
INTRODUCTION TO CHARACTERISTIC CLASSES

V. SRINIVAS

Basic references for these lectures are:

1. J. W. Milnor and J. D. Stasheff, Characteristic Classes, Ann. Math. Studies
76, Princeton (1974).

2. D. Husemoller, Fibre Bundles (Second Ed.), Grad. Texts in Math. 20,
Springer-Verlag (1966).

1. Vector bundles

For simplicity, we will often restrict the category of topological spaces consid-
ered to the category of compact Hausdorff spaces, unless stated otherwise. Recall
that for such spaces, we have the following results from point-set topology:

Theorem 1.1. (a) (Tietze extension theorem) If X is a compact Hausdorff
space, A ⊂ X a closed subset, and f : A→ Rn a continuous function, then

f can be extended to a continuous function f̃ : X → Rn.
(b) (Partititons of unity) Let {Ui}ni=1 be an open cover of X. Then there ex-

ist continuous functions ui : X → [0, 1] with the following properties: (i)

{ui(x) 6= 0} ⊂ Ui for each i = 1, . . . , n (ii) u1(x) + · · · + un(x) = 1 for all
x ∈ X.

A collection of functions {ui} as in (b) above is called a continuous partition of
unity on X subordinate to the open covering {Ui}. If Vi = {x ∈ X | ui(x) > 0},
then {Vi} is also an open covering of X , such that Vi ⊂ Ui; we call such an open
cover {Vi} a shrinking of {Ui}.
There are analogous results available for topological and C∞ manifolds (recall

that, by definition, these are paracompact spaces). We will follow the convention
that the term “manifold” means “manifold without boundary”, unless explicitly
stated otherwise. We state the results in the C∞ case; in the topological case, very
similar results hold, except that instead of C∞ extensions or partitions of unity,
one obtains analogous continuous functions. We leave the precise formulation to
the reader.

Theorem 1.2. (a) (C∞ extension theorem) If M is a C∞ manifold, A ⊂ M
a closed subset, and f : U → Rn a C∞ function defined on some open

neighbourhood of A, then there exists a C∞ function f̃ : M → Rn which
agrees with f on some neighbourhood V of A in U .

(b) (C∞ partititons of unity) Let {Ui}i∈I be an open cover of M . Then there
exist C∞ functions ui : M → R with the following properties: (i) ui(M) ⊂
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[0, 1], and supp (ui) = {ui(x) 6= 0} ⊂ Ui for each i = 1, . . . , n (ii) the collec-
tion of closed sets {supp (ui)}i∈I is locally finite in M , and

∑
i∈I ui(x) = 1

for all x ∈ M (the sum is well-defined, since locally on M , only a given
finite set of terms is non-zero).

Definition 1.3. Let k = R or C. A k-vector bundle of rank n on a topological
space X is a space E, together with a continuous map p : E → X , such that
“locally on X , E is the product space X × kn”, i.e., there is an open cover {Ui}
of X and homeomorphisms ϕ : p−1(Ui)→ Ui × kn such that

(i) ϕi is compatible with projection to Ui, i.e., ϕi(x) = (p(x), ϕ̃i(x)) for all
x ∈ p−1(Ui) for some (continuous) function ϕ̃i : p

−1(Ui)→ kn

(ii) for each x ∈ Ui ∩ Uj , the composite homeomorphism

Aij(x) : k
n ϕ̃−1

i−→ p−1(x)
ϕ̃j−→ kn

is a linear isomorphism kn → kn, i.e., Aij(x) ∈ GL n(k).

Here another such collection of data {(Vj, ψj)} defines the same vector bundle
structure on E if {(Ui, ϕi)}∪{(Vj , ψj)} defines a vector bundle structure on E (in
future, for expository reasons, we will omit similar statements from our discussion,
though they are implicit).
We refer to the space E as the total space and X as the base space of the

vector bundle; the map p is called the bundle projection (generalizing the notion
of projection for the product space X × kn).
Note that for any x ∈ Ui, the homeomorphism ϕ̃i : p

−1(x) → kn may be used
to give p−1(x) the structure of a k-vector space of dimension n. Since Aij are
linear isomorphisms, we see that for x ∈ Ui ∩ Uj, the vector space structures on
p−1(x) induced by ϕ̃i and ϕ̃j agree. We call the k-vector space p−1(x) the fibre of
p : E → X over x, and may also denote it by Ex.

Remark 1.4. If p : E → X is a vector bundle, we will often abuse terminology
and refer to “the vector bundle E”, if the map p and the vector bundle structure
are implicit in the discussion. Strictly speaking, referring to p : E → X as
a vector bundle is itself somewhat imprecise, since we also need to be given
an equivalence class of local trivializations; equivalently, we must be given the
vector space structures on all the fibers, together with the fact that it is possible
to realize these vector space structures via some (unspecified) local trivializations.
From this last point of view, one might even dispense with the standard notion of
local triviality, and replace it by some weaker notion; this is done, for example, in
algebraic or complex analytic geometry, especially when considering more general
fibre bundles (like projective bundles, for example).

Remark 1.5. (Transition functions) In the definition 1.3, since ϕi are all home-
omorphisms, the matrix valued functions Aij : Ui∩Uj → GL n(k) are continuous,
and we verify easily that they satisfy the condtitions

(a) for all x ∈ Ui, Aii(x) is the identity
(b) for all x ∈ Ui ∩ Uj , we have Aji(x) = Aij(x)

−1, the matrix inverse
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(c) for all x ∈ Ui ∩ Uj ∩ Uk, we have a matrix identity Aik(x) = Ajk(x)Aij(x),
where the expression on the right denotes the product of matrices.

These are called the transition functions (or transition matrices) associated to
the given local trivializations of the bundle.
Conversely, given an open cover {Ui} of X and a collection of continuous

matrix-valued functions Aij : Ui ∩ Uj → GL r(k) satisfying (a), (b), (c) one
can define a vector bundle E as follows: let ∼ be the equivalence relation on the
disjoint union

∐
i Ui × kn generated by (x, v) ∼ (x,Aij(x)v) for all x ∈ Ui ∩ Uj ,

where (x, v) ∈ Ui × kn, and (x,Aij(x)v) ∈ Uj × kn. Let p : E → X be induced
by the projections Ui × kn → Ui. One verifies at once that the natural map
Ui × kn → E is a homeomorphism onto its image p−1(Ui), whose inverse may be
taken as ϕi.

Definition 1.6. If p : E → X , q : F → Y are vector bundles on X and Y
respectively, a morphism of vector bundles f : E → F is a continuous map f such
that

(i) there is a (necessarily unique) continuous map f0 : X → Y such that f0◦p =
q ◦ f : E → Y (i.e., , f maps fibres of E into fibers of F ), and

(ii) for each x, if f0(x) = y, the induced map on fibres Ex → Fy is a k-linear
transformation.

If f is also a homeomorphism, then we say that it is an isomorphism of vector
bundles. If p : E → X is a vector bundle, F ⊂ E is a subbundle if p |F : F → X is
a vector bundle, for which the inclusion F ⊂ E is a morphism of vector bundles
(over the identity map on X). Similarly one can define the notion of a quotient
bundle of p : E → X .

Example 1.7. (The trivial bundle) E = X × kn, p : E → X is the projection.

Thus, in the definition of a vector bundle, the map ϕi (or ϕ̃i) is called a
trivialization of the bundle p : E → X over the open set Ui.

Example 1.8. (Möbius band) Let k = R, X = S1 (the unit circle in R2),
M = Möbius band (without boundary), p : M → S1 is the projection onto
the “equator” of M . We may regard S1 as the identification space of the unit
interval [0, 1] modulo the identification of its end points 0, 1; the identification
map [0, 1]−→→ S1 can be taken to be t 7→ (cos 2πt, sin 2πt). Then M is the identi-
fication space of [0, 1]×R, modulo the identification of {0}×R with {1}×R given
by (0, s) ∼ (1,−s). Since this identification is via a linear isomorphism R → R,
we see that p :M → S1 (induced by the first projection [0, 1]× R→ [0, 1]) is an
R-vector bundle of rank 1.

The Möbius band p :M → S1 of Example 1.8 can be seen to be not isomorphic
to the trivial bundle S1 × R. Indeed, for any k-vector bundle p : E → X , there
is a continuous mapping 0E : X → E given by 0E(x) = 0Ex

, where 0Ex
∈ Ex

is the 0-element of the fibre vector space Ex. This map satisfies p ◦ 0E = 1X ,
the identity map of X . Now if f : S1 × R → M is an isomorphism of vector
bundles, it maps the image of 0S1×R homeomorphically to the image of 0M . Hence
it induces a homeomorphism between the complements of these images. But
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S1 × R − im(0S1×R) = S1 × (R − {0}) is disconnected, while M − im(0M) is
connected (verify!).

Definition 1.9. If p : E → X is a vector bundle, and A ⊂ X , then p : p−1(A)→
A is a vector bundle, such that the inclusion p−1(A) →֒ E defines a morphism
of vector bundles (over the inclusion map of A into X); we call p−1(A)→ A the
restriction of E to A, and write E |A in place of p−1(A).
More generally, if p : E → X is a k-vector bundle of rank r, and f : Y → X a

continuous map, then the pullback f ∗E = Y ×X E → Y is also a k-vector bundle
of rank r. Here Y ×X E = {(y, z) ∈ Y × E | f(y) = p(z)}.

Remark 1.10. Let f : X → Y be a continuous map, p : E → X , q : F → Y
vector bundles, and g : F → E a morphism of vector bundles (over f). Then
it is easy to see that g induces a morphism g̃ : F → f ∗E of bundles over the
identity map of Y . Conversely any morphism of bundles g̃ : F → f ∗E arises from
a unique morphism of bundles g : F → E.

Example 1.11. (Underlying real vector bunde of a complex bundle) If p : E →
X is a complex vector bundle of rank n, we may also regard p : E → X as
defining a real vector bundle of rank 2n in a natural way, such that the real
vector space structure on Ex = p−1(x) is that underlying its complex vector
space structure. Then we have an isomorphism of real vector bundles J : E → E
given by multiplication by

√
−1 on the fibers Ex; this satisfies J ◦ J = (−1)E ,

where (−1)E : E → E is multiplication by −1 on the fibers Ex.
Conversely, given a real vector bundle p : E → X of even rank 2n, together

with an isomorphism J : E → E of real vector bundles with J ◦ J = (−1)E , we
obtain a structure on p : E → X of a complex vector bundle in a natural way,
where the C-vector space structure on Ex is such that scalar multiplication by√
−1 is defined to be the real linear automorphism Jx : Ex → Ex. We call J a

complex structure on the real vector bundle p : E → X .
In particular, given a complex vector bundle p : E → X , we can form its

complex conjugate bundle, usually denoted by E, which has the same underlying
real vector bundle, and complex structure −J , where J : E → E is the complex
structure on p : E → X .

Example 1.12. (Tangent bundle for embedded C∞ manifolds) Let M ⊂ RN

be an n-dimensional C∞ differentiable submanifold. For each x ∈M , we have

TxM = tangent space to M at x
= {v ∈ RN | the line {x+ tv | t ∈ R} is tangent to M at x},

TM = {(x, v) ∈M × RN | v ∈ TxM}.
Then we have the following facts:

(i) TxM is a real vector subspace of RN of dimension n, for each x ∈M
(ii) p : TM → M , p(x, v) = x, gives TM the structure of a vector bundle of

rank n on M , such that the vector space structure on the fibre (TM)x =
{x} × TxM is that given on TxM ⊂ RN ; thus by construction, TM is given
as a subbundle of the trivial bundle M × RN .
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The idea of the proof is as follows. For each x ∈M , there is a neighbourhood U
of x in RN , and C∞ functions f1, . . . , fN−n on U such that

(a) U ∩M = {y ∈ U | f1(y) = · · · = fN−n(y) = 0}, and
(b) for any x ∈ M ∩ U , the Jacobian matrix J(f)(x) =

[
∂fj
∂xi

(x)
]
has maximal

rank N − n. Then one sees that TxM = ker J(f)(x).

Now after permuting the coordinates, if we write J(f)(x) = [A,B] where the

submatrix A =
[
∂fj
∂xi

(x)
]
1≤i,j≤N−n

has rank N − n, then Rn → ker J(f)(x),

v 7→
(
A−1Bv
v

)
is a linear isomorphism; the inverse isomorphism gives a trivi-

alization of TM over U ∩M .

Example 1.13. (Tangent bundle for “abstract” C∞ manifolds) There is a also
a construction for the tangent bundle of an “abstract” C∞ n-manifold M , in-
dependent of any chosen embedding in Euclidean space RN . By definition, we
are given a collection of coordinate charts (i.e., an “atlas”) {(Ui, ϕi)}i∈I , where
ϕi : Ui → Vi ⊂ Rn is a homeomorphism of Ui with an open subset Vi of R

n, such
that the homeomorphism ϕij = ϕj ◦ ϕ−1

i : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj) is a diffeo-
morphism (C∞ homeomorphism with C∞ inverse) between open subsets of Rn.
The Jacobian matrix Jij = J(ϕij) of partial derivatives yields a continuous (in

fact, C∞) function J̃ ij : Ui ∩ Uj → GL n(R), given by J̃ ij(x) = Jij(ϕi(x)). Then

J̃ ij are transition functions for an R-vector bundle of rank n, which we define to
be the tangent bundle TM . One checks that this is independent of the choice of
coordinate charts defining the C∞ structure on M . Also, the local trivializations
make TM into a C∞ manifold of dimension 2n in a natural way, such that the
bundle projection TM →M is a C∞ submersion.
It is easy to show that if f : M → N is a C∞ mapping, there is an induced

morphism of bundles Df : TM → TN , which is also a C∞ mapping, and which is
compatible with composition of C∞ maps. One verifies also (exercise!) that, for
an embedded C∞ n-manifold M , this definition of TM agrees with the previous
definition.

