Algebra 1 HW 3(Due: 07-09-2023)

- 1. What are the two sided ideals of $M_n(R)$ where R is any ring? Justify.
- 2. Let R be a ring and let D be a multiplicatively closed subset of R containing 1. Let $\phi : R \to D^{-1}R$ be the canonical homomorphism arising from localization. Give a necessary and sufficient condition for $D^{-1}R$ to be zero and for ϕ to be injective.
- 3. Show that $\mathbb{Z}[\frac{1+\sqrt{-19}}{2}]$ is not a Euclidean domain.
- 4. Use Gauss' lemma to show that R is UFD iff R[x] is UFD
- 5. Show that $x^{n-1} + x^{n-2} + \cdots + 1$ is irreducible in $\mathbb{Z}[x]$ if and only if n is prime.
- 6. Show that $(\mathbb{Z}/2^r\mathbb{Z})^{\times} \simeq \mathbb{Z}_2 \times \mathbb{Z}_{2^{r-2}}$
- 7. Find all the abelian groups of order 270 and 320. For each of them list the invariant factors and elementary divisors.
- 8. Let $R = \mathbb{Z}[\sqrt{-n}]$ where n > 3 is squarefree.
 - (a) Show that 2, $\sqrt{-n}$, $1 + \sqrt{-n}$ are irreducibles in R
 - (b) Show R is not a UFD
 - (c) Give an ideal of R that is not principal