∗)∗ → I(M)∗.
By this claim, ΘM∗ has image ΘM under SI(M∗)∗ → SI(M)∗. We then identify C∞c (AM∗(F ))
and C∞c (AM(F )) with each other, and consider their left-regular actions on C∞c (M∗(F )) and
C∞c (M(F )), as well as the induced actions on associated spaces such as I(M∗) and I(M) and
SI(M∗) and SI(M). It is easy to see, using the arguments in the proof of Lemma 3.2.3(i), that
this action respects the map SI(M∗)→ SI(M).
Now assume that f ∈ C∞c (M(F )) and f∗ ∈ C∞c (M∗(F )) have matching orbital integrals. We need
to show that ΘM∗,ζ(f

∗) = ΘM,ζ(f) for all ζ ∈ Xuni(AM). For all h ∈ C∞c (AM(F )) = C∞c (AM∗(F )),
we have that h ∗ f and h ∗ f∗ have matching orbital integrals, and (as in the proof of Proposition

5.2.8) that ΘM∗,ζ(h ∗ f∗) = ĥ(ζ)ΘM∗,ζ(f
∗), and that ΘM,ζ(h ∗ f) = ĥ(ζ)ΘM,ζ(f). Therefore,∫

Xuni(AM∗ )=Xuni(AM)

ĥ(ζ)ΘM∗,ζ(f
∗) dζ = ΘM∗(h∗f∗) = ΘM(h∗f) =

∫
Xuni(AM∗ )=Xuni(AM)

ĥ(ζ)ΘM,ζ(f) dζ.

Using Pontrjagin duality on Xuni(AM∗) = Xuni(AM) as in the proof of Proposition 5.2.8, it is now
easy to see that ΘM∗,ζ(f

∗) = ΘM,ζ(f) for each ζ ∈ Xuni(AM), as desired. �

Corollary 5.2.11. (i) Let M ⊂ G be a Levi subgroup. Then for each ζ ∈ Xuni(AM) and
z ∈ Z1(G), the distribution∑

σ∈Irr2(M)ζ

d(σ)µ(σ)ẑ(σ)ΘM
σ ∈ I(M∗)

is stable. In particular,
∑
σ∈Irr2(M)ζ

d(σ)µ(σ)ΘM
σ is stable.

(ii) Let G∗ be a quasi-split inner form of G, and let G∗ be as in Notation 3.2.1(i). As in
Proposition 5.2.10, let M∗ ⊂ G∗ and M ⊂ G be ‘compatible Levi subgroups’, i.e., related
by an endoscopic datum M∗ obtained using ‘Levi subgroup matching data’ as in Notation
3.2.1(vi). Assume that the measures on M∗(F ) and M(F ) are compatible in the sense
explained in [Kot88, page 631], and that the identification AM∗(F ) = AM(F ) is measure
preserving. Let TM∗ denote the endoscopic transfer map SI(M∗)∗ → SI(M)∗. Assume
that z∗ ∈ Z1(G∗) and z ∈ Z1(G) are related by TG∗(z

∗) = e(G)z, where TG∗ is the
endoscopic transfer map SI(G∗)∗ → SI(G)∗, normalized using compatible measures on
G∗(F ) and G(F ) as in [Kot88, page 631]. Then for each ζ ∈ Xuni(AM∗) = Xuni(AM) we
have that, and SI(G∗)∗ → SI(G)∗ we have:

γ′′′(G∗|M∗)·TM∗

 ∑
σ∗∈Irr2(M∗)ζ

d(σ∗)µ(σ∗)ẑ∗(σ∗)ΘM∗

σ∗

 = e(G)γ′′′(G|M)

 ∑
σ∈Irr2(M)ζ

d(σ)µ(σ)ẑ(σ)ΘM
σ

 .
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In particular, we have

γ′′′(G∗|M∗) ·TM∗

 ∑
σ∗∈Irr2(M∗)ζ

d(σ∗)µ(σ∗)ΘM∗

σ∗

 = e(G)γ′′′(G|M)

 ∑
σ∈Irr2(M)ζ

d(σ)µ(σ)ΘM
σ

 .

Proof. In (i), the latter assertion (i.e., the one starting with ‘In particular’) can be deduced from
the former, by letting z ∈ Z(G) be the Dirac delta distribution at the identity, which ensures
that ẑ(σ) = 1 for all σ ∈ Irr2(M). A similar comment applies to (ii): if we take z∗ ∈ Z(G∗) to
be the Dirac delta measure at the identity, then by [Kot88, Proposition 2] (which assumes the
compatibility of measures between G∗(F ) and G(F )), we can take z to be the Dirac delta at the
identity too (this is the reason for adding the Kottwitz sign e(G) in the condition TG∗(z

∗) =
e(G)z). Therefore, in both (i) and (ii), we will only prove the former assertion.
To prove (i), we first note that Lemma 5.2.6 and the equality ΘG

τ (z ∗ f) = ẑ(σ)ΘG
τ (f) for L ∈ L

and τ = (L, σ, 1) ∈ Irr2(L) ⊂ T̃ (G) (use (56)) imply:
(72)

z(f∨) = z ∗ f(1) =
∑

L∈L/W0

γ′′′(G|L) meas(IL)

meas(I) ·#W (L)

∫
ζ∈Xuni(AL)

 ∑
σ∈Irr2(L)ζ

µ(σ)d(σ)ẑ(σ)ΘG
σ (f)

 dζ.

Let Θ = ΘG ∈ I(G)∗ be given by f 7→ z(f∨) = z ∗ f(1). We claim that the hypotheses of
Proposition 5.2.8 are satisfied for Θ, if we take, for each L ∈ L/W0 and σ ∈ Irr2(L):

(73) µΘ(σ) = µΘ,L(σ) =
γ′′′(G|L) meas(IL)

meas(I) ·#W (L)
ẑ(σ)µ(σ).

By Proposition 5.2.8 (and using the expression (69)), proving this claim will yield (i). Given (72),
using that Θ is stable (since z ∈ Z1(G)), this follows from the following three observations applied
to each L ∈ L:

• If f ∈ C∞c (G(F )) maps to g in I(G), then for each σ ∈ Irr2(L), ΘG
σ (f) = ΘG

σ (g) = ΘL
σ(gL),

where gL is, as in Proposition 5.2.8, the projection of g to Icusp(L)W (L) as per (64).
• µΘ,L is continuous, since for each σ ∈ Irr2(L), χ 7→ ẑ(σ⊗χ) and χ 7→ µ(σ⊗χ) are rational

functions on Xunr(L) that are regular on Xunr−uni(L) (for the latter, see [Wal03, Lemma
V.2.1]).

• µΘ,L is W (L)-invariant, since σ 7→ ẑ(σ) and σ 7→ µ(σ) are (for the latter, again use [Wal03,
Lemma V.2.1]).

This gives (i). The proof of (ii) will implicitly use the observations made in the proof of (i).
Without loss of generality, M∗ belongs to the set L∗ analogous to L, defined using a chosen split
maximal torus A∗0 ⊂ G∗. We apply Proposition 5.2.10 with the Θ∗ = ΘG∗ ∈ SI(G∗) of that
proposition taken to be the distribution f∗ 7→ z∗((f∗)∨) = (z∗ ∗ f∗)(1). It is easy to see from
Remark 3.2.2(i) that f∨ and (f∗)∨ have matching orbital integrals whenever f and f∗ do, so
that the image Θ := ΘG := TG∗(Θ

∗) of Θ∗ under endoscopic transfer with respect to G∗ equals
f 7→ e(G)z(f∨) = e(G)(z ∗ f)(1).
Combining Proposition 5.2.10 with (73) and its analogue with G replaced by G∗, we get

γ′′′(G∗|M∗) meas(IM∗)

meas(IG∗) ·#W (M∗)
·TM∗

 ∑
σ∗∈Irr2(M∗)ζ

d(σ∗)µ(σ∗)ẑ∗(σ∗)ΘM∗

σ∗


=
γ′′′(G|M) meas(IM)

meas(IG) ·#W (M)
·

 ∑
σ∈Irr2(M)ζ

d(σ)µ(σ) · e(G)ẑ(σ)ΘM
σ

 ,

for each ζ ∈ Xuni(AM) = Xuni(AM∗), where IG = I is as in Notation 5.2.5(iii), IG∗ is the
analogous subgroup of G∗(F ). Note that IM = I ∩M(F ) and IM∗ = IG∗ ∩M∗(F ) is are Iwahori
subgroups of M(F ) and M∗(F ). This much is what we get without imposing any compatibility
between the measures on G∗(F ) and G(F ), and between the ones on M∗(F ) and M(F ). Since
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#W (M∗) = #W (M) by the discussion of Notation 3.2.1(viii), (ii) will follow if we show that, for
our choices of measures, we have:

(74)
meas(IM)

meas(IG)
=

meas(IM∗)

meas(IG∗)
.

As in [Kot88, page 632], we may and do choose the measures on G(F ),M(F ),G∗(F ) and M∗(F )
to be integral and with nonzero reduction for the integral models of the parahoric group scheme
structures associated to IG, IM, IG∗ and IM∗ . It is then enough to show that meas(IG) = meas(IM);
for then we will similarly have meas(IG∗) = meas(IM∗), and (74) will follow. But this equality
is an easy consequence of the discussion in [Kot88, page 633]; one has a formula |S1(Fq)|q− dim S1

describing both meas(IG) and meas(IM), where S1 ⊂ M is an F -torus that becomes a maximal
split torus over the maximal unramified extension of F in F̄ (this does not need that G is simply
connected, and is implicitly used for general reductive groups in a discussion in [Gro97, page 295,
near (4.11)]). �

5.2.3. Consequences for atomically stable packets.

Corollary 5.2.12. (i) Let M ⊂ G be a Levi subgroup. Let O′M ⊂ Aut(M) be a subgroup
that acts trivially on AM, consists of elements that extend to automorphisms of G, and
has finite image in Out(M). Let Σ be an O′M-atomically stable discrete series L-packet on
M(F ). Then µ is constant on Σ, and for all z ∈ Z1(G) such that σ 7→ ẑ(σ) is O′M-invariant
on Irr2(M), σ 7→ ẑ(σ) is constant on Σ.

(ii) Suppose we are in the situation of Corollary 5.2.11(ii), with various measures chosen as
in that corollary. Assume that for some subgroups O′M ⊂ Aut(M) and O′M∗ ⊂ Aut(M∗)
that act trivially on AM = AM∗ and consist of elements that extend to automorphisms of
G and G∗, respectively, the images Ō′M of O′M and Ō′M∗ of O′M∗ in Out(M) = Out(M∗)
are finite and equal. Assume that O′M and O′M∗ in Σ is an O′M-atomically stable discrete
series L-packet on M(F ) and Σ∗ is an O′M∗-atomically stable discrete series L-packet on
M∗(F ). Assume that Σ is a transfer of Σ∗, in the sense that some nonzero virtual character

ΘΣ∗ ∈ SDell(M
∗)O

′
M∗ supported on Σ∗ transfers to a virtual character ΘΣ ∈ SDell(M)O

′
M

supported on Σ. Then for all σ∗ ∈ Σ∗ and σ ∈ Σ, we have:

γ′′′(G∗|M∗)µ(σ∗) = γ′′′(G|M)µ(σ).

Moreover, for all z∗ ∈ Z∗1 (G∗) and z ∈ Z1(G) such that z∗ maps to e(G)z under SI(G∗)∗ →
SI(G)∗, and such that σ 7→ ẑ(σ) is O′M-invariant on Irr2(M) and σ∗ 7→ ẑ∗(σ∗) is O′M∗-
invariant on Irr2(M)∗, we have ẑ∗(σ∗) = ẑ(σ).

Proof. Let us first prove (i). Since O′M acts trivially on AM, Proposition 3.3.6 implies that the
elements of Σ have a common AM(F )-central character, which we denote by ζ ∈ Xuni(AM).
It is easy to see from the definition (see [Wal03, Section V.2]) that the µ-function on Irr2(M)
is invariant under automorphisms of M that extend to automorphisms of G, and hence that
σ 7→ d(σ)µ(σ)ẑ(σ) is O′M-invariant on Irr2(M). By Corollary 5.2.11(i) and Proposition 3.3.6(iii),
it follows that σ 7→ µ(σ)ẑ(σ) is constant on Σ. Applying this with z replaced by the Dirac delta
measure z0 at 1, so that ẑ0(σ) = 1 for all σ, we get the constancy of σ 7→ µ(σ) on Σ. If µ(σ) 6= 0
for σ ∈ Σ, the constancy of σ 7→ ẑ(σ) follows from that of σ 7→ µ(σ)ẑ(σ). In general, since
χ 7→ µ(σ⊗ χ)ẑ(σ⊗ χ) is meromorphic on Xunr(M) and holomorphic at points of Xunr−uni(M) by
[Wal03, Lemma V.2.1], and since χ 7→ µ(σ⊗χ) is not identically zero on Xunr−uni(AM) (otherwise
it would be so on Xunr(AM), contradicting that intertwining operators are holomorphic on a
dense open subset of the vector space on which they are defined), it suffices to show that for all
χ ∈ Xunr−uni(M), σ 7→ µ(σ⊗ χ)ẑ(σ⊗ χ) is constant on Σ. This in turn follows from applying the
above considerations with Σ replaced by Σ ⊗ χ, which is an O′M-atomically stable discrete series
L-packet by Lemma 3.3.8, and the fact that O′M acts trivially on Xunr(M) (since it does so on
Xunr(AM) and hence on Xunr(SM), which surjects to Xunr(M)).
Now let us prove (ii). By Lemma 3.2.3(i), the common AM-central character ζ ∈ Xuni(AM) =
Xuni(AM∗) of the elements of Σ is also the common AM∗ -central character of the elements of
Σ∗. This time, one similarly has the O′M-invariance of σ 7→ d(σ)µ(σ)ẑ(σ) on Irr2(M) and the
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O′M∗ -invariance of σ∗ 7→ d(σ∗)µ(σ∗)ẑ(σ∗) on Irr2(M∗). Thus, we apply Corollary 5.2.11(ii) and
Proposition 3.3.7(iii) to get:

(75) e(M)γ′′′(G∗|M∗)µ(σ∗)ẑ∗(σ∗) = e(G)γ′′′(G|M)µ(σ)ẑ(σ).

Applying this with z∗ replaced by the Dirac measure at the identity, which transfers to e(G)
times the Dirac measure at the identity by [Kot88, Proposition 2], we get γ′′′(G∗|M∗)µ(σ∗) =
e(G)e(M)−1γ′′′(G|M)µ(σ), which gives the first assertion of (ii), since e(G) = e(M) (see [Kot83,
Corollary, (6)]). If µ(σ∗) 6= 0, so that µ(σ) 6= 0 as well, the remaining assertion of (ii) follows
from (75). The case where we allow µ(σ∗) to be 0 then follows by twisting by various χ ∈
Xunr−uni(M∗) = Xunr−uni(M), as in the proof of (i). �

5.3. Two applications.

5.3.1. Normalizing intertwining operators using Langlands-Shahidi L-functions.

Lemma 5.3.1. Let G,M,G∗,M∗,Σ,Σ∗ be as in Corollary 5.2.12(ii); in particular we used the
discussion of (i) and (vi) of Notation 3.2.1 to fix inner twists ψG∗ from G∗ to G and ψM∗ from
M∗ to M, using fixed parabolic subgroups, say P∗ ⊂ G∗ and P ⊂ G (the analogues of Q∗ and Q in
Notation 3.2.1(vi)), with M∗ and M respectively as Levi subgroups. Without loss of generality, we
assume that ψM∗ is a restriction of ψG∗ (and not just a restriction of an element of Int G(F̄ )◦ψG∗).
Let P∗,− ⊂ G∗ and P− ⊂ G be parabolic subgroups that are opposite to P∗ and P and contain M∗

and M. Let N∗,N∗,−,N and N− be the unipotent radicals of P∗,P∗,−,P and P−. Note that
ψG∗ takes N∗

F̄
to NF̄ and N∗,−

F̄
to N−

F̄
, letting us transfer top-degree differential forms (defined

over F̄ ) between these groups, and therefore lets us transfer Haar measures from N∗(F ) to N(F )
and N∗,−(F ) to N−(F ) (using either the absolute value on F̄ or a nontrivial continuous additive
character ψF : F → C×). We choose Haar measures on N∗(F ) and N∗,−(F ), and transfer them
to N(F ) and N−(F ) using ψG∗ , as just explained. For σ∗ ∈ Σ∗ and σ ∈ Σ, let the intertwining
operators JP∗,−|P∗(σ

∗), JP∗|P∗,−(σ∗), JP−|P(σ) and JP|P−(σ) be defined as in [Art89, around (1.1)]
or equivalently as in [Wal03, just before Theorem IV.1.1], but using the choices of measures just
fixed. Then, as meromorphic functions in χ ∈ Xunr(M∗) = Xunr(M), we have:

(76) JP∗|P∗,−(σ∗ ⊗ χ) ◦ JP∗,−|P∗(σ
∗ ⊗ χ) = JP|P−(σ ⊗ χ) ◦ JP−|P(σ ⊗ χ)

— here, the operators on either side are scalar multiplications, and hence viewed as complex
numbers, for a dense subset of χ ∈ Xunr−uni(M∗) = Xunr−uni(M), which is automatically Zariski
dense in Xunr(M∗) = Xunr(M).

Proof. Recall K = KG, I = IG,KM,KN,KN− , IM, IN and IN− from Notation 5.2.5(iii); here HL =
H ∩ L(F ) for each compact open subgroup H ⊂ G(F ) and algebraic subgroup L ⊂ G. We
choose analogous objects for G∗: K∗ = KG∗ , I

∗ = IG∗ ,KM∗ = K∗ ∩M∗(F ),KN∗ ,KN∗,− , IM∗ , IN∗

and IN∗,− . We give M∗(F ) and M(F ) Haar measures that are compatible under ψM∗ . We give
G∗(F ) and G(F ) the unique Haar measures such that the multiplication maps N∗(F )×M∗(F )×
N∗,−(F )→ G∗(F ) and N(F )×M(F )×N−(F )→ G(F ) are measure preserving near the identity. It
is then easy to see that G∗(F ) and G(F ) have measures that are compatible under ψG∗ . Therefore,
the equality (74) proved in the proof of Corollary 5.2.11 holds, and gives:

(77) meas(IN) meas(IN−) =
meas(I)

meas(IM)
=

meas(I∗)

meas(IM∗)
= meas(IN∗) meas(IN∗,−).

By the definitions in [Wal03, Sections IV.3 and V.2] and (60), the reciprocal of the left-hand side
(resp., the reciprocal of the right-hand side) of (76) equals

γ′(G∗|M∗)µ(σ∗⊗χ) meas(KN∗)
−1 meas(KN∗,−)−1 = γ′′′(G∗|M∗)µ(σ∗⊗χ) meas(IN∗)

−1 meas(IN∗,−)−1

(resp., γ′(G|M)µ(σ ⊗ χ) meas(KN)−1 meas(KN−)−1 = γ′′′(G|M)µ(σ ⊗ χ) meas(IN)−1 meas(IN−)−1).

Now the lemma follows from (77) and Corollary 5.2.12(ii), the latter applied with Σ∗ and Σ
replaced by Σ∗ ⊗ χ and Σ ⊗ χ, as justified by Lemmas 3.3.8 and 3.2.3(i) (and the fact that
O′M,O′M∗ act trivially on AM,AM∗). �
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Remark 5.3.2. In Lemma 5.3.1, it is an easy exercise to see that replacing ψG∗ by a different inner
twist, while yielding different measures on N(F ) and N−(F ), yields the same product measure on
N(F )×N−(F ), and hence does not change the right-hand side of (76).

Remark 5.3.3. Assume that we are in the setting of Lemma 5.3.1, and assume for simplicity
that O′M and O′M∗ are trivial. Let r∗i denote the representations of LM∗ = LM associated to
M∗ ⊂ P∗ ⊂ G∗ as in [Sha90]. Assume also that Σ∗ contains a generic representation σ∗. Thus,
the definition of the Langlands-Shahidi L-functions and ε-factors extend to representations σ ∈ Σ,
as explained in [Sha90, shortly before Theorem 9.5] (with the difference that we are stopping at
discrete series packets and not invoking Langlands classification):

L(s, σ, ri) = L(s, σ∗, r∗i ),

and for any continuous nontrivial additive character ψF : F → C×,

ε(s, σ, ri, ψF ) = ε(s, σ∗, r∗i , ψF ).

It should be possible to use Lemma 5.3.1 to deduce from [Sha90] that these L-functions and ε-
factors give a normalization of intertwining operators as in [Art89, Theorem 2.1]. We will skip
exploring the precise details.

5.3.2. Consequences for depth preservation.

Corollary 5.3.4. Suppose the residue characteristic p of F is a very good prime for G in the
sense of [BKV16, Section 8.10]. Let M ⊂ G be a Levi subgroup. Let O′M ⊂ Aut(M) be a subgroup
that acts trivially on AM, consists of elements that extend to automorphisms of G, and has finite
image in Out(M).

(i) The elements of Σ all have the same depth in the sense of Moy and Prasad (see [MP96]).
(ii) Assume that G∗,O′M,O′M∗ ,Σ and Σ∗ are as in the situation of Corollary 5.2.12(ii). As-

sume additionally that there exists a nice bilinear form B on g, in the sense of Definition
5.3.6(iii) below. Then for each σ ∈ Σ and σ∗ ∈ Σ∗, we have

depth(σ) = depth(σ∗).

The proof of (ii) of the corollary will use:

Proposition 5.3.5. Suppose p is a very good prime for G in the sense of [BKV16, Section 8.10],
and that there exists a nice bilinear form on g, in the sense of Definition 5.3.6(iii) below. Let G∗

be a quasi-split inner form for G, underlying an endoscopic datum G∗ for G defined using an inner
twist ψG∗ as in Notation 3.2.1(i). Let r ≥ 0, and let Er ∈ Z(G) and E∗r ∈ Z(G∗) be the depth
r projectors in the sense of [BKV16]. Then the distribution Er on G(F ) and the distribution E∗r
on G∗(F ) are stable. Moreover, E∗r transfers to the distribution e(G)Er on G(F ), provided G(F )
and G∗(F ) are given measures that are compatible with respect to ψG∗ .

Now we make some preparations for the proof of Proposition 5.3.5.

Definition 5.3.6. (i) For a finite extension F1/F , we will denote by B(G/F1) the reduced
Bruhat-Tits building of GF1 , and abbreviate B(G/F ) to B(G). F unr will denote the
maximal unramified extension of F in F̄ , and for each extension F1 of F in F unr, B(G/F1)
will be realized as B(G/F unr)Gal(Funr/F1). As usual, the notation that follows will be
adapted to more general groups and fields in place of G and F .

(ii) For x ∈ B(G) and r ≥ 0 (resp., r ∈ R), we have the Moy-Prasad filtration subgroups
G(F )x,r,G(F )x,r+ ⊂ G(F ), and the Moy-Prasad filtration lattices g(F )x,r, g(F )x,r+ ⊂
g(F ) and ǧ(F )x,r, ǧ(F )x,r+ ⊂ ǧ(F ), where ǧ is the dual vector space of g, which is given the
coadjoint action. We also have the Moy-Prasad G-domains G(F )r =

⋃
x G(F )x,r,G(F )r+ =⋃

x G(F )x,r+ ⊂ G(F ), g(F )r =
⋃
x g(F )x,r, g(F )r+ =

⋃
x g(F )x,r+ ⊂ g(F ) and ǧr =⋃

x ǧ(F )x,r, ǧr+ =
⋃
x ǧ(F )x,r+ ⊂ ǧ(F ), where each of these unions is over x ∈ B(G). Thus,

G(F )x,r+ = G(F )x,r+ε for all small enough ε > 0, and similarly with g(F )x,r+, ǧ(F )x,r+,
G(F )r+, g(F )r+ and ǧ(F )r+. Here and in the rest of this subsection, we will often write
g(F ) despite it being also denoted by g, to distinguish it from g(F1) for another field F1.
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(iii) A bilinear form B : g(F ) × g(F ) → F will be called nice if it is symmetric, nondegener-
ate, Ad G-invariant and identifies each Moy-Prasad filtration lattice g(F )x,r in g(F ) with
ǧ(F )x,r; this translates to requiring that for all x ∈ B(G) and r ∈ R we have

(78) {X ∈ g(F ) | B(X, g(F )x,(−r)+) ⊂ $OF } = g(F )x,r.

(iv) For the rest of this subsection G∗ will denote a quasi-split inner form of G, and ψG∗ and
the endoscopic datum G∗ will be as in Notation 3.2.1(i). Note that g∗ = Lie G∗ should
not be confused with ǧ.

(v) If B is an Ad G-invariant bilinear form on g(F ), then its transport by ψG∗ refers to the bi-
linear formB∗ on g∗ such that for allX∗, Y ∗ ∈ g∗(F̄ ), B∗(X∗, Y ∗) = B(ψG∗(X

∗), ψG∗(Y
∗)):

that this prescription descends to a bilinear form on g∗ follows from the Ad G-invariance
of B and the fact that ψG∗ is an inner twisting. In fact, B∗ is the transfer of B to g∗ via
the endoscopic datum G∗ as in [Wal95, Section VIII.6] (see also the discussion after the
proof of Remark 2 of that reference).

(vi) For this subsection, given r ≥ 0, Er (resp., E∗r ) will denote the depth r projector for G
(resp., G∗).

Lemma 5.3.7. Assume that G is not ‘bad’ in the sense of [BKV16, Section 3.13], i.e., either p is
odd, or (Gsc)Funr does not have a restriction of scalars of an odd special unitary group over F unr

as a factor. Given a symmetric nondegenerate Ad G-invariant bilinear form on g, the following
are equivalent:

(i) B is nice.
(ii) For some x ∈ B(G) and all r ∈ R, (78) holds.

(iii) For some finite unramified extension F1 of F , the base-change of B to F1 is nice with
respect to GF1 .

Proof. (i) ⇒ (ii) is immediate. Let us prove (ii) ⇒ (i); we refer to the condition in (ii) as x-nice.
For this, it is enough to show that if x, y ∈ B(G), and if B is x-nice, then B is y-nice as well.
Choose an apartment in B(G) containing x and y, associated to some split maximal torus S in
G, and let M0 be the centralizer of S in G. Then we have (see [BKV16, Proposition 3.10(b)]) an
expansion:

g(F )x,r = m0(F )r ⊕
⊕
α

uα(F )x,r,

where α runs over the set of roots of S in G, and uα(F )x,r is the union of the affine root lattices
uψ ⊂ uα(F ) as ψ runs over the affine roots associated to the apartment of S that have gradient α
and satisfy ψ(x) ≥ r. We have a similar expression for g(F )x,r+, where the definition of uα(F )x,r+
involves the condition ψ(x) > r.
Thus, it is clear, using the S-equivariance of B, that B is x-nice if and only if the following two
conditions are satisfied:

• {X ∈ m0 | B(X,m0(F )(−r)+) ⊂ $O} = m0(F )r for all r ∈ R; and
• {X ∈ uα(F ) | B(X, u−α(F )x,(−r)+) ⊂ $O} = uα(F )x,r, for each root α of S in G and

each r ∈ R.

Since similar considerations apply to y, it suffices to show that the above conditions are satisfied
if and only if they are satisfied with x replaced by y. This is clear since the first condition is
x-agnostic, while if y = x + λ with λ ∈ X∗(S) ⊗ R, then it is easy to see that u−α(F )y,(−r)+ =
u−α(F )x,−(r−〈α,λ〉)+ and uα(F )y,r = uα(F )x,r−〈α,λ〉.
This gives the equivalence of (i) and (ii). Given this, for the equivalence of either of these no-
tions with (iii), assuming without loss of generality that F1 ⊂ F unr so that B(G) ⊂ B(G/F1) ⊂
B(G/Funr), it suffices to check that for some x ∈ B(G) and each r ∈ R, (78) holds if and only if it
does with F replaced by F1. In turn, this is easy to see using ‘dual bases’ with respect to B if we
can show that for each r ∈ R, g(F )x,r ⊗OF OF1

= g(F1)x,r, where OF and OF1
are the rings of

integers of F and F1, respectively. Since g(F )x,r is the Gal(F unr/F )-fixed points of g(F1)x,r (see
[Adl98, Proposition 1.4.1] and [BKV16, Lemma 3.14] and use that G is not ‘bad’), this should in
turn follow from some sort of unramified descent.
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Being naive about this sort of descent, let us give an elementary argument instead; it is enough to
show that for each finitely generated OF1 -lattice L with a semilinear action of Gal(F1/F ), the map
LGal(F1/F ) ⊗OF OF1

→ L is surjective. Let Gal(F1/F ) = {σ1 = id, . . . , σn}, and let a1, . . . , an be
an OF -basis for OF1 . The matrix A = [σi(aj)]1≤i,j≤n has determinant in O×F1

, since trF1/F (aiaj)

is the (i, j)-th entry of tAA, and trF1/F is a perfect pairing OF1
×OF1

→ OF . Therefore there

exist b1, . . . , bn ∈ OF1
such that

∑n
l=1 σi(al)bl equals δ1,i for each i, i.e., 1 if i = 1, and 0 otherwise.

Thus, given v ∈ L,

v = σ1(v) =

n∑
i=1

δ1,iσi(v) =

n∑
i=1

(
n∑
l=1

blσi(al)

)
σi(v) =

n∑
l=1

bl ·

(
n∑
i=1

σi(alv)

)
,

which lies in the image of LGal(F1/F ) ⊗OF OF1
→ L. �

Corollary 5.3.8. If B is a nice bilinear form on g, then the associated bilinear form B∗ on g∗

(obtained by transporting B via ψG∗) is nice as well.

Proof. We reduce to the situation where ψG∗ is defined over the maximal unramified extension
F unr of F . Recall that the inner twists of G∗ are parameterized by H1(F,G∗ad). By the inflation-
restriction sequence and the theorem of Steinberg which says that H1(Funr, (G

∗
ad)Funr) is trivial,

the class of the inner twist ψG∗ arises from an element of H1(Gal(F unr/F ),G∗ad(F unr)). This has
the consequence that we may modify ψG∗ to ensure that it is defined over F unr, and hence over
a finite extension F1 of F contained in F unr. Since the condition ‘niceness’ behaves well under
isomorphisms of algebraic groups, it follows that the base-change of B to F1 is nice if and only if
the base-change of B∗ to F1 is. Therefore, the corollary follows from Lemma 5.3.7. �

From [BKV16] we have:

Lemma 5.3.9. Suppose G1 → G2 is an isogeny of connected reductive groups over F , whose degree
is prime to p. Then it induces analytic isomorphisms G1(F )x,r+ → G2(F )x,r+ and G1(F )r+ →
G2(F )r+ for all x ∈ B(G1) = B(G2) and r ≥ 0. Moreover, the depth r projector for G2, which (as
a distribution) is supported on G2(F )r+, when pulled back along G1(F )r+ → G2(F )r+, equals the
depth r projector for G1, which is supported on G1(F )r+.

Proof. The first assertion is [BKV16, Lemma 8.12]. The second assertion is implicit in the proof
of [BKV16, Corollary 8.13], and follows from the first assertion together with the Euler-Poincare
formula for the depth r projector given in [BKV16, Corollary 1.9]. �

Lemma 5.3.10. Let r > 0 (resp., r ∈ R). If strongly regular semisimple elements γ∗ ∈ G∗(F )
and γ ∈ G(F ) (resp., regular semisimple elements X∗ ∈ g∗(F ) and X ∈ g(F )) match with
respect to G∗, we have γ∗ ∈ G∗(F )r if and only if γ ∈ G(F )r (resp., X∗ ∈ g∗(F )r if and only
if X ∈ g(F )r). Consequently, for r ∈ R, the stable distribution 1g∗(F )r transfers to 1g(F )r under
endoscopic transfer with respect to G∗ (a similar assertion involving the 1G∗(F )r and the 1G(F )r

holds, but we will not need it).