Remark 1.14. (Manifolds with boundary) The definition of tangent bundle π :
TM → M can be extended to the case of a C∞ n-manifold M with boundary
∂M , such that TM |M−∂M is the tangent bundle as defined earlier, and TM |∂M=
T∂M ⊕ (∂M ×R) (here ⊕ denotes the direct sum of bundles, defined in the next
section). We leave the necessary modifications of our earlier discussion to the
reader.

Example 1.15. A manifold M for which TM → M is the trivial bundle is
called parallelizable. The unit 2n-sphere S2n ⊂ R2n+1 is an example of a non-
parallelizable manifold (see Exercise 1.25 below).

Remark 1.16. In the above examples, one saw that for an open cover {Ui} of
a C∞ n-manifold M determined by an atlas of coordinate charts, the transition
functions for the tangent bundle Ui∩Uj → GL n(R) are C

∞ functions. We express
this by saying that p : TM →M is a C∞ vector bundle, as defined below.
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Definition 1.17. A C∞ k-vector bundle of rank n on a C∞ manifold M of di-
mension d is a C∞ manifold E (of dimension n + d, or 2n + d, depending on
whether k = R or k = C), together with a C∞ map p : E → M , such that
p : E → M has the structure of a k-vector bundle of rank n, whose local triv-
ializations are C∞, i.e., there is an open cover {Ui} of M and diffeomorphisms
ϕ : p−1(Ui) → Ui × kn such that the conditions (i),(ii) of definition (1.3) are
satisfied.

Example 1.18. Let M ⊂ RN be a C∞ submanifold of dimension n. We may
similarly define the normal bundle q : E → M to M in RN by setting

E = {(x, v) ∈M × RN | v ∈ (TxM)⊥},
where p is induced by the first projection. We leave it as an exercise to show that
this does define a real C∞ vector bundle on M of rank N − n = N − dimM .

Example 1.19. Similarly, we can define the normal bundle of any C∞ subman-
ifold M of a given C∞ manifold N . If i : M → N is the inclusion, then we
have a morphism of vector bundles Di : TM → TN , giving rise to an inclusion
TM → i∗TN of vector bundles onM . The normal bundle ofM in N is defined to
be the quotient vector bundle i∗TN/TM , whose fiber over any point x ∈M ⊂ N
is the quotient vector space TxN/TxM .
If we choose a positive definite inner product (in the sense of definition 2.2

below) on the bundle i∗TN (e.g., by choosing such an inner product on TN , that
is to say, a Riemannian metric on N), then the normal bundle is isomorphic to
the subbundle TM⊥ ⊂ i∗TN .
Finally, if i : M → N is merely an immersion, so that Di : TM → i∗TN

is an inclusion, then one can still define a“normal bundle to i” as the quotient
i∗TN/TM .

Example 1.20. (Complex manifolds) Recall that a complex manifold is a C∞

manifold M of even dimension 2n, for which there is an admissible atlas of coor-
dinate charts {(Ui, φi)}i∈I , such that, identifying R2n with the real vector space
underlying Cn, the transition functions

φij = φj ◦ φ−1
i : φi(Ui ∩ Uj)→ φj(Ui ∩ Uj),

which are given to be C∞ diffeomorphisms, are actually complex analytic func-
tions (i.e., holomorphic functions) on open subsets of Cn, as well. This implies
that the transition matrix valued functions Jij : Ui ∩ Uj → GL 2n(R) of Exam-
ple 1.13, which are used to define the tangent bundle TM , can in fact be viewed
as (holomorphic) maps Ui → Uj → GL n(C), where we view GL n(C) ⊂ GL 2n(R)
in the standard way (by associating to a complex linear automorphism of Cn

the underlying real linear automorphism of R2n). In particular, we may view
TM as a complex vector bundle of rank n, whose underlying real vector bundle
is the tangent bundle of the underlying C∞ manifold M , as defined earlier in
Example 1.13.

Definition 1.21. A section of a k-vector bundle p : E → X is a continuous map
s : X → E such that p ◦ s : X → X is the identity map. Let Γ(X,E) denote
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the set of sections of E. Similarly, let Γ∞(M,E) denote the space of C∞ sections
of a C∞ vector bundle p : E → M ; note that Γ∞(M,E) ⊂ Γ(M,E) is then a
k-subspace.

Notations 1.22. The map 0E : X → E described earlier, given by 0E(x) = 0Ex
,

is a section, called the zero section (or 0-section) of p : E → X . We will sometimes
denote its image, which is a homeomorphic copy of the base space X , by 0X .

Remark 1.23. Note that a section of the trivial bundle s : X × kr → X is es-
sentially just a vector valued continuous function f : X → kr; here f corresponds
to the section x 7→ (x, f(x)). Thus a section of an arbitrary vector bundle may
be viewed, locally on X , as a vector valued function; though this depends on the
local trivialization chosen, the notions of a section vanishing, or of a collection
of sections being linearly independent at each point, do not depend on the local
trivialization.

Remark 1.24. The vector space structures on the fibres Ex of a vector bundle
p : E → X determine on Γ(X,E) a natural structure of a module over the ring
Ck(X) of k-valued continuous functions on X , given by (a · s)(x) = a(x) · s(x) for
any a ∈ Ck(X), s ∈ Γ(X,E); here a(x) ∈ k, s(x) ∈ Ex, and a(x) · s(x) denotes
the scalar multiplication for the k-vector space structure on Ex. If p : E → X ,
q : F → X are k-vector bundles, and f : E → F is a morphism of vector bundles,
then s 7→ f ◦ s induces a homomorphism of Ck(X)-modules f∗ : Γ(X,E) →
Γ(X,F ). Note that a k-vector bundle p : E → X of rank n is a trivial bundle
precisely when Γ(X,E) is a free Ck(X)-module (also of rank n); equivalently,
E has n sections s1, . . . , sn which are each nowehere vanishing, and are linearly
independent at each point of X (that is to say, s1(x), . . . , sn(x) ∈ Ex are linearly
independent elements, for each x ∈ X).
If M ⊂ RN is a C∞ manifold, then a section of its tangent bundle TM → M

is called a vector field on M ; a C∞ section of TM is called a C∞ (or smooth)
vector field. It is a standard convention that the term “vector field”, without
any further qualification, referes to a smooth vector field. In particular, note
that an n-dimensional C∞ manifold M is parallelizable precisely when it has n
continuous vector fields v1, . . . , vn which are each nowhere vanishing, and linearly
independent at each point. It is then a fact that there exists a C∞ trivialization
of TM ; this is a particular case of general results on approximation of continuous
maps between C∞ manifolds by C∞ maps, which implies that the classifications
of topological and C∞ vector bundles are equivalent.

Example 1.25. If Sm ⊂ Rm+1 has a vector field v which is nowhere 0, then
one shows easily that the identity map on Sm is homotopic to the antipodal map
(the map x 7→ −x). From a standard result in topology, this implies that m is
odd. Conversely, if m is odd, then Sm does support a C∞ vector field v which is
nowhere zero.

Remark 1.26. We will see later (see Remark 5.9) that if M is an oriented com-
pact C∞ manifold of dimension n, and v is a C∞ vector field on M with isolated
zeroes, then the “number of zeroes” (called the index) of v equals the topological
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Euler characteristic of M ,

χ(M) =
∑

i≥0

(−1)irankH i(M,Z).

Here the zeroes have to be counted “with multiplicity”, and taking the orientation
into account (i.e., zeroes may possibly be counted with negative multiplicity).
This is called the Poincaré-Hopf theorem.

Theorem 1.27. (Swan) There is an (anti-)equivalence of categories between k-
vector bundles on a “good” topological space X and finitely generated projective
modules over the ring Ck(X), given by (p : E → X) 7→ Γ(X,E). (Here “good”
includes the case when X is a compact Hausdorff space.)

Proof. (Sketch) We will assume X is a compact Hausdorff space. Let p : E → X
be a k-vector bundle of rank r, and let {Ui}ni=1 be an open cover on which there
are trivializations ϕi : p

−1(Ui) → Ui × kr. Let sij : Ui → p−1(Ui) be such that
ϕi ◦ sij : Ui → Ui× kr corresponds to the j-th coordinate function on kr. Choose
a partition of unity (see Theorem 1.1(b)) ui subordinate to the open cover {Ui}.
Define

s̃ij(x) =

{
ui(x)sij(x) if x ∈ Ui

0Ex
if x 6∈ Ui

One checks at once that s̃ij is continuous, so that s̃ij ∈ Γ(X,E) for all i, j. Now
define a morphism of vector bundles

Φ : X × krn → E,

Φ(x, {aij}1≤i≤n,1≤j≤r) =
∑

aij s̃ij(x).

If Vi = {x ∈ X | ui(x) > 0}, so then {Vi} is also an open covering of X ,
shrinking {Ui}; for x ∈ Vi, the map kr → Ex, (a1, . . . , ar) 7→

∑r
j=1 aj s̃ij(x) =

ui(x)
∑

j ajsij(x), which is an isomorphism of k-vector spaces, since sij(x) is a

basis for Ex, and ui(x) ∈ k is a non-zero scalar. Hence Φ : X × krn → E is a
surjection.
We claim the surjective bundle morphism Φ is split. Equivalently, there is

an injective bundle map Ψ : E → X × krn such that the composition Φ ◦ Ψ :
E → E is the identity. We prove this as follows. If k = R, let < , > denote
a positive definite inner product on krn; if k = C, let < , > denote a positive
definite Hermitian inner product on krn. For each x ∈ X , the k-linear surjection

Φx : krn ∼= {x} × krn−→→ Ex induces an isomorphism αx : ker(Ψx)
⊥

∼=−→ Ex. Let
Ψx : Ex → {x}×krn be the inverse isomorphism α−1

x , composed with the inclusion
ker(Ψx)

⊥ →֒ {x}× krn. We leave it to the reader to check that Ψ : E → X × krn,
Ψ(y) = Ψp(y)(y) is continuous, and defines the desired splitting of Φ.
This implies that Γ(X,E) is a direct summand of Γ(X,X× krn) = Ck(X)rn as

a Ck(X)-module; in particular, Γ(X,E) is a finitely generated projective Ck(X)-
module.
We leave the (easy) proof of the converse statement to the reader.

One consequence of the above proof is worth making explicit.
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Corollary 1.28. Let X be a compact Hausdorff space, E a k-vector on X. Then
E is a direct summand of a trivial vector bundle on X (of some rank, depending
on E).

Using Theorem 1.2 instead of Theorem 1.1, one can obtain similar results on
C∞ manifolds. Similarly, one has analogous results on topological manifolds
(using the ring of continuous, rather than C∞, functions).

Theorem 1.29. There is an (anti-)equivalence between the category of C∞ k-
vector bundles on a C∞ manifold M and the category of finitely generated projec-
tive modules over the ring C∞

k (M) of C∞ functions M → k. In particular, any
C∞ vector bundle p : E → M is a direct summand of a trivial bundle M × kN ,
for some N (depending on E).

The proof for compact smooth manifolds is rather similar to that of Swan’s
result given above. However, the proof for non-compact (C∞ or topological)
manifolds M requires more care; we omit the details here.

2. Operations on vector bundles

The usual operations on finite dimensional vector spaces which are familiar
from linear algebra carry over to similar operations on vector bundles. Exam-
ples are given by the direct sum, tensor product, dual, Hom, and the exterior
and symmetric powers. These are defined on the trivial bundle X × kn through
the standard operation on kn, and may be defined for an arbitrary bundle us-
ing local trivializations. We then recover the standard operations on the fibres.
Equivalently, applying the equivalence Γ(X,−), these correspond to the standard
operations on finitely generated projective Ck(X)-modules.

Example 2.1. (i) If E → X , F → X are vector bundles, then (E ⊕ F )x =
Ex ⊕ Fx, where the right side denotes the vector space direct sum of the
k-vctor spaces Ex and Fx.

(ii) Hom(E, F )x = Homk(Ex, Fx), and Hom(E, F ) is the vector bundle whose
module of sections Γ(X,Hom(E, F )) is the Ck(X)-module of Ck(X)-linear
homomorphisms Γ(X,E) → Γ(X,F ). If E∨ is the dual k-vector bundle,
so that (E∨)x = (Ex)

∨, then for any vector bundle F , we have a natural
isomorphism of vector bundles E∨ ⊗ F ∼= Hom(E, F ).

(iii) (E∨)∨ ∼= E for any vector bundle E.

(iv)
n
∧ E = 0 for n > rankE.

Definition 2.2. An inner product on E is a symmetric bundle morphism E ⊗
E → X × k. If k = R, the inner product is called positive definite if the induced
inner product Ex⊗REx → R on each fibre is positive definite; we also refer to the
positive definite inner product as a Euclidean structure on the vector bundle E.
In a similar way, we can define the notion of a positive definite Hermitian inner
product on a C-vector bundle E; its real part is a positive definite inner product
on the underlying real vector bundle, such that the complex structure J (given
by multiplication by i on each fiber) is an isometry.
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Remark 2.3. Since every k-vector bundle on a compact Hausdorff space is a
subbundle of a trivial bundle of finite rank (corollary 1.28), we see that every real
vector bundle on such a space carries a positive definite inner product. Similarly
every complex vector bundle carries a positive definite Hermitian inner product.
If E is any vector bundle supporting a positive definite inner product, then for
any subbundle F ⊂ E, we can form the orthogonal complement subbundle F⊥

with (F⊥)x = F⊥
x ⊂ Ex. Clearly we have F ⊕ F⊥ = E. Hence, any injective

or surjective bundle morphism E → F on such a space X is split injective or
surjective, respectively. This is of course consistent with Theorem 1.27.

