Algebra 1 HW 1 (Due: 24-08-2023)

- 1. Let $1 \to H \xrightarrow{\alpha} G \xrightarrow{\beta} K \to 1$ be a short exact sequence of groups. Show that TFAE:
 - (a) There exists a homomorphism $\alpha': G \to H$ such that $\alpha' \circ \alpha = 1$
 - (b) There exists isomorphism $\theta:G\to H\times K$ such that TFDC

$$0 \longrightarrow H \xrightarrow{\alpha} G \xrightarrow{\beta} K \longrightarrow 0$$

$$\downarrow_{id} \qquad \downarrow_{\theta} \qquad \downarrow_{id}$$

$$0 \longrightarrow H \xrightarrow{i} H \times K \xrightarrow{p} K \longrightarrow 0$$

where id is the identity map, i and p are canonical injection and projection maps respectively.

- 2. Let $1\to H\xrightarrow{\alpha} G\xrightarrow{\beta} K\to 1$ be a short exact sequence of groups. Show that TFAE:
 - (a) There exists a homomorphism $\beta': K \to G$ such that $\beta \circ \beta' = 1$
 - (b) There exists a homomorphism $\phi:K\to Aut(H)$ and an isomorphism $\theta:G\to H\rtimes_\phi K$ such that TFDC

$$0 \longrightarrow H \xrightarrow{\alpha} G \xrightarrow{\beta} K \longrightarrow 0$$

$$\downarrow_{id} \qquad \downarrow_{\theta} \qquad \downarrow_{id}$$

$$0 \longrightarrow H \xrightarrow{i} H \rtimes_{\phi} K \xrightarrow{p} K \longrightarrow 0$$

where id is the identity map, i and p are canonical injection and projection maps respectively.

In the last two problems make sure you show that all the maps θ and ϕ are actually group homomorphisms.