Proof. By [BKV16, Lemma B.3], g(F )r ⊂ g(F ) and g∗(F )r ⊂ g∗(F ) are stable, justifying the
stability of 1g∗(F )r . Given the simple description of transfer factors for G∗ (Remark 3.2.2(i)), and
since g(F )r ⊂ g(F ) and g∗(F )r ⊂ g∗(F ) are open and closed, the latter assertion of the lemma
follows from the former, which is a “G∗-endoscopic” form of the stability of the G(F )r and the
g(F )r. Thus, we will adapt the proof of the stability assertion in [BKV16, Lemma B.3].
We will prove the assertion involving γ and γ∗; the proof of the assertion involving X and
X∗ is similar. As in the proof of Corollary 5.3.8, we may and do assume that ψG∗ is de-
fined over a finite extension F1 of F contained in F unr. We have γ = Ad g(ψG∗(γ

∗)) for some
g ∈ G(F̄ ). Since γ, δ := ψG∗(γ

∗) ∈ G(F1), letting T be the centralizer of δ in GF1 and using
that H1(Gal(F unr/F1),T(F unr)) → H1(F1,T) is an isomorphism (by Steinberg’s theorem that
H1(F unr,TFunr) is trivial) and that H1(Gal(F unr/F1),G(F unr)) → H1(F1,GF1

) is injective, we
may assume without loss of generality that g ∈ G(F unr). Thus, there exists a finite extension F2

of F1 (and hence of F ) in F unr such that g ∈ G(F2). It follows that γ∗ ∈ G∗(F2)r if and only if
γ ∈ G(F2)r.
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Using [AD04, Lemma 2.2.3] and the fact that the finite extension F2/F is unramified, we have
G∗(F2)r ∩ G∗(F ) = G∗(F )r and G(F2)r ∩ G(F ) = G(F )r, so that γ∗ ∈ G∗(F )r if and only if
γ ∈ G(F )r, as desired. Let us remark that the assertion involving X and X∗ uses the Lie algebra
version of [AD04, Lemma 2.2.3] (for arbitrary r), which can be proved similarly (it is a simple
application of the Bruhat-Tits fixed point theorem also found in the proof of [BKV16, Lemma
B.3]). �

Proof of Proposition 5.3.5. Since p is a very good prime for G and hence also for G∗, the isogenies
Z0

G × Gsc → G and Z0
G∗ × G∗sc → G∗ have degrees prime to p, as observed in [BKV16, the proof

of Theorem 1.23]. Therefore, by Lemma 5.3.9, Z0
G × Gsc → G induces an isomorphism from

C∞c (ZG0(F )r × Gsc(F )r) ⊂ C∞c (ZG0(F ) × Gsc(F )) to C∞c (G(F )r) ⊂ C∞c (G(F )), which clearly
preserves stable orbital integrals (for compatible choices of measures). A similar comment applies
to the isogeny Z0

G∗×G∗sc → G∗. Since ψG∗ induces an isomorphism Z0
G∗ → Z0

G as well as determines
a unique inner twist from G∗sc to Gsc, and since the transfer factors all have a simple description
in our setting, it is now easy to reduce, using Lemma 5.3.9 and Lemma 5.3.10, to the case where
G is simply connected.
Moreover, as in the proof of Corollary 5.3.8, we may and do assume that ψG∗ is defined over a
finite extension F1 of F contained in F unr.
Since G and G∗ are simply connected, and since p is a very good prime for G, it follows from
[BKV16, Corollary 8.11] that G admits an r-logarithm in the sense of [BKV16, Section 1.21], which
is an Ad G(F )-equivariant homeomorphism G(F )r+ → g(F )r+ restricting to a homeomorphism
G(F )x,r+ → g(F )x,r+ for each x ∈ B(G). The same applies to G∗. Moreover, by [BKV16,
Corollary 1.9(b)], Er and E∗r are supported in G(F )r+ and G∗(F )r+, respectively, and by [BKV16,
Corollary 1.22], the push-forwards of Er and E∗r to g(F )r+ ⊂ g(F ) and g∗(F )r+ ⊂ g∗(F ) are the
restrictions of the Lie algebra versions Er and E∗r of the depth r projectors to g(F )r+ and g∗(F )r+,
respectively. Again using Lemma 5.3.10 and the fact that the transfer factors are particularly
simple in our situation, it suffices to show that the transfer of the distribution E∗r on g∗(F ) equals
the distribution Er on g(F ), where we use measures on g∗ and g that are compatible via ψG∗ (which,
being an innner twist, even induces an F -rational map at the level of top-degree differential forms).
By [BKV16, (b) of Section 1.19], Er is the inverse Fourier transform of the characteristic function of
ǧ(F )−r, where the Fourier transform is defined as in [BKV16, Section 1.18], using a fixed additive
character Λ : F → C× that is nontrivial on the ring OF of integers of F but trivial on the maximal
ideal pF of OF . We identify g with ǧ using the nice bilinear form B, so that the Fourier transform
is a map from the space of distributions on g(F ) to itself, and Er is the inverse Fourier transform
of the characteristic function 1g(F )−r of g(F )−r. The transfer B∗ of B to g∗ is nice by Corollary
5.3.8, using which we similarly realize E∗r as the inverse Fourier transform of the characteristic
function 1g∗(F )−r . Moreover, we may and do use measures on g(F ) and g∗(F ) that are self-dual
for Λ ◦ B and Λ ◦ B∗: this is because B∗ is the transfer of B, and hence this use of self-dual
measures satisfies the constraint that the measure on g∗(F ) is the transfer of the measure on g(F )
via ψG∗ .
Given this choice of measures, one knows the commutativity of endoscopic transfer and Fourier
transform (see [Wal95, Conjecture 1], which has been proved since, as explained in [KV12, Theorem
4.1.3]): if a distribution Θ∗ on g∗(F ) transfers to a distribution Θ on g(F ), then the Fourier
transform (resp., the inverse Fourier transform) of Θ∗ transfers to γΛ(B)/γΛ(B∗) times the Fourier
transform of Θ (resp., γΛ(B∗)/γΛ(B) times the inverse Fourier transform of Θ), where γΛ(B) and
γΛ(B∗) are Weil constants as in [Wal95, Section VIII.1].
Now we are reduced to showing that the distribution 1g∗(F )−r on g∗(F ) transfers to the distri-

bution e(G)γΛ(B) · γΛ(B∗)−1 · 1g(F )−r on g(F ), or equivalently to 1g(F )−r , since one knows that
e(G)γΛ(B∗)/γΛ(B) = 1: see [KV12, Proposition 4.2.2], whose restrictions are unnecessary in our
setting as mentioned in the first sentence of [KV12, Section 4.2.9, the proof of Proposition 4.2.2],
or use [Kal15, Lemma 4.8 and Proposition 4.3].
It remains to note that 1g∗(F )r transfers to 1g(F )r , which we already know from Lemma 5.3.10. �
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Proof of Corollary 5.3.4. Let us prove (i). Since the depth of a representation is the same as that
of its cuspidal support by [MP96, Theorem 5.2(1)], it follows that for each σ ∈ Irr(M) and r ≥ 0,

Êr(σ) = Êr((M, σ)) equals 1 if the depth of σ is at most r, and 0 otherwise. Thus, (i) follows if we

prove that for each r ≥ 0, Êr takes the same value on each element of Σ. But since Er ∈ Z1(G) by

[BKV16, Theorem 1.23] and the hypothesis that p is a very good prime for G, and since σ 7→ Êr(σ)
is O′M-invariant on Irr2(M) (since the action of Aut(M) on Irr(M) preserves depth), this follows
from Corollary 5.2.12(i).
For (ii), by the observation at the beginning of (i), it suffices to prove that for all r ≥ 0, σ ∈ Σ

and σ∗ ∈ Σ∗, we have Êr(σ) = Ê∗r (σ∗). But using the invariance of σ 7→ Êr(σ) and σ∗ 7→ Ê∗r (σ∗)
under O′M and O′M∗ , this follows from combining Proposition 5.3.5 with Corollary 5.2.12(ii). �

5.4. Consequences for Z1(G) and Z2(G). Let us now deduce from Corollary 5.2.12(i) that
Z1(G)O = Z2,O(G) (see Notation 5.1.6) when the hypothesis on the existence of tempered L-
packets (Hypothesis 2.7.1) is satisfied. Let us begin by restating Corollary 5.2.12(i) in the special
case that concerns us here.

Corollary 5.4.1. Suppose Σ is an OM-atomically stable discrete series L-packet (see Definition
3.3.2). Then:

(i) The Plancherel measure σ 7→ µ(σ) ([Wal03, Section V.2]) is constant on Σ.
(ii) For all z ∈ Z1(G)O and σ1, σ2 ∈ Σ, and any parabolic subgroup P of G with M as a Levi

subgroup, z acts by the same scalar on IndG
P σ1 and IndG

P σ2. In other words, if (M1, σ1)
and (M2, σ2) are cuspidal supports of elements of Σ, then ẑ((M1, σ1)G) = ẑ((M2, σ2)G).

Proof. Each OM from Notation 2.6.1 satisfies the hypotheses of Corollary 5.2.12(i), by the con-
ditions imposed in (iv) of Notation 2.6.1, and Lemma 2.6.3(ii). This also gives that for each
z ∈ Z(G)O, σ 7→ ẑ(σ) is OM-invariant in Irr2(M). Thus, the corollary follows from Corollary
5.2.12(i). �

We now prove Theorem 1.1.5, after restating it in a slightly more convenient way.

Theorem 5.4.2. Assume the hypothesis on the existence of tempered L-packets (Hypothesis 2.7.1).
Then for z ∈ Z(G), the following are equivalent:

(i) ẑ is constant on each Σ ∈ Φtemp(G) (see Notation 2.7.6 for the definition of Φtemp(G)).
(ii) z ∈ Z2,O(G).

(iii) z ∈ Z1(G)O.

Proof. Let us assume (i) and prove (ii). Since Φtemp(G) partitions Irrtemp(G) (see Lemma 2.7.7(i)),
and since each Σ ∈ Φtemp(G) is stable under the action of O, it follows that ẑ(π) = ẑ(π ◦β−1), for
all β ∈ O and π ∈ Irrtemp(G). Thus, ẑ ∈ C[Ω(G)] takes the same value on (M, σ) and β · (M, σ)
whenever (M, σ) is a cuspidal pair such that σ is unitary. But the images of such cuspidal pairs in
Ω(G) is Zariski dense (since Xunr−uni(M) ⊂ Xunr(M) is Zariski dense), so that ẑ factors through
Ω(G) → Ω(G) (set-theoretically, and hence by Corollary 4.1.7 and the reducedness of Ω(G), as a
morphism). From this and Lemma 5.1.3, we get that z ∈ Z(G)O.
Now if M ⊂ G is a Levi subgroup and Σ ∈ Φ2(M), then the constancy of ẑ on ΣG ∈ Φtemp(G)
(see (ii) and (iii) of Notation 2.7.6) implies that f 7→ ΘΣG(z ∗ f) is a scalar multiple of ΘΣG

(where ΘΣG = AvgOG
(IndG

M ΘΣ) as in Notation 2.7.6(iv), and we use the identity Θπ(z ∗ f) =
trπ(z ∗ f) = ẑ(π)Θπ(f)), which is stable as seen in Proposition 3.2.8. Hence by Hypothesis 2.7.1,

if D is the O-average of IndG
M Θ′, where M ⊂ G is a Levi subgroup and Θ′ ∈ SDell(M)OM , then

f 7→ D(z ∗f) is stable. Therefore, by the implication (iv)⇒ (i) of Proposition 5.1.8 (which applies
as z ∈ Z(G)O), we get z ∈ Z2,O(G), as desired.
The implication (ii) ⇒ (iii) is Lemma 5.1.7.
For any Levi subgroup M ⊂ G, Hypothesis 2.7.1 implies that the elements of Φ2(M) are all OM-
atomically stable (use Lemma 2.7.3(i)). Therefore, the implication (iii) ⇒ (i) is immediate from
Corollary 5.4.1(ii) and the O-invariance of z (the latter is used to account for the fact that the
description of Φtemp(G) as given by (ii) and (iii) of Notation 2.7.6 involves taking a union of
O-orbits of quotients of parabolically induced representations). �
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Lemma 5.4.3. Assume Hypothesis 2.7.1. Suppose z ∈ Z(G) is such that ẑ(π1) = ẑ(π2) whenever

π1, π2 are irreducible subquotients of IndG
M σ1, IndG

M σ2, respectively, for some Levi subgroup M ⊂ G
and representations σ1, σ2 that belong to the same element of Φ2(M). Then ẑ(π1) = ẑ(π2) whenever

π1, π2 are irreducible subquotients of IndG
M σ1, IndG

M σ2, respectively, for some Levi subgroup M ⊂ G
and representations σ1, σ2 that belong to the same element of Φ+

2 (M).

Proof. The proof is similar to the first step in that of the implication (i) ⇒ (ii) of Theorem 5.4.2.
Suppose M ⊂ G is a Levi subgroup, and σ1, σ2 belong to the same element Σ ∈ Φ+

2 (M). Since z
factors through the cuspidal support map, it is easy to see that χ 7→ ẑ(σ1⊗χ) and χ 7→ ẑ(σ2⊗χ) are
regular on Xunr(M), where for i = 1, 2, ẑ(σi⊗χ) is the scalar with which z acts on any irreducible

subquotient of IndG
M σi ⊗ χ. By hypothesis, we have ẑ(σ1 ⊗ χ) = ẑ(σ2 ⊗ χ) whenever Σ ⊗ χ is

unitary (and hence belongs to Φ2(M) ⊂ Φ+
2 (M)). Since the set of such χ is a coset of Xunr−uni(M)

in Xunr(M), and is hence Zariski dense in Xunr(M), it follows that ẑ(σ1 ⊗ χ) = ẑ(σ2 ⊗ χ) for all
χ ∈ Xunr(M). In particular ẑ(σ1) = ẑ(σ2). �

Corollary 5.4.4. Assume Hypothesis 2.7.1. If z belongs to Z1(G)O or Z2,O(G), M ⊂ G is a Levi
subgroup and σ, σ′ belong to the same element of Φ+

2 (M), then z acts by the same scalar on any

irreducible subquotient of Ind
G(F )
M(F ) σ as it does on any irreducible subquotient of Ind

G(F )
M(F ) σ

′.

Proof. This follows from Lemma 5.4.3, whose hypothesis is satisfied by either the implication (ii)
⇒ (i) (if z ∈ Z2,O(G)) or (iii) ⇒ (i) (if z ∈ Z1(G)O) of Theorem 5.4.2. �

Theorem 5.4.2 has the following corollary.

Corollary 5.4.5. Assume z ∈ Z(G). Denote by zM the image of z under what is called the
Harish-Chandra homomorphism Z(G)→ Z(M) in [BDK86, Section 2.4], i.e., the homomorphism
of C-algebras that is dual to the obvious finite morphism Ω(M) → Ω(G) induced by inclusion at
the level of cuspidal supports. If Hypothesis 2.7.1 holds and z ∈ Z1(G)O, then zM ∈ Z1(M)OM .

Proof. If L ⊂ M is a Levi subgroup and υ1, υ2 ∈ Υ for some Υ ∈ Φ2(L), then

ẑM((L, υ1)M) = ẑ((L, υ1)G) = ẑ((L, υ2)G) = ẑM((L, υ2)M),

where the middle equality holds by the implication (iii) ⇒ (i) of Theorem 5.4.2. Here, as usual,
ẑM((L, υ1)M) refers to ẑM((L′, υ′1)M), where (L′, υ′1) is a cuspidal support of (L, υ1), and the other
terms are similar. Therefore, the corollary follows from the implication (i) ⇒ (iii) of Theorem
5.4.2 applied with (M, {OL}L) in place of (G, {OL}L) (L ranging over the set of Levi subgroups
of M or G, as appropriate): this application is justified by Lemma 2.6.3(iii), which ensures the
validity Hypothesis 2.7.1 for (M, {OL}L). �

As the phrasing of Corollary 5.4.5 above indicates, we are not able to prove that z 7→ zM sends
Z1(G) to Z1(M), without using Hypothesis 2.7.1. In contrast we have:

Proposition 5.4.6. If z ∈ Z2(G), then its image zM ∈ Z(M) under the Harish-Chandra homo-
morphism belongs to Z2(M).

Proof. To make use of notation defined so far, we may and do assume thatOL is trivial for each Levi
subgroup L ⊂ G. Let L ⊂ M be a Levi subgroup and D = IndM

L Θ, where Θ ∈ SDell(L). By the
implication (iv)⇒ (i) of Proposition 5.1.8, it suffices to show that the distribution f 7→ D(zM ∗ f)
on M(F ) is stable.
Let zL ∈ Z(L) be the image of zM under the Harish-Chandra homomorphism Z(M)→ Z(L); thus,
it is also the image of z under the Harish-Chandra homomorphism Z(G)→ Z(L).

Claim 1. f 7→ D(zM ∗f) is obtained by applying IndM
L to the virtual character (f 7→ Θ(zL ∗f)) ∈

D(L).

Claim 1 follows from its own variant with (Θ, D = IndM
L Θ) replaced by (Θυ, IndM

L Θυ) for an
arbitrary υ ∈ Irr(M), which in turn follows from the chain of equalities:

(IndM
L Θυ)(zM ∗ −) = ẑM((L, υ)M)(IndM

L Θυ) = IndM
L (ẑL((L, υ)L)Θυ) = IndM

L (Θυ(zL ∗ −)).
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Thus, using that parabolic induction preserves stability, it now suffices to show that the distri-
bution f 7→ Θ(zL ∗ f) on L(F ) is stable. Therefore, we may now replace M by L and D by Θ if
necessary, and assume that D ∈ SDell(M).
Without loss of generality, we may and do assume that D ∈ SDell,ζ(M) for some ζ ∈ Xuni(AM):
this is because the projection Dell(M) → Dell,ζ(M) (which vanishes on Dell,ζ′(M) for all ζ ′ 6= ζ)
restricts to the projection SDell(M)→ SDell,ζ(M); see Remark 2.2.4.
Special case, where the stabilizer of ζ in W (M) is trivial. Let us prove the proposition in the
special case where the stabilizer of ζ in W (M) is trivial. In what follows, we will freely use that
for any D′ ∈ Dell(M) and z′M ∈ Z(M), f 7→ D′(z′M ∗ f) belongs to Dell(M) — to see this, use that
the irreducible components of a parabolically induced representation all have the same cuspidal
support. The proof of Claim 1 above, applied with (M,L) replaced by (G,M), gives:
(79)

(f 7→ (IndG
MD)(z∗f)) = IndG

M(f 7→ D(zM∗f)) = IndG
M

#W (M)−1
∑

w∈W (M)

w(f 7→ D(zM ∗ f))

 ,

where wD′(f) := D′(f ◦ Int w̃) for any D′ ∈ Dell(M) and any w̃ ∈ G(F ) representing w; note that
any such wD′ automatically belongs to Dell(M). Since the distribution in the parentheses in the
right-most term of (79) belongs to Dell(M)W (M), it follows from Proposition 3.2.8 and the fact

that (f 7→ (IndG
MD)(z ∗ f)) is stable (since z ∈ Z2(G)) that∑

w∈W (M)

w(f 7→ D(zM ∗ f)) ∈ SDell(M).

The condition imposed on ζ is easily seen to imply that the projection Dell(M)→ Dell,ζ(M) takes
the above expression to f 7→ D(zM ∗ f). Since this projection takes SDell(M) to SDell,ζ(M), we
conclude that f 7→ D(zM ∗ f) belongs to SDell,ζ(M) ⊂ SDell(M), as desired.
The general case, with ζ arbitrary. Note that for each χ ∈ Xunr−uni(M), Dχ, by which we
mean the distribution f 7→ D(fχ−1), belongs to Dell(M) and is stable (since χ factors through
M(F ) → SM(F ), which is constant on stable conjugacy classes). Thus, for each such χ, we have
Dχ ∈ SDell(M). For a nonempty open set of χ ∈ Xunr−uni(M), it is easy to see that ζ ·χ|AM(F ) does
not have a nontrivial stabilizer in W (M). Therefore, the special case above applies with D replaced
by Dχ, and we conclude that f 7→ (Dχ)(zM ∗ f) = D((zM ∗ f)χ−1) is stable, for a nonempty open
set of χ ∈ Xunr−uni(M), which is automatically Zariski dense in Xunr(M). Therefore, it follows
that for each unstable function f ∈ C∞c (M(F )), f 7→ D((zM ∗ f)χ−1) vanishes for a Zariski dense
subset of χ ∈ Xunr−uni(M). Since χ 7→ D((zM ∗ f)χ−1) is readily seen to be a regular function
of χ ∈ Xunr(M) (it is a linear combination of evaluations), it follows that D(zM ∗ f) = 0, for any
unstable function f ∈ C∞c (M(F )). This finishes the proof of the proposition. �

5.5. The images of C[Ωst(G)] and C[Ω( LG)] in Z(G). By Propositions 4.3.2 and 4.3.4, under
appropriate hypotheses we get pull-back maps:

p∗2 : C[Ωst(G)]→ C[Ω(G)] = Z(G) and p∗1 : C[Ω( LG)]→ C[Ω(G)] = Z(G).

One of the questions in [Hai14] and in the paper of Scholze and Shin (see [SS13, Section 6]) is to
characterize the image of p∗1 as being Z2(G) or Z1(G), when G is quasi-split. We will show that
both these characterizations are valid when G is quasi-split and various hypotheses hold — those
on the existence of tempered L-packets, LLC+, LLC+ and stability, and supercuspidal packets
(Hypotheses 2.7.1, 2.10.3, 2.10.12, and 2.11.1).

Proposition 5.5.1. Assume that G is quasi-split, and assume the hypotheses on the existence of
tempered L-packets and stable cuspidal support (Hypotheses 2.7.1 and 2.11.4). Then the image
p∗2(C[Ωst(G)]) ⊂ Z(G) of p∗2 equals Z2,O(G).

Proof. Since G is quasi-split and we are assuming Hypotheses 2.7.1 and 2.11.4, p2 is well-defined.
As we saw in Proposition 4.3.4, p2 factors through Ω(G)→ Ω(G).
Suppose that z ∈ Z(G) = C[Ω(G)] factors through p2, and let us show that z ∈ Z2,O(G); this will

give us that p∗2(C[Ωst(G)]) ⊂ Z2,O(G). By the implication (i)⇒ (ii) of Theorem 5.4.2 and the fact
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that z factors through Ω(G)→ Ω(G) and hence belongs to Z(G)O, this will follow if we show:
Claim. If M ⊂ G is a Levi subgroup, Σ ∈ Φ2(M) and σ, σ′ ∈ Σ, then the value taken by ẑ

on irreducible subquotients of IndG
M σ equals the value taken by ẑ on irreducible subquotients of

IndG
M σ′.

Let (M1, σ1) and (M′1, σ
′
1) be cuspidal supports for σ and σ′, respectively. The claim follows if

we show that ẑ((M1, σ1)G) = ẑ((M′1, σ
′
1)G), which in turn follows if we show that (M1, σ1)G and

(M′1, σ
′
1)G have the same image in Ωst(G) under p2. In turn, this follows if we show that any

two given stable cuspidal supports (L,Υ) and (L′,Υ′) for (M1,Σ1) and (M′1,Σ
′
1) are conjugate

under OM ◦ Int M(F ), where Σ1 ∈ Φ+
2 (M1) and Σ′1 ∈ Φ+

2 (M′1) are the packets containing σ1 and
σ′1, respectively. But this is clear from Hypothesis 2.11.4, since (L,Υ) and (L′,Υ′) are also stable
cuspidal supports for (M,Σ).
This proves the claim, and hence also the assertion that p∗2(C[Ωst(G)]) ⊂ Z2,O(G).
To finish the proof of the proposition, it suffices now to start with z ∈ Z2,O(G), and show that

ẑ ∈ C[Ω(G)] arises via pull-back from a regular function on C[Ωst(G)] with respect to p2. Define
ẑst : Ωst(G)→ C by ẑst((L,Υ)) = ẑ((L, υ)G), where υ is any element of Υ. Then ẑst is well-defined

by Corollary 5.4.4 and the fact that z is O-invariant. If (L,Υ) is any cuspidal pair for Ωst(G) and
υ ∈ Υ, then χ 7→ ẑst((L,Υ⊗ χ)) = ẑ((L, υ ⊗ χ)G) is a regular function of Xunr(SL). Therefore,

ẑst ∈ C[Ωst(G)]. Thus, it now suffices to show that ẑ = p∗2(ẑst), which is immediate from repeated
applications of Corollary 5.4.4, using the definition of stable cuspidal support. �

Corollary 5.5.2. (i) Assume the hypotheses on the existence of tempered L-packets, LLC+,
and LLC+ and stability (Hypotheses 2.7.1, 2.10.3 and 2.10.12). Then the image p∗1(C[Ω( LG)]) ⊂
Z(G) of p∗1 is contained in Z2,O(G).

(ii) Assume that G is quasi-split, and assume the hypotheses on the existence of tempered L-
packets, LLC+, LLC+ and stability, and supercuspidal packets (Hypotheses 2.7.1, 2.10.3,
2.10.12 and 2.11.1). Then the map p∗1 is injective, and its image p∗1(C[Ω( LG)]) ⊂ Z(G)
equals Z2,O(G).

Proof. In the setting of both (i) and (ii), we are assuming Hypothesis 2.10.3, so that p1 is well-
defined. Let us first prove (i), following the explanation given by Haines in [Hai14, Remark 5.5.4].
By Theorem 5.4.2, (i) follows if we show that p1 is constant on each element of Φtemp(G) ⊂
Φ(G). But this follows from Lemma 2.10.13, which holds as Hypothesis 2.10.12 (which includes
Hypotheses 2.7.1 and 2.10.3) is being assumed.
Now let us prove (ii). If G is quasi-split, the injectivity of p∗1 follows from the surjectivity of p1

at the level of C-points (see Proposition 4.3.2) and the fact that Ω( LG) is reduced. If we assume
Hypotheses 2.7.1, 2.10.3, 2.10.12, and 2.11.1, then Proposition 4.3.7 applies, so that p∗1(C[Ω( LG)])
equals p∗2(C[Ωst(G)]), which equals Z2,O(G) by Proposition 5.5.1 and the fact that Hypothesis
2.11.4 is satisfied by Proposition 2.11.6. �

Remark 5.5.3. When G is not quasi-split, the map p∗1 can fail to be injective, as is immediately
seen by looking at the Bernstein component of the trivial representation of G(F ), where G is the
algebraic group associated to D×, D being a quaternion division algebra over F . Nevertheless, it
does seem interesting to ask if p∗1 surjects onto Z2(G) when G is not quasi-split and O is trivial.
We do not know even a conjectural answer to that question.

6. Endoscopy and the stable Bernstein center

6.1. Ω(H1)µ and its map into Ω( LG). In [Hai14, Conjectures 6.2.2 and 6.2.3], Haines stated
special cases of his Z-transfer conjecture, that deals with how the stable Bernstein center should
be related to endoscopic transfer of functions. It can be viewed as a framework in which sit
results of the form “the fundamental lemma for unit elements of certain Hecke algebras implies
the fundamental lemma for their centers” (see [Hai14, shortly after Conjecture 6.2.2], as well as our
comments later in this section). At the beginning of [Hai14, Section 6.2.1], Haines remarks that,
if one could assume certain properties that are not obvious, one could formulate a more general
version of this conjecture. In this section, we use our study of the various Bernstein varieties to
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formulate and prove, of course only under several hypotheses, a general version of the Z-transfer
conjecture in the setting of twisted endoscopy. These considerations are too ‘soft’ to explicitly
invoke any of the deep aspects of the theory of endoscopy, but they do require us to involve a lot
of notation pertaining to it.

Notation 6.1.1. For this section, we fix the following objects:

(i) Let G̃,a, ω be as in Subsection 3.1. We impose the hypothesis of Notation 3.1.1 on

(G, G̃,a).

(ii) We realize LG as Ĝ o WF , and fix an automorphism θ̂ of Ĝ that preserves a Γ-fixed

pinning, which is dual to Int δ for any δ ∈ G̃(F̄ ) that is semisimple in the sense discussed
at the beginning of [MW16, Section I.1.3] (the existence of such a δ is automatic; the ‘θ∗

is of finite order’ hypothesis from [MW16, Section I.1.5], imposed in Notation 3.1.1 which
was in turn imposed above, implies that the notion of ‘semisimple’ from [MW16, Section
I.1.3], as remarked in that reference, coincides with the usual one).

(iii) Form the ‘twisted space’ Ĝθ̂ ⊂ LG̃ := LGθ̂ as in [MW16, Section I.1.4].

(iv) Fix an endoscopic datum H = (H,H, s̃) for (G, G̃,a) (the notation is chosen as in [MW16,
Section I.1.5]), which is relevant in the sense described in [MW16, Section I.1.8] (i.e., there

exist δ ∈ H(F ) and γ ∈ G̃(F ), with γ strongly regular, such that their conjugacy classes
match). We do not require this endoscopic datum to be elliptic (thus, it may not belong

to E(G̃,a) in the sense of Notation 3.1.2(i)). Here, the element s̃ belongs to the twisted

space Ĝθ̂ ⊂ LG̃.
(v) Fix a continuous section c : WF → H to H → WF ; such a section exists since by the

definition of an endoscopic datum, H is a topologically split extension of Ĥ by WF . Hence,

mapping each (ĥ, w) ∈ Ĥ×WF to the element ĥc(w) ∈ H gives an isomorphism ĤocWF →
H of topological groups, where ‘oc’ indicates that the action of WF on Ĥ is not ‘the usual
one’ associated to a preferred section, but the one obtained by composing Int with c.

(vi) Choose auxiliary data (H1 → H, ξ̂1, H̃1 → H1,C1, µ) as in Notation 3.1.2(iii), associated
to this endoscopic datum; in particular, we impose the condition of [MW16, Section I.7.1,
(3)] (which will be partially recalled in the proof of Lemma 6.1.10 below) using the fact
that ω is unitary, with the consequence that µ is unitary. Further, write j : C1 ↪→ H1

for the obvious inclusion, and Lj : LH1 → LC1 for a homomorphism dual to j, which is
determined up to Ĉ1-conjugation. We will have occasion to use that the following sequence
is exact:

(80) 1→ Ĥ ↪→ LH1

Lj→ LC1 → 1,

where Ĥ ↪→ LH1 is obtained by restricting any embedding LH ↪→ LH1 dual to H1 → H,
and the map LH1 → LC1, which could be taken to be any map dual to C1 ↪→ H1, is being
taken to be Lj.

(vii) Later, we will assume that we are in one of the following two scenarios:
• Scenario 1. We assume given a collection of automorphisms as in Notation 2.6.1, but

with G replaced by H1: thus, in particular, for each Levi subgroup M1 ⊂ H1, we have
a group OM1 of automorphisms of M1 (in particular, this defines the group OH1 of
automorphisms of H1). We suppose, further, that each of these automorphisms acts
as the identity on C1.
• Scenario 2. In this scenario, µ is assumed to be trivial, H is assumed to be given an

identification with LH whose composite with some map LH ↪→ LH1 dual to H1 → H

equals the auxiliary datum ξ̂ : H ↪→ LH1 (a little bit about which is recalled in

Remark 6.1.2(i) below), H̃ is assumed to be the trivial (H,H)-bitorsor H together
with its usual left and right multiplication actions, and we assume given a collection
of automorphisms as in Notation 2.6.1, but with G replaced by H: thus, in particular,
for each Levi subgroup MH ⊂ H, we have a group OMH of automorphisms of MH (in
particular, this defines the group OH of automorphisms of H).
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For most of what follows, our preparatory steps will assume that we are in Scenario 1 rather than
Scenario 2 of Notation 6.1.1(vii) above, Scenario 2 being essentially a special case.

Remark 6.1.2. At this point, it helps us to recall from [MW16, Section I.2.1] what ξ̂1 is, and
how one can obtain µ from it:

(i) ξ̂1 : H ↪→ LH1 is an injective homomorphism compatible with the projections to WF , and

whose restriction to Ĥ ⊂ H is a homomorphism Ĥ ↪→ Ĥ1 that is dual to H1 → H.
(ii) The character µ : C1(F ) → C× has Langlands parameter ϕµ represented by the homo-

morphism

(81) WF
∼= H/Ĥ

ξ̂1
↪→ LH1/Ĥ

Lj→ LC1

(use (80)), which can also be described as:

Lj ◦ ξ̂1 ◦ c : WF → LC1.

We would now like to define sets Ω(H) and Ω′(H) = Φ(H) of infinitesimal characters and Langlands
parameters valued in H, respectively. For this, we will need to study semisimple, elliptic and
hyperbolic elements of H.

Notation 6.1.3. (i) An element x ∈ H is said to be semisimple if the automorphism Intx

of Ĥ preserves a maximal torus of Ĥ (thus, this is just like Definition 2.8.1(i)).

(ii) We will denote by Ω′(H) = Φ(H) the set of Ĥ-conjugacy classes of homomorphisms ϕ̇ :
W ′F = WF × SL2(C) → H that are admissible in the sense of satisfying the following

three properties: they are continuous, they restrict to an algebraic map valued in Ĥ on
the SL2(C)-factor, and they satisfy that for all w ∈ WF , ϕ̇(w) is a semisimple element
of H (in the sense of (i) above) that maps to w under H → WF (perhaps the ‘relevance’
condition can be considered automatic as H is quasi-split). Similarly, we define Ω(H), a

collection of Ĥ-conjugacy classes of homomorphisms WF → H that are admissible in a
similar sense.

Remark 6.1.4. The notation Ω′(H) is more technically appropriate, but the notation Φ(H) seems
more relatable, and hence will be used in what follows.

Lemma 6.1.5. Let x ∈ H. Then x is semisimple if and only if its image ξ̂1(x) ∈ LH1 is
semisimple (in the sense of Definition 2.8.1(i), or equivalently by Lemma 2.8.5(i), in the usual
sense). Moreover, if x is semisimple then its image under H ↪→ LG is semisimple.

Proof. The centralizer of a maximal torus of Ĥ in Ĥ1 (resp., Ĝ) is a maximal torus of Ĥ1 (resp.,

Ĝ). Since the intersection of a maximal torus of Ĥ1 with Ĥ is a maximal torus of Ĥ as well, the
lemma follows. �

Lemma 6.1.6. (i) The inclusion H ↪→ LG induces a well-defined map Ω(H)→ Ω( LG), and
a well-defined map ΦG−rel(H)→ Φ(G), where ΦG−rel(H) ⊂ Φ(H) is the subset represented
by those admissible homomorphisms W ′F → H whose composite with H ↪→ LG is relevant.