Remark 2.4. The operation of pullback preserves the above operations on vector
bundles (direct sums, Hom, duals, tensor, exterior and symmetric products, inner
products, etc.). On the level of modules, there is a corresponding homomorphism
f ∗ : Γ(X,E) → Γ(Y, f ∗E); if f ∗ : Ck(X) → Ck(Y ) is the ring homomorphism
given by g 7→ g ◦ f , then Γ(X,E) → Γ(Y,E) is Ck(X)-linear, and the induced
Ck(Y )-linear map Γ(X,E)⊗Ck(X) Ck(Y )→ Γ(Y, f ∗E) is an isomorphism. Notice
that if f : Y →֒ X is the inclusion of a subset, so that f ∗E ∼= p−1(Y ), then the
homomorphism f ∗ : Γ(X,E)→ Γ(Y, f ∗E) is given by restriction of functions.

Proposition 2.5. If f, g : Y → X are homotopic maps, with Y paracompact,
then for any bundle p : E → X, the bundles f ∗E → Y and g∗E → Y are
isomorphic.

Proof. We will give a proof when Y is a compact Hausdorff space. The idea of
the proof in general is similar, but technically more complicated. We make use
of a simple lemma.

Lemma 2.6. Let X be a compact Hausdorff space, i : A → X be the inclusion
of a closed subset. Then for any vector bundle p : E → X, the restriction map
i∗ : Γ(X,E)→ Γ(A, i∗E) is surjective.

Proof. For the trivial bundle, this follows from the Tietze extension theorem
(Theorem 1.1(a)). Since any vector bundle on X is a direct summand of a trivial
bundle, we reduce immediately to the special case.

Now let H : Y × I → X be a homotopy between f and g, where I = [0, 1] is
the unit interval. Let p1 : Y ×I → Y be the projection. For t ∈ I, let ft : Y → X
be the map ft(y) = H(y, t); then f0 = f , and f1 = g.
We claim that for each t ∈ I, there is a neighbourhood Vt of t ∈ I such that

for all t′ ∈ T , we have an isomorphism of vector bundles f ∗
t E
∼= f ∗

t′E. If we
grant the claim, a finite number of these open subsets cover I, and it is then
clearly possible to find a sequence t0 = 0 < t1 < · · · < tn = 1 in I such that
we have isomorphisms f ∗

ti
E ∼= f ∗

ti+1
E for 0 ≤ i < n; the comnposition of these

isomorphisms is the desired one.
To prove the claim, consider the vector bundle F = Hom(H∗E, p∗1f

∗
t E) on

Y × I. If it : Y ∼= Y ×{t} →֒ Y × I is the inclusion, then i∗tF
∼= Hom(f ∗

t E, f
∗
t E).

By lemma 2.6, the identity endomorphism of f ∗
t E extends to a global section

s ∈ Γ(Y, F ). The subset Iso (H∗E, p∗1f
∗
t E) ⊂ Hom(H∗E, p∗1f

∗
t E) = F is an

open subset, where the fibre over z ∈ Y × I of Iso (H∗E, p∗1f
∗
t E) is the set
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Iso (H∗E, p∗1f
∗
t E)z of vector space isomorphisms of (H∗E)z with (p∗1f

∗
t E)z. Hence

s−1(Iso (H∗E, p∗1f
∗
t E)) is an open subset of Y × I containing Y × {t}; hence it

also contains an open subset of the form Y ×Vt for some (relatively) open interval
Vt ⊂ I containing t. Now for t′ ∈ Vt, the restriction of s to Y × {t′} gives the
desired isomorphism, proving the claim.

3. Classifying maps to Grassmannians

For n ≤ m, let Gk(n,m) denote the Grassmannian of n-dimensional subspaces
of km. For k = R, fix the standard Euclidean inner product on Rm; for k =
C, fix the standard positive definite Hermitian inner product on Cm. In each
case, the standard basis vectors form an orthonormal basis. We can then make
identifications

GR(n,m) = O (m)/O (n)×O (m− n), GC(n,m) = U (m)/U (n)× U (m− n)
as homogeneous spaces for the orthogonal group O (m) and the unitray group
U (m), respectively. We have a tautological k-vector bundle γn,m → Gk(n,m),
whose fibre (γn,m)x is {x}×V , where V ⊂ km is the subspace of dimension n corre-
sponding to the point x ∈ Gk(n,m). The orthogonal projection of Gk(n,m)×km
onto the subbundle γn,m gives us m tautological sections s1, . . . , sm of γn,m.

Example 3.1. (C∞ and complex structures on Grassmannians) The Grass-
mannians can be regarded as C∞ manifolds in a standard way, and the com-
plex Grassmannians are in fact complex manifolds. We recall one description
of these structures (other equivalent descriptions are possible) on Gk(n,m). Let
I = {i1, . . . , in} ⊂ {1, . . . , m} be any ordered subset of cardinality n, and let
UI ⊂ Gk(n,m) be the (open) subset on which the sections {si | i ∈ I} generate
γn,m. Since γn,m is a vector bundle of rank n, and the set {si | 1 ≤ i ≤ m}
generate γn,m everywhere, the open sets Ui cover Gk(n,m). Let {j1, . . . , jm−n}
be the ordered set {1, . . . , m} − I. By the definition of UI , si1 , . . . , sin trivialize
γn,m |UI

(in particular, γn,m → Gk(n,m) is indeed locally trivial!). Hence we can
find continuous functions apq, 1 ≤ p ≤ m− n, 1 ≤ q ≤ n on UI such that

sjp |UI
=
∑

q

apqsiq ∀ 1 ≤ p ≤ m− n.

Now one can show (exercise for the reader!) that

(i) the map UI → kn(m−n) given by the apq is in fact a homeomorphism; in
particular, this gives Gk(n,m) the structure of a topological manifold

(ii) if I, I ′ are two such sets of n indices, the corresponding transition home-
omorphisms, determined by the intersections UI ∩ UI′ , are in fact rational
functions; hence they are C∞, and when k = C, are also analytic functions.

In particular, we see that GR(n,m) is a C∞ manifold, and GC(n,m) is a complex
manifold; the tautological bundles are also C∞.

If p : E → X is a k-vector bundle of rank n, and s1, . . . , sm are sections which
give rise to a surjective bundle morphism ψ : X × km → E, we say that the
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sections sj generate E. In this situation, the map

fψ : X → Gk(n,m),

x 7→ [ker(ψx)
⊥],

is easily seen to be continuous. Further, by construction, we see that there is a
natural identification f ∗

ψγn,m
∼= E with f ∗

ψ(si) = si.
Let Gk(n) = lim

−→

m

Gk(n,m), induced by in,m : Gk(n,m) →֒ Gk(n,m + 1), given

by km →֒ km ⊥ k = km+1, v 7→ (v, 0). One gives Gk(n) the direct limit topology:
thus a subset of Gk(n) is closed if its intersection with each Gk(n,m) is closed.
This implies easily that Gk(n) is Hausdorff. We claim that any given compact
subset of Gk(n) is contained in Gk(n,m) for some sufficiently large m; indeed, if
A ⊂ Gk(n) is any infinite subset which has finite intersection with each Gk(n,m),
then all subsets of A are closed, and so A is an infinite discrete subset of Gk(n),
necessarily non-compact. The space Gk(n) is called an infinite Grassmannian.
The inclusion km →֒ km+1 induces an inclusion of total spaces γn,m →֒ γn,m+1,

allowing us to define γn = lim
−→

m

γn,m, together with a natural map p : γn → Gk(n).

It can be shown (see Milnor’s book, lemma 5.4) that this makes γn into a k-vector
bundle of rank n on Gk(n) (the main issue being the local triviality of γn); by
construction, the restriction γn |Gk(n,m) is just γn,m. Note that by construction,
γn supports a positive definite inner product, if k = R, and a positive definite
Hermitian iner product, if k = C, such that the induced inner products on all
γn,m are the standard ones (coming from their descriptions as subbundles of trivial
bundles).

Lemma 3.2. Let p : E → X, ψ and fψ : X → Gk(n,m) be as above, and
let s ∈ Γ(X,E). Suppose ψ′ : X × km+1 → E is given by {s1, . . . , sm, s}, and
fψ′ : X → Gk(n,m + 1) is the corresponding map. Then ψ′ is homotopic to
in,m ◦ ψ : X → Gk(n,m+ 1).

Proof. If pX : X × I → X is the projection, then the sections has

p∗X(s1), . . . , p
∗
X(sm), tp

∗
X(s) ∈ Γ(X × I, p∗XE)

yield a bundle surjection (X × I)× km+1−→→ p∗XE. The corresponding map H :
X × I → Gk(n,m+ 1) yields the desired homotopy.

Theorem 3.3. Let p : E → X be a k-vector bundle which has is generated by a
finite set of global sections, i.e., there is a surjection ψ : kN×X → E from a trivial

k-bundle on X. The homotopy class of the map f̃ψ : X
ψ−→ Gk(n,m) →֒ Gk(n)

depends only on the vector bundle E. For compact Hausdorff spaces or topological

manifolds X, the association E 7→ [f̃ψ] gives a bijection between the sets

Vect n(X) = isomorphism classes of (k-)vector bundles of rank n on X

and

[X,Gk(n)] = homotopy classes of maps X → Gk(n).

(See also Remark 3.7, below.)
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Proof. If s1, . . . , sl and t1, . . . , tm are two sets of sections generating E, then
the corresponding maps f : X → Gk(n, l), g : X → Gk(n,m) yield homo-

topic maps into Gk(n, l +m + 1). Indeed, first consider the the maps f̃ : X →
Gk(n, l + m), g̃ : X → Gk(n, l + m) arising (respectively) from the sets of sec-
tions s1, . . . , sl, 0, . . . , 0 (with m zeroes) and t1, . . . , tm, 0, . . . , 0 (with l zeroes);
the first map is induced by f , and the second by g. By the above lemma and
induction, these two maps X → Gk(n, l +m) are respectively homotopic to the
maps F : X → Gk(n, l +m), G : X → Gk(n, l +m) corresponding to the sets of
sections s1, . . . , sl, t1, . . . , tm and t1, . . . , tm, s1, . . . , sl. Now F and G are related
by translation by a permutation matrix in GL l+m(k), for the natural action of
GL l+m(k) on Gk(n, l +m). For k = C, this permutation matrix is in U (l +m),
which is path connected; a path in U (l + m) from the identity element to this
permutation yields a homotopy between F and G. If k = R, then the permu-
tation is an element of O, (l + m), which need not be connected. But then the
linear map kl+m+1 → kl+m+1 which is the given permutation on the first l +m
cordinates, and is multiplication by the sign of the permutation on the l+m+1-
st coordinate, is an element in the identity component of O (l + m + 1), hence
again cane be joined to the identity element by a path in O (l +m + 1). Thus
the maps X → Gk(n, l +m + 1) induced by f , g are homotopic. Hence there is
a well-defined map α : Vect n(X)→ [X,Gk(n)].
Conversely, assume given a continuous map ψ : X → Gk(n). When X is

compact, we must have that ψ(X) ⊂ Gk(n,m) for some m. Then E = ψ∗γn,m is
generated by the sections ψ∗(s1), . . . , ψ

∗(sm), and the corresponding map X →
Gk(n,m) is just ψ itself. Two homotopic maps yield isomorphic bundles on X ,
by lemma 2.5. This gives a well-defined map β : [X,Gk(n)] → Vect n(X). It is
clear from the definitions that the two maps α, β are inverse to each other. In
the case when X is a topological manifold, it first needs to be shown that any
given map ψ : X → Gk(n) is homotopic to a map with image contained in some
Gk(n,m), and that, up to increasing m if necessary, the homotopy class of this
map is unique. More precisely, the natural map lim

−→

m

[X,Gk(n,m)]→ [X,Gk(n)] is

bijective. This leads to the definition the map β as before, which is again clearly
inverse to α.

Remark 3.4. In a similar way, Theorem 1.29 implies that for a C∞ manifold
M , there is a natural bijection between isomorphism classes of C∞ k-vector bun-
dles of rank n and C∞ homotopy classes of maps M → Gk(n), where a map
M → Gk(n) is defined to be C∞ if, locally on M , it factors through a C∞ map
into the subspace Gk(n,m), for some m (note that, since a manifold is locally
compact, any continuous map f : M → Gk(n) automatically has a factorization
through Gk(n,m), locally onM , where the number m may depend on the chosen
neighbourhood in M). One shows that any such map is C∞ homotopic to a map
factoring (on all of M) through some subspace Gk(n,m). In particular, since
any continuous map M → Gk(n,m) is homotopic to a C∞ map, and any two
continuously homotopic such C∞ maps are in fact C∞ homotopic, we see that
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the isomorphism classes of topological and C∞ vector bundles on a C∞ manifold
M coincide.

Remark 3.5. A vector bundle p : E → X is called finite if there exists a finite
open covering {Ui} such that E |Ui

is trivial for all i. For any continuous map
f : X → Gk(n,m), the pull-back bundle f ∗γn,m is finite; more generally, the
pull-back of a finite vector bundle under any continuous map is again finite. One
can show (see Husemoller’s book) the following.