(ii) The inclusion ξ̂1 : H ↪→ LH1 induces well-defined maps Ω(ξ̂1) : Ω(H) → Ω( LH1)µ and

Φ(ξ̂1) : Φ(H) → Φ(H1)µ, where Ω( LH1)µ ⊂ Ω( LH1) and Φ(H1)µ ⊂ Φ(H1) are respec-
tively the preimages of the Langlands parameter ϕµ ∈ Ω( LC1) = Φ(C1) of µ under the
maps Ω( Lj) : Ω( LH1) → Ω( LC1) and Φ( Lj) : Φ(H1) → Φ(C1), respectively (induced by
composition with Lj : LH1 → LC1).

Proof. (i) follows easily from Lemma 6.1.5. Lemma 6.1.5 also easily gives the part of (ii) that

asserts that composition with ξ̂1 induces well-defined maps Ω(ξ̂1) : Ω(H) → Ω( LH1) and Φ(ξ̂1) :
Φ(H) → Φ(H1) (the condition of relevance is not relevant in (ii), since H1 is quasi-split). Thus,

it suffices to note that the images of Ω(ξ̂1) and Φ(ξ̂1) are contained in Ω(H1)µ and Φ(H1)µ,
respectively, which follows from the definition of µ (see Remark 6.1.2(ii)). �

The following records notation, including from Lemma 6.1.6, that will be used in what follows.
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Notation 6.1.7. (i) Henceforth, Ω( Lj) : Ω( LH1)→ Ω( LC1) = Φ(C1) and Φ( Lj) : Φ(H1)→
Φ(C1) = Ω( LC1) will denote maps induced by composition with the homomorphism
Lj : LH1 → LC1.

(ii) Henceforth, Ω( LH1)µ and Φ(H1)µ will denote respectively the inverse images of the Lang-
lands parameter ϕµ ∈ Ω( LC1) = Φ(C1) of µ under Ω( Lj) and Φ( Lj). It is easy to see
from Proposition 4.1.4(ii) that the map Ω( Lj) : Ω( LH1)→ Ω( LC1) of varieties is regular,
so Ω( LH1)µ is a closed subvariety of Ω( LH1).

(iii) Henceforth, Ω(ξ̂1) : Ω(H) → Ω( LH1)µ ⊂ Ω( LH1) and Φ(ξ̂1) : Φ(H) → Φ(H1)µ ⊂ Φ(H1)

will respectively denote the maps induced by composition with ξ̂1.
(iv) Henceforth, Ω(H) → Ω( LG) and ΦG−rel(H) → Φ(G) will denote the maps induced by

the inclusion H ↪→ LG, where ΦG−rel(H) is the set of Ĥ-conjugacy classes of admissible
homomorphisms W ′F → H whose composite with H → LG is relevant; see Lemma 6.1.6(i).

(v) Let Φtemp(H) be inverse image of Φtemp(H1) under Φ(ξ̂1) : Φ(H) → Φ(H1), and let
Φtemp,G−rel(H) = Φtemp(H) ∩ ΦG−rel(H) ⊂ Φ(H). We also set Φtemp(H1)µ := Φ(H1)µ ∩
Φtemp(H1).

Remark 6.1.8. The object Φtemp(H) is not intrinsic to H; it also depends on the embedding

ξ̂1 : H ↪→ LH1. Thus, we are resorting to an abuse of notation. Unlike semisimplicity (Notation
6.1.3(i)), we do not know how to define the notion of ellipticity intrinsically for elements of H;
we do not know how to make up for the absence of a preferred section. However, in Lemma
6.1.10 below, we will show that the image of Φtemp(H) under Φ(H) → Φ(G) consists of bounded
parameters; this will make crucial use of our having imposed [MW16, Section I.7.1, (3)], which
had the consequence that µ is unitary.

Lemma 6.1.9. The maps Ω(ξ̂1) : Ω(H)→ Ω( LH1)µ and Φ(ξ̂1) : Φ(H)→ Φ(H1)µ are bijections.

Proof. We will prove the former assertion; the latter assertion can be proved similarly.
Note that given an admissible homomorphism λ : WF → LH1,

(i) λ is obtained by composing a map λH : WF → H with ξ̂1 if and only if Lj ◦ λ equals the
homomorphism (81) representing µ (use Remark 6.1.2(ii)), in which case the factored map
λH : WF → H is uniquely determined and represents an element of Ω(H) (use Lemma
6.1.5 and the fact that H ↪→ LH1 is topologically proper and hence a homeomorphism
onto its image); and

(ii) λ represents an element of Ω( LH1)µ if and only if Lj ◦ λ parameterizes µ, i.e., is Ĉ1-
conjugate to (81).

Since ZĤ1
→ Ĉ1 is surjective, any λ : WF → LH1 as in (ii) can be ZĤ1

-conjugated so as to be as in

(i). This gives the surjectivity of Ω(ξ̂1). Therefore, it suffices to show the injectivity of Ω(ξ̂1), i.e., to

show that if two admissible homomorphisms λ1, λ2 : WF → H satisfy that ξ̂1◦λ2 = Int ĥ1◦(ξ̂1◦λ1)

for some ĥ1 ∈ Ĥ1, then λ2 = Int ĥ ◦ λ1 for some ĥ ∈ Ĥ.

If ẑ1 is the image of ĥ1 in Ĉ1, then the equality Lj ◦ ξ̂1 ◦ λ2 = Lj ◦ ξ̂1 ◦ c = Lj ◦ ξ̂1 ◦ λ1 gives that

ẑ1 commutes with the image of Lj ◦ ξ̂1 ◦λ1. Since Ĉ1 is abelian, we conclude that ẑ1 ∈ Ĉ1 belongs
to the subgroup (Ĉ1)WF fixed by WF . Therefore, it now suffices to show that ZWF

Ĥ1
→ (Ĉ1)WF is

surjective — since conjugation by ZWF

Ĥ1
centralizes ξ̂1(H), this will allow us to modify ĥ1 so as to

have trivial image in Ĉ1, i.e., to belong to Ĥ ⊂ Ĥ1.

Since C1 is an induced torus, it is easy to see that ĈWF
1 = Ĉ

Gal(F̄ /F )
1 is connected (this is a special

case of the Kottwitz isomorphism for H1(WF ,C1)). Thus, ĈWF
1 is a complex torus. Since the

image of of ZWF

Ĥ1
in it is an algebraic subgroup, it is now enough to show that some finite power

of every element of ĈWF
1 belongs to the image of ZWF

Ĥ1
. Since the actions of Gal(F̄ /F ) on Ĉ1 and

ZĤ1
factor through a common finite quotient, say Gal(E/F ), this follows from the surjectivity of

ZĤ1
→ Ĉ1 together with averaging by the action of Gal(E/F ). �
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Lemma 6.1.10. If ϕ ∈ Φ(H), then ϕ belongs to Φtemp(H) if and only if its image in Φ(G) belongs
to Φtemp(G).

Proof. Let ϕ̇ : W ′F → H represent ϕ. It is easy to check that the boundedness of an admissible
homomorphism WF → LM over WF (see Definition 2.8.1(iii)), where M is any reductive group
over F , can be tested after restricting to WE for any choice of a finite extension E/F , in terms of
a condition involving an expression of the form ϕ̇(WE) ⊂ Cs(WE). We choose E ⊂ F̄ so that G
and H1 split over E, and hence so does H as well.
Suppose we can prove that there exists a subset S ⊂ H with the following properties:

• The image of S under the projection H →WF equals WE ; and
• For some (or equivalently any) preferred sections s : WF → LG and s1 : WF → LH1 of
LG and LH1, respectively, there exist compact subsets C ⊂ Ĝ and C1 ⊂ Ĥ1 such that the

image of S in LG is contained in C · s(WE) and the image ξ̂1(S) of S in LH1 is contained
in C1 · s1(WE).

Then, using restriction to WE as mentioned above, it is easy to check that the boundedness of

ξ̂1 ◦ ϕ̇ and that of (H ↪→ LG) ◦ ϕ̇ are each equivalent to the existence of a bounded subset CH ⊂ Ĥ
such that ϕ̇(WE) ⊂ CH · S, and hence to each other as well.
Thus, it remains to prove the existence of S as above. For this, we begin by recalling some objects
from the proof of [MW16, Lemma I.7.1]. Recall that in Notation 6.1.1(ii), we fixed a pinning of

Ĝ that is invariant under Γ and θ̂, realizing LG as ĜoWF . We assume without loss of generality
that there exists an element s belonging to the maximal torus T̂ ⊂ Ĝ underlying that pinning,

such that s̃ := sθ̂ (recall that we wrote our endoscopic datum as (H,H, s̃)). Intersecting with Ĥ,

we get a Borel pair of Ĥ, whose underlying maximal torus is T̂Ĥ := (T̂θ̂)0, and which we extend

to a pinning of Ĥ. We may and do assume that LH1 is realized as Ĥ1 oWF using the transfer of

this pinning via ξ̂1. The maximal torus of Ĥ1 underlying this transferred pinning, which we will

denote by T̂1, is the centralizer of ξ̂1(T̂Ĥ) in Ĥ1.

For each w ∈WE , we fix some gw := (g(w), w) ∈ Ĝ×WE ⊂ ĜoWF = LG that belongs to H and

preserves the pinning of Ĥ just fixed. Write ξ̂1(gw) = (ζ1(w), w) for some ζ1(w) ∈ Ĥ1. Since ξ̂1(gw)

fixes a pinning of Ĥ1, and since WE acts trivially on Ĥ1, we have ζ1(w) ∈ ZĤ1
. This also implies

that for all w ∈ WE , g(w) commutes with T̂Ĥ and hence belongs to T̂. We have the embedding

t 7→ (ξ̂1(t)−1, t) of T̂Ĥ in T̂1 × T̂.

Now [MW16, Lemma I.7.1] gives the following: for w ∈ WE , there exist t(w) ∈ T̂Ĥ, a hyperbolic

element z(w) ∈ ZΓ,0

Ĥ1
and a compact element (u1(w), u(w)) ∈ T̂1 × T̂, such that (ζ1(w), g(w)−1) ∈

T̂1× T̂ can be written as (z(w), 1)(ξ̂1(t(w))−1, t(w))(u1(w), u(w)). We claim that z(w) = 1 for all
w ∈ WE . By (1) of [MW16, Section I.7.1], w 7→ z(w) extends to a unique homomorphism from

WF to the group of hyperbolic elements in ZΓ,0

Ĥ1
. Our having imposed [MW16, Section I.7.1, (3)]

implies that this latter homomorphism is trivial, so that z(w) is trivial for all w ∈WE . Therefore,
we conclude that for all w ∈ WE , the element (u(w)−1, w) = (g(w)t(w), w) = t(w)(g(w), w) ∈ H
(note that g(w), t(w) ∈ T̂ commute with each other) satisfies that:

ξ̂1(u(w)−1, w) = ξ̂1(t(w))(ζ1(w), w) = (u1(w), w).

Therefore, we can take S = {(u(w)−1, w) | w ∈ WE} ⊂ H, and the given conditions are satisfied

with C (resp., C1) equal to the set of compact elements of T̂ (resp., T̂1). �

Notation 6.1.11. (i) Denote by Ω(H) : Ω( LH1)µ → Ω( LG) the unique map such that

Ω(H) ◦Ω(ξ̂1) equals the map Ω(H)→ Ω(G) of Notation 6.1.7(iv); note that the existence
and uniqueness of Ω(H) follows from Lemma 6.1.9.

(ii) Let ΦG−rel(H1)µ ⊂ Φ(H1)µ (resp., Φtemp,G−rel(H1)µ ⊂ Φtemp(H1)µ) denote the image of

ΦG−rel(H) (resp., Φtemp,G−rel(H)) under the bijection Φ(ξ̂1) : Φ(H)→ Φ(H1)µ (see Lemma

6.1.9). Thus, using Φ(ξ̂1) and the map ΦG−rel(H) → Φ(G) (see Notation 6.1.7(iv)), we
get a map Φ(H) : ΦG−rel(H1)µ → Φ(G).
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(iii) It follows from Lemma 6.1.10 that the map ΦG−rel(H) → Φ(G) takes Φtemp,G−rel(H) to
Φtemp(G). Thus, Φ(H) restricts to a map Φtemp,G−rel(H1)µ → Φtemp(G), which will also
be denoted Φ(H).

(iv) We transfer the variety structure on the closed subvariety Ω( LH1)µ ⊂ Ω( LH1) (see Nota-

tion 6.1.7(ii)) to Ω(H) via the bijection Ω(ξ̂1) : Ω(H)→ Ω( LH1)µ.

We will see in Lemma 6.1.21 below that Ω( LH1)µ → Ω( LG) is a regular morphism of varities. For
this, we now proceed to understand the variety structure on Ω(H) better, by giving a description
for it along the lines of the variety structure on Ω( LG).

Notation 6.1.12. By a Levi subgroup of H, we mean a subgroup of H of the form MH :=

ξ̂−1
1 (M1) (i.e., “M1∩H”), whereM1 is a Levi subgroup of LH1. Since LH1 = ZĤ1

·ξ̂1(H), it follows

that M1 = ZĤ1
· ξ̂1(MH), so that MH → WF is a surjection. Clearly, M1 7→ MH = ξ̂−1

1 (M1)

gives a bijection between Levi subgroups of LH1 and Levi subgroups of H, whose inverse takes

MH to ZĤ1
· ξ̂1(MH). Note also that for any Levi subgroupMH ⊂ H,M0

H :=MH ∩ Ĥ is a Levi

subgroup of Ĥ, and hence a connected reductive complex algebraic group.

Lemma 6.1.13. Given an admissible homomorphism λH : WF → H (see Notation 6.1.3(ii)), any
two Levi subgroups of H that contain λH(WF ) minimally are conjugate under the centralizer of

λH(WF ) in Ĥ.

Proof. Note that if MH contains λH(WF ) minimally, then MH = ξ̂−1
1 (M1) for some Levi sub-

group M1 ⊂ LH1 that contains λ1(WF ) minimally, where λ1 = ξ̂1 ◦ λH. Thus, it is enough to
show that any two Levi subgroupsM1,M′1 ⊂ LH1 that contain λ1(WF ) minimally are conjugate

to each other under ξ̂1(ĥ), for some ĥ ∈ Ĥ that centralizes λH(WF ). By [Bor79, Proposition 3.6],

M1 andM′1 are conjugate to each other under some ĥ1 ∈ Ĥ1 that centralizes λ1(WF ). The image

of ĥ1 in Ĉ1 belongs to (Ĉ1)WF , since this image centralizes Lj ◦ λ1 and since Ĉ1 is abelian. Since

ZWF

Ĥ1
→ (Ĉ1)WF is surjective, as we saw in the proof of Lemma 6.1.9, we can therefore modify ĥ1

by an element of ZWF

Ĥ1
to have trivial image in Ĉ1, i.e., ĥ1 ∈ ξ̂1(Ĥ). �

Notation 6.1.14. (i) Let MH ⊂ H be a Levi subgroup. By abuse of notation, we will refer
to (MH, λH) as a cuspidal pair for Ω(H) if λH : WF → H is an admissible homomorphism
such that MH is minimal among the Levi subgroups of H that contain λH(WF ).

(ii) (Compare with Notation 4.1.10). LetMH ⊂ H be a Levi subgroup. We write Ω(MH)0 for
the set ofM0

H-conjugacy classes of cuspidal pairs of the form (MH, λH), and (MH, λH)M0
H

(resp., (MH, λH)Ĥ) for the M0
H-conjugacy class (resp., Ĥ-conjugacy class) of a given

cuspidal pair (MH, λH).
(iii) (Compare with Remark 4.1.3(a)). By Lemma 6.1.13, we may and shall also view Ω(H) as

the set of Ĥ-conjugacy classes of cuspidal pairs for Ω(H), by identifying the Ĥ-conjugacy

class (λH)Ĥ of an admissible homomorphism λH : WF → H with the Ĥ-conjugacy class

(MH, λH)Ĥ of any cuspidal pair of the form (MH, λH). With this identification, Ω(ξ̂1)

takes (MH, λH)Ĥ to (M1, λ1)Ĥ1
, where λ1 = ξ̂1 ◦ λH, and M1 ⊂ LH1 is the unique Levi

subgroup with ξ̂−1
1 (M1) =MH.

(iv) If M1 ⊂ LH1 is a Levi subgroup, we will also make use of the map Ω(MH)0 → Ω(M1)0

(where Ω(M1)0 is as in Notation 4.1.10) induced by ξ̂1, where MH = ξ̂−1
1 (M1).

(v) (Compare with Notation 4.1.8 and Notation 4.1.11). Let MH ⊂ H be a Levi subgroup.
One makes WF act on ZM0

H
exactly as in Notation 4.1.8 (i.e., as in Remark 2.3.2), via a

chain WF = MH/M0
H → Out(M0

H) → Aut(ZM0
H

). If (MH, λH) is a cuspidal pair for

Ω(H) and z ∈ ZWF ,0
M0
H

= (ZMH ∩ M0
H)0 = Z0

MH = H1(WF /IF ,Z
0
MH), we let (MH, z ·

λH)M0
H

be the M0
H-conjugacy class of the pair (MH, w 7→ α(w)λH(w)), where α ∈

Z1(WF ,Z
0
MH) is a cocycle representing z ∈ Z0

MH = H1(WF /IF ,Z
0
MH). This is readily
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verified to define an action of Z0
MH on Ω(MH)0, which is immediately verified to descend

via Z0
MH = ZWF ,0

M0
H
→ (ZIFM0

H
)0
Fr.

Lemma 6.1.15. Let MH ⊂ H,M1 ⊂ LH1 be Levi subgroups, with MH = ξ̂−1
1 (M1). Consider

the variety structure on Ω(M1)0 as in Remark 4.1.13. The map Ω(MH)0 → Ω(M1)0 induced

by the map sending a cuspidal pair (MH, λH) to (M1, ξ̂1 ◦ λH), is a bijection from Ω(MH)0

to the closed subvariety Ω(M1)0,µ ⊂ Ω(M1)0 consisting of M0
1-conjugacy classes of admissible

homomorphisms λ1 : WF →M1 ⊂ LH1 such that Lj ◦ λ1 represesents µ.

Proof. It is easy to see that the map Ω(M1)0 → Ω( LC1) induced by composition with Lj is
a morphism of varieties, so that Ω(M1)0,µ is a closed subvariety of Ω(M1)0. That the given
map is a bijection Ω(MH)0 → Ω(M1)0,µ follows exactly as in the proof of the bijectivity of

Ω(H)→ Ω( LH1)µ in Lemma 6.1.9: the surjectivity of the map uses the surjectivity of ZĤ1
→ Ĉ1,

while its injectivity uses the surjectivity of ZWF

Ĥ1
→ (Ĉ1)WF ; both of these help here as well, since

ZĤ1
⊂M0

1, and since M1 = ZĤ1
· ξ̂1(MH). �

Notation 6.1.16. For any Levi subgroupMH ⊂ H, give Ω(MH)0 the variety structure obtained
by transport via its bijection with the closed subvariety Ω(M1)0,µ ⊂ Ω(M1)0 as in Lemma 6.1.15.

In Corollary 6.1.19 below, we will describe the variety structure on Ω(MH)0 more explicitly and
intrinsically, in the spirit of Remark 4.1.13, so as to use it later for a more explicit and intrinsic
description of the variety structure on Ω(H).

Lemma 6.1.17. Let M1 ⊂ LH1 be a Levi subgroup, and let MH = ξ̂−1
1 (M1). For simplicity,

think of ξ̂1 and the map Ω(MH)0 → Ω(M1)0 as inclusions (the latter as justified by Lemma
6.1.15). Then each Z0

M1
-orbit in Ω(M1)0 intersects Ω(MH)0 in a finite (possibly empty) union

of Z0
MH-orbits.

Remark 6.1.18. While we have not verified if the number of orbits in the statement of Lemma
6.1.17 is at most one, that seems unlikely to us, for the same reason that the composite sgnunr ◦ det
of the unramified sign character and the determinant on GL2(F ) descends to a character of
PGL2(F ) which is not unramified. The proof will be longer than necessary, so as to potentially
help locate the possible failure.

Proof of Lemma 6.1.17. Without loss of generality assume that the Z0
M1

-orbit contains the im-

age of a cuspidal pair for Ω(H) of the form (MH, λH). Suppose an element z1 ∈ Z0
M1

takes

(MH, λH)M0
H

to another element of Ω(MH)0. Applying Lj, we find that Lj(z1) ∈ (Ĉ1)WF

maps to the identity element of H1(WF , Ĉ1), under the chain (Ĉ1)WF = H1(WF /IF , (Ĉ1)WF )→
H1(WF /IF , (Ĉ1)IF ) ⊂ H1(WF , Ĉ1).
Now the sequence

1→ ZM0
H
→ ZM0

1
→ Ĉ1 → 1

is exact, and remains so after taking IF -invariants, since (Ĉ1)IF is connected (as C1 is an induced

torus, so that X∗(Ĉ1) = X∗(C1) has a basis permuted by WF ⊃ IF ). Applying H1(WF /IF , ·),
it follows that the image of z1 in (ZIFM0

1
)0
Fr lies in the image of (ZIFM0

H
)Fr → (ZIFM0

1
)Fr, which is

a finite union of translates of the image of (ZIFM0
H

)0
Fr → (ZIFM0

1
)0
Fr. Thus, we are done, since on

the one hand the action of Z0
MH on Ω(MH)0 factors through the isogeny Z0

MH → (ZIFM0
H

)0
Fr ⊂

H1(WF /IF ,Z
IF
M0
H

), while the action of Z0
M1

on Ω(M1)0 factors through the isogeny Z0
M1
→

(ZIFM0
1
)0
Fr, and these actions are compatible in an obvious sense. �

Corollary 6.1.19. Let MH ⊂ H be a Levi subgroup. For any complex variety Y, a map f :
Ω(MH)0 → Y is regular if and only if for each cuspidal pair for Ω(H) of the form (MH, λH), the
map Z0

MH → Y given by z 7→ f((MH, z · λH)M0
H

) is regular.
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Proof. We again view ξ̂1 as an inclusion, and identify Ω(MH)0, using Lemma 6.1.15, as the
closed subvariety Ω(M1)0,µ ⊂ Ω(M1)0, where M1 ⊂ LH1 is the unique Levi subgroup with
M1 ∩ H = MH. Recall that, by Remark 4.1.13, Ω(M1)0 is a countable union of orbits of Z0

M1
,

with each orbit, say A, identifying via an orbit map as a torsor under a quotient Z0
M1

/(Z0
M1

)A of

Z0
M1

by a finite subgroup (Z0
M1

)A.
Further, by Lemma 6.1.17, the intersection of each such orbit A with Ω(MH)0 is either empty
or a finite union of torsors under a quotient Z0

MH/(Z
0
MH)B , where (Z0

MH)B identifies with the

finite subgroup (Z0
M1

)A∩Z0
MH ⊂ Z0

MH , making Z0
MH/(Z

0
MH)B a subtorus of Z0

M1
/(Z0
M1

)A. Since
Ω(MH)0 gets its variety structure from its being a Zariski closed subset of Ω(M1)0, it follows
that Ω(MH)0 with its Z0

MH -action identifies with a countable disjoint union of torsors under finite

quotients of Z0
MH . Since quotients by finite abstract groups over fields of characteristic zero are

good and hence categorical, the corollary follows. �

Now we can give a more explicit description of the variety structure on Ω(H).

Lemma 6.1.20. The variety structure on Ω(H) in Notation 6.1.11(iv) has the following property:
for any complex variety Y, a map f : Ω(H) → Y is regular if and only if for each cuspidal pair
(MH, λH) for Ω(H), the map Z0

MH → Y given by z 7→ f((MH, z · λ)Ĥ) is regular.

Proof. For lightness of notation, we will again think of ξ̂1 as an inclusion H ⊂ LH1, and Ω(H) as
the subvariety Ω( LH1)µ of Ω( LH1), etc. We write as in (52) (but with the trivial group taking
the place of O+

G):

(82) Ω( LH1) =
⊔
M1

Ω(M1)0/W (M1).

An analogous set-theoretic decomposition is easy to see from the discussion of Notation 6.1.14(iii):

(83) Ω(H) =
⊔
MH

Ω(MH)0/W (MH),

where MH runs over a set of representatives for the Ĥ-conjugacy classes of Levi subgroups of H,
and W (MH) is the quotient, of the normalizer of MH in Ĥ, by M0

H. For each Levi subgroup
MH =M1∩H ⊂ H, whereM1 ⊂ LH1 is a Levi subgroup, it is easy to see, exactly as in the proof
of Lemma 6.1.15 (or equivalently as in the proof of Lemma 6.1.9), that Ω(MH)0/W (MH) ⊂ Ω(H)
is the intersection of Ω(M1)/W (M1) with Ω(H) inside Ω( LH1), and thus that it is a closed
subvariety of Ω(H) ⊂ Ω( LH1).
By Corollary 6.1.19 and the fact that any quotient by the finite group W (MH) is good and hence
categorical, it suffices to show that the set-theoretic map Ω(MH)0 → Ω(MH)0/W (MH) between
algebraic varieties is a quotient map of its source by W (MH): this reduction uses that for each

ĥ ∈ Ĥ, z 7→ f((Int ĥ(MH), z · (Int ĥ ◦ λ))Ĥ) is a regular map Z0
Int ĥ(MH)

→ Y if and only if

z 7→ f((MH, z · λ)Ĥ) is a regular map Z0
MH → Y: this is so because the latter is the pull-back of

the former under the isomorphism Int ĥ : Z0
MH → Z0

Int ĥ(MH)
(this verification ensures that what

we prove for a chosen set of Levi subgroups of H applies to all Levi subgroups of H).

It is easy to see that the inclusion W (MH)→W (M1) is an isomorphism (use that Ĥ1 = ZĤ1
· Ĥ),

and that the closed subvariety Ω(MH)0 ⊂ Ω(M1)0 is invariant under the action of W (MH) =
W (M1). Therefore, the required claim (that Ω(MH)0 → Ω(MH)0/W (MH) is a quotient map)
follows from [Dré04, Proposition 2.18] and the fact that Ω(M1)0 → Ω(M1)0/W (M1) is a quotient
map (as per the construction in the proof of Proposition 4.1.4). �

Lemma 6.1.21. The map Ω(H) : Ω( LH1)µ → Ω( LG) of sets is a regular morphism of algebraic
varieties.

Proof. Since Ω(ξ̂1) : Ω(H) → Ω( LH1)µ is an isomorphism of varieties, it is enough to show that
the map Ω(H)→ Ω( LG) induced by the inclusion H ↪→ LG is a regular morphism. Let (MH, λH)
be a cuspidal pair for H. Denote by Ω([MH, λH]Ĥ) the connected component of Ω(H) containing
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(λH)Ĥ. Then by Lemma 6.1.20, Ω([MH, λH]Ĥ) is the image of Z0
MH under the finite morphism

z 7→ (MH, z · λH)Ĥ.

As in [MW16, Section I.3.4] (but without any renormalization of the WF -action on Ĥ), let M be

the centralizer of Z0
MH = ZWF ,0

M0
H

in LG ⊃ H, where we think of the map H → LG as an inclusion.

By choosing a cocharacter that is in ‘general position’ among those valued in Z0
MH , and using that

the map M ↪→ LG→ WF is surjective (since M ⊃MH ⊃ λH(WF )), it is easy to see that M is
a Levi subgroup of LG (which may not be relevant, but that does not concern us). It is obvious

that Z0
MH ⊂ Z0

M. We will not need the more precise fact, which one can prove, that Z0
MH = Zs̃,0M .

Write λ for λH, when viewed as valued in LG ⊃ H. Thus, λ(WF ) = λH(WF ) ⊂ MH ⊂ M, so
that M contains λ(WF ), though not necessarily minimally. Let M′ ⊂ M be a Levi subgroup of
LG containing λ(WF ) minimally.
Thus, the connected component Ω([MH, λH]Ĥ) ⊂ Ω(H) containing (MH, λH)Ĥ and the connected

component Ω([M′, λ]Ĝ) ⊂ Ω( LG) containing (M′, λ)Ĝ belong to the following diagram whose
commutativity is clear:

(84) Z0
MH

����

� � // Z0
M
� � // Z0

M′

����
Ω([MH, λH]Ĥ) // Ω([M′, λ]Ĝ)

,

where the vertical arrows are surjections, given by z 7→ (MH, z · λH)Ĥ and z 7→ (M′, z · λ)Ĝ,
respectively. The right vertical arrow is algebraic by Corollary 4.1.6. Using this, it is easy to
conclude from Lemma 6.1.20 that the bottom horizontal arrow is algebraic. This shows that
the map Ω(H) → Ω( LG) is an algebraic map, being algebraic on each component of Ω(H), as
required. �

Remark 6.1.22. Note that the proof of Lemma 6.1.21 would be harder if we worked with (ZIFM0
H

)0
Fr

and (ZIFM′0)0
Fr instead of with Z0

MH and Z0
M′ .

Since we can only map Ω( LH1)µ, and not Ω( LH1), to Ω( LG), we can only expect to map Z2(G)
to a quotient of Z2(H1); we now make some preparations to deal with this quotient.

Notation 6.1.23. Sending a cuspidal pair (M1, σ1) for Ω(H1) to the restriction of the central char-
acter of σ1 to C1(F ), descends to well-defined set-theoretic map Ω(H1) → Homcts(C1(F ),C×) =
Ω(C1). It is immediate from Proposition 4.1.4(i) that this map Ω(H1) → Ω(C1) is a regular
morphism of algebraic varieties. We define Ω(H1)µ to be the scheme-theoretic inverse image of
µ ∈ Ω(C1) under this map. The closed subscheme Ω(H1)µ ⊂ Ω(H1) is reduced, because using
Remark 4.1.15(i), each cuspidal pair (M1, σ1) for Ω(H1) is seen to satisfy:

C[Ω([M1, σ1]H1) ∩ Ω(H1)µ] ⊂ C[Ω([M1, σ1]M1) ∩ Ω(M1)µ] ⊂ C[ker(Xunr(SM1)→ Xunr(C1))],

where the latter inclusion is obtained from the orbit map for the action of Xunr(SM1
) on Ω(M1),

at (M1, σ1)M1
. Since last ring above is reduced by Cartier’s theorem, the reducedness of Ω(H1)µ

follows. We let Z(H1)µ := C[Ω(H1)µ] be the corresponding reduced quotient of C[Ω(H1)] = Z(H1):
in other words, it is the ring of functions Ω(H1)µ → C obtained by restricting elements of C[Ω(H1)].
Note that if µ is trivial, then we have Z(H1)µ = C[Ω(H1)µ] = C[Ω(H)] = Z(H).

Lemma 6.1.24. If V1 is any smooth representation of H1(F ) on which C1(F ) acts via µ, then
the action of Z(H1) = C[Ω(H1)] on V1 factors through the quotient C[Ω(H1)µ] = Z(H1)µ.

Proof. Every element of V1 is contained in a homomorphic image of C∞µ (H1(F )), which is given
the left-regular action of H1(F ). Therefore, to prove the lemma, it suffices to do so in the case
where V1 equals C∞µ (H1(F )), and is given the left-regular action of H1(F ). Thus, suppose that
the image of z ∈ Z(H1) = C[Ω(H1)] in C[Ω(H1)µ] vanishes, and let us show that the left-regular
action of z annihilates V1 = C∞µ (H1(F )).
The assumption on z implies that ẑ(π1) = 0 for every irreducible admissible representation π1 of
H1(F ) whose central character restricts to µ on C1(F ). Suppose there exists f1 ∈ C∞µ (H1(F )) = V1
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such that z∗f1 6= 0; let us derive a contradiction. We may right-translate f1 to assume without loss
of generality that z∗f1(1) 6= 0. By the Plancherel formula with central character (Remark 5.2.9(ii)),
there exists an irreducible admissible representation π1 of H1(F ), with central character restricting
to µ on C1(F ), such that 0 6= π1(z ∗ f1) = ẑ(π1)π1(f1), a contradiction since ẑ(π1) = 0. �

Notation 6.1.25. (i) Suppose we are in Scenario 1 of Notation 6.1.1(vii). Then the action
of OH1

on Ω( LH1) factors through a finite quotient and preserves Ω( LH1)µ, letting us talk
of the closed subvariety Ω( LH1)µ := Ω( LH1)µ/OH1 of Ω( LH1) := Ω( LH1)/OH1 , and of
the reduced quotient ring C[Ω( LH1)µ] = C[Ω( LH1)µ]OH1 of C[Ω( LH1)] = C[Ω( LH1)]OH1 .
Note also that Φtemp,G−rel(H1)µ ⊂ Φ(H1) is OH1

-invariant.
(ii) Continue with the setting of (i). Since OH1

fixes C1 pointwise and hence preserves µ1,

and since Ĥ1 → Ĉ1 is surjective, it is easy to see that any β ∈ OH1
has a dual Lβ :

LH1 → LH1 which restricts to an automorphism of H; we impose the hypothesis that
some (or equivalently by the surjectivity of ZWF

Ĥ1
→ (Ĉ1)WF , any) such automorphism

of H is induced by conjugation by an element of Ĝ. Then (using reducedness) the map
Ω(H) : Ω( LH1)µ → Ω( LG) of varieties and the map Φ(H) : Φtemp,G−rel(H1)µ → Φtemp(G)
of sets (see Notation 6.1.11(iii)) quotient respectively to a map

Ω(H) : Ω( LH1)µ = Ω( LH1)µ/OH1 → Ω( LG)

of varieties, and a map Φtemp,G−rel(H1)µ/OH1
→ Φtemp(G) of sets (note that OH1

clearly
preserves Φtemp,G−rel(H1) ⊂ Φtemp(H1)).