(i) Any vector bundle is finite over a paracompact space X which has finite
(combinatorial) dimension, i.e., such that for some integer d > 0, any open
cover of X has a refinement such that all d+1-fold intersections are empty;
in fact any vector bundle over such a space X is a direct summand of a
trivial bundle. This holds, in particular, if X is a topological manifold.

(ii) Any finite vector bundle over a paracompact space supports a positive defi-
nite inner product (Euclidean or Hermitian, according as k = R or C).

(ii) γn → Gk(n) is not finite (note that, however, it does support a positive
definite inner product, as mentioned earlier).

Remark 3.6. The above bijections α and β are natural (functorial), in the sense
that if f : Y → X is a continuous map between (say) compact Hausdorff spaces,
the map

f ∗ : Vect n(X)→ Vect n(Y ),

[E] 7→ [f ∗E],

corresponds to the map

[X,Gk(n)]→ [Y,Gk(n)],

(ψ : Y → Gk(n)) 7→ (ψ ◦ f : X → Gk(n)).

In more abstract language, we say that the space Gk(n) represents the functor
Vect n(−) (on the category of compact Hausdorff spaces). This is actually a
slight abuse of terminology, since the “representing object”, namely Gk(n), is not
itself a compact Hausdorff space. We have similar statements for the categories
of topological or C∞ manifolds.

Remark 3.7. If X is a paracompact space, the natural transformation β :
[X,Gk(n)]→ Vectn(X) can be shown to be bijective, even though vector bundles
on X need not be finite. See Husemoller’s book for the proof. Of course it is not
necessarily then true that [X,Gk(n)] = lim

−→

m

[X,Gk(n,m)].

Thus if E is any k-vector bundle of rank n on an appropriate spaceX , so that we
have an element [E] ∈ Vect n(X), then we get an associated ring homomorphism

[E]∗ : H∗(Gk(n), A)→ H∗(X,A)

on cohomology rings, for any coefficient ring A; images inH∗(X,A) of cohomology
classes in H∗(Gk(n), A) are called the characteristic classes of E in H∗(X,A).
From the above remark 3.6, it follows that if θ(E) ∈ H∗(X,A) is a characteristic
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class for a vector bundle E on (say) a compact Hausdorff space X , and if f : Y →
X is a continuous map, then θ(f ∗E) = f ∗θ(E), where on the right, f ∗ denotes
the ring homomorphism H∗(X,A)→ H∗(Y,A). This latter functoriality property
with respect to pull-backs is another common definition of a characteristic class,
which is equivalent to the one we have given, at least for bundles on “good
enough” spaces (like compact Hausdorff spaces, or manifolds).
In view of the above, it is interesting to compute the cohomology rings of the

infinite Grassmannians H∗(Gk(n), A) for various rings A; each such computation
leads to a corresponding “theory of characteristic classes” for vector bundles.

4. Cohomology rings of Grassmannians, and characteristic

classes

We first state a result giving a computation of the cohomology ring of Gk(n)
in the most important cases. Other results can be deduced from these, using the
universal coefficient theorem.

Theorem 4.1. (a) H1(GC(n),Z) = Z[c1, c2, . . . , cn] is a graded polynomial al-
gebra in n variables, where ci ∈ H2i(Gk(n),Z) is homogeneous of degree 2i.
For any C-vector bundle E of rank n, we call ci(E) := [E]∗(ci) the i-th
Chern class of E.

(b) H∗(GR(n),Z[
1
2
]) = Z[1

2
][p1, . . . ,p[n

2
]] is a graded polynomial algebra, where

pi is homogeneous of degree 4i. For any R-vector bundle of rank n, we call
pi(E) := [E]∗(pi) the i-th Pontryagin class of E.

(c) H∗(GR(n),Z/2Z) = (Z/2Z)[w1, . . . ,wn] is a graded polynomial algebra,
where wi is homogeneous of degree i. For any R-vector bundle E of rank n,
we call wi(E) := [E]∗(wi) the i-th Stiefel-Whitney class of E.

We now sketch a proof of parts (a) and (c) of this theorem; (b) will be proved
later, since it involves considerations of oriented bundles. We begin with the
following result; recall that Pnk = Gk(1, n+1) is the projective space of dimension
n over k, parametrizing the set of lines in the vector space kn+1.

Theorem 4.2. (1) For n ≥ 1, we have H∗(PnC,Z) = Z[x]/(xn+1), where x is
a homogeneous element of degree 2. Further, H∗(P∞

C ,Z) = H∗(GC(1),Z) =
Z[x] is a graded polynomial algebra in 1 variable x of degree 2.

(2) For n ≥ 1, we have H∗(PnR,Z/2Z) = (Z/2Z)[y]/(yn+1), where y is a ho-
mogeneous element of degree 1. Further, H∗(P∞

R ,Z/2Z) = (Z/2Z)[y] is a
graded polynomial algebra in 1 variable, with deg y = 1.

Proof. (Sketch) In both cases, the results for the finite dimensional projective
spaces Pn, and the compatibility with natural inclusions Pn−1 →֒ Pn, will imply
the result for the infinite projective spaces. So we will only discuss the finite
dimensional cases.
Proof of (1): We may consider PnC as the quotient space of Cn+1−{0}modulo

the diagonal action of the multiplicative C∗, or equivalently, as the quotient of
the unit sphere S2n+1 ⊂ Cn+1 modulo the action of the unit circle S1 ⊂ C∗.
The inclusion Cn →֒ Cn+1, as the subspace with vanishing last coordinate,

induces an inclusion Pn−1
C →֒ PnC; the complement is the homeomorphic image
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of Cn × {1} ⊂ Cn+1 − {0} under the quotient map Cn+1 − {0} → PnC. This
implies that the quotient space PnC/P

n−1
C (obtained by collapsing Pn−1

C to a point)
is homeomorphic to the one-point compactification of Cn, which is S2n. By
induction and the long exact sequence for the cohomology of the pair (PnC,P

n−1
C ),

we deduce that

H i(PnC,Z) =

{
Z if i = 2j with 0 ≤ j ≤ n,
0 otherwise.

It remains to show that if x is a generator of H2(PnC,Z), then x
j is a generator

of H2j(PnC,Z) for 2 ≤ j ≤ n (that x satisfies the relation xn+1 = 0 is clear, since
xn+1 ∈ H2n+2(PnC,Z) = 0). This can be deduced by induction on n, and the
Poincaré duality theorem, as follows. For n = 1 there is nothing to prove. If
i : Pn−1

C → PnC is the inclusion, then the exact sequence for the pair (PnC,P
n−1
C )

actually implies that i∗ : Hj(PnC,Z)→ Hj(Pn−1
C ,Z) is an isomorphism for j < 2n.

Thus i∗x generates H2(Pn−1
C ,Z), and if (i∗x)j = i∗(xj) generates H2j(Pn−1

C ,Z),
then xj generates H2j(PnC,Z) for 1 ≤ j ≤ n − 1. If we choose a generator
y ∈ H2n(PnC,Z)

∼= Z (corresponding to an orientation on the compact manifold
PnC), then since xn−1 is a generator of H2n−2(PnC,Z)

∼= Z, Poincaré duality implies
that there exists an element z ∈ H2(PnC,Z) = Zx such that z ∪ xn−1 = y. Since
z = m · x for some integer m, we have that m · xn = y. Since y is a generator of
H2n(PnC,Z)

∼= Z, we must have m = ±1, and xn is also a generator of H2n(PnC,Z).
that xn+1 = 0 in H∗(PnC,Z).
Proof of (2): This is along similar lines, using the description of PnR as the

quotient Rn+1 − {0}/R∗ = Sn/(Z/2Z), where the generator of Z/2Z acts on
Sn by the antipodal map x 7→ −x. Again Pn−1

R →֒ PnR with quotient space
PnR/P

n−1
R homeomorphic to the 1-point compactification of Rn, namely Sn. This

gives H i(PnR,Z/2Z) = 0 for i > n. Further, Sn is simply connected, and the
quotient map Sn → PnR is a covering space; hence PnR has fundamental group
Z/2Z. The long exact sequence of cohomology groups with Z/2Z-coefficients
for the pair (PnR,P

n−1
R ) implies that if i : Pn−1

R → PnR is the inclusion, then i∗ :
Hj(PnR,Z/2Z) → Hj(Pn−1

R ,Z) is an isomorphism for j < n − 1, and yields an
exact sequence

0→ Hn−1(PnR,Z/2Z)
i∗−→ Hn−1(Pn−1

R ,Z/2Z)→ Hn(Sn,Z/2Z)→ Hn(PnR,Z/2Z)→ 0.

Here Hn(Sn,Z/2Z) ∼= Z/2Z and Hn(PnR,Z/2Z)
∼= Z/2Z since Sn and PnR are

compact connected n-manifolds; this implies that

i∗ : Hn−1(PnR,Z/2Z)→ Hn−1(Pn−1
R ,Z/2Z)

is an isomorphism. Now Poincaré duality and induction imply as before that if
x ∈ H1(PnR,Z/2Z)

∼= Z/2Z is a generator, then xj is a generator of Hj(PnR,Z/2Z)
for each 1 ≤ j ≤ n.

Remark 4.3. Alternate proofs of the above Theorem can be given, for exam-
ple using multiplicative properties of the Serre spectral sequence for the Hopf
fibration, which do not appeal to Poincaré duality.
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Remark 4.4. As a consequence, we may define the following characteristic classes
associated to line bundles (i.e., vector bundles of rank 1), as follows. If p : L→ X
is a complex line bundle, and [L] : X → P∞

C is a classifying map, then define
[L]∗(x) = c1(L), where x ∈ H2(P∞

C ,Z) is the following generator: the inclusion
i : P1

C →֒ P∞
C induces an isomorphism i∗ : H2(P∞

C ,Z) → H2(P1
C,Z); now P1

C

is homeomorphic to the 2-sphere S2, and H2(S2,Z) has a standard generator
y (corresponding to the standard orientation of S2), and we take x to be the
generator of H2(P∞

C ,Z) to be the generator such that i∗x = −y (the sign is to
ensure compatibility with the definition of the Euler class, which we will define
later). Similarly, H1(P∞

R ,Z/2Z) = Z/2Z has a unique generator z; for any real
line bundle L→ X , define w1(L) = [L]∗(z) for a classifying map [L] : X → P∞

R .
We claim that for any two complex line bundles L1, L2, we have c1(L1⊗L2) =

c1(L1) + c1(L2). Using suitable classifying maps for L1 and L2, we reduce to
proving this in the following special case: X = PmC × PnC, L1 = p∗1γ1,m+1, L2 =
γ1,n+1 where pi, i = 1, 2 are the two projections, and γ1,r+1 → PrC = GC(1, r + 1)
denotes the tautological line bundle, for any r (in fact we could further reduce to
the case n = m = 1 if we please!). Now the natural map

H2(PmC ,Z)⊕H2(PnC,Z)
p∗
1
+p∗

2−→ H2(PmC × PnC,Z)

is an isomorphism, from the Künneth formula. For any point (P,Q) ∈ PmC × PnC,
if iQ : PmC → PmC × PnC is given by t 7→ (t, Q), and if iP : PnC → PmC × PnC is given
by s 7→ (P, s), then iP , iQ are inclusions such that p1 ◦ iQ = 1Pm, p2 ◦ iP = 1Pn ,
while the other two composites p1 ◦ iP and p2 ◦ iQ are constant maps, and hence
induce 0 on cohomology. Thus

i∗P : H2(PmC × PnC,Z)→ H2(PnC,Z),

i∗Q : H2(PmC × PnC,Z)→ H2(PmC ,Z)

are the two projections corresponding to the isomorphism p∗1 + p∗2 considered
above. Now i∗Q(L1 ⊗L2) ∼= γ1,m+1 and i

∗
P (L1 ⊗L2) ∼= γ1,n+1; hence c1(L1 ⊗L2) is

the unique element of H2(PmC ×PnC,Z) which projects to c1(γ1,m+1) and c1(γ1,n+1);
this element is clearly p∗1(c1(γ1,m+1))+p

∗
2(c1(γ1,n+1)), which is just c1(L1)+c1(L2).

By an analogous argument, we also have w1(L1 ⊗ L2) = w1(L1) + w1(L2) for
any real line bundles L1, L2 on X .

Recall that if p : E → X is a k-vector bundle of rank r, then we may form
the associated projective bundle π : P(E)→ X , where P(E) is the quotient space
(E−0E(X))/k∗ for the action of k∗ by scalar multiplication on each fibre Ex. Thus
the fibre over x ∈ X of P(E)→ X is the projective space P(Ex) ∼= Pr−1

k , which is
the space of lines (1-dimensional k-vector subspaces) in Ex. There is an associated
tautological line bundle on P(E), which restricts on each fibre P(Ex) ∼= Pr−1

k to the
tautological line bundle γ1,r; it is a subbundle of π∗E. Following the notation in
algebraic geometry, we denote the tautological line bundle on P(E) by OP(E)(−1).
In the next theorem, the reader should keep in mind that (i) though the graded

cohomology rings with Z-coefficients may be non-commutative, homogeneous el-
ements of even degree are central (ii) cohomology rings with Z/2Z-coefficients
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are always commutative. This follows from the general commutation formula
x ∪ y = (−1)pqy ∪ x, for homogeneous elements x, y of degrees p, q respectively.

Theorem 4.5. (Leray-Hirsch)

1) Let p : E → X be a complex vector bundle of rank n, and π : P(E) → X
the associated Pn−1

C -bundle, with tautological line subbundle OP(E)(−1) →֒
π∗E. Let ξ = c1(OP(E)(−1)) ∈ H2(P(E),Z). Then the homomorphism on
cohomology rings π∗ : H∗(X,Z) → H∗(P(E),Z) makes H∗(P(E),Z) into a
free module over H∗(X,Z) with basis 1, ξ, . . . , ξn−1.

2) Let p : E → X be a real vector bundle of rank n, and π : P(E)→ X the asso-
ciated Pn−1

R -bundle, with tautological line subbundle OP(E)(−1) →֒ π∗E. Let
ξ = w1(OP(E)(−1)) ∈ H1(P(E),Z/2Z). Then the homomorphism on coho-
mology rings π∗ : H∗(X,Z/2Z) → H∗(P(E),Z/2Z) makes H∗(P(E),Z/2Z)
into a free module over H∗(X,Z) with basis 1, ξ, . . . , ξn−1.

Proof. (Sketch) We consider below the case of a complex vector bundle; the real
case is similar. As usual we restrict to the case when X is compact Hausdorff, for
simplicity; more generally the proof given will work for any finite vector bundle,
in the sense of Remark 3.5. For the general case, one could use a spectral sequence
argument, or (as in Spanier’s book Algebraic Topology, Chapter 5, Sect. 7) use an
argument very similar to ours to prove the corresponding result for homology, for
arbitrary X , and then use formal arguments with free chain complexes to deduce
the result for cohomology (Milnor’s book also adopts a similar procedure).
If E → X is the trivial bundle, then the result is true by the Künneth formula

(for the cohomology of a product space), and from the fomrula for the cohomology
of a complex projective space (Theorem 4.2).
For any open subset W ⊂ X , we have maps

⊕n−1
i=0H

j−2i(W,Z)
Φj

W−→ Hj(P(E |W ),Z),

(α0, . . . αn−1) 7→
n−1∑

i=0

π∗
W (αi) ∪ (ξW )i,

where pW : E |W→ W is the restriction of the vector bundle E to the open
set W , and πW : P(W |E) → W is the corresponding projective bundle; ξW ∈
H2(P(W |E),Z) is c1 of the corresponding tautological bundle, and is hence just
the restriction to P(E |W ) ⊂ P(E) of ξ.
From the Mayer-Vietoris exact sequence in cohomology and the 5-lemma, we

see that if U, V are open subsets of X such that ΦjU , Φ
j
V and ΦjU∩V are isomor-

phisms for all j, then ΦjU∪V is also an isomorphism for all j. Now cover X by open
subsets V1, . . . , Vr such that E |Vi is trivial for all i, and set Ui = V1∪V2∪· · ·∪Vi.
By induction on i, we then see that ΦjUi

is an isomorphism for all i, j; in particular,
taking i = r, so that Ui = X , we have the theorem.

Corollary 4.6. 1) For any complex vector bundle E of rank n on X, there is
a unique relation

ξn + π∗(α1)ξ
n−1 + π∗(α2)ξ

n−2 + · · ·+ π∗(αn) = 0
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in H∗(P(E),Z), with αi ∈ H2i(X,Z).
2) For any real vector bundle E of rank n on X, there is a unique relation

ξn + π∗(α1)ξ
n−1 + π∗(α2)ξ

n−2 + · · ·+ π∗(αn) = 0

in H∗(P(E),Z/2Z), with αi ∈ H i(X,Z/2Z).

Definition 4.7. 1) For any complex vector bundle E of rank n on X , define
its i-th Chern class to be ci(E) = αi, where αi is as in 1) of the above
corollary 4.6.

2) For any real vector bundle E of rank n on X , define its i-th Stiefel-Whitney
class to be wi(E) = αi, where αi is as in 2) of the above corollary.

Remark 4.8. (a) The new definition of c1 of a complex line bundle agrees with
the old one, since for a line bundle L, we have P(L) = X , and the tautological
line bundle on P(L) is L itself. Similarly there is no ambiguity in defining w1(L)
for a real line bundle L.
(b) Since, as noted earlier, the Leray-Hirsch theorem is valid for bundles on arbi-
trary spaces, the definitions of the Chern classes and Stiefel-Whitney classes make
sense for bundles on arbitrary base spaces X , for example, for the tautological
bundles on infinite Grassmannians.

Another corollary of the Leray-Hirsch theroem is the following.

Corollary 4.9. (Splitting principle)

1) Let p : E → X be a complex vector bundle which supports a positive definite
Hermitian inner product (e.g., if X is compact Hausdorff). Then there exists
a continuous map f : P → X such that (a) f ∗E is a direct sum of complex
line bundles on P (b) f ∗ : H∗(X,Z)→ H∗(P,Z) is injective.

2) Let p : E → X be a real vector bundle which supports a positive definite inner
product (e.g., if X is compact Hausdorff). Then there exists a continuous
map f : P → X such that (a) f ∗E is a direct sum of real line bundles on P
(b) f ∗ : H∗(X,Z/2Z)→ H∗(P,Z/2Z) is injective.

Proof. The proof in the real and complex cases is similar, so we consider the
latter. We work by induction on the rank of E, where we may take P = X if
E has rank 1. In general, if rankE = n > 1, note that π : P(E) → X satisfies
the condition that π∗ : H∗(X,Z) → H(P(E),Z) is injectie, and there is a line
subbundle OP(E)(−1) ⊂ π∗E. Choosing a Hermitian metric on E, we may write
π∗E = OP(E)(−1)⊕ F , where q : F → P(E) has rank n − 1. Now by induction,
there is a map g : P → P(E) such that g∗F is a direct sum of complex line
bundles, and g∗ is injective on cohomology rings. Hence f = g ◦ π satisfies the
desired conditions.

Remark 4.10. We call a map f : P → X as in corollary 4.9 a splitting map for
the vector bundle E. It is easy to see that if E1, . . . , Er are vector bundles, then
there exists a continuous map f : P → X which is simultaneously a splitting
map for each of the bundles Ei (for example, if f1 : P1 → X is a splitting map
for E1, and f2 : P2 → P1 is a splitting map for f ∗

1E2, then f2 ◦ f1 : P2 →
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X is simultaneously a splitting map for E1 as well as E2). Note that, by the
above lemma, splitting maps exist for the tautological bundle γn on the infinite
Grassmannian Gk(n).
Lemma 4.11.

1) Let L1, . . . , Ln be C-line bundles, such that there exists a nowhere-vanishing
section s ∈ Γ(X,L1 ⊕ · · · ⊕ Ln) (i.e., s(x) 6= 0Ex

for any x ∈ X, where
E = L1 ⊕ · · · ⊕ Ln)). Then

c1(L1) ∪ · · · ∪ c1(Ln) = 0

in H2n(X,Z).
2) Let L1, . . . , Ln be R-line bundles, such that there exists a nowhere-vanishing

section s ∈ Γ(X,L1 ⊕ · · · ⊕ Ln) (i.e., s(x) 6= 0Ex
for any x ∈ X, where

E = L1 ⊕ · · · ⊕ Ln)). Then
w1(L1) ∪ · · · ∪ w1(Ln) = 0

in Hn(X,Z/2Z).

Proof. We consider the complex case, since the real case is similar. Let si ∈
Γ(X,Li) be the component of s in Li, and Ui = {x ∈ X | si(x) 6= 0(Li)x} be the
locus where si does not vanish. Then we are given that {Ui}ni=1 is an open cover
of X . Now for each i, we have that c1(Li) 7→ 0 under H2(X,Z) → H2(Ui,Z),
since we have a trivialization Li |Ui

∼= Ui × C (using the section si), and c1 of
the trivial line bundle vanishes. Hence we can find relative cohomology classes
c̃1(Li) ∈ H2(X,Ui;Z) such that c̃1(Li) 7→ c1(Li). Then the cup product

c̃1(L1) ∪ · · · ∪ c̃1(Ln) ∈ H2n(X,U1 . . . , Un;Z)

maps to c1(L) ∪ · · · ∪ c1(Ln) under the natural map

H2n(X,U1 . . . , Un;Z)→ H2n(X,Z).

But U1 ∪ · · · ∪ Un = X , so that H2n(X,U1 ∪ . . . ,∪Un;Z) = 0.

Corollary 4.12. 1) If p : E → X is a complex vector bundle of rank n, and
f : P → X a splitting map for E, with f ∗E = L1 ⊕ · · · ⊕ Ln, then
f ∗(ci(E)) = i-th elementary symmetric function in c1(L1), . . . , c1(Ln).

2) If p : E → X is a real vector bundle of rank n, and f : P → X a splitting
map for E, with f ∗E = L1 ⊕ · · · ⊕ Ln, then
f ∗(wi(E)) = i-th elementary symmetric function in w1(L1), . . . , w1(Ln).

Proof. As usual, we consider the case of complex vector bundles, and leave the
(very similar) case of real bundles to the reader.
Let Q be the fibre product

Q = P ×X P(E)
g−→ P(E)

η ↓ ↓ π
P

f−→ X
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Then the inclusion of the tautological line subbundle L = OP(E)(−1) ⊂ π∗E
induces an inclusion of a line subbundle

g∗L →֒ g∗π∗E = η∗f ∗E = η∗(L1 ⊕ · · · ⊕ Ln).
Thus we have an inclusion of a trivial line subbundle

Q× C →֒ ((η∗(L1)⊗ g∗(L∨))⊕ · · · ⊕ (η∗(Ln)⊗ g∗(L∨))) ,

where L∨ denotes the dual line bundle. The inclusion of a trivial line bundle
is equivalent to giving a section which does not vanish anywhere, and so by
lemma 4.11, we have an identity in H∗(Q,Z)

n∏

i=1

(η∗(c1(Li) + g∗ξ) = 0.

Thus we have a relation

g∗(ξn)+η∗s1(c1(L1), . . . , c1(Ln))g
∗(ξn−1)+η∗s2(c1(L1), . . . , c1(Ln))g

∗(ξn−2)+· · ·+
η∗sn(c1(L1), . . . , c1(Ln)) = 0,

where si denotes the i-th elementary symmetric polynomial (note that the classes
c1(Li) are in the centre of the cohomology ring, and so it makes sense to evaluate
a polynomial on the c1(Li)). We also have a relation

g∗(ξn) + g∗π∗(c1(E))g
∗(ξn−1) + g∗π∗(c2(E))g

∗(ξn−2) + · · ·+ g∗π∗(cn(E)) = 0,

which we may rewrite as

g∗(ξn) + η∗f ∗(c1(E))g
∗(ξn−1) + η∗f ∗(c2(E))g

∗(ξn−2) + · · ·+ η∗f ∗(cn(E)) = 0.

Since Q = P(f ∗E) is a projective bundle over P , the elements g∗(ξj) = g∗(ξ)j,
0 ≤ j ≤ n − 1 are linearly independent over H∗(P,Z), by Theorem 4.5, and so
the above two monic relations satisfied by g∗(ξ) must coincide. Thus, comparing
coefficients, and using the injectivity on cohomology of η∗, we get that

f ∗ci(E) = si(c1(L1), . . . , c1(Ln)).

Corollary 4.13. (Whitney sum formula)

1) Let E → X, F → X be two complex vector bundles. Then we have a formula

∑

i≥0

ci(E ⊕ F ) =
(
∑

i≥0

ci(E))(
∑

i≥0

ci(F )

)

in H∗(X,Z).
2) Let E → X, F → X be two real vector bundles. Then we have a formula

∑

i≥0

wi(E ⊕ F ) =
(
∑

i≥0

wi(E))(
∑

i≥0

wi(F )

)

in H∗(X,Z/2Z).
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Proof. Notice that if E is a complex vector bundle which is a direct sum of line
bundles, E ∼= L1 ⊕ · · · ⊕ Ln, then from corollary 4.12, we have an expression

∑

i≥0

ci(E) =

n∏

i=1

(1 + c1(Li)).

We now prove 1): by the splitting principle, we reduce to considering the case
when E and F are both direct sums of complex line bundles, say E ∼= L1⊕· · ·⊕Lr,
F ∼=M1 ⊕ · · · ⊕Ms; then we have that

E ⊕ F ∼= L1 ⊕⊕Lr ⊕M1 ⊕ · · ·Ms

is also a direct sum of line bundles, and so we have formulas

∑

i≥0

ci(E) =

r∏

i=1

(1 + c1(Li)),

∑

i≥0

ci(F ) =

s∏

j=1

(1 + c1(Mj)),

∑

i≥0

ci(E ⊕ F ) =
(

r∏

i=1

(1 + c1(Li))

)(
s∏

j=1

(1 + c1(Mj))

)
;

from these formulas, the desired formula in 1) is obvious. The proof of 2) is very
similar.

Remark 4.14. If E is a complex vector bundle of rank n on X , and f : Y → X
is a splitting map for E, with f ∗E = L1 ⊕ · · · ⊕ Ln, then xi = c1(Li) ∈ H2(Y,Z)
are called Chern roots for E. This terminology is because we have a factorization
in the polynomial algebra H∗(Y,Z)[t]

tn − f ∗c1t
n−1 + · · ·+ (−1)nf ∗cn =

n∏

i=1

(t− xi);

thus if we let C(t) denote the polynomial on the left, the roots of C(t) = 0 are
the xi, 1 ≤ i ≤ n. An equivalent way of expressing the above factorization is

tn + f ∗c1t
n−1 + · · ·+ f ∗cn =

n∏

i=1

(t + xi).