(iii) Suppose we are in Scenario 2 of Notation 6.1.1(vii). Then we have the variety Ω( LH) :=
Ω( LH)/OH and the ring C[Ω( LH)] = C[Ω( LH)]OH . In this situation (where µ is trivial),
we can identify Ω( LH1)µ = Ω( LH) and C[Ω( LH1)µ] = C[Ω( LH)], by definition. If we
additionally assume that OH is the group of automorphisms of H induced by a group
OH1

as in Scenario 1 of Notation 6.1.1(vii), then we can identify Ω( LH1)µ = Ω( LH) and
C[Ω( LH1)µ] = C[Ω( LH)]. Note also that Φtemp,G−rel(H)µ ⊂ Φ(H) is OH-invariant.

(iv) Continue with the setting of (iii), and additionally assume that any β ∈ OH has a dual
Lβ : LH → LH which is induced by conjugation by an element of Ĝ. Then the map
Ω(H) : Ω( LH) → Ω( LG) of varieties and the map Φ(H) : Φtemp,G−rel(H) → Φtemp(G) of
sets defined in obvious analogy with Notation 6.1.11(iii) quotient respectively to a map

Ω(H) : Ω( LH) = Ω( LH)/OH → Ω( LG)

of varieties, and a map Φtemp,G−rel(H)/OH → Φtemp(G) of sets.

Proposition 6.1.26. Suppose that we are in Scenario 1 of Notation 6.1.1(vii). Assume further
that the LLC+ hypothesis (Hypothesis 2.10.3) is satisfied with G and the groups of Notation 2.6.1
replaced by H1 and the groups of Scenario 1 of Notation 6.1.1(vii), such that the resulting map
p1,H1

: Ω(H1) → Ω( LH1) as in Definition 4.3.1 satisfies the following weak central character
compatibility with respect to µ:

(85) p1,H1(Ω(H1)µ) ⊂ Ω( LH1)µ.

Let (π1, V1) be a smooth representation of H1(F ) on which C1(F ) acts via µ. Consider the action of
C[Ω( LH1)] on V1 via p∗1,H1

: C[Ω( LH1)]→ C[Ω(H1)] = Z(H1), i.e., sending (z̃1, v1) to p∗1,H1
(z̃1)·v1.

Then this action quotients to an action of C[Ω( LH1)µ] on V1.

Proof. By Lemma 6.1.24, the action of C[Ω(H1)] = Z(H1) on V1 factors through C[Ω(H1)µ] =
Z(H1)µ, so it suffices to show that the composite C[Ω( LH1)] → C[Ω(H1)] → C[Ω(H1)µ] factors
through C[Ω( LH1)] → C[Ω( LH1)µ]. This follows from the hypothesis that Ω(H1) → Ω( LH1)
takes Ω(H1)µ to Ω( LH1)µ, and the fact that C[Ω(H1)µ] is reduced. �

6.2. The Z-transfer conjecture, under several hypotheses.

Notation 6.2.1. (i) Suppose Hypothesis 2.10.3 is valid, so that p1,G : Ω(G) → Ω( LG) (see
Definition 4.3.1) is defined. Although this map may not be injective (as G may not be

quasi-split), given z ∈ C[Ω( LG)/OG] = C[Ω( LG)] and f ∈ C∞(G̃(F )), we denote by z ∗ f
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the element p∗1,G(z) ∗ f ∈ C∞(G̃(F )), i.e., the result of letting the element p∗1,G(z) ∈ Z(G)

act on the element f of the smooth representation of G(F ) given by the left-regular action

of G(F ) on C∞(G̃(F )).
(ii) If we assume instead that Hypothesis 2.10.3 is satisfied with G and the groups of Notation

2.6.1 replaced by H1 or H and groups of automorphisms as in Scenario 1 or Scenario 2
of Notation 6.1.1(vii), so that we have a map p1,H1

: Ω(H1) → Ω( LH1) or p1,H : Ω(H) →
Ω( LH), then we can similarly define z̃1 ∗ f1 = p∗1,H1

(z̃1) ∗ f1 or zH ∗ fH = p∗1,H(zH) ∗ fH,

whenever z̃1 ∈ C[Ω( LH1)] and f1 ∈ C∞(H̃1(F )) or zH ∈ C[Ω( LH)] and fH ∈ C∞(H(F )).

In these situations, we will also write ˆ̃z1(π1) = ̂p∗1,H1
(z̃1)(π1) or ẑH(πH) = ̂p∗1,H(zH)(πH),

depending on the case.
(iii) Now assume, like in (ii) above, that Hypothesis 2.10.3 is satisfied with G and the groups of

Notation 2.6.1 replaced by H1 and groups of automorphisms as in Scenario 1 of Notation
6.1.1(vii), and additionally that the weak central character compatibility with respect
to µ as in (85) of Proposition 6.1.26 is satisfied. Then by Proposition 6.1.26, for z̃1 ∈
C[Ω( LH1)], f1 ∈ C∞µ (H̃1(F )) and any irreducible admissible representation π1 of H1(F )
whose central character restricts to µ on C1(F ), we have that z̃1 ∗ f1 = p∗1,H1

(z̃1) ∗ f1 and

ˆ̃z1(π1) := ̂p∗1,H1
(z̃1)(π1) depend only on the image z1 of z̃1 in the quotient C[Ω( LH1)µ]

of C[Ω( LH1)]. This defines, for z1 ∈ C[Ω( LH1)µ], for f1 ∈ C∞µ (H̃1(F )), and for any
irreducible admissible representation π1 of H1(F ) whose central character restricts to µ

on C1(F ), z1 ∗ f1 and ẑ1(π1): these equal p∗1,H1
(z̃1) ∗ f1 and ̂p∗1,H1

(z̃1)(π1), respectively,

where z̃1 ∈ C[Ω( LH1)] is any lift of z1 ∈ C[Ω( LH1)µ].

As we have recalled from [MW16, Corollary XI.5.1] before, pull-back under endoscopic transfer
determines a map

(86) SDµ(H̃1)→ D(G̃, ω)

(with SDµ(H̃1) as in Notation 2.1.1(vi)). This map sends ΘH ∈ SDµ(H̃1) to the unique ΘG̃ ∈
D(G̃, ω) such that, for any f̃ ∈ C∞c (G̃(F )) and f1 ∈ C∞µ (H̃1(F )) with matching orbital integrals,

ΘG̃(f̃) = ΘH(f1).
The following proposition is well-known, but we learned it only relatively recently, from [LM20]:

Proposition 6.2.2. Let f ∈ C∞c (G̃(F )) and f1 ∈ C∞µ (H̃1(F )). The following are equivalent:

(i) f and f1 have matching orbital integrals.

(ii) For every ΘH ∈ SDµ(H̃1) mapping to ΘG̃ ∈ D(G̃, ω) under (86),

ΘH(f1) = ΘG̃(f).

Proof. This is exactly analogous to the equivalence of conditions (A) and (B) towards the end of
[LM20, Section 2.6].
The implication (i) ⇒ (ii) follows from definition, so it suffices to show the implication (ii) ⇒
(i). Since we know the existence of transfer ([Wal08]), let f ′1 be a transfer of f . It is enough to

show that f ′1 and f1 have the same stable orbital integral at every strongly G̃-regular element

h1 ∈ H̃1(F ).

In other words, we need to show that the function f1−f ′1 ∈ C∞µ (H̃1(F )) is unstable. By Proposition

3.2.13 (or just [Art96, Lemma 6.3] in case H̃1 is isomorphic to H1 as a twisted space for H1), this

is equivalent to requiring that ΘH(f1 − f ′1) = 0 for all ΘH ∈ SDµ(H̃1). But this is clear from the
fact that we have, with ΘG̃ denoting the image of ΘH under (86):

ΘH(f1) = ΘG̃(f) = ΘH(f ′1).

�

Theorem 6.2.3. Assume that we are in either Scenario 1 (resp., Scenario 2) of Notation 6.1.1(vii).
We additionally make the following assumptions (I) and (II) below:

(I) The groups O = OG, and OH1
or OH satisfy the following properties:
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(a) O is trivial;

(b) The action of OH1
on H1 extends to an action of OH1

on H̃1 compatibly with its
structure as an H1-bitorsor, if we are in Scenario 1;

(c) In Scenario 1 (resp., Scenario 2), if f1 ∈ C∞µ (H̃1(F )) (resp., fH ∈ C∞c (H(F ))) is

a transfer of f ∈ C∞c (G̃(F )), so is f1 ◦ β (resp., fH ◦ β) for any β ∈ OH1
(resp.,

β ∈ OH); and
(d) The condition of (ii) or (iv) of Notation 6.1.25 holds, i.e., in Scenario 1 (resp.,

Scenario 2), any element β ∈ OH1 (resp., β ∈ OH) has a dual Lβ : LH1 → LH1

(resp., Lβ : LH = H → H = LH) which restricts to an automorphism of H that is

induced by conjugation by an element of Ĝ.
(II) G̃ and H̃1 satisfy the following conditions, which, roughly speaking, amount to twisted

versions of Hypotheses 2.7.1, 2.10.3 and 2.10.12 together with compatibility with the en-
doscopic datum H:
(a) The hypotheses on the existence of tempered L-packets and LLC+ (Hypotheses 2.7.1

and 2.10.3) are satisfied, and in addition, in Scenario 1 (resp., Scenario 2), their
analogues with G and the groups of Notation 2.6.1 replaced by H1 and the groups of
Scenario 1 (resp., H and the groups of Scenario 2) are also satisfied, so that we have
a map p1,H1

: Ω(H1)→ Ω( LH1) (resp., p1,H : Ω(H)→ Ω( LH));
(b) If we are in Scenario 1, the weak central character compatibility with µ as in (85) is

satisfied, i.e., p1,H1
restricts to a map p1,H1

: Ω(H1)µ → Ω( LH1)µ;

(c) If we are in Scenario 1, there exists a basis {Θφ1
| φ1 ∈ Φ1} for SDµ(H̃1)OH1 indexed

by some subset Φ1 ⊂ Φtemp(H1)µ/OH1
, with each Θφ1

(φ1 ∈ Φ1) a linear combination

of characters of irreducible smooth representations of H̃1(F ) whose underlying H1(F )-
representations belong to the tempered L-packet Σ(φ1) of H1(F ) associated to φ1 as in
Notation 2.10.11(i) (which uses the assumption concerning Hypothesis 2.10.3 in (a));
if we are in Scenario 2, there exists a basis {ΘφH

| φH ∈ Φtemp(H)/OH} for SD(H)OH

indexed by Φtemp(H)/OH, with each ΘφH a linear combination of characters of irre-
ducible smooth representations of H(F ) belonging to the tempered L-packet Σ(φH) of
H(F ) associated to φH as in Notation 2.10.11(i). We now fix such a collection of the
Θφ1

or the ΘφH
, according to the scenario; and

(d) For each φ1 ∈ Φ1 ⊂ Φtemp(H1)µ/OH1
(resp., φH ∈ Φtemp(H)/OH), the image of Θφ1

(resp., ΘφH
) under SDµ(H̃1)OH1 → D(G̃, ω) (which identifies with a map SD(H)OH →

D(G̃, ω) in Scenario 2) is zero if φ1 6∈ Φtemp,G−rel(H1)µ/OH1 (resp., if φH 6∈ Φtemp,G−rel(H)/OH),
and is a linear combination of characters of irreducible smooth representations of
(G̃(F ), ω) whose underlying G(F )-representations belong to the tempered L-packet
Σ(φ) as in Notation 2.10.11(i), where φ is the image of φ1 (resp., φH) under the map
Φtemp,G−rel(H1)µ/OH1 → Φtemp(G) of Notation 6.1.25(ii) (resp., the map Φtemp,G−rel(H)/OH →
Φtemp(G) of Notation 6.1.25(iv)), otherwise.

If z ∈ C[Ω( LG)], z1 := Ω(H)∗(z) ∈ C[Ω( LH1)µ] (resp., zH := Ω(H)∗(z) ∈ C[Ω( LH)]) is the

pull-back of z under the map Ω(H) of (ii) or (iv) of Notation 6.1.25, and if f ∈ C∞c (G̃(F )) and

f1 ∈ C∞µ (H̃1(F ))OH1 (resp., fH ∈ C∞c (H(F ))OH) have matching orbital integrals, then so do z ∗ f
and z1 ∗ f1 (resp., zH ∗ fH). Here z1 ∗ f1 and zH ∗ fH are defined as in Notation 6.2.1.

Proof. We will give the proof only for Scenario 1; the proof for Scenario 2 will be an obvious
variant.
Let z, z1, f, f1 be as given. Since f1 ∈ C∞µ (H̃1(F )) is fixed by OH1

, it suffices by Proposition

6.2.2 to prove that for any ΘH belonging to some fixed basis of SDµ(H̃1)OH1 , denoting by ΘG̃ its

transfer to D(G̃, ω) under (86), we have ΘH(z1 ∗ f1) = ΘG̃(z ∗ f). By assumption (II)(c), it is
enough to show this with ΘH = Θφ1 , for each φ1 ∈ Φ1.
We can write ΘH = Θφ1

as
∑
i ciΘπ̃1,i

, where ci ∈ C for each i, and each π̃1,i is an irreducible

smooth representation of H̃1(F ) whose underlying H1(F )-representation π1,i belongs to Σ(φ1).
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Moreover, for each i, it is easy to see that:

(87) Θπ̃1,i(z1 ∗ f1) = tr π̃1,i(z1 ∗ f1) = tr(π1,i(z1)π̃1,i(f1)) = ẑ1(π1,i) ·Θπ̃1,i(f1)

— here π1,i(z1) stands for the endomorphism of the space of π1,i defined by z1, and ẑ1(π1,i) is
as in Notation 6.2.1(iii); to see the middle equality, use that, if f2 = (measK)−1

1K for a small
enough compact open subgroup K ⊂ H1(F ) and if z̃1 is defined as in Notation 6.2.1(iii), then:

π̃1,i(z1∗f2∗f1) = π̃1,i(z̃1∗f2∗f1) = π1,i(z̃1∗f2)π̃1,i(f1) = ̂p∗1,H1
(z̃1)(π1,i)π1,i(f2)π̃1,i(f1) = ẑ(π1,i)π̃1,i(f1).

We conclude from (87) and the definition of p1,H1
((53) in Definition 4.3.1):

(88) Θφ1
(z1 ∗ f1) = z1(λ(φ1)) ·Θφ1

(f1).

If φ1 is not G-relevant, then ΘG̃ = 0 by the hypothesis in (d) of the condition (II), so that
ΘG̃(z ∗f) = 0, while we also have the equality Θφ1

(f1) = ΘG̃(f) = 0, which gives, using (88), that
Θφ1

(z1 ∗ f1) = 0 = ΘG̃(z ∗ f), as desired.
Thus, assume now that φ1 is G-relevant, and let φ be the image of φ1 under Φtemp,G−rel(H1)µ →
Φtemp(G), as in (d) of the condition (II). In this case, ΘG̃ can be written as a linear combination

Θφ of characters of (G̃(F ), ω) whose underlying G(F )-representations belong to the tempered
L-packet Σ(φ) associated to φ. As in (88), but with fewer complications, we have:

(89) Θφ(z ∗ f) = z(λ(φ)) ·Θφ(f).

Given (88) and (89), the desired equality follows from the fact that Θφ(f) = Θφ1
(f1) (which

holds since Θφ is the image of Θφ1
under (86)) and the equality z1(λ(φ1)) = z(λ(φ)) (which holds

because z1 := Ω(H)∗(z)). �

Remark 6.2.4. (i) For certain classes of endoscopic data, versions of the statement of Theo-
rem 6.2.3 as applied to important classes of elements of Z2(G) (whose relative sizes inside
Z2(G) we are ignorant of), have been stated among the conjectures of Haines in [Hai14]
(see [Hai14, Conjectures 6.2.2 and 6.2.3]) and those of Scholze and Shin in [SS13] (see
[SS13, Conjecture 7.2.2]). Needless to say, these sources do not make the strong assump-
tions that we do in (II) of the statement of Theorem 6.2.3.

(ii) Consider the case in which (G̃, ω) = (G,1), with G quasi-split and H = G. Suppose that
all the hypotheses of the theorem for this case hold, with O and OH1 additionally assumed
to be trivial. Subject to these (very strong) assumptions, using that µ is trivial so that

C∞µ (H̃1(F )) identifies with C∞c (H(F )), the theorem specializes to the conjecture that, if

f ∈ C∞c (G(F )) is unstable, then so is z ∗ f (defined as p∗1,G(z) ∗ f) for all z ∈ C[Ω( LG)].
However, this can also be seen more easily under closely related assumptions: see Corollary
5.5.2(i). This is an expected property of the stable Bernstein center conjectured by Haines
and (independently) by Scholze and Shin; see, e.g., [SS13, Conjecture 6.3].

(iii) When H1 = H equals GLn/F and (G̃, ω) equals (G,1) with G an inner form of GLn/F ,
the hypotheses of Theorem 6.2.3 follow from the properties of the local Langlands cor-
respondence (which is available for H and G in these cases), and we recover some of the
results of Jonathan Cohen from [Coh18]. However, the results of [Coh18] are phrased
slightly differently: while our formulation maps Ω( LH) to Ω( LG) and Z2(G) to Z2(H) in
this case, the version in [Coh18] maps Ω(G) to Ω(H) and Z2(H) = Z(H) to Z2(G) = Z(G).
See also Proposition 6.3.1 below.

Remark 6.2.5. Of course, Theorem 6.2.3 assumes a lot of deep results, but hopefully, at least in
many simple situations, it could suggest results that can be proved using other methods that avoid
these assumptions. For instance, while we have not worked out the details, we feel that Theorem
6.2.3 should give one way to motivate the specific form of a result of Lemaire and Mishra ([LM20])
(and in particular the ‘Weyl averaging’ featured in that result), generalizing the explanation given
by Haines, following the statement of [Hai14, Conjecture 6.2.2], as to how that conjecture formally
contains as a special case the ‘fundamental lemma implies transfer for the spherical Hecke algebra’
result.
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6.3. Z-transfer for inner twists. The main result of this subsection is the following proposition,
which is a variant of Theorem 6.2.3 in the much simpler case of transfer between G and its quasi-
split inner form, with less ponderous assumptions. It can also be considered as an adaptation
of some of the results of [Coh18] to groups other than inner forms of general linear groups, with
hypotheses thrown in to make up for our not knowing the existence of tempered L-packets or
Jacquet-Langlands/Deligne-Kazhdan-Vigneras type correspondences for more general groups.

Proposition 6.3.1. Let G∗ be a quasi-split inner form of G, underlying an endoscopic datum
G∗ for G defined using an inner twist ψG∗ as in Notation 3.2.1(i). Give G(F ) and G∗(F ) Haar
measures compatible with respect to ψG∗ . For simplicity, we assume that each group OM from the
collection {OM}M of Notation 2.6.1 is trivial, and consider an analogous collection {OM∗}M∗ for
G∗, with each OM∗ trivial. Assume:

(a) Both G and G∗ satisfy the hypothesis on the existence of tempered L-packets (Hypothesis
2.7.1); and

(b) If Levi subgroups M ⊂ G and M∗ ⊂ G∗ are related as in Notation 3.2.1(vi) (but with
G,G∗,M,M∗ in place of M,M∗,M1,M

∗
1), with M∗ underlying an endoscopic datum M∗

for M defined using ‘Levi subgroup matching data’ as in Notation 3.2.1(vi), there is a
bijection Φ2(M∗) → Φ2(M), under which Σ∗ ∈ Φ2(M∗) and Σ ∈ Φ2(M) correspond if and
only if the endoscopic transfer map SDell(M

∗) → SDell(M) takes some nonzero stable
distribution ΘΣ∗ supported on Σ∗ to some stable distribution ΘΣ supported on Σ; in this
case, we say that Σ is the transfer of Σ∗ to M(F ) (depending on the choices defining M∗).

As before, we write e(G) for the Kottwitz sign of G. Then the map

Z1(G∗) ⊂ SI(G∗)∗ → SI(G)∗,

taking z∗ ∈ SI(G∗)∗ to z := e(G)z′ ∈ SI(G)∗, where z′ ∈ SI(G)∗ is the endoscopic transfer of
z∗ ∈ SI(G∗)∗, is valued in Z1(G) and defines a homomorphism of C-algebras Z1(G∗) → Z1(G),
and satisfies the Z-transfer property, i.e., whenever f∗ ∈ C∞c (G∗(F )) and f ∈ C∞c (G(F )) have
matching orbital integrals, so do z∗ ∗ f∗ and z ∗ f .

Let us make some preparations for the proof of Proposition 6.3.1.

Notation 6.3.2. For any reductive group M over F , let D+
ell(M) denote the span of the Θχ, where

Θ ranges over Dell(M) and χ over (unramified, or equivalently all) smooth characters M(F )→ C×.
Let SD+

ell(M) ⊂ D+
ell(M) denote the subspace of stable distributions. Let DIrr(M) denote the space

of virtual characters spanned by the Θπ as π ranges over all of Irr(M), and SDIrr(M) ⊂ DIrr(M)
the subspace of stable virtual characters.

Lemma 6.3.3. Let M be a connected reductive group over F .

(i) For each π ∈ Irr M, there exists a unique element Θπ,ell ∈ D+
ell(M) such that Θπ−Θπ,ell is a

finite sum of virtual characters obtained by parabolic induction from proper Levi subgroups
of M.

(ii) Restriction to the subset M(F )ell of strongly regular elliptic semisimple elements in M(F )
induces a well-defined C-linear map DIrr(M)→ D+

ell(M), which is a map of Z(M)-modules,

where Z(M) acts by z ·Θ = (f 7→ Θ(z ∗ f)). This map takes SD+
Irr(M) to SD+

ell(M).
(iii) Let π ∈ Irr M. Write the Θπ,ell of (i) as a finite linear combination

∑
i ciΘπi , where each

ci is nonzero and the πi are pairwise distinct elements of Irr(M). Then each πi has the
same cuspidal support as π.

Proof. To prove the existence of the Θπ,ell as in (i), it suffices by (34) to show the existence of a
virtual character Θ′ that is a finite linear combination of virtual characters of the form Θχ, with
Θ ∈ D(M) and χ : M(F ) → C× a smooth character, such that Θπ − Θ′ is a linear combination
of virtual characters obtained by parabolic induction from proper Levi subgroups. But this in
turn follows from the fact that characters of standard representations form a basis for DIrr(M)
(see [Art89, Proposition 5.1]). Alternatively, see the comment on Langlands theory in [BDK86,
Section 5.2]. This proves the existence of the Θπ,ell as in (i).
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Any element of Dell(M) is determined by its restriction to M(F )ell (as reviewed in Notation
3.4.1(i)). The same then applies to D+

ell(M), since M(F )ell ⊂ M(F ) is closed under multiplication
by ZM(F ), letting us separate out the contributions from different central characters. From this
and the fact that characters of induced representations vanish on M(F )ell, the uniqueness assertion
in (i) follows.
The existence of the map DIrr(M) → D+

ell(M) as in (ii) is immediate from (i). Its linearity for
the given action of Z(M) follows from the equality Θπ(z ∗ f) = ẑ(π)Θπ(f), and the uniqueness
assertion in (i). That the map carries SDIrr(M) to SD+

ell(M) is an immediate consequence of
the fact that, by [Art96], an element of Dell(M) whose restriction to M(F )ell is stable belongs to
SDell(M), and hence a similar assertion holds with Dell(M) replaced by D+

ell(M) as well.
(iii) follows from (ii) and the fact that Z(M) separates the points on Ω(M). �

Lemma 6.3.4. Let M∗ be a quasi-split inner form of a connected reductive group M over F , under-
lying an endoscopic datum M∗ for M defined using an inner twist as in Notation 3.2.1(i). Assume
that Q∗ ⊂ M∗ and Q ⊂ M are parabolic subgroups with L∗ ⊂ M∗ and L ⊂ M as Levi subgroups,
and that our fixed inner twist takes (Q∗,L∗) to (Q,L) (over F̄ ), realizing L∗ as endoscopic to L,
as in Notation 3.2.1(vi). Write rM∗

Q∗ : DIrr(M
∗) → DIrr(L

∗) and rM
Q : DIrr(M) → DIrr(L) for the

associated Jacquet module maps at the level of virtual characters. Then, whenever Θ∗ ∈ SDIrr(M
∗)

transfers endoscopically to Θ ∈ DIrr(M), rM∗

Q∗ (Θ∗) belongs to SDIrr(L
∗) and transfers endoscopi-

cally to rM
Q (Θ) ∈ DIrr(L).

Proof. This is well-known (e.g., used in [MR18, Section 8.3.3]), and is a much easier variant of an
analogous assertion proved in [Xu17, Appendix C]. �

Proof of Proposition 6.3.1. In this proof, we will write TG∗ for the endoscopic transfer map from
stable distributions on G∗(F ) to stable distributions on G(F ). We will also write f∗ ↔ f , where
f∗ ∈ C∞c (G∗(F )) and f ∈ C∞c (G(F )), to mean that f∗ and f have matching orbital integrals.
Given a Levi subgroup M∗ ⊂ G∗, if M∗ is relevant for G∗, then we will write M∗ ∼ M to mean
that M and M∗ are related as in Notation 3.2.1(vi), and implicitly choose relevant “Levi subgroup
matching data” data as in Notation 3.2.1(vi) (such as parabolic subgroups, an inner twist and an
endoscopic datum M∗ for M with M∗ as the underlying group).
Given any Levi subgroup M∗ ⊂ G∗ and any Σ∗ ∈ Φ+

2 (M∗), we will write ΘΣ∗ for the nonzero
stable character

∑
d(σ∗)Θ∗σ, the sum running over σ∗ ∈ Σ∗ (see Proposition 3.3.6). Given any

Levi subgroup M ⊂ G and any Σ ∈ Φ+
2 (M), ΘΣ will denote the stable character e(M)

∑
d(σ)Θσ =

e(G)
∑
d(σ)Θσ, the sum running over σ ∈ Σ.

If M∗ ∼ M, then by Lemma 3.2.3(i), the bijection Φ2(M∗)→ Φ2(M) from the condition (b) of the
proposition extends to a bijection Φ+

2 (M∗) → Φ+
2 (M) having an analogous description, which is

equivariant for the action of Xunr(M∗) = Xunr(M). Given Levi subgroups M∗ ⊂ G∗ and M ⊂ G,
we will write (M∗,Σ∗) ∼ (M,Σ) to mean that M∗ ∼ M and that Σ∗ and Σ correspond under this
extended bijection Φ+

2 (M∗)→ Φ+
2 (M). Note that if (M∗,Σ∗) ∼ (M,Σ), then ΘΣ is an endoscopic

transfer of ΘΣ∗ , by Proposition 3.3.7 (and Lemma 3.2.3(i)).
Claim 1. The C-algebra homomorphisms Z1(G∗)→ EndC(SD(G∗)) and Z1(G)→ EndC(SD(G)),
given by z∗ 7→ az∗ := (Θ∗ 7→ (f∗ 7→ Θ∗(z∗ ∗ f∗))) and z 7→ az := (Θ 7→ (f 7→ Θ(z ∗ f))), are
injective.
We will prove the assertion for the map z 7→ az, the proof for z∗ 7→ az∗ being similar. This map
is well-defined, since Z1(G) equals Z2(G) by Theorem 5.4.2 (and the fact that we are assuming
Hypothesis 2.7.1), which preserves SD(G) by the implication (iv) ⇒ (i) of Proposition 5.1.8. Let
z ∈ Z1(G) be such that az = 0. The claim will follow if we show that given any cuspidal pair
(M, σ) for G, we have ẑ((M, σ)G) = 0, where we recall that ẑ((M, σ)G) is the value of ẑ on any

irreducible subquotient of IndG
M σ. By analytic continuation, we may assume that σ is unitary. Let

Σ ∈ Φ2(M) be the packet containing σ, and ΘΣ the associated stable character as chosen above.

Then Θ := IndG
M ΘΣ belongs to SD(M) (see (35)), and is nonzero since d(σ′) > 0 for all σ′ ∈ Σ.

We have az(Θ) = ẑ((M, σ′)G)Θ = ẑ((M, σ)G)Θ for all σ′ ∈ Σ by Theorem 5.4.2. Therefore, the
hypothesis that az(Θ) = 0 forces ẑ((M, σ)G) = 0, finishing the proof of Claim 1.
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As a step preliminary to mapping Z1(G∗) to Z1(G), we claim:
Claim 2. Any element in the image of the map Z1(G∗) 3 z∗ → az∗ ∈ EndC(SD(G∗)), via the
surjection SD(G∗) → SD(G) (see Corollary 3.2.9 for this surjectivity), induces a well-defined
element of EndC(SD(G)). Thus, we get a C-algebra homomorphism Z1(G∗)→ EndC(SD(G)).

Since each az∗ preserves each component IndG∗

M∗ SDell(M
∗)W (M∗) of SD(G∗) as per the analogue

of (35) for G∗, Claim 2 is an easy consequence of the compatibility of endoscopic transfer and
parabolic induction (Remark 3.2.2(iii)), together with the fact that whenever a Levi subgroup
M∗ ⊂ G∗ is relevant for M∗, with M∗ ∼ M for some Levi subgroup M ⊂ G, SDell(M

∗)→ SDell(M)
is an isomorphism, which is W (M∗) = W (M)-equivariant by Lemma 3.2.3(ii).
Claim 3. The image of the homomorphism Z1(G∗) 3 z∗ 7→ az∗ ∈ EndC(SD(G)) from Claim
2 is contained in the image of the injection Z1(G) 3 z ↪→ az ∈ EndC(SD(G)), thus inducing
a well-defined C-algebra homomorphism Z1(G∗) → Z1(G) under which z∗ 7→ z if and only if
az∗ ∈ End(SD(G∗)) induces az ∈ End(SD(G)).

Before proving Claim 3, let us assume it and prove finish the proof of the proposition. Let
z∗ ∈ Z1(G∗) map to z ∈ Z1(G) under the above well-defined C-algebra homomorphism. Thus,
whenever Θ ∈ SD(G) is an endoscopic transfer of Θ∗ ∈ SD(G∗), az(Θ) : f 7→ Θ(z ∗ f) is an
endoscopic transfer of az∗(Θ

∗) : f∗ 7→ Θ∗(z∗ ∗f∗). It therefore follows from Proposition 6.2.2 that
whenever f ∈ C∞c (G(F )) and f∗ ∈ C∞c (G∗(F )) have matching orbital integrals, so do z ∗ f and
z∗ ∗f∗, as required by the proposition. Thus, the proposition follows (modulo Claim 3) if we show
that z = e(G)z′, where z′ is the endoscopic transfer of z∗ viewed as a distribution on G∗(F ), i.e.,
that z∗(f∗) = e(G)z(f) whenever f∗ ∈ C∞c (G∗(F )) and f ∈ C∞c (G(F )) have matching orbital
integrals. Write f∗∨ and f∨ for g∗ 7→ f∗(g∗−1) and g 7→ f(g−1), respectively. It is easy to see
from Remark 3.2.2(i) that f∨ and f∗∨ have matching orbital integrals. Therefore, so do z ∗ f∨
and z∗ ∗ f∗∨ (modulo Claim 3), giving e(G)z(f) = e(G) · (z ∗ f∨)(1) = z∗ ∗ f∗∨(1) = z∗(f∗) by
[Kot88, Proposition 2] (we are not sure if it is more appropriate to write e(G)−1 instead); in this
step, we used the compatibility of measures between G(F ) and G∗(F ).
It thus remains to prove Claim 3. For the rest of this proof, a pair (M, σ) consisting of a Levi
subgroup M ⊂ G and σ ∈ Irr+

2 (M) be called an essentially discrete pair for G, its G(F )-conjugacy
class will be denoted by (M, σ)G, and every cuspidal pair for G will be viewed as an essentially
discrete pair. Similar notation will apply with G∗ in place of G.
Fixing z∗ ∈ Z1(G∗), let us show that its image in EndC(SD(G)) is of the form az for some z ∈
Z1(G). Given an essentially discrete pair (M, σ), we now construct a complex number ẑ0((M, σ)) =
ẑ0((M, σ)G) as follows (the symbol ẑ0 will not have any meaning apart from this). Let Σ ∈ Φ+

2 (M)
be the packet containing σ, and let (M∗,Σ∗) ∼ (M,Σ) with M∗ a Levi subgroup of G∗ and
Σ∗ ∈ Φ+

2 (M∗). Choose any σ∗ ∈ Σ∗, and set ẑ0((M, σ)) = ẑ∗((M∗, σ∗)G∗) (where we recall that

ẑ∗((M∗, σ∗)G∗) refers to the value of ẑ∗ on any irreducible subquotient of Ind
G∗(F )
M∗(F ) σ

∗).

It is easy to see using using Theorem 5.4.2 and analytic continuation that ẑ0((M, σ)) is independent
of the choice of σ∗ within Σ∗, and then using Lemma 2.4.8 and an argument as in Lemma 3.2.3(ii)
that ẑ0((M, σ)) does not depend on the choice of the Levi subgroup M∗ ⊂ G∗ or the associated
data as in Notation 3.2.1(vi) either. It is immediate that ẑ0((M, σ)) only depends on the conjugacy
class (M, σ)G of the pair (M, σ), and hence may and shall be written as ẑ0((M, σ)G).
Restricting to cuspidal pairs, we get a function ẑ : Ω(G)→ C. Using Lemma 3.2.3(i), we see that
χ 7→ ẑ0((M, σ ⊗ χ)G) is regular on Xunr(M) for each essentially discrete pair (M, σ). It follows
from Proposition 4.1.4 that ẑ is a regular function on Ω(G), and hence determines an element z
of Z(G). Note that this also defines ẑ((M, σ)G) for any essentially discrete pair (M, σ): it is the

scalar with which z ∈ Z(G) acts on any irreducible subquotient of IndG
M σ.