Example 4.15. Show that the Chern classes of a tensor product E ⊗ F of two
complex vector bundles are given by ‘universal’ polynomials with integer coeffi-
cients in the Chern classes of E and F .

We now give a proof of Theorem 4.1(a), assuming that the classification of
vector bundles via homotopy classes of maps to an infinite Grassmannian, the
formula for the cohomology ring of a projective bundle, the resulting formalism
of Chern classes, and the splitting principle, are all valid even when the base space
X is a “sufficiently good” non-compact Hausdorff space; this can be rigorously
justified, but we do not do this here. We will need that the above results hold
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even when X is an infinite dimensional CW-complex, with finitely many cells of
any given dimension. The idea is that if X is such a space, and Xn is its n-
skeleton, then Xn is a compact Hausdorff space, ∪n≥0Xn = X , and any compact
subset of X lies in some Xn; further, a map X → Y is continuous if and only if
its restriction to each Xn is continuous. Thus, using the theory developed above,
applied to each of the “finite dimensional approximations” Xn, one can extend
its validity to such spaces X as well.
Another way to make our arguments rigorous is to use the fact that for any

i ≥ 0, the natural maps

H i(Xn+1, A)→ H i(Xn, A),

and hence also

H i(X,A)→ H i(Xn, A),

are isomorphisms for n > i. Thus, any conclusions regarding cohomology of any
infinite dimensional CW complex X as above can be obtained by considering the
cohomology groups of the finite dimensional approximations Xn. This approach
avoids the need for constructing classifying maps for vector bundles on such an
infinite dimensional space X .
Consider the space X = (P∞

C )n = P∞
C × P∞

C × · · · × P∞
C . If pi : X → P∞

C is the
i-th projection, then there is a vector bundle E = p∗1γ1,∞ ⊕ p∗2γ1,∞ ⊕ · · · ⊕ p∗nγ1,∞
on X of rank n. Let f : X → GC(n) be a classifying map for this bundle. We
claim that if γn is the tautological bundle on GC(n), and g : P → GC(n) is a
splitting map for γn, then there is a continuous map h : P → X giving a diagram,
commutative up to homotopy,

P
h−→ X
ց g ↓ f

GC(n)

Hence the natural map on cohomology f : H∗(GC(n),Z)→ H∗(X,Z) is injective,
and f is itself a splitting map for γn. If σ : X → X is any permutation of
the factors, then there is a natural isomorphism σ∗E ∼= E; hence f ◦ σ must
be homotopic to f , and so f ∗ = σ∗ ◦ f ∗ on H∗(GC(n),Z). This means that the
subring

f ∗(H∗(GC(n),Z)) ⊂ H∗(X,Z) ∼= ⊗ni=1H
∗(P∞

C ,Z)) = Z[t1, . . . , tn]

(where ti = p∗i (x), for the generator x ∈ H2(P∞
C ,Z)) is contained in the ring

of invariants for the permutation group Sn on n symbols, acting by permuting
the variables ti. Hence if si(t1, . . . , tn) denotes the i-th elementary symmetric
polynomial, then

f ∗(H∗(GC(n),Z)) ⊂ Z[s1(t1, . . . , tn), . . . , sn(t1, . . . , tn)].

But by corollary 4.12, si(t1, . . . , tn) = ci(E) = f ∗(ci(γn)). Since f ∗ is injective,
we deduce that H∗(GC(n),Z) is the polynomial algebra in the n (algebraically
independent) elements c1(γn), . . . , cn(γn).
In a similar way, we may formally deduce the structure of H∗(GR(n),Z/2Z)

(i.e., theorem 4.1(c)) from the theory of Steifel-Whitney classes applied to an
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analogous bundle on X = (P∞
R )n, and the splitting principle applied to the uni-

versal bundle on the infinite Grassmanian GR(n).

5. Oriented Bundles, the Thom Class and the Euler Class

Recall that an orientation for a real vector space V of dimension n is an equiv-
alence class of bases {v1, . . . , vn}, where this basis is equivalent to {v′1, . . . , v′n}
if the transition matrix [aij], determined by the relations v′i =

∑
j aijvj , has a

positive determinant. An equivalent way to do this is to choose a connected com-

ponent of
n
∧ V − {0}; another is to choose a generator for the homology group

Hn(V, V − {0};Z) ∼= Z, or equivalently for Hn(V, V − {0};Z). A basis of an
oriented vector space V is called an oriented basis of V if it is a member of the
equivalence class of bases giving the orientation of V .
If V is oriented, then so is its dual V ∨, in a natural way, via dual bases. If V1,

V2 are oriented real vector spaces, then their direct sum V1 ⊕ V2, tensor product
V1 ⊗ V2 and internal Hom Hom(V1, V2) are also oriented in standard ways, the
latter in such a way that the canonical isomorphism V ∨

1 ⊗ V2 → Hom(V1, V2) is
orientation preserving. The orientations chosen for the direct sum and tensor
product (and hence Hom) is a matter of convention, but are functorial. If v1i
1 ≤ i ≤ m, and v2j , 1 ≤ j ≤ n are oriented bases for V1, V2 respectively, then
v11, v12, . . . , v1m, v21, . . . , v2n is taken to be an oriented basis for V1 ⊕ V2. For the
tensor product, one standard choice for an orientation is the class of the “reverse
lexicographically ordered” basis v1i ⊗ v2j , where v1i is an oriented basis for V1,
and v2j is an oriented basis for V2: thus v1i ⊗ v2j precedes v1i′ ⊗ v2j′ if j < j′, or
j = j′ and i < i′.

Example 5.1. Let V be a complex vector space of dimension n. Then the un-
derlying real vector space has a standard orientation: if v1, . . . , vn is any C-basis
for V , then an oriented R-basis is v1,

√
−1v1, v2,

√
−1v2, . . . , vn,

√
−1vn. This is

also a matter of convention, but has the advantages that (i) C acquires its stan-
dard orientation (ii) the orientation of a complex vector space is independent of
the choice of C-basis, and is compatible with direct sums of vector spaces (iii)
any complex linear automorphism of a C-vector space V preserves orientation.

An orientation of a real vector bundle p : E → X of rank n is a choice of
orientation of each fiber vector space Ex = p−1(x), such that under any local
trivialization φ : p−1(U) → U × Rn (compatible with the structure of E as a
vector bundle) such that U is connected, the induced orientation on Rn from the
linear isomorphism φx : Ex → Rn is independent of x ∈ U (i.e., the orientation
on Ex “varies continuously with x”). A vector bundle is called orientable if it has
at least 1 orientation; if the base space X is connected, then an orientable bundle
has precisely two orientations.

Example 5.2. A C∞ manifold is M called orientable if its tangent bundle TM
is orientable. This is seen to be consistent with the definition used in algebraic
topology, namely that there exists a locally consistent choice of a generator of
Hn(M,M − {x};Z) ∼= Z for each x ∈ M . Indeed, we may identify a neighbour-
hood of 0x in the tangent space TxM with a neighbourhood of x inM , by choosing
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a Riemannian metric on M , and using the corresponding exponential mapping
Exp x : (TxM(ε), 0x) → (M,x), where TxM(ε) is the ball of radius ε in TxM ;
for small ε, this is a diffeomorphism onto its image, and yields an isomorphism
of Hn(M,M − {x};Z) with Hn(TxM,TxM − 0x;Z), which is in fact indepen-
dent of the metric. One shows that for points x, y in a small closed coordinate
neighbourhood U in M , the composite identification

Hn(M,M − {x};Z) ∼=−→ Hn(M,M − U ;Z) ∼=←Hn(M,M − {y};Z)
is compatible with the identification

Hn(TxM,TxM − 0x;Z)
∼=−→ Hn(TM |U , TM |U −0M ;Z)

∼=←Hn(TyM,TyM − 0y;Z)

induced by the local trivialization of TM |U (since this is a local property, we can
reduce to showing this for Rn with the Euclidean metric, where it is easy). Thus
the choice of a locally compatible set of generators of the groups

{Hn(M,M − {x};Z)}x∈M
is equivalent to the choice of an orientation for TM . Part of the Poincaré du-
ality theorem then asserts the equivalence of these choices with the choice of a
fundamental homology class in Hn(M,Z).

From the equivalent characterizations stated earlier of orientation of a real
vector space, we obtain the following equivalent characterizations of orientation
of a real vector bundle p : E → X of rank n:

(i) an equivalence class of trivializations of the real line bundle
n
∧ E, where two

trivializations determined by nowhere vanishing sections s, t ∈ Γ(X,
n
∧ E)

are equivalent if t = us for a continuous, everywhere positive function u ∈
CR(X).

(ii) a choice of a generator of Hn(Ex, Ex − {0x};Z) ∼= Z which “varies continu-
ously with x”, i.e., a trivialization of the local coefficient system determined
by {Hn(Ex, Ex − {0x};Z)}x∈X . We may instead rephrase this in terms of
the dual local coefficient system {Hn(Ex, Ex − {0x};Z)}x∈X .

There is an evident notion of pull-back of oriented bundles, giving rise to a
category of oriented bundles, together with a forgetful functor to the category
of real vector bundles; the category of oriented bundles has duals, direct sums,
tensor products and internal Hom’s (i.e., if Ei → X are oriented bundles, then
the bundle Hom(E1, E2) is oriented in a functorial way).
Recall that if p : E → X is a vector bundle, then 0X ⊂ E denotes the image

of the 0-section.

Theorem 5.3. (Thom isomorphism) Let p : E → X be an oriented vector bundle
of rank n, with orientation {ξ(x) ∈ Hn(Ex, Ex − {0x};Z)}x∈X. Then

H i(E,E − 0X ;Z) =

{
0 if i < n
Z if i = n,

and Hn(E,E− 0X ;Z) has a unique generator ξ = ξ(E) which maps to the orien-
tation element ξ(x) ∈ Hn(Ex, Ex − {0x};Z) for each x ∈ X. The ring (without
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identity) H∗(E,E − 0X ;Z) is a free H∗(X,Z)-module of rank 1 with ξ as a gen-
erator; equivalently, the maps

Hj(X,Z)→ Hj+n(E,E − 0X ;Z),

a 7→ ξ ∪ p∗a,
are isomorphisms for all j ≥ 0.

Proof. (Sketch) The proof for compact X (or more generally, for finite vector
bundles) is similar to the proof of Theorem 4.5, via a Mayer-Vietoris argument.
First it is easy to prove for a trivial bundle, using the Künneth formula. Next,
one shows that if it is true for the restrictions of p : E → X (with its chosen
orientation) to open subsets U, V and U ∩ V , then it is true for the restriction to
U ∪ V as well. This allows one to obtain the result when X is compact, e.g., a
finite CW complex.
The proof for arbitrary X uses a limit argument, which is however a little

delicate (see Milnor’s book, Chapter 10, for details).

Definition 5.4. The distinguished cohomology class ξ(E) ∈ Hn(E,E − 0X ;Z)
determined in Theorem 5.3 is called the Thom class of the oriented bundle
p : E → X . Since p∗ : H i(X,Z) → H i(E,Z) is an isomorphism for all i (with
inverse given by pull-back along the 0-section), the image of ξ in Hn(E;Z) is of
the form p∗(e(E)) for a unique element e(E) ∈ Hn(X,Z), called the Euler class
of the oriented bundle E.

One easy, but important, corollary of the Thom isomorphism theorem is the
Gysin exact sequence, stated below.

Corollary 5.5. (Gysin exact sequence) Let p : E → X be an oriented R-vector
bundle of rank n, and e(E) ∈ Hn(X ;Z) its Euler class. Then there is a long
exact sequence

· · · → H i(X ;Z)
−∪e(E)−→ H i+n(X ;Z)

p∗−→ H i+n(E − 0X ;Z)→ H i+1(X ;Z)→ · · ·
Proof. This is just the long exact sequence for the integral cohomology of the pair
(E,E−0X), where we have replaced Hj(E;Z) with the group isomorphic to it (via
p∗) Hj(X ;Z), and similarly used the Thom isomorphism to replace Hj(E,E −
0X ;Z) with H

j−n(X ;Z); the induced maps then have the stated description, by
an obvious functoriality of the cup product.

Some further obvious functoriality properties of the Thom and Euler classes
are listed below. The proofs are immediate, and left as an exercise to the reader.

Lemma 5.6. (i) The Thom and Euler classes of an oriented real vector bundle
p : E → X are characteristic classes, i.e., for any continuous map f : Y →
X, the pull-back bundle f ∗E → Y has a canonical induced orientation, and
the Thom class and Euler class of f ∗E are respectively the pull-backs of the
Thom class and Euler class of E.

(ii) If ξ and e are the Thom class and Euler class, respectively, of an oriented
bundle p : E → X, then the Thom class and Euler class of the same bundle
with reversed orientation are −ξ and −e.
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(iii) If pi : Ei → X, i = 1, 2 are oriented real vector bundles of ranks n1, n2

respectively, then their direct sum E1⊕E2 is oriented in a natural way, such
that the orientation of each fiber (E1 ⊕ E2)x = (E1)x ⊕ (E2)x has the direct
sum orientation. If fi : E1 ⊕ E2 → Ei are the projections, then the Thom
class of E1 ⊕ E2 satisfies ξ(E1 ⊕ E2) = f ∗

1 ξ(E1) ∪ f ∗
2 ξ(E2), and the Euler

class satisfies e(E1 ⊕E2) = e(E1) ∪ e(E2).