Let us note the following property of ẑ0. If M∗ ⊂ G∗ is a Levi subgroup, Σ∗ ∈ Φ+
2 (M∗) and

ΘG∗

Σ∗ = IndG∗

M∗ ΘΣ∗ , then az∗(Θ
G∗

Σ∗ ) = ẑ∗((M∗, σ∗)G∗)Θ
G∗

Σ∗ for any σ∗ ∈ Σ∗ (use Theorem 5.4.2).

Therefore the transfer of az∗(Θ
G∗

Σ∗ ) ∈ SD(G∗) to SD(G) equals:{
0, if M∗ is not G∗-relevant; and

ẑ0((M, σ)G)ΘG
Σ , if (M∗,Σ∗) ∼ (M,Σ) and σ ∈ Σ.

.
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Therefore, Claim 3 will follow if we show that for each essentially discrete pair (M, σ) we have:

(90) ẑ0((M, σ)G) = ẑ((M, σ)G).

Before proving this, we note that in the special case where (M, σ) is a cuspidal pair, this is

immediate from the definitions. Let σ embed into IndM
Q υ, where (L, υ) is a cuspidal support for

σ and the parabolic subgroup Q of M has L as a Levi subgroup. Let L∗ ∼ L and M∗ ∼ M with
L∗ ⊂ M∗ ⊂ G∗ being Levi subgroups, and assume without loss of generality that the extra “Levi
subgroup matching data” involved in these choices have an obvious compatibility with each other;
in particular, we assume that the inner twist from M∗ to M takes L∗ to L, and some parabolic
subgroup Q∗ ⊂ M∗ with L∗ as a Levi subgroup, to Q (over F̄ ). Write rM

Q : DIrr(M) → DIrr(L)

and rM∗

Q∗ : DIrr(M
∗) → DIrr(L

∗) for the associated Jacquet module maps at the level of virtual
characters.
Write rM∗

Q∗ (ΘΣ∗) = Θ∗1 + Θ∗2 as in Lemma 6.3.3, where Θ∗1 = (rM∗

Q∗ (ΘΣ∗))ell belongs to SD+
ell(L

∗)
and Θ∗2 is a linear combination of virtual characters induced from proper Levi subgroups of M∗.
Similarly, write rM

Q (ΘΣ) = Θ1 + Θ2, where Θ1 = (rM
Q (ΘΣ))ell ∈ D+

ell(L).

By Frobenius reciprocity and the fact that e(M)ΘΣ is a positive or negative linear combination of
characters, Θυ contributes nontrivially to rM

Q ΘΣ. Because υ is cuspidal, it follows from this that Θυ

contributes nontrivially to (rM
Q ΘΣ)ell = Θ1. In particular, Θ1 6= 0. By Lemma 6.3.4, rM∗

Q∗ (ΘΣ∗) ∈
SDIrr(L

∗) endoscopically transfers to rM
Q (ΘΣ) ∈ DIrr(L). By the compatibility between endoscopic

transfer and parabolic induction (see Remark 3.2.2(i)), Θ∗1 ∈ SD+
ell(L) transfers endoscopically to

Θ1 ∈ D+
ell(L), which also gives us that Θ1 ∈ SD+

ell(L) and that Θ∗1 6= 0. Let Υ ∈ Φ+
2 (L) be the

packet that contains υ, and let Υ∗ ∈ Φ+
2 (L∗) be such that (L∗,Υ∗) ∼ (L,Υ). For any υ∗ ∈ Υ∗ we

have

(91) ẑ∗((L∗, υ∗)G∗) = ẑ0((L, υ)G) = ẑ((L, υ)G) = ẑ((M, σ)G),

where the last equality follows from the fact that (L, υ) is a cuspidal support for σ.
Since Θυ and hence also ΘΥ contributes nontrivially to Θ1 ∈ SD+

ell(L), the hypotheses of the

proposition imply that ΘΥ∗ and hence also Θυ∗ contributes nontrivially to Θ∗1 ∈ SD+
ell(L

∗). While
υ∗ may not be cuspidal, this implies by Lemma 6.3.3(iii) that υ∗ has the same cuspidal support as
some irreducible character contributing to rM∗

Q∗ (ΘΣ∗), and hence by a standard fact about Jacquet

modules ([Cas95, Theorem 6.3.5]) the same cuspidal support as some σ∗ ∈ Σ∗. Thus, we have:

(92) ẑ∗((L∗, υ∗)G∗) = ẑ∗((M∗, σ∗)G∗) = ẑ0((M, σ)G).

Now (90) follows from (91) and (92), finishing the proof of Claim 3 and hence also of the propo-
sition. �

7. Classical groups and their inner forms

7.1. Some generalities about the hypothesis on tempered L-packets.

Proposition 7.1.1. Assume for simplicity that OM is trivial for each Levi subgroup M ⊂ G. Each
reductive group G1 over F we consider in this proposition will be equipped with a similar collection
{OM1

}M1
, with each OM1

trivial.

(i) Suppose G1 ↪→ G is an inclusion of reductive groups that induces an isomorphism G1,ad →
Gad of adjoint groups. Suppose that the hypothesis on the existence of tempered L-packets
(Hypothesis 2.7.1) is satisfied by G. Then this hypothesis is satisfied by G1 as well.

(ii) Suppose G1 → G is a homomorphism of reductive groups that induces an isomorphism
G1,ad → Gad of adjoint groups. We additionally assume that G1(F ) and G(F ) have the
same image in G1,ad(F ) = Gad(F ). Suppose that Hypothesis 2.7.1 is satisfied by G1. Then
this hypothesis is satisfied by G as well.

(iii) Suppose that G = ResE/F G1, where G1 is a connected reductive group over a finite ex-
tension E of F . Then Hypothesis 2.7.1 is satisfied by G if and only if it is satisfied by
G1.
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Proof. Parts of the proof will only be sketched, but we will not use this proposition to prove any
other lemma, proposition or theorem. First let us prove (i). Let M1 ⊂ G1 and M ⊂ G be Levi
subgroups with the same image in G1,ad = Gad. For each Σ ∈ Φ2(M), let ΣM1 be the set of
irreducible constituents of the representations in Σ|M1(F ) := {σ|M1(F ) | σ ∈ Σ}. Let Φ2(M1) be
the set of all the ΣM1 ⊂ Irr(M1) as Σ varies over Φ2(M). Note that ΣM1 ⊂ Irr2(M1) for each
Σ ∈ Φ2(M).
Now let us show that distinct elements of Φ2(M1) are disjoint. Suppose that σ1 ∈ Σ′1 ∩Σ′′1 , where
Σ′1 = (Σ′)M1

,Σ′′1 = (Σ′′)M1
∈ Φ2(M1), with Σ′,Σ′′ ∈ Φ2(M). Thus, there exist σ′ ∈ Σ′ and

σ′′ ∈ Σ′′, such that σ1 is a constituent of both σ′|M1(F ) and σ′′|M1(F ). Our disjointness claim will

follow if we show that σ′′ = σ′ ⊗ χ for some smooth character χ : M(F ) → C× that is trivial
on the image of M1(F ): for, any such χ is automatically unitary, and Lemma 2.7.3(ii) will give
Σ′′ = Σ′ ⊗ χ. Thus, the disjointness claim for Φ2(M1) follows if we show that any two irreducible
admissible representations σ′, σ′′ of M(F ) having a common constituent σ1 in their (necessarily
semisimple) restrictions to M1(F ) are twists of each other by some character χ : M(F )→ C× that
is trivial on M1(F ).
This fact follows from [GK82, Lemma 2.4] under a ‘multiplicity one’ assumption, but let us prove
it without that assumption. Since the image of Msc(F ) → M(F ) contains the derived group of
M(F ) (use a z-extension), so does the image of M1(F ) → M(F ). Therefore, we can twist σ′ by
a character of M(F ) that is trivial on M1(F ) to assume that σ′ and σ′′ have the same central
character, and then notice that the well-defined action of M(F ) on the space HomM1(F )(σ

′, σ′′),
which is nonzero because σ is contained in both σ′|M1(F ) and σ′′|M1(F ), is trivial on ZM(F ) and on
M1(F ), and hence factors through a finite abelian quotient, which therefore has an eigenvector.
This finishes the proof of the disjointness of Φ2(M1). This, together with the fact that every
element of Irr2(M1) is a constituent of the restriction of some element of Irr2(M) to M1(F ),
implies that Φ2(M1) is a partition of Irr2(M1). Note that the proof of the claim also shows that
the fibers of the map Φ2(M)→ Φ2(M1) given by Σ 7→ ΣM1 are acted on transitively by the group
of continuous unitary characters M(F )→ C× that are trivial on M1(F ).
For Σ1 ∈ Φ2(M1), we choose Σ ∈ Φ2(M) with Σ1 = ΣM1

, and set ΘΣ1
:= ΘΣ|M1(F ) =

∑
cσΘσ|M1(F )

(at the level of Harish-Chandra characters), where we write ΘΣ =
∑
cσΘσ, with σ running over

Σ. ΘΣ1 is independent of the choice of Σ, because by the previous paragraph, any other choice
is of the form Σ ⊗ χ with χ : M(F ) → C× a smooth character trivial on M1(F ). It is standard
and easy that Θσ|M1(F ) = Θσ|M1(F )

for each σ ∈ Irr(M), so that for each Σ1 ∈ Φ2(M1), ΘΣ1
is

a virtual character on M1(F ) supported on Σ1 (two different representations in Σ can collapse
to the same representation in Σ1, at least a priori). Since either of ΘΣ or ΘΣ1 is stable if and
only if it is constant as a function on each strongly regular semisimple stable conjugacy class in
M(F ) or M1(F ) (and since strongly regular semisimple elements of M1(F ) map to strongly regular
semisimple elements of M(F )), it follows that ΘΣ1

is stable, for each Σ1 ∈ Φ2(M1).
To finish the proof of (i), it remains to show that any Θ1 ∈ SDell(M1) is a linear combination
of the ΘΣ1 as Σ1 runs over Φ2(M1) (which are automatically linearly independent). By Remark
2.2.4(i), we may assume without loss of generality that Θ1 =

∑
cσ1

Θσ1
where the σ1 are tempered

representations all having the same central character, say ζ1. Choose a character ζ of ZM(F )
extending ζ1. We have a well-defined smooth function Θ on the set of strongly regular semisimple
elements of M(F ), supported on ZM(F ) ·M1(F ), whose value at zm equals ζ(z)Θ1(m1) for any
z ∈ ZM(F ) and m1 ∈ M1(F ).
It is easy to see that the Int M(F )-average Θ̄ of Θ equals

∑
cσ̃1Θσ̃1 , where for each σ1, σ̃1 is the

direct sum of all irreducible representations of M(F ) with central character ζ and having σ1 in its
restriction to M1(F ), and where cσ̃1

= cσ1
· a−1, a being the length of σ̃1|M1(F ). Thus, Θ̄ ∈ D(M).

Since Θ1 ∈ SD(M1), Θ is Int M(F )-invariant, and hence Θ = Θ̄ ∈ D(M). Since Θ as a function is
constant on each strongly regular semisimple conjugacy class in M(F ), we have Θ ∈ SD(M).
However, it is not immediate that Θ ∈ SDell(M), because the theory of R-groups can work more
nontrivially for M1 than for M (e.g., as happens when M = GL2 and M1 = SL2). We take a
lazy short-cut using a deep result from [Art96]. By (35), we can write Θ = Θ′ + Θ′′, where
Θ′ ∈ SDell(M), and Θ′′ is a linear combination of virtual characters fully induced from proper
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Levi subgroups of M. By an obvious compatibility of parabolic induction with restriction from
M(F ) to M1(F ), it follows that Θ′′|M1(F ) = 0, so that Θ1 = Θ′|M1(F ). Since we are assuming
Hypothesis 2.7.1 for G, Θ′ is a finite linear combination of the ΘΣ as Σ runs over Φ2(M). Since
Θ1 = Θ′|M(F ), it follows that Θ1 is a finite linear combination of the ΘΣ1

as Σ1 runs over Φ2(M1),
as desired. This argument is unsatisfactory as it proves something very elementary using an input
that depends on global methods, and also on the fundamental lemma, but it allows us to avoid
the mess of having to deal with distinct R-groups. This finishes the proof of (i).
Now to prove (ii), a part of whose proof will only be sketched, assume that the kernel of G1 → G
is central and that G1(F ) and G(F ) have the same image in Gad(F ), i.e., G(F ) is the product
of ZG(F ) and the image of G1(F ). This property passes to Levi subgroups. Let M1 ⊂ G1 be
a Levi subgroup with image M ⊂ G. Thus, elements of Irr(M), Irr2(M) and Irrtemp(M) pull
back to elements of Irr(M1), Irr2(M1) and Irrtemp(M1), and in each case the image of the pull-
back map consists of representations of M1(F ) whose central character is trivial on the kernel of
ZM1(F )→ ZM(F ).
Fix a smooth unitary character ζ : ZM(F ) → C×. Since SDell(M) is the direct sum of the
SDell,ζ′(M) as ζ ′ varies over (smooth) unitary characters of ZM(F ), it suffices to define a partition
Φ2(M)ζ of the subset Irr2(M)ζ of Irr2(M) consisting of representations with central character ζ,
and a nonzero stable virtual character ΘΣ for each Σ ∈ Φ2(M)ζ that is supported on Σ, such that
the ΘΣ form a basis for SDell,ζ(M).
Let ζ1 be the pull-back of ζ under ZM1(F )→ ZM(F ). Since M(F ) is generated by ZM(F ) and the
image of M1(F ), it is immediate that pull-back gives us bijections Irr(M)ζ → Irr(M1)ζ1 , Irr2(M)ζ →
Irr2(M1)ζ1 and Irrtemp(M)ζ → Irrtemp(M1)ζ1 . We let Φ2(M)ζ be the partition of Irr2(M)ζ corre-
sponding under the second of these bijections to the partition of Irr2(M1)ζ1 given by the subset
Φ2(M1)ζ1 ⊂ Φ2(M1) (as made sense of using Lemma 2.7.3(ii)).
Writing a for the bijection Irr2(M)ζ → Irr2(M1)ζ1 , if Σ ∈ Φ2(M) pulls back to Σ1 ∈ Φ2(M1),
write ΘΣ1

=
∑
cσ1

Θσ1
, and define ΘΣ =

∑
ca(σ)Θσ. It is immediate that ΘΣ is supported on Σ

and is nonzero, and that ΘΣ and ΘΣ1 are related as follows (and, informally, ‘determining’ each
other): at the level of Harish-Chandra characters, ΘΣ pulls back to ΘΣ1 , and has central character
ζ. From this it is easy to see that ΘΣ is stable, so that ΘΣ ∈ SDell,ζ(M) (more generally, this
argument shows that pull-back of virtual characters with a given ‘ZM(F )-central character’ from
M(F ) to M1(F ) respects stability). The only remaining assertion is that the inclusion

(93) SD2(M) := span{ΘΣ | Σ ∈ Φ2(M)ζ} ⊂ SDell,ζ(M)

is an equality. By (35) and looking at character values on the elliptic set, this follows if we

show that SD2(M) is a complement for the span of the IndM
L SDtemp(L), as L ranges over the

proper Levi subgroups of M. The analogous assertion with M replaced by M1 is immediate
(since we know Hypothesis 2.7.1 for M1), so we are done using the easy observation that for
each Levi subgroup L ⊂ M with preimage L1 ⊂ M1 (including for L = M), pull-back defines a

linear isomorphism IndM
L Dtemp,ζ(L)→ IndM1

L1
Dtemp,ζ1(L1), that restricts to a linear isomorphism

IndM
L SDtemp,ζ(L)→ IndM1

L1
SDtemp,ζ1(L1). This finishes the proof of (ii).

The proof of (iii) is easy but cumbersome to write down, so we will skip the details. Briefly, ResE/F
gives a bijection between the Levi subgroups of G1 and those of G, and if M1 ⊂ G1 and M ⊂ G are
Levi subgroups with M = ResE/F M1, one shows that Irr2, Dell and SDell all pull back well under
the identification M(F ) = M1(E), the case of Dell entailing appropriate compatibilities involving
intertwining operators and their normalizations. Therefore, a definition of either of Φ2(M1) or
Φ2(M) can be transported to a definition for the other, and made to work. �

7.2. Verification of various hypotheses for many ‘classical’ groups. The following propo-
sition describes how to go from Arthur’s endoscopic classification, which is stated in terms of
discrete series and tempered L-packets, to the statement of Hypothesis 2.7.1, which is stated in
terms of elliptic representations.

Proposition 7.2.1. Suppose, for each Levi subgroup M ⊂ G, we are given a partition Φtemp(M)
of Irrtemp(M) by OM-invariant subsets, such that the following properties are satisfied:
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(a) Some subset Φ2(M) ⊂ Φtemp(M) partitions Irr2(M). Moreover, for each Levi subgroup
M ⊂ G and each Σ ∈ Φtemp(M), there exists a Levi subgroup L ⊂ M and some Υ ∈ Φ2(L),
such that Σ equals ΥM as defined in Notation 2.7.6(ii), i.e., Σ is the union of the sets of

OM-conjugates of the irreducible constituents of the unitary representation IndM
L υ, as υ

ranges over Υ.
(b) Let M ⊂ G be a Levi subgroup and Σ ∈ Φtemp(M), and choose (L,Υ) as in (a). Then:

• (Compare with Definition 3.4.9(i)) For each (not necessarily elliptic) relevant endo-
scopic datum H, with underlying endoscopic group H, choosing auxiliary data and

hence the 5-tuple (H1 → H, ξ̂1, H̃1 = H1 → H̃ = H,C1, µ) as in Notation 3.1.2(iii),

there exists a stable tempered virtual character ΘH ∈ SDµ(H1) on H̃1(F ) = H1(F ),
such that the following holds inside D(M):

(94)
∑
H

C ·TH(ΘH) = (
∑
σ∈Σ

C ·Θσ)OM .

• In (94), the contribution TM∗(Θ
M∗) from the ‘principal’ endoscopic datum M∗ as

in Notation 3.2.1(i) equals the OM-average AvgOM
(IndM

L ΘΥ) of a character induced

from some ΘΥ ∈ SD(L)OL .

Then the hypothesis on the existence of tempered L-packets, namely Hypothesis 2.7.1, is satisfied.

Proof. Let M ⊂ G be a Levi subgroup. For any Σ ∈ Φ2(M), note that any (L,Υ) as in (a) equals
(M,Σ), and that the ΘΣ := ΘΥ ∈ SD(M) as in (b) is supported on Σ. It suffices to show that
the ΘΣ, Σ varying over Φ2(M), form a basis for SDell(M)OM . Each such ΘΣ is clearly contained
in SD(M) ∩ Dell(M) = SDell(M), and it is also clear that the ΘΣ form a linearly independent
set as Σ varies over Φ2(M). It remains to show that their span SDell(M)′, which is contained in
SDell(M)OM , equals all of SDell(M)OM .
Let SD(M)′ ⊂ SD(M)OM denote the span of the contributions TM∗(Θ

M∗) from M∗ in (94) as Σ
varies over Φtemp(M). Write Dnon-ell(M) ⊂ D(M) for the span of tempered virtual characters fully
induced from proper Levi subgroups of M, and Dell,non-st(M) for the span of the TH(SDµ,ell(H1))
as H varies over the elliptic endoscopic data for M distinct from M∗. It follows from the second
condition of (b) that:

(95) SD(M)′ ⊂ SDell(M)′ +Dnon-ell(M).

The first condition of (b) gives us an expression of the form:

(96) D(M)OM ⊂ SD(M)′ +
∑

H6=M∗

TH(SDµ(H1)),

where H runs over a set of relevant endoscopic data for M (taken up to isomorphism), and where

for each H we have implicitly chosen and fixed auxiliary data including µ and H1 = H̃1.
For any given endoscopic datum H for M, using (35), together with the compatibility between
endoscopic transfer and parabolic induction in the form of Remark 3.1.4(i) (if H is elliptic) or
Remark 3.1.4(ii) (otherwise), we have that :

TH(SDµ(H1)) ⊂ Dnon-ell(M) +Dell,non-st(M).

Combining this with (95) and 96, we get:

SDell(M)OM ⊂ D(M)OM∩SDell(M) ⊂ (SDell(M)′+Dnon-ell(M)+Dell,non-st(M))∩SDell(M) = SDell(M)′,

where the last equality uses (34) and (31), as desired. �

Proposition 7.2.2. Suppose G is a quasi-split symplectic, special orthogonal, unitary, general
symplectic, even general special orthogonal or odd general spin group: Sp2n,SOn,Un,GSp2n,GSO2n

or GSpin2n+1. Except in the GSO2n case, assume that each OM is trivial. When G = GSO2n(F ),
for any Levi subgroup M ⊂ G with the ‘GSO-part’ equal to GM, if GM is nonabelian (resp.,
abelian), assume that OM is a two element group contained in the restriction of Int O2n(F ) to M,
with nontrivial image in Out(GM) (resp., that GM is trivial). Then the hypothesis on the existence
of tempered L-packets (Hypothesis 2.7.1) is satisfied.



SOME COMMENTS ON THE STABLE BERNSTEIN CENTER 109

Proof. We will consider multiple cases, but these cases will overlap.
First assume that G is symplectic, special orthogonal, or unitary; in these cases we will use [Art13]
(in the special orthogonal and symplectic cases) or [Mok15] (in the unitary case). In these cases,
partitions Φ(M) as in Proposition 7.2.1 have been constructed by Arthur and Mok in [Art13] and
[Mok15]. Here, for the case of even special orthogonal groups, see [Art13, Theorem 8.4.1]. To see
that the latter assertions in (a) and (b) of Proposition 7.2.1 are satisfied, note that the tempered
L-packets on these groups and their endoscopic decompositions are defined in [Art13] or [Mok15]
starting from the discrete series case, using parabolic induction and the local intertwining relation:
see [Art13, the proof of Proposition 2.4.3 and Sections 6.5, 6.6 and 8.4] and [Mok15, the proof of
Proposition 3.4.4 and Section 7.6]. Thus, we are done in these cases by Proposition 7.2.1.
Now suppose that G equals GSp2n or GSO2n (and is quasi-split). Then partitions Φ(M) as in
Proposition 7.2.1 have been constructed by Xu in [Xu18], associated to the given collection {OM}M
(the analogue of OG for [Xu18] is the group Σ0 of [Xu18, Introduction, page 73]). Here, to see
that the latter assertions in (a) and (b) of the proposition are satisfied, note that the tempered
L-packets on these groups and their endoscopic decompositions are defined in [Xu18] starting from
the discrete series case, using parabolic induction and the local intertwining relation: see [Xu18,
Lemma 4.10 and Section 6.4]. Thus, we are done in these cases by Proposition 7.2.1.
Thirdly, assume that G is odd special orthogonal, symplectic, unitary or odd general spin, i.e.,
SO2n+1,Sp2n,Un, or GSpin2n+1; in these cases, we will use [Mg14]. For use in Proposition 7.2.4
below, we will also allow G to be an even special orthogonal group SO(V, q), but take OG to be
Int O(V, q)(F ) and each OM to be the set of elements of O+

G that preserve M and act trivially on
its center. Each Levi subgroup M ⊂ G can be written as GLM × GM, where GLM is isomorphic
to a product of groups of the form ResE/F GLm for some trivial or quadratic extension E/F , and
GM is a group of the same type as G but of smaller rank (these groups can be possibly trivial).
Hypothesis 2.7.1 is trivial for GLM, because it is standard that SDell(GLM) equals Dell(GLM)
and is spanned by the characters of discrete series representations of GLM(F ). Therefore, the
construction of Φ2(M) as in Hypothesis 2.7.1 reduces to such a construction for Φ2(GM). The
latter construction is trivial if GM is abelian, while if GM is nonabelian it follows from [Mg14,

Corollary 4.11], noting that what is denoted I
G
cusp,st in that corollary is also what is noted IGcusp,st in

that reference, since the group Aut of automorphisms of the endoscopic datum G of that corollary
is trivial in the cases that we are currently considering. �

Remark 7.2.3. In Proposition 7.2.2, we have avoided discussing the case of quasi-split even
general spin groups GSpin2n. This is because, for our arguments to work in this case, we need
the relevant transfer factors ∆(·, ·) to be invariant under the conjugation action of O2n(F ) on the
first factor, so that the action of the group ‘Aut’ on the space noted IGcusp,st in [Mg14, Section
2.3], where G = GSpin2n(F ), can be defined simply through its action on G, without the more
complicated involvement of transfer factors as in [MW16, Section I.2.6]. It seems to us that the
relevant invariance property is likely to hold, and hence should give Hypothesis 2.7.1 up to the
action of the obvious outer automorphism group, but we have not verified it.

Proposition 7.2.4. Let G = G(V, q) be a quasi-split symplectic, special orthogonal, unitary, or
odd general spin group, associated to a space (V, q) that is symplectic (if G is symplectic), quadratic
(if G is special orthogonal or odd general spin) or E/F -Hermitian (if G is unitary, associated to a
quadratic extension E/F ). Let O = OG be trivial if G is not even special orthogonal, and let it be
generated by a reflection associated to an element of order two in O(V, q)(F ) \ SO(V, q)(F ), when
G = G(V, q) = SO(V, q) is even special orthogonal. Assume that, for each Levi subgroup M ⊂ G,
O+

M consists of those elements of O+
G = OG ◦ Int G(F ) that fix the center of M pointwise (e.g., OM

itself could be the group of all such elements, as in Remark 2.6.2(i)). Then G, with respect to this
collection {OM}M, satisfies the hypotheses on the existence of tempered L-packets, LLC+, LLC+
and stability, supercuspidal packets and stable cuspidal support (Hypotheses 2.7.1, 2.10.3, 2.10.12,
2.11.1, and 2.11.4).

Proof. The assertion concerning Hypothesis 2.7.1 follows from Proposition 7.2.2, so let us focus
on the remaining hypotheses. For uniformity, we will use [Mg14], though for the symplectic and
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orthogonal cases (resp., the unitary case), one could also use [Art13] (resp., [Mok15]). Since much
of the proposition is present in [Mg14], we will occasionally be brief. We let E = F unless we are
in the unitary case, where E is the quadratic extension of F splitting G.
As in [Mg14, Section 2.1], we choose an elliptic endoscopic datum G realizing G as endoscopic to a

twisted space G̃LW whose underlying group GLW is isomorphic to GL(W ) (in the symplectic and
orthogonal cases), GL(W )×GL1 (in the odd general spin case) and ResE/F GL(W ) (in the unitary
case). Note that there are multiple possibilities for G in the symplectic and unitary cases; any of
those will suffice for our purposes. For the convenience of the reader, here is a brief description
of the case where G = GSpin2n+1. In this case, one considers the automorphism θ : (g, λ) 7→
(θ0(g), λdet g) of GLW = GL(W )×GL1 = GL2n ×GL1, where θ0 is a conjugate of the transpose

inverse on GL2n that preserves a pinning. Letting θ̂0 ∈ Aut(GL2n(C)) = Aut(ĜL(W )) to be dual

to it and to preserve a pinning, a dual θ̂ to θ can be taken to be given by (ĝ, λ̂) 7→ (θ̂0(ĝ)λ̂, λ̂).

Thus, GL2n(C)θ̂ identifies with GSp2n(C), which is dual to GSpin2n+1(C). Coming back to the
general case, the realization of these endoscopic data involve choices of Borel pairs for GLW and
G, which we fix, to talk of standard parabolic and Levi subgroups of these groups.
Given a standard Levi subgroup M ⊂ G, we can uniquely identify it with a group of the form GLM×
GM, where GLM =

∏
i ResE/F GL(VM,i) with each VM,i ⊂ V an isotropic subspace, and GM is the

group of the same type as G associated to a nondegenerate subspace (VM, q|VM) ⊂ (V, q). Whenever
OM is nontrivial, so that G = SO(V, q), we may and do assume without loss of generality that OM

equals O+
M, so that it identifies with Int((GLM×O(VM, q|VM))(F )), and equals Int M(F ) Int{1, gM},

where gM ∈ GLE(V ) has determinant −1, stabilizes (VM, qM) and acts as the identity on its
orthogonal complement. In all cases, any Levi subgroup M ⊂ G is automatically relevant in the
sense of [MW16, Section I.3.4], and accordingly there is an elliptic endoscopic datum realizing M

as an endoscopic group of a standard Levi subspace of (GLW , G̃LW ), which can be computed to

be of the form (G1×G2, G̃1× G̃2), consisting of a realization of the factor
∏
i ResE/F GL(VM,i) of

M as endoscopic to (G1, G̃1), and of the factor GM of M as endoscopic to (G2, G̃2), the latter in a

manner exactly analogous to the realization of G as endoscopic to (GLW , G̃LW ). Here, G2 ⊂ GLW
is the product of the GL1 factor if it exists (i.e., if G ∼= GSpin2n+1), and a subgroup GLWM

⊂ GLW
acting as the identity on a suitable complement of a subspace WM in W . When G = GSpin2n+1,

this reflects the fact that the similitude character on the dual Ĝ = GSp2n(C), when restricted
to a Levi subgroup, is supported on the ‘classical part’ of the Levi subgroup. In all cases, these
considerations let one make sense of ‘extended cuspidal support’ as in [Mg14, Section 4].
Let us consider Hypothesis 2.10.3. Let M ⊂ G be a standard Levi subgroup, and let us specify
the map σ 7→ ϕσ, which is a map

Irr2(GLM)× Irr2(GM) = Irr2(M)→ Φ2(M)/OM = Φ2(GLM)× (Φ2(GM)/OM)

(OM acts on GM by restriction). We take it to be the product of the map Irr2(GLM)→ Φ2(GLM)
given by the usual local Langlands correspondence for GL-type groups, and an analogous map
Irr2(GM) → Φ2(GM)/OM, which we will also denote as σ 7→ ϕσ. The latter can be described as
follows:

• If GM is not abelian or OG is trivial, we define this map as in [Mg14]. Specifically, any
σ ∈ Irr2(GM) has what [Mg14, Section 4] defines as its extended cuspidal support. By
[Mg14, Remark 4.1 and Corollary 4.3], this extended cuspidal support is the cuspidal
support of exactly one tempered representation of G2, say σG2 . By [Mg14, Corollary
4.11 and Theorem 6.4], the local Langlands parameter of σG2 is the image in Φtemp(G2)
of a unique element of Φ2(GM) under the inclusion LGM ↪→ LG2 which is part of the
realization of GM as endoscopic to G2. This element of Φ2(GM) is what we take to be ϕσ.

• Suppose GM is abelian and OG is nontrivial. Then GM is a torus and OM is trivial, and
we let the map Irr2(GM)→ Φ2(M) to be given by the local Langlands correspondence for
tori. One can check that this refines the prescription in the nonabelian case, which gives
the local Langlands correspondence only up to the action of a group of order two.
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This defines Irr2(M) → Φ2(M)/OM when M is a standard Levi subgroup. It is OM-invariant,
because OM restricts to inner automorphisms on GLM, and the same applies to GM except possibly
in the even special orthogonal case, where the fibers of σ 7→ ϕσ are preserved under OM|GM =
Int O(VM, q|VM

)(F ) as mentioned in [Mg14, Theorem 6.5]. In order to extend this to more general
M, let us first verify:
Claim. Whenever β ∈ O+

G takes a standard Levi subgroup M′ to a standard Levi subgroup M, the
condition ϕσ = Lβ ◦ ϕσ◦β from (iii) of Hypothesis 2.10.3 is satisfied for all σ ∈ Irr2(M).
Since each automorphism in O+

G is induced by an isometry of (V, q), it is easy to see that GM = GM′

and that β normalizes this group. Similarly, β also takes each of the factors ResE/F GL(VM′,j) of

GLM′ to a factor ResE/F GL(VM,i) of GLM, and the verification of the equality ϕσ = Lβ ◦ ϕσ◦β
reduces to analogous verifications separately for the ‘general linear’ factors ResE/F GL(VM′,j) and
ResE/F GL(VM,i) on the one hand, and for the ‘classical’ factors GM′ and GM on the other.
β takes each factor ResE/F GL(VM′,j) to its image ResE/F GL(VM,i) by an isomorphism of the
form ResE/F β0, where β0 is an isomorphism GL(VM′,j)→ GL(VM,i) of groups over E. Therefore,
the ‘GL(VM,i)’-part of required equality follows from the functoriality of the local Langlands
correspondence for isomorphisms of general linear groups, namely, [Hai14, Proposition 5.2.5]. On
the other hand, the ‘GM-part’ of the verification follows from the functoriality of local Langlands
correspondence for tori if GM is abelian, and from the fact that β|GM ∈ OM|GM otherwise, given
that we have already seen the OM-invariance of Irr2(GM)→ Φ2(M)/OM above. This finishes the
proof of the claim.
Thanks to this claim, we can now define the map σ 7→ ϕσ for all Levi subgroups M ⊂ G by forcing
the condition ϕσ = Lβ ◦ ϕσ◦β from (iii) of Hypothesis 2.10.3.
This completes the construction of the maps σ 7→ ϕσ, for which we still need to verify the con-
ditions in Hypothesis 2.10.3. The surjectivity of σ 7→ ϕσ follows from separately considering the
ResE/F GL(VM,i) and the GM, the latter of which follows from the ‘if’ part of [Mg14, Theorem
6.4].
Now we come to the condition involving twists by unramified unitary characters; this is a special
case of a general fact describing the behaviour of twisted endoscopy with respect to character
twists, which is very possibly somewhere in the literature. But since we cannot find a reference,
let us sketch an argument for our specific situation which has some simplifying features. This
question can be addressed separately for the ‘general linear parts’ ResE/F GL(VM,i) of M, and for
the ‘classical part’ GM. The former is well-known, while GM does not have nontrivial unramified
characters unless G ∼= GSpin2n+1. To handle this case, we assume without loss of generality for now

that G = M = GSpin2n+1,GLW = GL2n × GL1, and Ĝ = GSp2n(C) = (GL2n(C) × GL1(C))θ̂ =

ĜL
θ̂

W . Let α ∈ ZĜ = ZΓ,0

Ĝ
be such that the corresponding χα ∈ Xunr(SG) (use Lemma 2.5.10)

is unitary. The map Zθ̂
ĜLW

= (Zθ̂,Γ
ĜLW

)0 → ZĜ is an isomorphism (reflecting the ellipticity of G),

giving us an isomorphism SG → S′ := SGLW /(1 − θ)SGLW . Let α′ ∈ Zθ̂
ĜLW

map to α. Note that

the character χα′ ∈ Xunr(S′) ⊂ Xunr(SGLW ) associated to α′ is unitary as well.

The composite homomorphism GLW → SGLW → S′, together with the GLW -bitorsor G̃LW ,

determines an S′-bitorsor S̃′ together with a map G̃LW → S̃′ that is constant on stable conjugacy
classes. To proceed, we find it simpler to use [Wal08] than [MW16]. We choose a base-point

θ̃ ∈ G̃LW (F ) such that Int θ̃ equals θ, which preserves a pinning. In the language of [Wal08,

Section 1.2], we can identify “G̃” (our G̃LW ) with G̃∗ = G∗θ∗, with our θ̃ taking the place of

the θ∗ of [Wal08]. The isomorphism SG → S′ gives a compatible homeomorphism SG → S̃′,

where 1 ∈ SG(F ) maps to the image xθ̃ ∈ S̃′(F ) of θ̃. χα′ extends to a representation (χα′ , χ̃α′)

of (S′(F ), S̃′(F )), with χ̃α′(xθ̃) = 1. Looking at the transfer of semisimple conjugacy classes as

defined in [Wal08, Section 1.3] one finds that if semisimple δ ∈ G(F ) and γ ∈ G̃LW (F ) have their

F̄ -conjugacy classes match, the image of δ in SG(F ) maps to the image of γ in S̃′(F ), and thus,

χα(δ) = χ̃α′(γ) (this uses our identifying the θ∗ of [Wal08] with θ̃). Thus, if fW ∈ C∞c (G̃LW (F ))
and f ∈ C∞c (G(F )) have matching orbital integrals, it is easy to see that so do fW χ̃

−1
α′ and fχ−1

α .

In other words, if the corresponding transfer of distributions maps Θ to Θ̃W , it also maps Θχα
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to ΘW χ̃α′ . From this, the compatibility of the local Langlands correspondence of [Mg14] for GM,
with twisting by unramified characters, is easy to see.
Now we return to the general G of the proposition. The condition (ii) of Hypothesis 2.10.3 again
breaks down into an assertion involving the ‘general linear part’ and the ‘classical part’, of which
the former is standard while the latter is immediate from the definition of the extended cuspidal
support in [Mg14] (see [Mg14, just before Remark 4.1]), together with the fact that the map
σ 7→ ϕσ was defined using the extended cuspidal support. The condition (iii) was imposed in
the construction of the maps σ 7→ ϕσ, and is hence automatic, completing the verification of
Hypothesis 2.10.3.
Noting from the proof of the third case of Proposition 7.2.2 that Hypothesis 2.7.1 is satisfied in
our setting, and noting also from that proof that Φ2(M) is simply the partition determined as the
fibers of the map that takes each element of Irr2(M) to its extended cuspidal support (see [Mg14,
Corollary 4.11]), Hypothesis 2.10.12 is automatic from the definition of σ 7→ ϕσ.
Now we come to Hypothesis 2.11.1. The implication (b) ⇒ (a) of that hypothesis follows from
Remark 2.11.2, so let us see the implication (a)⇒ (b). Thus, suppose Σ(ϕ) (defined as in Notation
2.10.11(i)) consists entirely of supercuspidal representations, where ϕ ∈ Φ+

2 (M)/OM and M ⊂ G is
a Levi subgroup, and let us show that ϕ is trivial on SL2(C). This clearly reduces to an analogous
question for GM, so that we may in fact assume M = G. Thus, Σ(ϕ) ∈ Φ+

2 (M) = Φ+
2 (G) = Φ2(G)

by Hypothesis 2.10.12. Let ΘΣ(ϕ) be a nonzero OG-invariant stable character supported on Σ(ϕ)
(as in Hypothesis 2.7.1), which is unique up to scalar multiplication.
Since Σ(ϕ) consists of supercuspidal representations, Aubert-Zelevinsky involution preserves each
element of Σ(ϕ) up to a sign that depends only on G, and hence (by the uniqueness of ΘΣ(ϕ))
also preserves ΘΣ(ϕ) up to a sign. Further, Aubert-Zelevinsky duality is compatible with twisted
endoscopy by the discussion around and below [Art13, (7.1.5)]. Therefore, the tempered character

of G̃LW (F ) to which Σ(ϕ) transfers too is stable under the Aubert-Zelevinsky duality, up to a
sign, forcing the representation supporting it to be supercuspidal (it is well-known that for general
linear groups, the Aubert-Zelevinsky duality exchanges the two copies of SL2(C) at the level of
Arthur parameters). Thus, ϕ is a supercuspidal parameter, as desired.
Since we have seen Hypotheses 2.7.1, 2.10.3, 2.10.12 and 2.11.1, and since G is quasi-split, Hy-
pothesis 2.11.4 follows by Proposition 2.11.6. �

7.3. Inner forms of classical groups. In this subsection, we give a proof of the existence of
stable discrete series packets (essentially Hypothesis 2.7.1) for inner forms of symplectic, odd
special orthogonal, unitary and odd general spin groups, as well as of the transfer of these packets
to their quasi-split inner forms, using which we get a stability-compatible LLC+ for these groups
(more specifically, Hypotheses 2.10.3 and 2.10.12). Similar results, but up to outer automorphisms,
are proved for those inner forms of even special orthogonal groups that Arthur calls ‘symmetric’ in
[Art13, Chapter 9], namely, those that are either associated to a quadratic space (without involving
a division algebra) or whose quasi-split inner form is not split; a weaker variant is proved for the
ones that are not symmetric. We hasten to add that, except possibly for odd general spin groups,
all these results and much more are already known from the work of Arthur ([Art13, Chapter 9]),
Mœglin and Renard ([MR18]), Kaletha, Minguez, Shin and White ([KMSW14]), and Ishimoto
([Ish23]), and that there is also an approach by Chen and Zou ([CZ20]) to the local Langlands
correspondence for non-quasi-split unitary groups using the theta correspondence. However, our
proof is different from the proofs in all these sources: we build on Shahidi’s work on the constancy of
the Plancherel µ-function on discrete series L-packets on Levi subgroups, as revisited in Corollary
5.2.12.

Notation 7.3.1. (i) In this subsection, we will follow the convention of denoting by M∗ the
quasi-split inner form of a connected reductive group M over F . We will often work with
a (implicitly) fixed choice of an inner twist ψG∗ from G∗ to G, and an endoscopic datum
G∗ as in Notation 3.2.1(i). If further M is a Levi subgroup of G, we will often consider a
choice of M∗, ψM∗ and M∗ as in Notation 3.2.1(vi), defined using ‘Levi subgroup matching
data’ as discussed there: this means we can fix, and have fixed, parabolic subgroups P ⊂ G
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and P∗ ⊂ G∗ having M and M∗ respectively as Levi subgroups, and such that ψG∗ takes
(P∗

F̄
,M∗

F̄
) to (PF̄ ,MF̄ ).

(ii) Following [Art13], we will call G an inner form of a classical or odd general spin group if
G is an inner form of a quasi-split symplectic, special orthogonal, unitary or odd general
spin group. We call G symmetric if it additionally satisfies the following condition: if the
quasi-split inner form G∗ of G is even special orthogonal, then either G∗ is not split, or
the local index of G is not of type [Art13, (9.1.5) or (9.1.6)]. In other words, the condition
is that either G is not an inner form of a split even special orthogonal group, or G is
associated to a quadratic space over F rather than to a Hermitian form over a division
algebra (thus, G is automatically symmetric if it is quasi-split).

(iii) Let G be an inner form of a classical or odd general spin group. If G (or equivalently G∗)
is not unitary, we will let E = F ; otherwise, we will let E be such that G (or equivalently
G∗) is a unitary group associated to a quadratic extension E/F . If G is quasi-split, or
if the root datum of GF̄ is of type An or Bn, or if G is even special orthogonal and of
type 1Dn associated to a quadratic space as opposed to a division algebra (see the ‘d = 1’
subcase of the two cases discussed in [Art13, shortly above 9.1.5(i)]), then let NG = N,
and let Hm = ResE/F GLm for every nonnegative integer m. In the remaining situations,
i.e., if G is non-quasi-split and falls into one of the following three cases: it is of type Cn,
it is of type 2Dn, or it is of type 1Dn and is associated to a division algebra (see the
‘d = 2’ subcase of the two cases discussed in [Art13, shortly above 9.1.5(i)]), then let NG

be the set of all even nonnegative integers, and for m ∈ NG, let Hm be the linear algebraic
group associated to GLm/2(D), where D is a quaternion division algebra over F . Note
that in either case, associating H∗m to G∗ the same way Hm is associated to G, so that
H∗m
∼= ResE/F GLm, we may and do fix an inner twist H∗m → Hm, which we will denote

by ψH∗m
in what follows, and take to be the identity map in the former case.

(iv) Suppose G is an inner form of a classical or odd general spin group. We will sometimes
write G = Gn, where n is the dimension of the standard representation of (G∗)E (E as
in (iii) above), and think of it as a member of an obvious series {Gm}m of groups ‘of the
same type’. We can realize G as the ‘classical part’ of a Levi subgroup of a bigger group
of the same type as G: namely, for every d1, . . . , dr ∈ NG, we can fix a realization of

(97) M(d1, . . . , dr;n) := Hd1
× · · · ×Hdr ×Gn = Hd1

× · · · ×Hdr ×G

as a Levi subgroup of the analogous but bigger group G+ := G2(d1+···+dr)+n. In such a
situation, we will also fix a realization of M(d1, . . . , dn)∗ := H∗d1

× · · ·×H∗dr ×G∗ as a Levi

subgroup of (G+)∗ := G∗2(d1+···+dr)+n. We will also fix (as we may in our cases; use, e.g.,

the discussion on inner forms vs inner twists in [Art13, Section 9.1]) an inner twist ψ(G+)∗

from (G+)∗ to G+, such that some inner twist from M(d1, . . . , dr;n)∗ to M(d1, . . . , dr;n)
obtained from ψ(G+)∗ using ‘Levi subgroup matching data’ as in Notation 3.2.1(vi), equals
ψH∗d1

× · · · × ψH∗dr
× ψG∗ . We may then change ψ(G+)∗ within its equivalence class to

assume that it restricts to ψH∗d1
× · · · × ψH∗dr

× ψG∗ . ψ(G+)∗ also defines an endoscopic

datum, (G+)∗, for G+ with underlying group (G+)∗.

(v) Suppose G = Gn,G
+ = G2(d1+···+dr)+n and Hd1

× · · · ×Hdr ×G = M(d1, . . . , dr;n) ⊂ G+

are as in (97). If we are given σ ∈ Irr2(G) and υi ∈ Irr2(Hdi) for 1 ≤ i ≤ r, then we will let
µ(υ1 ⊗ · · · ⊗ υr ⊗ σ) denote the Plancherel measure associated to the parabolic induction
of υ1 ⊗ · · · ⊗ υr ⊗ σ from M(d1, . . . , dr;n)(F ) to G+(F ) = G2(d1+···+dr)+n(F ), and set

µ′′′(υ1 ⊗ · · · ⊗ υr ⊗ σ) = γ′′′(G2(d1+···+dr)+n|M(d1, . . . , dr;n))µ(υ1 ⊗ · · · ⊗ υr ⊗ σ)

(see (60) for the definition of γ′′′(·|·)). If we refer to these functions when r = 0, it will be
understood that they will be ignored, i.e., replaced by 1.

(vi) If G is a symmetric inner form of a classical or odd general spin group, we will let OG

be trivial unless G∗ is even special orthogonal and nonabelian (i.e., of rank greater than
one), in which case we will often let OG ⊂ Aut(G) be the group generated by some F -
rational automorphism of G whose image in Out(G) is the unique nontrivial element of
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Out(G): such an automorphism exists, by the first sentence of the paragraph containing
[Art13, (9.1.9)]. For each Levi subgroup M ⊂ G, we then let OM be as in Remark 2.6.2(i),
i.e., the set of elements of O+

G that act trivially on ZM (and hence automatically preserve
M). It is easy to verify that OM consists of inner automorphisms of M if G∗ is not even
special orthogonal or if the ‘classical part’ of M is abelian, and it is easy to verify using the
facts from [Art13] we just alluded to, that whenever G∗ is even special orthogonal and the
‘classical part’ GM of M is not abelian, OM is generated by Int M(F ) and an automorphism
that restricts to an outer automorphism on GM.

(vii) If G is an inner form of a classical or odd general spin group, which may not be symmetric,
we will let ŌM be the subgroup of Out(M) consisting of elements that induce the trivial
automorphism of ZM. If G is symmetric and OM is as in (vi) above, it is easy to see that
the image of OM in Out(M) equals ŌM.

Remark 7.3.2. (i) Recall the objects defined in Notation 5.2.1(v). We abbreviate M+ =
M(d1, . . . , dr;n) and G+ = G2(d1+···+dr)+n. It is easy to see from the definitions, the mul-
tiplicativity of the Plancherel measure ([Wal03, Lemma V.2.1]), and the multiplicativity
of the expression [KN : IN]−1[KN− : IN− ]−1 occurring in (60) (a general property of how
parahoric groups intersect with unipotent radicals of appropriately positioned parabolic
subgroups), that we have an expression:

(98) µ′′′(υ1 ⊗ · · · ⊗ υr ⊗ σ) =
∏
α

µ′′′α (υ1 ⊗ · · · ⊗ υr ⊗ σ) =

(
r∏
i=1

µ′′′(υi ⊗ σ)

)
·
′∏
α

µ′′′α (υ1, . . . , υr).

Here, µ′′′α (·) denotes the µ′′′-function associated to parabolic induction from M+ to the
Levi subgroup M+

α ⊂ G+ obtained as the centralizer in G+ of the connected kernel of
α, and in the product in

∏
α, α runs over all reduced roots of AM+ in G+ up to a sign.

Moreover, the last product in (98) is the sub-product over those α such that G is a direct
factor of M+

α : for such α, µ′′′α (υ1 ⊗ · · · ⊗ υr ⊗ σ) is independent of σ (and depends on only
one or two of the υi’s), and hence has been written as µ′′′α (υ1, . . . , υr).

(ii) Now we additionally consider (G+)∗ and an inner twist ψ(G+)∗ as in Notation 7.3.1(iv). Let

(M+)∗ = M(d1, . . . , dr;n)∗. Since ψ(G+)∗ restricts to ψH∗d1
× · · · × ψH∗dr

× ψG∗ , its induces

a bijection α 7→ α∗ from the set of reduced roots of AM+ in G+ to the set of reduced roots
of A(M+)∗ in (G+)∗, and for each such α, restricts to an inner twist ((M+)∗α∗)F̄ → (M+

α )F̄
of the associated Levi subgroups. Note that we have an expression analogous to (98):

(99) µ′′′(υ∗1⊗· · ·⊗υ∗r⊗σ∗) =
∏
α∗

µ′′′α∗(υ
∗
1⊗· · ·⊗υ∗r⊗σ∗) =

(
r∏
i=1

µ′′′(υ∗i ⊗ σ∗)

)
·
′∏
α∗

µ′′′α∗(υ
∗
1 , . . . , υ

∗
r ).

For each α, G is a direct factor of the associated Levi subgroup M+
α ⊃ M if and only if G∗

is a direct factor of the Levi subgroup (M+)∗α∗ ; for such an α, if we further assume that
υ∗i and υi are related by the Deligne-Kazhdan-Vigneras correspondence for each i, which
is known to respect Plancherel measures (or use Corollary 5.2.12(ii)), we have:

(100) µ′′′α (υ1, . . . , υr) = µ′′′α∗(υ
∗
1 , . . . , υ

∗
r ).

When G is a symmetric inner form of a quasi-split classical or odd general spin group, the following
is the main result of this subsection.

Theorem 7.3.3. Let G be a symmetric inner form of a quasi-split classical or odd general spin
group (see Notation 7.3.1(ii)), and let {OM}M be as in Notation 7.3.1(vi). Then the hypothesis
on the existence of tempered L-packets, the LLC+ hypothesis, and the compatibility of LLC+ and
stability (Hypotheses 2.7.1, 2.10.3 and 2.10.12) are satisfied by G.

Before preparing to formulate a version of this theorem that applies to inner forms of classical
groups that may not be symmetric, let us make some general remarks about our method and its
limitations.
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Remark 7.3.4. Our proof of Theorem 7.3.3 builds on the work of Shahidi from [Sha90], con-
cerning the constancy of the Plancherel µ-function on discrete series L-packets on Levi subgroups.
Specifically, we will apply Corollary 5.2.11 to bigger groups G+ of the same type as G: as we
have seen above, these have Levi subgroups M+ that in turn have G as a factor. This will yield
us a ring R of Plancherel measure based multipliers on spaces slightly bigger than SDζ,ell(G)
and SDζ,ell(G

∗) for a fixed unitary character ζ of AG(F ) = AG∗(F ) (this identification made
using ψG∗). The simultaneous eigendecomposition for these actions will allow us to transfer stable
packets from G∗ to G. We now make a couple of observations on the scope of this method.

(i) Once the assertion concerning transfer factors associated to quasi-split even general spin
groups mentioned in Remark 7.2.3 is verified, the proof of Theorem 7.3.3 given below
should extend to this case, yielding similar assertions for those inner forms of even general
spin groups that are symmetric in the sense that the inner forms of even special orthogonal
groups obtained from them are symmetric.

(ii) Perhaps most of the arguments involved in the proof of Theorem 7.3.3 can also be adapted
to inner forms of general symplectic and even general special orthogonal groups. However,
for these groups, as for their quasi-split inner forms, the Plancherel measure cannot capture
twists by characters that are trivial on both the derived group and the center. Thus,
for these groups, these methods do not seem to yield anything more than what can be
obtained using coarse methods from what is known about their derived groups. In the
quasi-split case, Xu used global methods in [Xu18] to disentangle these twists and get finer
decompositions from the coarser packets obtained naively from the derived groups.

Now we come to the task of formulating a version of Theorem 7.3.3 that makes sense in the
case where G may not be symmetric: this will need us to have a version of Hypotheses 2.7.1,
2.10.3 and 2.10.12 that involves only outer automorphisms of Levi subgroups. We start with
the following proposition, which helps us make outer automorphisms act on stable discrete series
packets, essentially using [Art96] and the fact that elliptic tori transfer to all inner forms:

Proposition 7.3.5. Let M be a connected reductive group over F .

(i) View elements of SDell(M) as functions on the space M(F )ell/ ∼ of strongly regular elliptic
stable conjugacy classes of M, viewed inside the adjoint quotient of M (this is the stable
version of Notation 3.4.1(i), and a consequence of [Art96] explicated in the twisted setting
in [MW16, Theorem XI.3]). Then any element of Out(M)Γ (acting on the adjoint quotient)

preserves M(F )ell/ ∼, so that for any Θ ∈ SDell(M) and β̄ ∈ Out(M)Γ, Θ ◦ β̄ makes
sense as such a function. Moreover, for any Θ ∈ SDell(M) and β̄ ∈ Out(M)Γ, we have
Θ ◦ β̄ ∈ SDell(M).

(ii) Let ŌM ⊂ Out(M)Γ be a subgroup that is finite, and such that its image in Aut(AM) is
trivial. Consider collections Φ2(M) of pairwise disjoint subsets of Irr2(M) such that for

each Σ ∈ Φ2(M), there exists an element ΘΣ ∈ SDell(M)ŌM that is a (nonzero multiple
of a) positive linear combination of the Θσ as σ varies over Σ, and such that {ΘΣ | Σ ∈
Φ2(M)} forms a basis for the space SDell(M)ŌM (which makes sense by (i) above). If such
a collection Φ2(M) exists, then it is unique and is a partition of Irr2(M).

Proof. If M is quasi-split, (i) follows from the fact that Aut(M) → Out(M)Γ is surjective (use
a Γ-fixed pinning). To deal with the general case, we choose M∗,M∗ and ψM∗ as in Notation
3.2.1(i). Then the first assertion of (i) follows from the quasi-split case and the fact that elliptic
tori in p-adic reductive groups transfer across inner forms (combine [Kot86, Lemmas 10.1 and
10.2]). For the second assertion, consider an automorphism β∗ ∈ Aut(M∗) mapping to β̄ under
Out(M)Γ = Out(M∗)Γ, and let Θ∗ ∈ SDell(M

∗) map to Θ under the isomorphism SDell(M
∗) →

SDell(M). Using Remark 3.2.2(i), it is easy to see that Θ ◦ β̄ is the image of Θ∗ ◦ β∗ under
SDell(M

∗)→ SDell(M), and hence belongs to SDell(M).
The uniqueness of Φ2(M) follows exactly as with Hypothesis 2.7.1. Namely, if Φ2(M) and Φ2(M)′

are two such collections, then the given conditions (including the positivity) imply that each
element of Φ2(M) (resp., Φ2(M)′) is a union of elements of Φ2(M)′ (resp., Φ2(M)). Now let
us assume that such a collection Φ2(M) exists, and sketch, following [Mg14, Proposition 2.4], a
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proof that it partitions Irr2(M). Let σ0 ∈ Irr2(M) have central character restricting to, say, ζ

on AM(F ) = AM∗(F ); it suffices to show that Θσ0
is not orthogonal to SDζ,ell(M)ŌM under the

elliptic inner product on Dζ,ell(M) (see Notation 3.4.4). Choose a (possibly infinite) group OM∗ ⊂
Aut(M∗) mapping onto ŌM ⊂ Out(M)Γ = Out(M∗)Γ. It is easy to see from Remark 3.2.2(i) that
the isomorphism SDζ,ell(M

∗) → SDζ,ell(M) respects the action of ŌM ⊂ Out(M)Γ = Out(M∗)Γ.
Therefore, since (31) respects inner products up to scalars (by [LMW18, Section 4.6, Lemma 3]),
it suffices to show that the image of Θσ0

in SDζ,ell(M
∗) according to (31) is not orthogonal to

SDζ,ell(M
∗)OM∗ . By the given hypotheses on ŌM and the fact OM∗ acts through a finite quotient

on Dζ,ell(M
∗) ⊃ SDζ,ell(M

∗) preserving its inner product, we see that the orthogonal projection
SDζ,ell(M

∗)→ SDζ,ell(M
∗)OM∗ is given by OM∗ -averaging.

Thus, it suffices to show that there exists a linear map Dζ,ell(M)→ C that factors as the composite
of Dζ,ell(M)→ SDζ,ell(M

∗) and an OM∗ -invariant map SDζ,ell(M
∗)→ C, and is nonzero on Θσ0 .

We claim that the map sending Θ ∈ Dζ,ell(M) to the coefficient c0(Θ) of the trivial nilpotent orbit
in the character expansion of Θ at the identity satisfies these properties. This map is nonzero
on Θσ0

, and factors as the composite of the projection Dζ,ell(M) → SDζ ell(M
∗) and the map

SDell(M
∗) → C given by an analogous formula Θ∗ 7→ c0(Θ∗). This latter map is clearly OM∗ -

invariant as well, proving our claim and hence the proposition. �

Remark 7.3.6. In [Art13, Section 9.4, around (9.4.11)], in the troublesome case of inner forms of
even special orthogonal groups that are not symmetric, Arthur gives a considerably more sophisti-
cated description of the action of the outer automorphism without a rational lift, on the quotient
I(M) = C∞c (M(F ))/ Int M(F ). In fact, it operates via an involution on Irrtemp(M). In contrast,
we have only made ŌM act on SDell(M), and our prescription is much more simple-minded, as it
involves only naive considerations involving stable elliptic conjugacy classes.

Next, we consider systems {ŌM}M as in Notation 2.6.1, but involving outer automorphisms in
place of automorphisms.

Notation 7.3.7. Let {ŌM}M be a collection indexed by Levi subgroups M ⊂ G, where ŌM ⊂
Out(M)Γ for each M. We will call this collection nice if the following conditions somewhat analo-
gous to the conditions in (iv) of Notation 2.6.1 are satisfied:

(a) For each M, under the well-defined map Out(M)Γ → Aut(AM) induced by restriction, ŌM

has trivial image;
(b) Let L,M ⊂ G be Levi subgroups.

• If β ∈ Aut(G) has image inside ŌG, then β|M transports ŌM ⊂ Out(M)Γ to Ōβ(M) ⊂
Out(β(M))Γ;

• If L ⊂ M and β ∈ ŌL, then the well-defined Int M̂-orbit of inclusions ιM,L ◦ Lβ :
LL → LM (see Notation 2.4.6(ii) for ιM,L, and note that Lβ is an L-automorphism

of LL that is well-defined up to Int L̂), is contained in the well-defined Int M̂-orbit of

inclusions Lβ̃ ◦ ιM,L, for some β̃ ∈ ŌM (so that Lβ̃ is an L-automorphism of LM that

is well-defined up to Int M̂);
(c) Each ŌM is finite.

Lemma 7.3.8. Let {ŌM}M be a nice collection of automorphisms of Levi subgroups of G, as in
Notation 7.3.7.

(i) Let L ⊂ M ⊂ G be Levi subgroups. Then ϕ 7→ λ(ϕ) induces a well-defined map Φ(M)/ŌM →
Ω( LM)/ŌM.

(ii) The actions of ZΓ,0

M̂
= H1(WF /IF ,Z

Γ,0

M̂
) and (ZIF

M̂
)0
Fr on Φ(M),Φ2(M),Ω(M) etc. descend

to actions on Φ(M)/ŌM,Φ2(M)/ŌM,Ω(M)/ŌM etc.
(iii) (Any choice of) ιM,L : LL → LM induces well-defined maps Φ(L)/ŌL → Φ(M)/ŌM and

Ω( LL)/ŌL → Ω̄( LM)/ŌM.

Proof. (i) is immediate. (ii) follows by fixing an inner twist to M from a quasi-split form M∗,
noting that the elements of ŌM∗ = ŌM inside Out(M) = Out(M∗) lift to Aut(M∗), applying the
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proof of Lemma 2.6.5 to these lifts (which applies because ŌM ↪→ Out(M)→ Aut(AM) is trivial),
and transporting to the assertions on M claimed in (ii) via the inner twist.
(iii) is immediate from the second condition in (b) of Notation 7.3.7. �

Hypothesis 7.3.9. (Compare with Hypotheses 2.10.3 and 2.10.12) This hypothesis is stated with
respect to a nice collection {ŌM}M of outer automorphisms of Levi subgroups of G, as in Notation
7.3.7. Given this, this hypothesis assumes that the following conditions are satisfied:

(i) For each Levi subgroup M ⊂ G, there exists a partition Φ2(M) of Irr2(M) into finite

subsets, and for each Σ ∈ Φ2(M) some ΘΣ ∈ SDell(M)ŌM that is a (nonzero multiple of
a) positive linear combination of the Θσ with σ ∈ Σ, such that the ΘΣ form a basis for

SDell(M)ŌM (here, SDell(M)ŌM makes sense by Proposition 7.3.5).
(ii) For each Levi subgroup M ⊂ G, there exists a finite-to-one surjective map Irr2(M) →

Φ2(M)/ŌM, denoted σ 7→ ϕσ, such that the following conditions are satisfied:

(a) For each Levi subgroup M ⊂ G, each σ ∈ Irr2(M) and α ∈ H1(WF /IF ,Z
Γ,0

M̂
) such

that χα is unitary, ϕσ⊗χα = α · ϕσ (where α · ϕσ makes sense by Lemma 7.3.8(ii)).
(b) Let L ⊂ M ⊂ G be Levi subgroups, and suppose that σ ∈ Irr2(M) is an irreducible

subquotient of IndM
L (υ ⊗ χα) for some supercuspidal representation υ ∈ Irr2(L) and

some α ∈ ZΓ,0

L̂
. Then ιM,L ◦ λ(α · ϕυ) = λ(ϕσ) ∈ Ω( LM)/ŌM (this equality makes

sense by (i), (ii) and (iii) of Lemma 7.3.8).
(c) Suppose M ⊂ G is a Levi subgroup, and suppose β ∈ Aut(G) has image in ŌG. Then

for all σ ∈ Irr2(M) we have L(β|M) ◦ ϕσ◦β−1 = ϕσ .
(iii) (Compare with Hypothesis 2.10.12) The choices involved in (ii) can be made to satisfy the

following: For any Levi subgroup M ⊂ G, sending ϕ ∈ Φ2(M)/ŌM to the fiber, over ϕ, of
the map Irr2(M)→ Φ2(M)/ŌM given by σ 7→ ϕσ, is a bijection Φ2(M)/ŌM → Φ2(M).

Now we can state the generalization of Theorem 7.3.3 to inner forms of quasi-split classical or odd
general spin groups that may not be symmetric:

Theorem 7.3.10. Let G be an inner form of a quasi-split classical or odd general spin group (see
Notation 7.3.1(ii)), and let {ŌM}M be as in Notation 7.3.1(vii). Then {ŌM}M is nice in the sense
of Notation 7.3.7, and with respect to this collection, G satisfies Hypothesis 7.3.9.

We will now make some preparations to prove this theorem, via transfer from the quasi-split form.

Lemma 7.3.11. We allow G to be arbitrary, and do not consider {OM}M. Instead, recalling G∗

and the fixed inner twist ψG∗ from Notation 7.3.1(i), we assume given a collection {OM∗}M∗ of
automorphisms of Levi subgroups of G∗, analogous to the one in Notation 2.6.1, and for each M∗

write ŌM∗ for the image of OM∗ in Out(M∗).

(i) For a Levi subgroup M ⊂ G, make a choice of Levi subgroup matching data (M∗, ψM∗)
as in Remark 3.2.2(vi), and use it to define ŌM ⊂ Out(M) as the image ŌM∗ of OM∗ in
Out(M∗) = Out(M). Then ŌM is independent of the choice of the Levi subgroup matching
data (M∗, ψM∗).

(ii) Let L ⊂ M ⊂ G be Levi subgroups. Then Levi subgroup matching data (L∗, ψL∗) and
(M∗, ψM∗) can be chosen for L and M, such that the resulting identifications LL = LL∗

and LM = LM∗ transport some choice for ιM,L to some choice for ιM∗,L∗ .
(iii) The collection {ŌM}M obtained from (i) above is nice.