Example 5.7. Let p : E → X be an oriented vector bundle of odd rank n. Then
multiplication by −1 is an isomorphism of the oriented bundle E with E ′, defined
to be the same vector bundle but with the opposite orientation. Hence if e is the
Euler class of the oriented bundle E, then e = −e in Hn(X,Z), so that e is a
2-torsion class. Thus, it is usually more interesting to consider Euler classes only
for bundles of even rank.

Next, we sketch the proof of a result which motivates the choice of the term
“Euler class”. Let < , > denote the Kronecker index (i.e., the evaluation of a
cohomology class on a homology class of the same degree).

Theorem 5.8. Let M be a compact, oriented C∞ manifold of dimension n (so
that the tangent bundle TM is oriented), and let [M ] ∈ Hn(M,Z) be the corre-
sponding fundamental class. Then

< e(TM), [M ] >=
∑

i≥0

(−1)irankHi(M,Z) = Euler characteristic of M.

Proof. (Sketch) We reduce immediately to the case when M is connected. Let
∆M :M → M ×M be the diagonal map, and let pi : M ×M → M , i = 1, 2, be
the two projections.
Since M is oriented, we are given a generator of Hn(M,M − {x};Z) ∼= Z for

each x ∈M . We claim there is a unique class

[̃M ] ∈ Hn(M ×M,M ×M −∆M(M);Z)

whose restriction to the subset {x} × M ∼= M yields the chosen generator of

Hn(M,M − {x};Z), for each x ∈ M (by analogy, [̃M ] is sometimes called the
Thom class of the oriented manifold; it can also be defined for oriented topological
manifolds).
Indeed, fix a Riemannian metric on M , and let π : TM → M be the bundle

projection. The exponential map Exp : TM → M (defined everywhere sinceM is
compact) yields a map ψ = (π,Exp) : TM →M ×M , such that for each x ∈M ,
ψ(TxM, 0x) = {x} × (M,x), and in particular, ψ maps the 0-section 0M ⊂ TM
isomorphically onto the diagonal ∆(M) ⊂ M ×M . Hence for some ε > 0, ψ
yields a diffeomorphism of TMε with Nε ⊂M×M , where TMε is the open ε-ball
around the 0-section in the tangent bundle, and Nε is a neighbourhood of the

diagonal in M ×M . We may take [̃M ] to be the image of the Thom class ξ(TM)
under the induced composite isomorphism

Hn(TM, TM − 0M ;Z)
∼=←Hn(TMε, TMε − 0M ;Z))

(ψ−1)∗−→
Hn(Nε, Nε −∆M(M);Z)

∼=←Hn(M ×M,M ×M −∆M(M);Z),
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where the first and last isomorphism are by excision. The restriction of [̃M ] to
{x}×M is the chosen generator, since ψ(TxM, 0x) = {x}×(M,x), and the Thom
class has a similar restriction property with respect to the fibre TxM ; since this

restriction property uniquely characterizes the Thom class, the class [̃M ] is also
uniquely characterized.

We also see that the image of [̃M ] under the composition

Hn(M ×M,M ×M −∆M(M);Z)→ Hn(M ×M ;Z)
∆∗

M−→ Hn(M,Z)

is just the Euler class e(TM) of the tangent bundle.

Let uM ∈ Hn(M × M ;Z) denote the image of [̃M ]. We claim next that
p∗1a ∪ uM = p∗2a ∪ uM for any a ∈ H∗(M,Z), where pi : M × M → M are

the projections. Indeed, it suffices to prove a similar formula with [̃M ] in place
of uM , and by excision, it further suffices to show equality of the two expressions
in H∗+n(Nε, Nε − ∆M(M);Z). Now ∆M (M) is a strong deformation retract of
Nε (because the 0-section of the normal bundle is a strong deformation retract
of the total space of the bundle). Hence p1 |Nε

and p2 |Nε
are homotopic, since

p1 = p2 on ∆M(M). Thus p∗1a = p∗2a in H∗(Nε,Z).
We now work with cohomology with rational coefficients. Then we have a

Künneth decomposition

Hn(M ×M ;Q) = ⊕ni=0H
i(M,Q)⊗Hn−i(M,Q).

Let b1, . . . , br be a basis for the graded vector space H∗(M,Q) such that each bj is
homogeneous (i.e., lies in some H i(M,Q)). Then there are unique homogeneous
elements c1, . . . , cr ∈ H∗(M,Q) such that deg bj + deg cj = n for all j, and

uM =
r∑

j=1

p∗1bj ∪ p∗2cj

(here we also let uM denote the image of uM in rational cohomology). For any

x ∈M , if jx :M →֒ M×M is given by jx(y) = (x, y), then we know that j∗x [̃M ] ∈
Hn(M,M−{x};Z) is the distinguished generator, given by the orientation ofM .
This implies that j∗xuM ∈ Hn(M ;Q) = Q is the dual of the fundamental class,
i.e., the Kronecker index < j∗xuM , [M ] > is 1, and j∗xuM is the unique generator
of Hn(M ;Q) with this property. Note that for any x ∈M , the composition

⊕ni=0H
i(M ;Q)⊗Hn−i(M ;Q)

∼=−→ Hn(M ×M ;Q)
j∗x−→ Hn(M ;Q)

is just the projection onto the summand H0(M ;Q)⊗Hn(M ;Q) = Hn(M ;Q) (the
identification is by 1 ⊗ a 7→ a). In particular, if we assume (as we may, without
loss of generality) that b1 = 1 ∈ H0(M ;Q) = Q is the unit element of the
cohomology ring, then c1 = j∗xuM for any x ∈ M is this distinguished generator
of Hn(M ;Q), since each bj , j > 1, is necessarily homogeneous of degree > 0, and
so b1 ⊗ c1 = 1⊗ c1 is precisely the component of uM in H0(M ;Q)⊗Hn(M ;Q).
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Now for any homogeneous element a ∈ H∗(M,Q), the equation p∗1a ∪ uM =
p∗2a ∪ uM becomes

r∑

j=1

p∗1(a ∪ bj) ∪ p∗2cj =
r∑

j=1

(−1)deg adeg bjp∗1bj ∪ p∗2(a ∪ cj).

In other words, in H∗(M ;Q)⊗H∗(M ;Q), we have an identity

r∑

j=1

(a ∪ bj)⊗ cj =
r∑

j=1

(−1)deg adeg bjbj ⊗ (a ∪ cj)

for all homogeneous elements a ∈ H∗(M ;Q).
Suppose a ∈ H i(M ;Q), and consider the components of both sides in the

summand H i(M ;Q) ⊗ Hn(M ;Q). On the left side, this component is clearly
a⊗ c1. On the right, it is

∑

{j|deg bj=i}

(−1)ibj ⊗ (a ∪ cj).

Now a ∪ cj =< a ∪ cj , [M ] > c1. Hence we have an identity

a =
∑

{j|deg bj=i}

(−1)i < a ∪ cj , [M ] > bj

for all a ∈ H i(M ;Q). But the set {bj | deg bj = i} is a basis for the Q-vector
space H i(M ;Q). Hence we deduce that, with respect to the pairing

H i(M ;Q)⊗Hn−i(M ;Q)→ Q,

a⊗ c 7→< a ∪ c, [M ] >,

the set {(−1)icj | deg bj = i}, taken in the same order, is a dual set of vectors,
i.e.,

(−1)i < bj′ ∪ cj, [M ] >= δj′j,

the Kronecker delta. In particular, the above pairing is non-singular on the left.
But i is any index between 0 and n, and the corresponding pairing for n − i in
place of i is the equivalent to the above one, upto interchanging the factors and
a sign (−1)i(n−i). Hence the pairing is non-degenerate, for each i. Incidentally,
this gives a proof of the Poincaré duality theorem for H∗(M ;Q).
We now conclude that

∆∗
MuM =

r∑

j=1

bj ∪ cj ,

where < bj ∪ cj, [M ] >= (−1)deg bj . Hence

< ∆∗
MuM , [M ] >=

r∑

j=1

(−1)deg bj =
n∑

i=0

(−1)i dimQH
i(M ;Q) = χ(M).
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Remark 5.9. (“Localization” of the Euler class) We know that if p : E → X is
an oriented vector bundle of rank n, then its Euler class e(E) ∈ Hn(X,Z) vanishes
if E has a nowehere vanishing section, since we would then have a decomposition
E = E ′⊕(X×R). More generally, if s is any section of E with zero set Z(s) ⊂ X ,
we can define an associated “localized Euler class” e(E, s) ∈ Hn(X,X −Z(s);Z)
by the formula e(E, s) = s∗ξ(E), where ξ(E) ∈ Hn(E,E − 0X ;Z) is the Thom
class. The image of e(E, s) in Hn(X,Z is just the pull-back under s : X → E
of the image of ξ(E) in Hn(E,Z. But the map s : X → E is clearly homotopic
to the 0-section 0E : X → E, and so e(E, s) maps to the Euler class e(E) in
Hn(X,Z).
In particular, suppose M is an n-manifold, and p : E → M is an oriented real

vector bundle of rank n. Let s ∈ Γ(M,E) be a section with an isolated zero
set Z(s) = {x1, . . . , xm, . . . }. Then Hn(M,M − Z(s);Z) =

∏
i≥1H

n(M,M −
{xi};Z) ∼=

∏
i≥1 Z. Thus e(E, s) = (e(E, s, xi))i≥1, where e(E, s, xi) ∈ Hn(M,M−

{xi};Z) is a further localization of the Euler class; the “global” Euler class
e(E) ∈ Hn(M,Z) is then

∑

i≥1

image (e(E, s, xi)).

This expression may appear strange, since we have a sum which seems to be
infinite; however, Hn(M,Z) =

∏
j H

n(Mj ,Z) where Mj are the connected com-

ponents of M , where if Mj is connected and non-compact, Hn(Mj ,Z) = 0, while
for compact Mj , only finitely many xi lie in Mj . Hence the above infinite sum is
meaningful!
In fact, if x is any isolated zero of a section s we may define e(E, s, x) as follows,

consistent with the earlier usage: choose a local trivialization for E over a disk
coordinate neighbourhood U of x in M , compatible with the chosen orientation
of E, so that s corresponds a vector valued function f : U → Rn with f(x) = 0,
f(U −{x}) ⊂ Rn−{0}; then e(E, s, x) is the image of the standard generator of
Hn(Rn,Rn − {0};Z) under the composition

Hn(Rn,Rn − {0};Z) f∗−→ Hn(U, U − {x};Z) ∼= Hn(M,M − {x};Z).

This definition is easily seen to be independent of the choice of oriented local
trivialization of E on U . If M is oriented, so that we have a chosen gener-
ator [M ]x ∈ Hn(M,M − {x};Z), the class e(E, s, x) is determined by the lo-
cal Kronecker index < e(E, s, x), [M ]x >, an integer, which is just the degree
of the map germ (U, x) → (Rn, 0). In this case, we call this Kronecker index
< e(E, s, x), [M ]x >∈ Z the index of s at x. In particular, if E = TM is the
tangent bundle of an oriented manifold, we have the notion of the index of a
vector field v on M at any isolated zero of v.
Now suppose M is a compact, oriented C∞ manifold of dimension n, with fun-

damental class [M ], and let v be a vector field with (isolated) zero set {x1, . . . , xm}.
Let [M ]x ∈ Hn(M,M − {x};Z) denote the orientation class, for any x ∈ M , so
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that [M ] 7→ [M ]x under Hn(M,Z)→ Hn(M,M−{x};Z). Then we compute that

χ(M) =< e(TM), [M ] >=

n∑

i=1

< e(TM, v, xi), [M ]xi >=

m∑

i=1

(index of v at xi).

This is the Poincaré-Hopf theorem.

6. Pontryagin Classes

In this section, we exploit the connections between oriented real vector bundles
and complex vector bundles, in order to study the Pontryagin classes of real vector
bundles. In particular, we will prove Theorem 4.1(b).
We begin by noting that, using the convention of Example 5.1, one obvious

way of obtaining an oriented real vector bundle of even rank 2n is to consider the
underlying real vector bundle of a complex vector bundle p : E → X of C-rank
n. In particular, the Euler class e(E) ∈ H2n(X,Z) gives a characteristic class
for complex vector bundles E of C-rank n. We have already seen that such a
characteristic class must be a polynomial in the Chern classes (at least on the
categories of bundles on compact Hausdorff spaces, or manifolds). In fact, we
have the following result.

Lemma 6.1. If p : E → X is a complex vector bundle of C-rank n, then the
Euler class of the underlying oriented real bundle e(E) ∈ H2n(X,Z) coincides
with the n-th Chern class cn(E).

Proof. We will give the proof when X is a compact Hausdorff space. From
lemma 5.6 and the splitting principle, we are reduced to considering the case
when p : E → X is a complex line bundle. In this case, we are further reduced
to the case when X = PnC and E is the tautological line bundle γ1,n = OPn(−1).
Now H2(Pn,Z) = Z is generated by c1(γ1,n) (we took this as the definition of
c1, basically). Hence e(γ1,n) is an integer multiple a c1(γ1,n), where (since γ1,n
restricts to γ1,1 on any linear P1

C ⊂ PnC), the coefficient a is a universal constant,
which we can determine by computing it for γ1,1 on P1

C
∼= S2.

Equivalently, we can compute it for an arbitrary complex line bundle on P1
C; we

choose to do it for the tangent bundle, which has a natural structure of a complex
line bundle. In this case, we already know by Theorem 5.6 that the Euler class
equals 2y, where y ∈ H2(P1

C;Z) is the distinguished generator determined by the
orientation on P1

C, since χ(P
1
C) = χ(S2) = 2.