Proof. Let us prove (i). Suppose (M∗, ψM∗) and ((M∗)′, ψ(M∗)′) are two different choices of Levi
subgroup matching data. We know from the discussion of Notation 3.2.1(vii) that ψ(M∗)′ =

ψM∗ ◦ Int(m∗w) for some w ∈ G∗(F ) transporting (M∗)′ to M∗, and some m∗ ∈ M∗(F̄ ). Since w
transports O+

(M∗)′ = O(M∗)′ ◦ Int(M∗)′(F ) to O+
M∗ = OM∗ ◦ Int M∗(F ) (by the condition in (iv)b

of Notation 2.6.1), and since Intm∗ fixes Out(M∗
F̄

), (i) is immediate.
Now let us show (ii). It is easy to choose parabolic subgroups P,Q ⊂ G with Levi subgroups M,L
respectively, such that P ⊃ Q. Choose ψ∗ ∈ ψG∗ ◦ Int G∗(F̄ ) such that (ψ∗)−1 takes (QF̄ ,LF̄ ) to
(Q∗

F̄
,L∗

F̄
) for some parabolic-Levi pair (Q∗,L∗) in G. Since (ψ∗)−1(PF̄ ,MF̄ ) contains (Q∗

F̄
,L∗

F̄
),

and since its G∗(F̄ )-conjugacy class is defined over F (since a(ψ∗)−1 ∈ Int L∗(F̄ ) ◦ (ψ∗)−1 for all
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a ∈ Gal(F̄ /F )), it follows that (ψ∗)−1(PF̄ ,MF̄ ) = (P∗
F̄
,M∗

F̄
) for some parabolic-Levi pair (P∗,M∗)

in G∗ containing (Q∗,L∗). Now note that we have Levi subgroup matching data (L∗, ψL∗) and
(M∗, ψM∗), where ψL∗ and ψM∗ are respectively the restrictions of ψ∗ to L∗

F̄
and M∗

F̄
. For these

choices, using that ψM∗ takes the parabolic-Levi pair ((Q∗∩M∗)F̄ ,L
∗
F̄

) of M∗
F̄

to the parabolic-Levi

pair ((Q ∩M)F̄ ,LF̄ ) of MF̄ , it is easy to see that the identifications LL = LL∗ and LM = LM∗

transport a choice for ιM,L to one for ιM∗,L∗ as desired, giving (ii) (we encountered this in the
“second way to describe the resulting identification LM1 = LM∗1” in Remark 3.2.2(vi)).
Now we come to (iii), for which the only nontrivial conditions to verify are the ones in (b) of
Notation 7.3.7. Let us prove the first condition. Choose β∗ ∈ O∗G∗ such that β and β∗ have the
same image in Out(G) = Out(G∗). This translates to saying that β◦ψG∗ ◦(β∗)−1 ∈ Int G(F̄ )◦ψG∗ .
Using this, it is easy to see that, given Levi subgroup matching data (M∗, ψM∗) for M, we can choose
Levi subgroup matching data for β(M) to be (β∗(M∗), ψβ∗(M)∗), where ψβ∗(M∗) = β ◦ψM∗ ◦(β∗)−1,

i.e., β = ψ−1
β∗(M∗) ◦ β

∗ ◦ ψ−1
M∗ . Then the map Out(M) → Out(β(M)) induced by transport by β

identifies with the map Out(M∗) → Out(β∗(M∗)) induced by transport by β∗. From this and
the fact that β∗ transports OM∗ to Oβ∗(M∗) (see Notation 2.6.1(iv)b), the first condition of (b) of
Notation 7.3.7 is immediate.
Now let us prove the second condition of (b) of Notation 7.3.7. Choose Levi subgroup matching

data (L∗, ψL∗) and (M∗, ψM∗) for L and M, as in (ii). If β∗ ∈ OL∗ , then there exists β̃∗ ∈ O+
M∗

restricting to it (see Notation 2.6.1(iv)b). Lemma 2.4.16(ii) gives an equality that may be written

ιM∗,L∗ ◦ Lβ∗ ∈ Int M̂∗◦ β̃∗◦ιM∗,L∗ . Thus, the second condition of (b) of Notation 7.3.7 follows from
the property, ensured by (ii), that our Levi subgroup matching data transports ιM,L to ιM∗,L∗ .
This finishes the proof of (iii), and hence of the lemma. �

Corollary 7.3.12. Let G be an inner form of a quasi-split classical or odd general spin group
G∗, and fix an inner twist ψG∗ from G∗ to G. Let {OM∗}M∗ be associated to G∗ as in Notation
7.3.1(vi), and let {ŌM}M be associated to G as in Notation 7.3.1(vii). Then {ŌM}M is obtained
from {OM∗}M∗ as in Lemma 7.3.11, and is nice in the sense of Notation 7.3.7.

Proof. The first assertion is a straightforward verification, and the second assertion follows from
Lemma 7.3.11(iii). �

Proposition 7.3.13. We allow G to be arbitrary, and do not consider {OM}M, instead letting
G∗, ψG∗ , {OM∗}M∗ and {ŌM}M be as in Lemma 7.3.11 above, so that the collection {ŌM}M is
nice. Assume that G∗, with respect to the collection {OM∗}M∗ , satisfies Hypotheses 2.7.1, 2.10.3
and 2.10.12. For each Levi subgroup M ⊂ G, assume that there exists a choice of Levi subgroup
matching data as in Notation 3.2.1(vi) (i.e., as in Notation 7.3.1(i)) involving a Levi subgroup
M∗ ⊂ G∗, such that for each Σ∗ ∈ Φ2(M∗), there exists a finite subset Σ ⊂ Irr2(M) that is
a transfer of Σ∗ in the following sense: under the isomorphism SDell(M

∗) → SDell(M), some
nonzero ΘΣ∗ ∈ SDell(M

∗)OM∗ supported on Σ∗ transfers to some ΘΣ ∈ SDell(M) that is a nonzero
multiple of a positive linear combination of the Θσ as σ ranges over Σ. Assume that the following
additional property is satisfied: if Σ∗1,Σ

∗
2 ∈ Φ2(M∗) transfer this way to Σ1,Σ2 ⊂ Irr2(M) and are

distinct (and hence disjoint), then Σ1 and Σ2 are also disjoint. For each Levi subgroup M ⊂ G,
choose Levi subgroup matching data (M∗, ψM∗) such that the Σ∗ ∈ Φ2(M∗) transfer to M in the
sense just described, and define the following objects:

• Let Φ2(M) be the collection consisting of all the Σ ⊂ Irr2(M) obtained by transferring
the Σ∗ ∈ Φ2(M∗) in the manner mentioned above, with respect to (M∗, ψM∗). To pro-
ceed, we note that Φ2(M) is a partition of Irr2(M): since the image of SDell(M

∗)OM∗ ↪→
SDell(M

∗)→ SDell(M) equals SDell(M)ŌM (use Remark 3.2.2(i) and Proposition 7.3.5(i)),
this follows from Proposition 7.3.5(ii).

• Using the resulting identifications LM = LM∗, identify Φ(M) = Φ(M∗),Φ2(M) = Φ2(M∗),Ω(M) =
Ω(M∗), etc., and recall that the identification Out(M) = Out(M∗) maps ŌM to the image
ŌM∗ of OM∗ in Out(M∗). Define a map Irr2(M) → Φ2(M)/ŌM by σ 7→ ϕσ, where one
lets Σ ∈ Φ2(M) be the packet containing σ, lets Σ∗ ∈ Φ2(M∗) be the packet mapping to
Σ under the bijection Φ2(M∗) → Φ2(M), and lets ϕσ ∈ Φ2(M)/ŌM = Φ2(M∗)/OM∗ be
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the element that identifies with ϕσ∗ , for any σ∗ ∈ Σ∗ (this does not depend on σ∗, since
Hypothesis 2.10.12 is being assumed for G∗).

(i) For each Levi subgroup M ⊂ G, Φ2(M) and the map Irr2(M)→ Φ2(M)/ŌM can be defined
as above starting from any choice of the matching data (M∗, ψM∗), and is independent of
this choice.

(ii) With respect to the collection {ŌM}M and the objects Φ2(M) and the maps Irr2(M) →
Φ2(M)/ŌM defined above, Hypothesis 7.3.9 is satisfied.

Proof. Let us prove (i). Let M ⊂ G be a Levi subgroup, and consider Levi subgroup matching
data (M∗, ψM∗) and ((M′)∗, ψ(M′)∗) for M, with (M∗, ψM∗) being used to define Φ2(M), i.e., Φ2(M∗)
transfers to Φ2(M) via (M∗, ψM∗) in the manner described in the proposition. As in Notation
3.2.1(vii), we have an equality ψ(M∗)′ = ψM∗ ◦ Int(m∗w), with m∗ ∈ M∗(F̄ ), and with w ∈ G∗(F )
transporting (M′)∗ to M∗. Let Σ ∈ Φ2(M), and assume that Σ is a transfer of Σ∗ ∈ Φ2(M∗) via
(M∗, ψM∗). Then it is easy to see, using Remark 3.2.2(i), that the map SDell(M

∗)→ SDell(M) is
the composite of SDell((M

∗)′) → SDell(M) and the map SDell(M
∗) → SDell((M

∗)′) induced by
pulling back under Intw, which gives that Σ is the transfer of (Σ∗)′ := Σ∗◦Intw via ((M∗)′, ψ(M∗)′).
Now it is easy to see that Φ2((M∗)′) transfers via ((M∗)′, ψ(M∗)′) as well, and gives the same Φ2(M)
as the set of transfers.
To see that the map Irr2(M)→ Φ2(M)/ŌM given by σ 7→ ϕσ is independent of the Levi subgroup
matching data, let (M∗, ψM∗), ((M

′)∗, ψ(M′)∗), Σ,Σ∗,m∗ and w be as above, and assume without
loss of generality that σ ∈ Σ. We saw that via ((M′)∗, ψ(M′)∗), Σ is the transfer of (Σ′)∗ := Σ∗ ◦
Intw. If σ∗ ∈ Σ∗, then σ∗◦Intw ∈ (Σ∗)′, and ϕσ∗◦Intw = L(Intw)◦ϕσ∗ by (iii) of Hypothesis 2.10.3
as assumed for G∗, where L(Intw) : LM∗ → L(M∗)′ is dual to Intw : (M′)∗ → M∗. Therefore,
the rest of (i) follows from the easy observation that, because ψ(M∗)′ = ψM∗ ◦ Int(m∗w), the

identification LM = LM∗, when composed with L(Intw), gives the identification LM = L(M∗)′

up to an inner automorphism.
Now we come to (ii). It is easy to see, using Remark 3.2.2(i) and Proposition 7.3.5(i), that the

image of SDell(M
∗)OM∗ ↪→ SDell(M

∗)→ SDell(M) equals SDell(M)ŌM . Proposition 7.3.5(ii) now
gives the condition (i) of Hypothesis 7.3.9 (and also another proof of the fact that Φ2(M), when
defined, is independent of the choice of the Levi subgroup matching data).
For the condition (ii)(a) of Hypothesis 7.3.9, choose Levi subgroup matching data (M∗, ψM∗) for M;
then the condition is an immediate consequence of the definitions, the compatibility of the relevant
endoscopic transfer with unramified twisting (Lemma 3.2.3(i)), and the equality ϕσ∗⊗χα∗ = α∗ ·
ϕσ∗ , where α∗ is the image of α under the identification H1(WF /IF ,Z

Γ,0

M̂
) → H1(WF /IF ,Z

Γ,0

M̂∗
);

use that χα is unitary if and only if χα∗ is unitary, as these identify via the isomorphism SM∗ = SM.
Now we come to the condition (ii)(b) of Hypothesis 7.3.9. Choose parabolic subgroups P ⊃ Q in
G, parabolic-Levi pairs (P∗,M∗) and (Q∗,L∗) in G∗, and inner twists ψL∗ and ψM∗ as in the proof

of (ii) of Lemma 7.3.11, so that up to M̂-conjugacy, the embedding ιM,L : LL ↪→ LM identifies with
the embedding ιM∗,L∗ : LL∗ → LM∗. Let Σ ∈ Φ2(M) and Υ ∈ Φ2(L) be the ‘packets’ that contain
σ and υ, and assume that these are transferred from Σ∗ ∈ Φ2(M∗) and Υ∗ ∈ Φ2(L∗) via (M∗, ψM∗)
and (L∗, ψL∗), respectively. Now we will use the part of the proof of Proposition 6.3.1 starting
with (90). Writing rM

Q ΘΣ = Θ1 + Θ2 and rM∗

Q∗ΘΣ∗ = Θ∗1 + Θ∗2 as in that proof, we note as in that
proof that Θυχα contributes nontrivially to Θ1: this uses the cuspidality of υ and the fact that ΘΣ

is a nonzero multiple of a positive linear combination of the Θσ, with σ ranging over Σ. Therefore
as in that argument we have Θ∗1 6= 0, and again (using Lemma 3.2.3(i) in addition), we get that

there exists υ∗ ∈ Υ∗ such that υ∗⊗χα∗ , where α∗ ∈ ZΓ,0

L̂∗
is the transfer of α ∈ ZΓ,0

L̂
, has the same

cuspidal support as some σ∗ ∈ Σ∗ (note that this relies on Lemma 6.3.3). Although υ∗ may not
be supercuspidal, we can apply (ii) of Theorem 2.10.10 and the equality ϕυ∗⊗χα∗ = α∗ · ϕυ∗ to
conclude that ιM∗,L∗ ◦ λ(α∗ · ϕυ∗) = λ(ϕσ∗). Since the identifications LL = LL∗ and LM = LM∗

identify some M̂-conjugate of ιM,L with ιM∗,L∗ , the equality ιM,L ◦λ(α ·ϕυ) = λ(ϕσ) ∈ Ω( LM)/ŌM

follows, giving the condition (ii)(b) of Hypothesis 7.3.9.
Now we come to the condition (ii)(c) of Hypothesis 7.3.9. Choose β∗ ∈ OG∗ whose image in
Out(G∗) = Out(G) identifies with that of β. As in the proof of (iii) of Lemma 7.3.11, given
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Levi subgroup matching data (M∗, ψM∗) for M, we can choose Levi subgroup matching data for
β(M) to be (β∗(M∗), ψβ∗(M)∗), where ψβ∗(M∗) = β ◦ ψM∗ ◦ (β∗)−1. By (i), we may work with
this data for β(M). It is easy to see from Remark 3.2.2(i) that if Σ∗ ∈ Φ2(M∗) transfers to
Σ ∈ Φ2(M) via (M∗, ψM∗), then Σ∗ ◦ (β∗)−1 ∈ Φ2(β∗(M∗)) transfers to Σ ◦ β−1 ∈ Φ2(β(M))
via (β∗(M∗), ψβ∗(M∗)) (this argument includes a proof of the inclusion Σ ◦ β−1 ∈ Φ2(β(M))).
Thus, for σ ∈ Σ and σ∗ ∈ Σ∗, ϕσ◦β−1 is the composite of ϕσ∗◦(β∗)−1 and the identification
Lβ∗(M∗)→ Lβ(M) dictated by ψβ∗(M∗), which is easily seen to be a composite of an identification
Lβ∗(M∗)→ LM∗ dual to β∗ with the identification LM∗ → LM determined by ψM∗ , followed by
an identification LM→ Lβ(M) dual to β−1. The composite of ϕσ∗◦(β∗)−1 with Lβ∗(M∗)→ LM∗

equals ϕσ∗ by Theorem 2.10.10(iii), and the image of ϕσ∗ under LM∗ → LM equals ϕσ by the
definition of ϕσ. Thus, ϕσ◦β−1 equals the composite of ϕσ and the map LM → Lβ(M) dual to
β−1 (or more precisely, to β−1|β(M)), as desired.
Finally, the condition (iii) of Hypothesis 7.3.9 is obvious from the definitions and the fact that we
are assuming that (G∗, {OM∗}M∗) satisfies Hypothesis 2.10.12. �

Theorem 7.3.10 will be proved by transferring the analogous results in the quasi-split cases, dis-
cussed in Proposition 7.2.4, using Proposition 7.3.13. We now discuss a few results that will
be used to show that the hypotheses of Proposition 7.3.13 are satisfied in the situations we are
interested in.

Lemma 7.3.14. Let M be a connected reductive group over F , let ζ : AM(F )→ C× be a smooth

unitary character, and let D̂ζ,ell(M) (resp., ŜDζ,ell(M)) denote the complex vector space of in-
variant (resp., stable) distributions of the form

∑
aσΘσ as σ ranges over Tζ,ell(M) (see Notation

5.2.1(iv)), where for each σ we implicitly choose a lift σ̃ ∈ T̃ζ,ell(M) and let Θσ stand for Θσ̃.

Let R be a commutative unital C-algebra acting on D̂ζ,ell(M). Suppose we are given a C-algebra

homomorphism λσ : R→ C for each σ ∈ Tζ,ell(M), such that the action of each z ∈ R on D̂ζ,ell(M)

is given by z · (
∑
aσΘσ) =

∑
λσ(z)aσΘσ. Suppose Θ =

∑
aσΘσ ∈ ŜDζ,ell(M) has the property

that R ·Θ ⊂ ŜDζ,ell(M).

(i) For any homomorphism λ : R→ C, we have

Θλ :=
∑
λσ=λ

aσΘσ ∈ ŜDζ,ell(M).

(ii) Fix an endoscopic datum M∗ for M with underlying group a quasi-split form M∗ of M, as
in Notation 3.2.1(i). Note that ζ is a character of AM∗(F ) = AM(F ) as well. Adapting

notation from (i), assume that R acts on D̂ζ,ell(M
∗) as well, by a similar prescription

z · (
∑
aσ∗Θσ∗) =

∑
λσ∗(z)aσ∗Θσ∗ . Assume also that there exists Θ∗ =

∑
aσ∗Θσ∗ ∈

ŜDζ,ell(M
∗) such that for all x ∈ R, x · Θ∗ transfers to x · Θ. Then for any C-algebra

homomorphism λ : R→ C, Θλ as in (i) is a transfer of the analogously defined Θ∗λ; i.e.,

Θ∗λ =
∑
λσ∗=λ

aσ∗Θσ∗ .

In particular, Θλ ∈ ŜDζ,ell(M) and Θ∗λ ∈ ŜDζ,ell(M
∗).

Proof. The proof of (i) is an easier variant of that of (ii), so we will only prove (ii). Let f ∈
C∞ζ (M(F )) and f∗ ∈ C∞ζ (M∗(F )) have matching orbital integrals. It suffices to show that Θλ(f) =

Θλ(f∗). There exist finite sets Σ ⊂ Tζ,ell(M) and Σ∗ ⊂ Tζ,ell(M
∗) such that Θσ(f) = 0 = Θσ∗(f

∗)
for all σ ∈ Tζ,ell(M) \ Σ and σ∗ ∈ Tζ,ell(M

∗) \ Σ∗.

If A ⊂ D̂ζ,ell(M) and A∗ ⊂ D̂ζ,ell(M
∗) are the subspaces supported on Tζ,ell(M)\Σ and Tζ,ell(M

∗)\
Σ∗, respectively, then these subspaces are clearly R-stable and of finite codimension, and vanish
respectively on f and f∗. Denote by p the projection

D̂ζ,ell(M)× D̂ζ,ell(M
∗)→ D̂ζ,ell(M)/A× D̂ζ,ell(M

∗)/A∗ =: V.
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p induces an action of R on V . Since A and A∗ vanish on f and f∗, the map D̂ζ,ell(M) ×
D̂ζ,ell(M

∗)→ C given by (Θ′, (Θ∗)′) 7→ Θ′(f)− (Θ∗)′(f∗) factors as the composite of p and some
map V → C, whose kernel we denote by W ⊂ V . It then suffices to show that p(Θλ,Θ

∗
λ) ∈W .

On the other hand, by the hypothesis that x · Θ∗ transfers to x · Θ for any x ∈ R, W contains
x · p(Θ,Θ∗) for any x ∈ R, and hence also the span W ′ of the x · p(Θ,Θ∗) as x varies over R.
Thus, it suffices to show that p(Θλ,Θ

∗
λ) ∈W ′.

Noting that W ′ is R-stable, this in turn follows from the following observations, each of which is
immediate from the description of the R-actions on D̂ζ,ell(M) and D̂ζ,ell(M

∗):

• The action of R on V is semisimple, and hence so is the restriction of this action to W ′;
• p(Θλ,Θ

∗
λ) is simply the projection of p(Θ,Θ∗) ∈W ′ ⊂ V to the λ-eigenspace of the action

of R on V , and hence also the projection of p(Θ,Θ∗) ∈ W ′ to the λ-eigenspace of the
action of R on W ′.

�

Lemma 7.3.15. Fix a smooth additive character ψ : F → C×. For this lemma and its proof, given
two meromorphic functions f1, f2 on C, we write f1 ∼ f2 if there exists a nowhere vanishing entire
function f such that f1 = ff2. Let a be a fixed positive integer. Suppose ϕ1, ϕ2 : WF × SL2(C)→
GLN (C) are two admissible bounded Weil-Deligne representations with the property that for every
irreducible admissible bounded representation τ of WF , denoting by Sa the a-dimensional algebraic
representation of SL2(C), we have:

γ(s, ϕ1 ⊗ (τ ⊗ Sa), ψ)γ(−s, ϕ∨1 ⊗ (τ∨ ⊗ Sa), ψ) ∼ γ(s, ϕ2 ⊗ (τ ⊗ Sa), ψ)γ(−s, ϕ∨2 ⊗ (τ∨ ⊗ Sa), ψ).

Then ϕ1 and ϕ2 are equivalent (i.e., define isomorphic representations of WF ).

Proof. It suffices to show that ϕ1 and ϕ2 have an irreducible factor ϕ′ in common: for then, writing
ϕi = ϕ′ ⊕ ϕ−i and noting that γ(s, ϕi ⊗ (τ ⊗ Sa), ψ) = γ(s, ϕ−i ⊗ (τ ⊗ Sa), ψ)γ(s, ϕ′ ⊗ (τ ⊗ Sa), ψ)
and similarly with γ(−s, ϕ∨i ⊗ (τ∨ ⊗ Sa), ψ) for i = 1, 2 and any irreducible admissible bounded
representation τ of WF , we get

γ(s, ϕ−1 ⊗(τ⊗Sa), ψ)γ(−s, ϕ−,∨1 ⊗(τ∨⊗Sa), ψ) ∼ γ(s, ϕ−2 ⊗(τ⊗Sa), ψ)γ(−s, ϕ−,∨2 ⊗(τ∨⊗Sa), ψ),

applying an appropriate induction hypothesis to which yields the lemma.
Exchanging ϕ1 and ϕ2 if necessary, we may and do fix an irreducible admissible bounded repre-
sentation ρ of WF and r > 0 such that ρ⊗ Sr is an irreducible constituent of ϕ1, and such that if
r′ > r, then ρ⊗ Sr′ is not an irreducible constituent of either of ϕ1 or ϕ2. It now suffices to show
that ρ⊗ Sr is also an irreducible constituent of ϕ2.
This in turn follows if we prove the following: given any admissible bounded representation ϕ of
WF × SL2(C) with the property that ρ⊗ Sr′ is not an irreducible constituent of ϕ for any r′ > r,
γ(s, ϕ ⊗ (ρ∨ ⊗ Sa), ψ)γ(−s, ϕ∨ ⊗ (ρ ⊗ Sa), ψ) has a pole at s = (a + r)/2 if and only if ρ ⊗ Sr is
an irreducible constituent of ϕ.
For this, it suffices to assume that ϕ is irreducible and not of the form ρ ⊗ Sr′ with r′ > r, and
prove the following two assertions about γ(s, ϕ⊗ (ρ∨⊗Sa), ψ)γ(−s, ϕ∨⊗ (ρ⊗Sa), ψ): that it has
a pole at s = (a + r)/2 if ϕ ∼= ρ ⊗ Sr, and that it has neither a pole nor a zero at s = (a + r)/2
otherwise.
For this, note:

γ(s, ϕ⊗ (ρ∨ ⊗ Sa), ψ)γ(−s, ϕ∨ ⊗ (ρ⊗ Sa), ψ) ∼ L(1− s, ϕ∨ ⊗ (ρ⊗ Sa))L(1 + s, ϕ⊗ (ρ∨ ⊗ Sa))

L(s, ϕ⊗ (ρ∨ ⊗ Sa))L(−s, ϕ∨ ⊗ (ρ⊗ Sa))
.

Writing ϕ = ρ′ ⊗ Sl and noting that Sl ⊗ Sa is the direct sum of the Sa+l−1−2t as t ranges from 0
to min(a, l)− 1, this expression equals

min(a,l)−1∏
t=0

L(1− s, (ρ′∨ ⊗ ρ)⊗ Sa+l−1−2t)L(1 + s, (ρ′ ⊗ ρ∨)⊗ Sa+l−1−2t)

L(s, (ρ′ ⊗ ρ∨)⊗ Sa+l−1−2t)L(−s, (ρ′∨ ⊗ ρ)⊗ Sa+l−1−2t)
.
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Using the formula L(s, ρ′′ ⊗ St′) = L(s+ (t′ − 1)/2, ρ′′), this equals

min(a,l)−1∏
t=0

L(−s+ (a+ l − 2t)/2, ρ′
∨ ⊗ ρ)L(s+ (a+ l − 2t)/2, ρ′ ⊗ ρ∨)

L(s+ (a+ l − 2− 2t)/2, ρ′ ⊗ ρ∨)L(−s+ (a+ l − 2− 2t)/2, ρ′∨ ⊗ ρ)
.

Let us study the poles and zeroes of the above expression at s = (a + r)/2. In what follows, we
will use the following easy consequence of the definitions: if an admissible representation ρ′′ of
WF is bounded, then L(s, ρ′′) has a pole on the real line if and only if ρ′′ contains the trivial
representation as a constituent, in which case the only pole that it has on the real line is at s = 0.
None of the four factors above has a zero (as they are local L-functions). Neither does any of
them have a pole on the real line unless ρ′ ∼= ρ. Thus, assume that ρ′ = ρ. Then l ≤ r by
the hypothesis on ϕ. Now it is clear that none of the factors in the above expression other than
possibly L(−s + (a + l − 2t)/2, ρ′

∨ ⊗ ρ) with t = 0 has a pole at s = (a + r)/2, while the factor
L(−s + (a + l − 2t)/2, ρ′

∨ ⊗ ρ) with t = 0 has a pole at s = (a + r)/2 if and only if l = r, i.e.,
ϕ = ρ⊗ Sr. This proves the two assertions above, and the lemma follows. �

Lemma 7.3.15 has the following corollary, which allows us to get the Langlands parameter of a
representation of a quasi-split classical group from certain Plancherel µ-function values associated
to it.

Corollary 7.3.16. Assume that G is a quasi-split symplectic, special orthogonal, unitary or odd
general spin group, and let Φ2(G) be as defined in the proof of Proposition 7.2.4 (i.e., as in the
proof of Proposition 7.2.2, except that, in the even special orthogonal case, we only consider packets
up to the nontrivial collection {OM} as in Proposition 7.2.4). Let ζ be a smooth unitary character
of AG(F ) (which is trivial unless G is general spin). For σ, σ′ ∈ Irrζ,2(G) := Irr2(G)ζ , let us say
that σ ∼ σ′ if µ′′′(υ ⊗ σ) = µ′′′(υ ⊗ σ′) for every υ ∈ Irr2(Hm), where m is any nonnegative even
integer (resp., any nonnegative integer) if G is symplectic, special orthogonal or unitary (resp., G
is odd general spin). Then σ ∼ σ′ if and only if they belong to the same element of Φ2(G).

Proof. The ‘if’ part is immediate from Corollary 5.2.12(i), so it suffices to prove the ‘only if’ part.
We write G = Gn (as in Notation 7.3.1(iv)).
First we consider the case where G is symplectic, special orthogonal or unitary. Let E = F except
in the unitary case, where we let E/F be the quadratic extension that splits G. Choosing one of
the embeddings of LG into the L-group of a group GLW of the form ResE/F GL(W ) or GL(W ) as
in the proof of Proposition 7.2.4, and using Shapiro’s lemma if E 6= F , we identify ϕσ and ϕυ, for
any σ ∈ Irr2(G) and υ ∈ Irr2(Hd) where d ∈ N, with a representation of WE×SL2(C). In the cases
under consideration, by the work of Arthur ([Art13]) or Mok ([Mok15]), intertwining operators
can be normalized using Artin L and ε-factors, as follows from [Art13, Proposition 2.3.1] and
[Mok15, Proposition 3.3.1]. This has the consequence that for any σ ∈ Irr2(G) and υ ∈ Irr2(Hd)
with d ∈ N, we have, adapting notation from Lemma 7.3.15:

µ(υ|det |sE ⊗ σ) ∼ γ(s, ϕ∨σ ⊗ ϕυ, ψE)γ(−s, ϕσ ⊗ ϕ∨υ , ψE)f,

where f is a nonzero meromorphic function that depends only on ϕυ (see, e.g., the expressions in
[GL18, the proof of Proposition 7.3] and [CZ20, Theorem 2.5.1(4)]; changing ψE does not affect
‘∼’). Now the corollary (except in the odd general spin case) is an easy consequence of Lemma
7.3.15, applied with a = 2 and with E in place of F , using the fact that for any irreducible
admissible bounded representation τ of WE , say of dimension m, τ ⊗ S2 in the notation of that
lemma is the Langlands parameter of some element of Irr2(H2m).
It remains to prove the odd general spin case. We will instead allow G to be any of the groups
mentioned in the corollary, but only prove the weaker assertion that has been claimed for odd
general spin groups, i.e., we will make the stronger assumption that the equality µ′′′(υ ⊗ σ) =
µ′′′(υ ⊗ σ′) holds for all positive integers m and υ ∈ Irr2(Hm), and not just when m is even.
We first prove:
Claim. Under the assumption that µ′′′(υ ⊗ σ) = µ′′′(υ ⊗ σ′) for all m ≥ 0 and υ ∈ Irr2(Hm),
given an irreducible supercuspidal representation ρ of Hd(F ) and a positive even integer a, the
representation St(ρ, a)oσ of G2ad+n(F ) parabolically induced from St(ρ, a)⊗σ is irreducible if and
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only if the analogously defined representation St(ρ, a) o σ′ of G2ad+n(F ) is irreducible (here and
in what follows, St(ρ, a) denotes the generalized Steinberg representation of GLad(F ) associated
to ρ and a, as in [Mg14]).
Let us prove this claim. First, given any a ≥ 1 and d ∈ N, and given any irreducible supercuspidal
representation ρ of Hd(F ), it is easy to see that the parabolic induction from Had ×G to G2ad+n

realizing the induced representation St(ρ, a)oσ is unramified if and only if the parabolic induction
giving rise to St(ρ, a)oσ′ is (here, ‘unramified’ means that the inducing representation St(ρ, a)⊗σ
or St(ρ, a)⊗σ′ is not fixed by any element of G2ad+n(F ) taking some parabolic subgroup containing
Had×G to an opposite) ; in these cases, both St(ρ, a)oσ and St(ρ, a)oσ′ are irreducible by Harish-
Chandra theory. Now consider ρ, a such that these parabolic inductions are both ramified. In this
situation, we know from Harish-Chandra theory that St(ρ, a)oσ (resp., St(ρ, a)oσ′) is reducible
unless, and exactly unless, the associated µ-function µ(St(ρ, a)⊗σ) (resp., µ(St(ρ, a)⊗σ′)) vanishes
(e.g., note from [Luo20, around Lemma 2.1] that, adapting notation from that paper, the kernel
W0(St(ρ, a) ⊗ σ) of the map from W (St(ρ, a) ⊗ σ) to the R-group R(St(ρ, a) ⊗ σ) is nontrivial if
and only if µ(St(ρ, a)⊗σ) = 0, and similarly with σ′). Thus, the claim follows from the hypothesis
σ ∼ σ′, which gives us that µ(St(ρ, a)⊗ σ) = µ(St(ρ, a)⊗ σ′).
Now that the claim is proved, the corollary is an immediate consequence of [Mg14, Remark 7.3],
which asserts that the set “Jord(σ)” of Jordan blocks of σ as defined in [Mg14], which reads off
the Langlands parameter ϕσ ∈ Φ2(M)/OM of σ, agrees with the similarly notated notion found in
earlier works of Mœglin and Tadic, defined in terms of reducibility of parabolic induction. �

Proof of Theorem 7.3.10. The case where G is quasi-split has been handled in Proposition 7.2.4.
However, for a while we will allow G to be quasi-split as well, since the strategy of our proof is
to transfer the result in the quasi-split case to the non-quasi-split case. Let E = F unless G∗ or
equivalently G is a unitary group, in which case we assume that E/F is a quadratic extension and
that G is associated to an E/F -Hermitian space.
We will assume the notation from Notation 7.3.1 and Lemma 7.3.14, including the set Tζ,ell(G)
and the choices fixing Θσ for any σ ∈ Tζ,ell(G), where ζ : AG(F ) → C× is a smooth unitary
character. Fix such a character ζ for now (AG and ζ are trivial unless G is general spin). Let

R = C[υ | υ ∈ Irr2(Hd) for some d ∈ NG]

be the polynomial ring whose variables are the elements of the Irr2(Hd) as d ranges over NG

(including d = 0); thus, there are uncountably many variables. We now let R act on D̂ζ,ell(G) as
follows (compare with the expressions in Lemma 7.3.14). It suffices to specify the endomorphism

Tυ with which υ ∈ Irr2(Hd) acts on D̂ζ,ell(G), which we stipulate to be given by:

(101) Tυ(
∑

σ∈Tζ,ell(G)

aσΘσ) =
∑

σ∈Tζ,ell(G)

aσµ
′′′(υ ⊗ σ)Θσ,

where we artificially set µ′′′(υ⊗σ) = 0 if σ ∈ Tζ,ell(G)\Irrζ,2(G), and set µ′′′(υ⊗σ) = µ(υ⊗σ) = 1

if d = 0 and σ ∈ Irrζ,2(G). Similarly, we define an action of R on D̂ζ,ell(G
∗) by requiring that any

υ ∈ Irr2(Hd), whose Jacquet-Langlands transfer to H∗d = ResE/F GLd we denote by υ∗, act via

the endomorphism Tυ∗ of D̂ζ,ell(G
∗) given by:

(102) Tυ∗(
∑

σ∗∈Tζ,ell(G∗)

aσ∗Θσ∗) =
∑

σ∗∈Tζ,ell(G∗)

aσ∗µ
′′′(υ∗ ⊗ σ∗)Θσ∗ ,

again following an analogous convention as above concerning µ′′′(υ∗ ⊗ σ∗) and µ(υ∗ ⊗ σ∗).
We give G(F ) and G∗F ) ψG∗ -compatible Haar measures, and choose a Haar measure on AG(F ) =

AG∗(F ). Let Θ = e(G)
∑
d(σ)Θσ ∈ D̂ζ,ell(G) and Θ∗ =

∑
d(σ∗)Θσ∗ ∈ D̂ζ,ell(G

∗), where the
sums run over σ ∈ Irrζ,2(G) and σ∗ ∈ Irrζ,2(G∗), and we recall that e(·) stands for the Kottwitz
sign.
Claim. For all x ∈ R, x ·Θ∗ ∈ D̂ζ,ell(G

∗) is stable, and transfers to x ·Θ ∈ D̂ζ,ell(G) via G∗.
Let us prove this claim. Write TG∗ for the transfer of stable distributions from G∗ to G. To
prove this claim, it suffices to consider the case where x = υ1 . . . υr, for some r and υi ∈ Irr2(Hdi),
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1 ≤ i ≤ r, with each di ∈ NG, and show:
(103)

TG∗

 ∑
σ∗∈Irrζ,2(G∗)

d(σ∗)

(
r∏
i=1

µ′′′(υ∗i ⊗ σ∗)

)
Θσ∗

 = e(G)
∑

σ∈Irrζ,2(G)

d(σ)

(
r∏
i=1

µ′′′(υi ⊗ σ)

)
Θσ

(this includes showing that the parenthetical expression on the left-hand side is stable).
For lightness of notation, we do not fix the υi yet. We consider the Levi subgroups M+ :=
M(d1, . . . , dr;n) ⊂ G+ := G2(d1+···+dr)+n and (M+)∗ := H∗d1

× · · · × H∗dr × G∗ ⊂ (G+)∗ =
G∗2(d1+···+dr)+n as in Notation 7.3.1(iv). For 1 ≤ i ≤ r, we choose compatible Haar measures

on Hdi(F ) and H∗di(F ), and a Haar measure on AHdi
(F ) = AH∗di

(F ). The resulting product

measures on M+(F ) and (M+)∗(F ) are then compatible as well (see the conventions in Notation
7.3.1(iv)), and we get a Haar measure on AM+(F ) = A(M+)∗(F ). Using Corollary 5.2.11(ii), ap-
plied considering it is easy to see that for fixed smooth unitary characters ζi of AHdi

(F ) = AH∗di
(F )

for 1 ≤ i ≤ r, we have that

(104)
∑

σ∗∈Irrζ,2(G∗)

∑
(υ∗i )i∈

∏
1≤i≤r Irrζi,2(H∗di

)

d(υ∗1) . . . d(υ∗r )d(σ∗)µ′′′(υ∗1⊗· · ·⊗υ∗r ⊗σ∗)Θυ∗1⊗···⊗υ∗r⊗σ∗

is a stable distribution on (M+)∗, and transfers via (G+)∗ (see Notation 7.3.1(iv)) to the distri-
bution

(105) e(G+)
∑

σ∈Irrζ,2(G)

∑
(υi)i∈

∏
1≤i≤r Irrζi,2(Hdi )

d(υ1) . . . d(υr)d(σ)µ′′′(υ1⊗· · ·⊗υr⊗σ)Θυ1⊗···⊗υr⊗σ

on M+ = M(d1, . . . , dr;n).
We apply this in the following setting. We now fix υi ∈ Irr2(Hdi) for 1 ≤ i ≤ r, denote by
ζi the central character of υi or equivalently of its Deligne-Kazhdan-Vigneras transfer υ∗i , and
choose fi ∈ C∞ζi (Hdi(F )) and f∗i ∈ C∞ζi (H∗di(F )) that are pseudocoefficients for υi ∈ Irrζi,2(Hdi)

and υ∗i ∈ Irrζi,2(H∗di), respectively. One knows that e(Hdi)
−1d(υi)

−1fi ∈ C∞ζi (Hdi(F )) and

d(υ∗i )−1f∗i ∈ C∞ζi (H∗di(F )) have matching orbital integrals (e.g., combine Claim 1 in the proof

of Proposition 3.3.7, together with the equality a = e(M) seen later in that proof). Thus,
whenever f ∈ C∞ζ (G(F )) and f∗ ∈ C∞ζ (G∗(F )) have matching orbital integrals for G∗, so do

d(υ1)−1 . . . d(υr)
−1f1 ⊗ · · · ⊗ fr ⊗ f ∈ C∞ζ+(M+(F )) and d(υ∗1)−1 . . . d(υ∗r )−1f∗1 ⊗ · · · ⊗ f∗r ⊗ f∗ ∈

C∞ζ+((M+)∗(F )) for (G+)∗, where ζ+ = ζ1⊗ . . . ζr⊗ ζ. Applying these observations and the equal-

ity e(G+) = e(M+) = e(H1) . . . e(Hr)e(G), to the fact that (104) transfers to (105), we conclude
that:
(106)

TG∗

 ∑
σ∗∈Irrζ,2(G∗)

d(σ∗)µ′′′(υ∗1 ⊗ · · · ⊗ υ∗r ⊗ σ∗)Θσ∗

 = e(G)
∑

σ∈Irrζ,2(G)

d(σ)µ′′′(υ1⊗· · ·⊗υr⊗σ)Θσ.

(and in particular the parenthetical expression on the left-hand side is stable). Thus, we would
like to deduce (103) from (106).
Combining (106) with the ‘multiplicativity’ expressions (99) and (98) for µ′′′(υ∗1⊗· · ·⊗υ∗r⊗σ∗) and
µ′′′(υ1⊗ · · · ⊗ υr ⊗ σ), and combining with (100), (103) follows whenever each µ′′′α (v1, . . . , vr) that
contributes to the right-most term in (98) is nonzero. Then (103) follows in general by analytic
continuation, finishing the proof of the claim.
Now that the claim is proved, we no longer fix ζ. Let Φ2(G) be the partition of Irr2(G) determined
by the equivalence relation ∼ according to which σ ∼ σ′ if and only if the central characters of σ
and σ′ have the same restriction, say ζ, to AG(F ), and moreover µ′′′(υ⊗σ) = µ′′′(υ⊗σ′) whenever
υ ∈ Irr2(Hd) for some d ∈ NG. Similarly, we define a partition Φ2(G∗) of Irr2(G∗).
We let the collection {OM∗}M∗ to be as in Proposition 7.2.4, but with G replaced by G∗. The
collection {ŌM}M, which we recall is as in Notation 7.3.1(vii), is nice by Corollary 7.3.12, which
also tells us that it is obtained from {OM∗}M∗ as in Lemma 7.3.11. Note that in such a situation,
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the isomorphism SDell(M
∗) → SDell(M) restricts, by Proposition 7.3.5(i), to an isomorphism

SDell(M
∗)OM∗ → SDell(M)ŌM .

By Corollary 7.3.16 (applied with G∗ in place of G), and recalling the action of R on D̂ζ,ell(G
∗)

and using that the Deligne-Kazhdan-Vigneras correspondence gives bijections Irr2(Hd)→ Irr2(H∗d)
for each d ∈ NG, we conclude that Φ2(G∗) is also what it should denote according to the proof
of Proposition 7.2.4 (thus, it agrees with the Φ2(G∗) as in Proposition 7.2.2 except in the even
special orthogonal case, in which case it is coarser due to the outer automorphism). In particular,
each element of Φ2(G∗) is finite, and Φ2(G∗) indexes a basis for SDell(G

∗)OG∗ .

For each unitary character ζ of AG(F ) = AG∗(F ), recalling the actions of R on D̂ζ,ell(G) and

D̂ζ,ell(G
∗), the claim above allows us to apply Lemma 7.3.14, which in turn shows that for each

Σ∗ ∈ Φ2(G∗), the virtual character ΘΣ∗ :=
∑
d(σ∗)Θσ∗ , where the sum runs over σ∗ ∈ Σ∗,

is stable and transfers to ΘΣ := e(G)
∑
d(σ)Θσ, where the sum runs over the elements σ of a

uniquely determined Σ ∈ Φ2(G). Since endoscopic transfer takes SDell(G
∗) to SDell(G) (which

ultimately relies on [Art96], as explicated in [MW16, Chapter XI]), and since Σ∗ is finite as
observed above, it follows that Σ is finite (here, we use the easy observation that two elements∑
aσΘσ,

∑
a′σΘσ ∈ D̂ζ,ell(G), where each sum runs over Tζ,ell(G), are distinct as distributions

unless aσ = a′σ for all σ: use pseudocoefficients). Moreover, since {ΘΣ∗ | Σ∗ ∈ Φ2(G∗)} is a

basis for SDell(G
∗)OG∗ , and since SDell(G

∗)OG∗ → SDell(G)ŌG is an isomorphism, it follows

that {ΘΣ | Σ∗ ∈ Φ2(G∗)} is a basis for SDell(G)ŌG . By Proposition 7.3.5(ii), it follows that
{Σ | Σ∗ ∈ Φ2(G∗)} ⊂ Φ2(G) is a partition of Irr2(G), forcing that the map Φ2(G∗)→ Φ2(G) given
by Σ∗ 7→ Σ is a bijection. Therefore, Φ2(G) is a partition of Irr2(G) into finite subsets.
Given a Levi subgroup M ⊂ G, choosing Levi subgroup matching data (M∗, ψM∗), and applying the
above considerations to the ‘inner type classical’ part GM of M and the Deligne-Kazhdan-Vigneras
transfer to the ‘inner type GL-type’ part of M, we can make analogous statments involving Levi
subgroups: we get partitions Φ2(M) and Φ2(M∗) of Irr2(M) and Irr2(M∗) into finite subsets, where
Φ2(M∗) agrees with what it denotes according to the proof of Proposition 7.2.4, and a bijection
Φ2(M∗) → Φ2(M), denoted Σ∗ 7→ Σ and defined by the requirement that ΘΣ∗ :=

∑
d(σ∗)Θσ∗

transfers to ΘΣ := e(M)
∑
d(σ)Θσ.

Thus, all the hypotheses of Proposition 7.3.13 are met, where we note that by Proposition 7.2.4,
G∗, with respect to the {OM∗} as in that proposition, satisfies Hypotheses 2.7.1, 2.10.3 and 2.10.12.
It follows from Proposition 7.3.13 that G, together with the partitions Φ2(M) as described above,
satisfies the weak versions of these hypotheses as described in Hypothesis 7.3.9. �

Proof of Theorem 7.3.3. By Theorem 7.3.10, Hypothesis 7.3.9 is satisfied. On the other hand,
since G is symmetric, it follows from the discussion in Notation 7.3.1(vii) that the image of each
OM (which we recall is as in Notation 7.3.1(vi)) in Out(M) equals ŌM. Using this, one can
check that any construction satisfying Hypothesis 7.3.9 also satisfies Hypotheses 2.7.1, 2.10.3 and
2.10.12, which are therefore satisfied. �

Remark 7.3.17. For simplicity, assume that G is an inner form of a quasi-split symplectic or odd
special orthogonal group over F , so that OG (as in Notation 7.3.1(vi)) is trivial. As in Remark
3.4.13, it follows from Theorem 7.3.3, Corollary 3.4.12 and Lemma 3.3.8(iii) that, if p � 0,
regular supercuspidal packets on G(F ) as defined by Kaletha are also packets for the unrefined
local Langlands correspondence of Theorem 7.3.3. An analogous assertion, but involving the local
Langlands correspondence of Theorem 7.3.10 and accounting for an outer automorphism, should
apply to inner forms of quasi-split even special orthogonal groups over F , but we have not worked
out the details.

7.4. Some consequences for classical groups and their inner forms.

Corollary 7.4.1. If G is a quasi-split symplectic, special orthogonal, unitary, general symplectic
or odd general spin group (SOn,Sp2n,Un,GSp2n or GSpin2n+1), or an inner form of a quasi-split
symplectic, odd special orthogonal or unitary group, then G satisfies the stable center conjecture,
i.e., Z1(G) = Z2G). If G is a quasi-split even general special orthogonal group GSO2n (resp., a
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symmetric inner form of an even special orthogonal group SO2n), then we have a weaker equality
Z1(G)O = Z2,O(G), where O = OG is as in Proposition 7.2.2 (resp., as in Notation 7.3.1(vi)).

Proof. This follows from combining Theorem 5.4.2 with either Proposition 7.2.2 (in the quasi-split
cases) or Theorem 7.3.3 (in the non-quasi-split cases). �

Now we address questions related to depth preservation:

Proposition 7.4.2. (i) Let G be as in Proposition 7.2.2, i.e., G is quasi-split and is of
the form Sp2n,SOn,Un,GSp2n,GSO2n or GSpin2n+1. Let Σ ∈ Φ2(G) be an OG-stable
discrete series packet as in Proposition 7.2.2, with OG nontrivial in the GSO2n-case, but
not in any of the other cases including the SO2n-case. Assume that p > 2 and that, in
the unitary case, p is greater than the rank of G. Then for each σ1, σ2 ∈ Σ, we have
depth(σ1) = depth(σ2).

(ii) Let G be an inner form of a quasi-split classical or odd general spin group, as in Notation
7.3.1(ii), and let G∗, ψG∗ be as in Notation 7.3.1(i). This time, we let {OM∗}M∗ and
{ŌM}M be as in Notation 7.3.1(vi) and Notation 7.3.1(vii), respectively, and let Φ2(G∗)
and Φ2(G) be defined as in Proposition 7.2.4 and the proof of Theorem 7.3.10, respectively.
Thus, Φ2(G) is also obtained from Φ2(G∗) as in the proof of Proposition 7.3.13. Let
Σ∗0 ∈ Φ2(G∗), and let Σ0 ∈ Φ2(G) be a transfer of Σ∗0 ∈ Φ2(G∗) in the sense of Proposition
7.3.13. Assume that p > 2 and that, in the unitary case, p is greater than the rank of G.
Then for each σ0 ∈ Σ0 and σ∗0 ∈ Σ∗0, we have depth(σ0) = depth(σ∗0).

Proof. In each case, the assumptions on p imply that p is a very good prime for G in the sense of
[BKV16, Section 8.10]. Now (i) follows from Corollary 5.3.4(i), since its hypotheses are satisfied
by Proposition 7.2.4.
Coming to (ii), it is easy to reduce (as in the proof of Corollary 5.3.4(ii)) to showing that for
each r ≥ 0, denoting by Er and E∗r the depth r projectors associated to G and G∗, we have

Êr(σ0) = Ê∗r (σ∗0). In this case, we do have by [AR00, Proposition 4.1] a nice bilinear form (in the
sense of Definition 5.3.6(iii)) on g. If G is a symmetric inner form, then the proposition is now an
immediate consequence of Corollary 5.3.4(ii). We now briefly indicate how this can be adapted to
deal with the case where G may not be symmetric.
We give G(F ) and G∗(F ) Haar measures that are compatible under ψG∗ , and we give AG(F ) =
AG∗(F ) a (“shared”) Haar measure. Then by Proposition 5.3.5, the distribution e(G)Er on G(F )
is a transfer of the distribution E∗r on G∗(F ). The restriction of the central character of either
of σ0 or σ∗0 to AG(F ) = AG∗(F ) is the same, say ζ. Let Φζ,2(G∗)≤r ⊂ Φ2(G∗) be the subset of
packets the central character of one (or equivalently, each) of whose representations restricts to
ζ, and the depth of one (or equivalently by (i), each) of whose representations is at most r. Let
Φζ,2(G)≤r be the set of elements of Φζ,2(G) obtained by transferring elements of Φζ,2(G∗)≤r. It
suffices to show that given σ0 ∈ Irrζ,2(G), we have depthσ0 ≤ r if and only if σ0 ∈ Σ0 for some
Σ0 ∈ Φζ,2(G)≤r.
By Corollary 5.2.11(ii), applied with M = G, we get an equality

(107) ·TG∗

 ∑
σ∗∈Irr2(G∗)ζ

d(σ∗)Ê∗r (σ∗)Θσ∗

 = e(G)

 ∑
σ∈Irr2(G)ζ

d(σ)Êr(σ)Θσ

 .

Each side of (107) features a finite sum. Since the parenthetical expression on the left-hand
side of (107) is stable and invariant under OG∗ , it can be written as a linear combination, with
each coefficient nonzero, of the ΘΣ∗ =

∑
d(σ∗)Θσ∗ as Σ∗ ranges over elements of Φ2(G∗)≤r.

Therefore, the right-hand side of (107) is a linear combination, with each coefficient nonzero, of
the ΘΣ =

∑
d(σ)Θσ as Σ ranges over the elements of Φζ,2(G)≤r. But since the right-hand side

of (107) is manifestly a linear combination, with each coefficient nonzero, of characters Θσ, where
σ ranges precisely over representations of G(F ) of depth at most r, it follows that these σ are
precisely those that belong to some element of Φζ,2(G)≤r, as desired. �

The work of M. Oi ([Oi22]) allows us to deduce the following corollary:



SOME COMMENTS ON THE STABLE BERNSTEIN CENTER 127

Corollary 7.4.3. Let G be an inner form of a quasi-split symplectic, special orthogonal or unitary
group. There exists a constant NG > 2, depending only on the absolute root datum of G, such
that the following holds if p > NG. Let σ be a discrete series representation of G(F ), and let ϕσ
be its Langlands parameter in a set Φ2(G)/OG or Φ2(G)/ŌG as in Proposition 7.2.4 or Theorem
7.3.10. Then:

inf{r ≥ 0 | ϕ̇σ|Ir+F = s|Ir+F for a preferred section s : WF → LG} =: depthϕσ = depthσ,

where ϕ̇σ : WF → LG is a representative for ϕσ.

Proof. If G is quasi-split, and Σ is the packet in Φ2(G) (in the sense of Proposition 7.2.4) containing
σ, then [Oi22, Theorem 1.2] gives:

max{depthσ′ | σ′ ∈ Σ} = depthϕσ.

Therefore, in this case, the corollary follows from Proposition 7.4.2(i). Given the construction of
ϕσ in the non-quasi-split case, the non-quasi-split case now follows by combining with Proposition
7.4.2(ii). We also remark that if G is a possibly non-quasi-split unitary group, the corollary follows
from [Oi22, Theorem 1.4] and [Oi21, Theorem 1.3] (without any need for Proposition 7.4.2), and
that the precise bounds for NG are given in [Oi21] and [Oi22]. �

Now we address [Hai14, Remark 5.5.4] and [SS13, Conjecture 6.3 and Remark 6.4] for quasi-split
classical groups, but up to an outer automorphism in the even special orthogonal case.

Proposition 7.4.4. Let G be a quasi-split symplectic, special orthogonal or unitary group, and
let {OM}M be as in Proposition 7.2.4. Then the maps p1 : Ω(G)→ Ω( LG) and p2 : Ω(G)→ Ωst(G)
(see Definitions 4.3.1 and 4.3.3) are well-defined, and satisfy that p∗1(C[Ω( LG)]) = p∗2(C[Ωst(G)]) =
Z2,O(G) = Z1(G)O ⊂ Z(G) = C[Ω(G)]. In particular, in the symplectic, odd special orthogonal

and unitary cases we have p∗1(C[Ω( LG)]) = p∗2(C[Ωst(G)]) = Z2(G) = Z1(G).

Proof. This follows from Proposition 5.5.1 and Corollary 5.5.2, since their hypotheses are satisfied
by Proposition 7.2.4; the equality Z2,O(G) = Z1(G)O is from Theorem 5.4.2. �

Remark 7.4.5. Suppose that F = Qp, and that G is a unitary group in an odd number of
variables, associated to an unramified extension E/F . In this case, the work [MHN22] of Bertoloni
Meli, Hamann and Nguyen proves that the local Langlands correspondence for G constructed in
[Mok15] and [KMSW14] agrees with the local Langlands correspondence constructed by Fargues
and Scholze in [FS21]. It seems to us that for such a G, combining [MHN22] with Proposition 7.2.2
and Theorem 5.4.2 should show that the elements of Z(G) constructed by Fargues and Scholze
using excursion operators belong to the stable Bernstein center, i.e., to Z2(G). Given the work
of Hamann in [Ham21], it might also be interesting to ask a similar question when G is an inner
form of GSp4.

To finish this subsection, we will describe how considerations related to the stable Bernstein center
give an easy proof of Mœglin’s result that, given any two irreducible representations σ1, σ2 of a
quasi-split symplectic, special orthogonal or unitary group belonging to the same Arthur packet
Σ, their Langlands parameters ϕσ1

and ϕσ2
satisfy that λ(ϕσ1

) = λ(ϕσ2
). To be sure, we cannot

prove any of the much deeper results that Mœglin has proved concerning Arthur parameters.

Notation 7.4.6. (i) Assume that G is quasi-split. Recall that an Arthur parameter ψ for

G refers to the Ĝ-conjugacy class of a homomorphism ψ̇ : WF × SL2(C)× SL2(C)→ LG
such that its restriction to the product WF ×SL2(C) of the first two factors is a Langlands

parameter, its restriction to the second SL2(C)-factor is a homomorphism SL2(C)→ Ĝ of

algebraic groups, and such that ψ̇(WF ) is contained in Cs(WF ) for some preferred section

s : WF → LG and a bounded subset C ⊂ Ĝ.
(ii) Assume that G is a quasi-split symplectic, special orthogonal or unitary group over F .

In the even special orthogonal case, we will consider Arthur parameters ψ only up to
outer automorphism (i.e., up to the action of OG as in Proposition 7.2.4). To each Arthur
parameter ψ for G, Arthur has associated, in [Art13, Chapter 7], a finite multiset Σ(ψ)
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over Irr(G) consisting of unitary representations, called the Arthur packet attached to ψ.
Mœglin has shown that Σ(ψ) is multiplicity-free. Thus, Σ(ψ) may and shall be thought of
as a set. If G is even orthogonal, then Σ(ψ) could be coarser than what an actual Arthur
packet (without the involvement of the outer automorphism) should be.

(iii) Associated to Σ(ψ) ⊂ Irr(G) is a stable virtual character Θ(ψ) supported in Σ(ψ), and with
the following property. Suppose G underlies an elliptic twisted endoscopic datum E for
the usual twisted space G̃L associated to a GL-type group GL = GLN/F or ResE/F GLN
and an outer automorphism θ that preserves a pinning, as in [Art13] or [Mok15]. Denote
by ι : LG ↪→ LGLN the embedding that is part of the data of E . Let π(ι ◦ ψ) denote
the representation of GL(F ) constituting the Arthur packet associated to the Arthur
parameter ι◦ψ of GL(F ). π(ι◦ψ) is known to be self-dual, so there exists a representation

π̃(ι ◦ ψ) of G̃L(F ) with underlying GL(F )-representation π(ι ◦ ψ). Then the endoscopic

transfer of Θ(ψ) to G̃L is, up to a nonzero scalar, the twisted character Θπ̃(ι◦ψ) of π̃(ι◦ψ).
In the even special orthogonal case, Θ(ψ) is invariant under the group OG as in Proposition
7.2.4.

Proposition 7.4.7. Suppose G is a quasi-split symplectic, special orthogonal or unitary group,
and let ψ be an Arthur parameter for G. Then for all σ1, σ2 ∈ Σ(ψ) with Langlands parameters
ϕσ1 , ϕσ2 ∈ Φ(G)/OG (as assigned by Proposition 7.2.4 together with Theorem 2.10.10, and with
O = OG as in Proposition 7.2.4), we have λ(ϕσ1) = λ(ϕσ2) ∈ Ω( LG)/OG.

Proof. Write O = OG. We let GL = GLN or ResE/F GLN , G̃L, E , ι, π(ι ◦ ψ), θ and π̃(ι ◦ ψ) be
as in Notation 7.4.6(iii). We assume that E is the ‘simplest possible endoscopic datum’ — as in
[Wal10, Section 1.8], but such that the ‘H−’ of that reference is a trivial group.
One knows that the maps Φ(G)/O → Φ(GL) and Ω( LG) := Ω( LG)/O → Ω( LG) induced by ι
are injective; we will use the injectivity of the latter map. Every element fG ∈ C∞c (G(F )) whose
image in the vector space I(G) of Int G(F )-coinvariants of C∞c (G(F )) is fixed by OG, matches

some f ∈ C∞c (G̃L(F )), by [Art13, Corollary 2.1.2] and [Mok15, Proposition 3.1.1(b)]. Since OG-
invariant distributions are determined by their values on OG-invariant functions (OG is of order
at most 2), it follows that the dual map from the space of OG-invariant stable distributions on

G(F ) to the space of distributions on the twisted space G̃L(F ) is injective, as is its restriction to
the space of stable (not necessarily tempered) virtual characters on G(F ).
By Proposition 7.2.4 and Corollary 5.5.2(ii), we can identify C[Ω( LG)] with Z2,O(G). By Corollary
5.5.2(ii) (or use [Coh18]), we can identify C[Ω( LGL)] with Z2(GL). Thus, the map C[Ω( LGL)]→
C[Ω( LG)] obtained by pulling back the map Ω( LG) := Ω( LG)/O ↪→ Ω( LGL) induced by ι
(defined exactly like the map Ω(H) of Notation 6.1.25(iv)), identifies with a map Z2(GL) →
Z2,O(G), which we denote by z 7→ zG. Using Proposition 7.2.4, it is easy to check that the
conditions of Theorem 6.2.3, as applied in ‘Scenario 2’, are met; the condition (I)(c) of that
theorem follows from the invariance of the transfer factors under outer automorphism (in our
particular situations) as mentioned in [Art13, Section 2.1, page 56], and the condition (II)(d)
of that theorem is baked into the definition of the local Langlands correspondence of [Art13] or

[Mok15], which is consistent with Proposition 7.2.4. Therefore, whenever f ∈ C∞c (G̃L(F )) and
fG ∈ C∞c (G(F )) whose image in I(G) is O-invariant have matching orbital integrals, then so do
z ∗ f and zG ∗ fG.
Dually at the level of characters, we conclude that, since the O-invariant stable virtual character
Θ(ψ) on G(F ) transfers to a nonzero scalar multiple of the twisted character Θ(ι, ψ, θ) := Θπ̃ι◦ψ

on G̃L(F ), the distribution fG 7→ Θ(ψ)(zG ∗ fG) on G(F ) transfers to the distribution f 7→
Θ(ι, ψ, θ)(z ∗ f) on G̃L(F ), for all z ∈ Z2(GL) and zG ∈ Z2,O(G) as above: this uses that
fG 7→ Θ(ψ)(zG ∗ fG) is O-invariant whenever zG ∈ Z2,O(G) (use, e.g., (57)).
The distribution f 7→ Θ(ι, ψ, θ)(z ∗ f) equals ẑ(π(ι ◦ ψ))Θ(ι, ψ, θ). Since the space of O-invariant
stable distributions on G(F ) has been observed above to inject via endoscopic transfer into the

space of distributions on G̃L(F ), it follows that for all zG ∈ Z2,O(G) belonging to the image of
Z2(GL)→ Z2,O(G), fG 7→ Θ(ψ)(zG ∗ fG) is a scalar multiple of Θ(ψ). Thus, every zG ∈ Z2,O(G)
that lies in the image of C[Ω( LGL)] = Z2(GL) → Z2,O(G) = C[Ω( LG)] acts by the same scalar
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on all the elements in Σ(ψ). Here, we used that for each σ ∈ Σ(ψ), Θσ contributes nontrivially to
Θ(ψ), as follows from [Art13, Theorem 2.2.1] and [Mok15, Theorem 3.2.1], and the fact that the
Sψ of these references is abelian.
Let σ1, σ2 ∈ Σ(ψ) be as in the proposition. The scalar with which zG ∈ C[Ω( LG)] = Z2,O(G) acts
on σi is given by zG(λ(ϕσi)). Thus, we conclude that for all z ∈ C[Ω( LGL)] = Z2(GL), z takes
the same value on the images of λ(ϕσ1

) and λ(ϕσ2
) in Ω( LGL). Since C[Ω( LGL)] separates points

on Ω( LGL), the images of λ(ϕσ1
) and λ(ϕσ2

) in Ω( LGL) are equal. Since Ω( LG) → Ω( LGL) is
an injection, it follows that λ(ϕσ1

) = λ(ϕσ2
), as desired. �

Remark 7.4.8. It might be more satisfying to replace the last paragraph of the proof of the
above proposition with a justification that the map Z2(GL)→ Z2,O(G) is surjective, followed by
the observation that Z2,O separates the points on Ω( LG). But we have not attempted to prove
that.

Remark 7.4.9. The local Langlands correspondence, even when combined with a description of
stable packets and character identities, does not tell us how to relate the adjoint gamma factor to
harmonic analysis. Therefore, it is not sufficient to yield the formal degree conjecture of Ichino,
Ikeda and Hiraga ([HII08a, Conjecture 1.4], but we will follow [Oha22, Conjecture 3.2], because we

have not worked out the relation between the group S̃ϕ of [Art06] and the group Sϕ of [HII08a]).
However, it could help reduce its proof to that for the quasi-split inner form, as is explained in
[ILM17, Section 5, before Remark 5.2]. We will now recall this argument, in a form that involves
Proposition 3.3.7 and illustrates that a weaker conclusion can be drawn with a weaker hypothesis.

(i) Assume that Σ and Σ∗ are atomically stable discrete series packets on G(F ) and its quasi-
split inner form G∗(F ), respectively, and that Σ∗ transfers to Σ in the manner described
in Proposition 3.3.7(ii), with both OG and its analogue OG∗ trivial. Assume also that a
Langlands parameter ϕ = ϕΣ = ϕΣ∗ ∈ Φ2(G) = Φ2(G∗) is assigned to them. Associated

to ϕ are three finite groups S̃ϕ,Sϕ and S\ϕ, where S̃ϕ and Sϕ are as in [Art06, (3.2) and

(1.1)], and S\ϕ is as in [HII08a, page 287] or [Oha22, Conjecture 3.2]. If Ẑsc is as in

[Art06], we have a homomorphism Ẑsc → S̃ϕ, whose image is a central subgroup, and
whose cokernel is Sϕ (see [Art06, shortly below (3.2)]).

(ii) By [Art06, page 209, Conjecture], one expects that, for some character ζ̂% of Ẑsc (we

write % for the ρ of [Art06]), there is a bijection ρ 7→ σρ onto Σ from the set ˆ̃Sϕ(ζ̂%) of

irreducible characters on S̃ϕ whose central character pulls back to ζ̂% on Ẑsc. Assume that
this expectation is satisfied. [Oha22, Conjecture 3.2] states that, for an appropriate choice
of measures spelled out in [HII08b], we have an equality of the form:

d(σρ) =
dim ρ

#S\ϕ
|γ(0,Ad ◦ϕ,ψ)|.

(iii) Under our assumptions, it is easy to see that the formal degree conjecture is equivalent to
the combination of the following two assertions:

• If ρ1, ρ2 ∈ ˆ̃Sϕ(ζ̂%), then:

(108) d(σρ1)(dim ρ1)−1 = d(σρ2) dim(ρ2)−1.

• The following weakened version of the formal degree conjecture holds:

(109)
∑
σ∈Σ

d(σ)2 =
#Sϕ

(#S\ϕ)2
· |γ(0,Ad ◦ϕ,ψ)|2,

where we used that the sum of the (dim ρ)2 as ρ ranges over ˆ̃Sϕ(ζ̂%) equals #Sϕ: this

is because the regular representation of S̃ϕ × S̃ϕ on the (#Sϕ)-dimensional vector

space of (Ẑsc, ζ̂%)-equivariant complex valued functions on S̃ϕ decomposes as the sum

of the ρ∨ ⊗ ρ, with ρ ranging over ˆ̃Sϕ(ζ̂%).
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(iv) Proposition 3.3.7(ii) gives the equality∑
σ∈Σ

d(σ)2 =
∑
σ∗∈Σ∗

d(σ∗)2,

so that (109) for G is equivalent to that for G∗ (the compatibility of measures imposed in
Proposition 3.3.7 is consistent with that in [HII08b]).

(v) On the other hand, we claim that (108) follows if the following weak form of the character

identities as in [Art06, page 209, Conjecture] is satisifed: for each s ∈ S̃ϕ that does not

belong to the image of Ẑsc,
∑

(tr ρ(s̃)) · Θσρ is obtained by endoscopic transfer from a
‘non-principal’ endoscopic datum for G, where here and in what follows, the sum ranges

over ρ ∈ ˆ̃Sϕ(ζ̂%). This has the consequence that
∑
ρ d(σρ) tr ρ(s̃) = 0 for all such s: the

argument of [Sha90, Corollary 9.10] applies without needing G to be quasi-split. Thus,

the (Ẑsc, ζ̂%)-equivariant class function
∑
ρ d(σρ) tr ρ on S̃ϕ is supported in the image of

Ẑsc → S̃ϕ, which forces the virtual representation
∑
ρ d(σρ)ρ of S̃ϕ to be a multiple of∑

ρ(dim ρ)ρ. Thus, (108) follows.

(vi) Another way to look at all this is that, if character identities as in (v) above are satisfied,
then the formal degree conjecture for the elements of Σ ∪ Σ∗ needs to be checked only
for a single element of Σ ∪ Σ∗ (for example, [ILM17], in their context, used the generic
element).

(vii) None of this yields anything new for (possibly non-quasi-split) odd special orthogonal or
unitary groups, since the formal degree conjecture is well-known in these cases from the
work of Ichino, Lapid and Mao ([ILM17]) and Beuzart-Plessis ([BP21]); there is also the
work of Morimoto ([Mor22]). However, e.g., for inner forms of symplectic groups, the
above considerations do reduce the proof of the weakened form (109) to the split case.
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p-adique. Astérisque, (386):ix+366, 2017.



132 SANDEEP VARMA

[Li13] Wen-Wei Li. On a pairing of Goldberg-Shahidi for even orthogonal groups. Represent. Theory, 17:337–

381, 2013.

[LM20] Bertrand Lemaire and Manish Mishra. Matching of orbital integrals (transfer) and Roche Hecke algebra
isomorphisms. Compos. Math., 156(3):533–603, 2020.

[LMW18] Bertrand Lemaire, Colette Moeglin, and Jean-Loup Waldspurger. Le lemme fondamental pour
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