We claim that, as a complex line bundle, TP1
C
∼= (γ⊗2

1,1)
∨, the dual of the

tensor square of γ1,1. Granting this, c1(TP
1
C) is (by our definition of c1) equal to

(−2)(−y) = 2y, since c1(γ1,1) = −y; this agrees with the Euler class, which will
complete the proof of this lemma.
One way to understand TP1

C as a complex line bundle is directly via a transition
function. In fact P1

C has a covering by 2 holomorphic coordinate charts (U, z)
and (V, w), each of which identifies the corresponding open subset of P1

C with
the complex plane C, such that U ∩ V is identified with C∗ = C − {0}, and
the transition function is w = w(z) = z−1. Considered as a diffeomorphism of
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R2 − {0}, with coordinates x, y, this transition function is given by the formula

(x, y) 7→ (u(x, y), v(x, y)) = (x/(x2 + y2),−y/(x2 + y2)),

and so the Jacobian matrix is

J(x, y) =

[
ux uy
vx vy

]
=

[
y2−x2

(x2+y2)2
−2xy

(x2+y2)2

2xy
(x2+y2)2

y2−x2

(x2+y2)2

]
.

In other words, on the fiber over z = x +
√
−1y, this is just the complex linear

transformation C → C given by scalar multiplication by −1/z2. Ignoring the
factor −1 does not change the complex line bundle, and the bundle γ1,1 has a
transition function (with respect to the same open cover, and an obvious choice
of local trivializations) given by multiplication by z. Hence TP1

C
∼= (γ⊗2

1,1)
∨, as

claimed (for line bundles, the dual and tensor power operations have the obvious
description on transition functions).

Example 6.2. (Tangent bundle of PnC) In the last part of the preceeding proof,
we computed using the definitions that the tangent bundle of PnC is (γ⊗2

1,1)
∨. More

generally, we show how to compute the tangent bundle of PnC, and hence determine
its Chern classes. This will also have applications to Pontryagin classes.
Let ωn be the orthogonal complement of γ1,n ⊂ PnC × Cn+1, where we fix the

standard Hermitian metric on Cn+1 (and thus on the trivial bundle, and on the
sub-bundle γ1,n). Thus γ1,n ⊕ ωn = PnC × Cn+1. We claim the tangent bundle of
PnC is identified, as a complex vector bundle, with Hom(γ1,n, ωn). In fact, if L is
any complex line in Cn+1, with orthogonal complement L⊥, then we have a direct
sum decomposition Cn+1 = L ⊕ L⊥, and hence a map φL : Hom(L, L⊥) → PnC,
φL(f) = {z + f(z) | z ∈ L}. One checks that this is a homeomorphism onto its
image, and gives a holomorphic coordinate chart on PnC. Thus the tangent space to
PnC at L is identified with the complex vector space Hom(L, L⊥). One verifies that
this defines an isomorphism of complex vector bundles TPnC → Hom(γ1,n, ωn).
Now we see that

TPnC ⊕ PnC × C ∼= Hom(γ1,n, ωn)⊕Hom(γ1,n, γ1,n)

∼= Hom(γ1,n,P
n
C × Cn+1) ∼= (γ∨1,n)

⊕n+1.

Hence we have an equality between total Chern classes

c(TPnC) = c(γ∨1,n)
n+1 = (1 + y)n+1,

where y ∈ H2(PnC;Z) is the generator which restricts to the orientation class in
H2(P1

C;Z) = H2(S2;Z).

Now in another direction, if p : E → X is a real vector bundle of rank n, then
E⊕E has a complex structure given by J(v, w) = (w,−v) on any fiber. In other
words, we can form EC = E ⊗R C → X , which is a C-vector bundle of rank n.
The underlying real bundle, as already noted, is E ⊕ E. If E itself is the real
bundle of rank 2n underlying a C-vector bundle of rank n, then EC = E ⊕ E
(here if E has complex structure JE, recall that E is the same R-vector bundle
of rank 2n with the new complex structure −JE). Note that EC

∼= EC.
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Lemma 6.3. For any complex vector bundle E, we have ci(E) = (−1)ci(E) for
all i.

Proof. This follows from the splitting principle, and the case of the universal line
bundle on P∞

C , which in turn follows from the case of γ1,1 on P1
C; now γ1,1 has

the same underlying real bundle with the opposite orientation, and hence the
negative of its Euler class.

Corollary 6.4. For any real vector bundle E, 2ci(EC) = 0 for odd i.

Definition 6.5. For any real vector bundle p : E → X of rank n, define its
i-th Pontryagin class to be pi(E) = (−1)ic2i(EC) ∈ H4i(X ;Z). Define the total
Pontryagin class of E to be the unit p(E) = 1 + p1(E) + · · · ∈ H4∗(X ;Z).

Remark 6.6. The Pontryagin classes are functorial for pull-backs. From the
formula for the total Chern class of a direct sum, we see that

p(E ⊕ F )− p(E)p(F )
is a 2-torsion cohomology class; in particular, if we consider the total Pontryagin
class with values in H4∗(X ;Z[1/2]), then we do get the formula p(E ⊕ F ) =
p(E)p(F ), just as for Chern classes.
If E is an oriented real vector bundle of rank 2n, then the real bundle un-

derlying EC is E ⊕ E, with an orientation change of (−1)n (i.e., with the same
orientation, if n is even, and opposite orientation, if n is odd); this is because
if v1, . . . , vn is an oriented basis in a fiber Ex, then an oriented bais of Ex ⊕ Ex
coming from EC is (v1, 0), (0, v1), (v2, 0), (0, v2), . . . , (0, v2n), while one for E⊕E is
(v1, 0), (v2, 0), . . . , (v2n, 0), (0, v1), . . . , (0, v2n). Hence by lemma 6.1, we compute
that

pn(E) = (−1)nc2n(EC) = e(E ⊕E) = e(E) ∪ e(E) = e(E)2 ∈ H4n(X ;Z).

If E is a complex vector bundle of rank n, then the complexification of the
underlying real bundle is (as noted earlier) E ⊕ E, which has total Chern class
(1 + c1(E) + c2(E) + · · ·+ cn(E))(1− c1(E) + c2(E)− · · ·+ (−1)ncn(E)). Hence
we have a formula

(1− p1(E) + p2(E)− · · ·+ (−1)npn(E)) =
(1 + c1(E) + c2(E) + · · ·+ cn(E))(1− c1(E) + c2(E)− · · ·+ (−1)ncn(E)).

This implies formulas

pk(E) = ck(E)
2 − 2ck−1(E)ck+1(E) + · · · ± 2c1(E)c2k−1(E)∓ 2c2k(E).

For example, this allows us to compute the Pontryagin classes of the tangent
bundle of PnC to be

pk(TP
n
C) =

(
n + 1

k

)
a2k, 1 ≤ k ≤

[n
2

]
,

where a ∈ H2(PnC;Z) is the standard generator (which restricts to the orientation
class in H2(P1

C;Z)).
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Let G+
R (n,m) be the space of oriented n-dimensional subspaces of Rm, and

G+
R(n) = lim

−→

m

G+
R(n,m). Note that there are obvious maps G+

R (n,m)→ GR(n,m)

and G+
R(n) → GR(n), which are in fact covering spaces of degree 2. Let γ+n be

the induced oriented vector bundle of rank n on G+
R(n), and γ

+
n,m its restriction

to G+
R(n,m) (which equals the pullback of γn,m).

With respect to the standard correspondence between covering spaces of degree
2 of a space X and elements of H1(X ;Z/2Z), the covering G+

R (n)→ GR(n) is the
one associated to w1(γn), the universal first Stiefel-Whitney class; G+

R(n,m) →
GR(n,m) has a similar interpretation, and is the pull-back for the inclusion
GR(n,m) →֒ GR(n).
Let τ be the involution of G+

R(n) obtained by “reversing the orientation of
the n-plane”; then τ yields a free Z/2Z action on G+

R (n) such that the cover-
ing space G+

R(n) → GR(n) is the quotient map. Hence H∗(GR(n);Z[1/2]) ⊂
H∗(G+

R(n);Z[1/2]) as the subring of elements invariant under τ . Hence The-
orem 4.1(b) follows from the following result, which determines the possible
characteristic classes for oriented bundles in the cohomology ring with Z[1/2]-
coefficients.

Theorem 6.7. The cohomology ringH∗(G+
R (n);Z[1/2]) is generated, as a Z[1/2]-

algebra, by the Pontryagin classes pi(γ
+
n ), 1 ≤ i ≤

[
n
2

]
, and the Euler class e(γ+n );

these generators are subject to a single relation: e(γ+n ) = 0 if n is odd, and
e(γ+n )

2 = pn/2(γ
+
n ) if n is even. The action of τ on the cohomology ring fixes the

Pontryagin classes, and maps e(γ+n ) to −e(γ+n ).
Proof. The proof is in several steps. Note that τ(e(γ+n )) = −e(γ+n ), since τ
reverses the orientation on γ+n . Also τ fixes the Pontryagin classes since these are
pulled back from H∗(GR(n),Z[1/2]).
For n = 1, there is nothing to prove, since G+

R (1) = S∞, the universal covering
of GR(1) = P∞

R , and S∞ is contractible.
Next, consider the case n = 2. Now any complex line bundle determines

an oriented line bundle; conversely, we claim that an oriented R-vector bundle
p : E → X of rank 2 equipped with a Euclidean metric is, in a natural way,
also a complex line bundle, with the following complex structure: if v, w is any
oriented orthonormal basis for a fiber Ex, then Jv = w, Jw = −v. One verifies
that this depends only on the orientation and the metric; the isomorphism class
of this complex line bundle is independent of the metric, since we can deform
any Euclidean metric m into another one m′ through the 1-parameter family of
metrics tm + (1 − t)m′, with t ∈ [0, 1], so that the classifying maps X → P∞

C

associated to m,m′ are homotopic.
Thus, for compact Hausdorff spaces or manifolds, the classification of oriented

R-vector bundles of rank 2 is equivalent to that of complex line bundles; in
particular, the natural inclusion on classifying spaces i : P∞

C →֒ G+
R(2) (given by

associating the underlying oriented real vector bundle to γ1 → P∞
C ) is a homotopy

equivalence. Thus the cohomology algebra of G+
R (2) is a polynomial algebra

in e(γ+2 ), and i∗e(γ+2 ) = c1(γ1). The subalgebra of τ -invariant elements is the
polynomial algebra in e(γ+2 )

2 = p1(γ
+
2 ).
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Now we consider the case when n > 2. We make use of the Gysin exact
sequence associated to the universal oriented bundle γ+n of rank n (we suppress
the coefficient ring Z[1/2])

· · · → H i(G+
R (n))

e(γ+n )−→ H i+n(G+
R (n))→ H i+n(γ+n − 0G+

R
(n))→ · · ·

Note that there is a continuous map

α : γ+n − 0G+

R
(n) → G+

R(n− 1)

given by (W,x) 7→ W ∩ (Rx)⊥ (where we fix the positive definite inner product
on R∞ = lim

−→

m

Rm). We claim this map α induces an isomorphism on integral

cohomology. One way to see this is to observe that it is locally trivial, and its
fiber over W ′ is homeomorphic to (0,∞)×G+

R(1), which is contractible. Another
way, avoiding the question of local triviality, is to compare the map for a given
H i with the analogous map obtained from the Grassmannian G+

R (n,m) for large
enoughm (depending on i), and identify this map with a map from another Gysin
sequence, for (γ+n−1,m)

⊥ → G+
R (n− 1, m) (see Milnor’s book, pages 162 and 180).

Thus one has an exact sequence

· · · → H i(G+
R (n))

e(γ+n )−→ H i+n(G+
R(n))

α̃−→ H i+n(G+
R(n− 1))→ · · · ,

where α̃ is induced by the isomorphism α∗ on cohomology. Further, if π : γ+n −
0G+

R
(n) → G+

R(n) is the projection, then by construction, we have an isomorphism

π∗γ+n
∼= α∗γ+n−1 ⊕

(
(γ+n − 0G+

R
(n))× R

)

as oriented bundles. Thus α̃(pj(γ
+
n )) = pj(γ

+
n−1) (and of course α̃(e(γ+n )) = 0).

In particular, we see by induction on n that H∗(G+
R(n);Z[1/2]) is generated

over Z[1/2] by the Pontryagin classes and the Euler class of γ+n . Also, the relations
between these classes, stated in the theorem, have been proved. It remains to
show that the Pontryagin classes are algebraically independent elements of the
cohomology algebra, and that when n is even, the only relation satisfied by e(γ+n )
and the Pontryagin classes is the stated one, that e(γ+n )

2 = pn/2(γ
+
n ).

Let (P∞
C )m denote the product of m copies of P∞

C . Consider the following
diagram, commutative up to homotopy, where r =

[
n
2

]
.

(P∞
C )r

f−→ (P∞
C )n

π ↓ ↓ η
G+

R(n)
i−→ GC(n)

Here the maps are defined as follows. (P∞
C )r supports the oriented vector bundle

E of rank 2r underlying the direct sum of the r pull-back complex line bundles
π∗
j (γ1), where πj : (P

∞
C )r → P∞

C , 1 ≤ j ≤ r, are the projections. The maps π is
the classifying map for E, if n = 2r, and the classifying map for E⊕ ((P∞

C )r×R)
(with the standard orientation on the trivial line bundle), if n = 2r+1. The map
i is the classifying map for the complex vector bundle (γ+n )C. The map η is the
splitting map for the universal bundle γn → GC(n), given by the classifying map
for the complex vector bundle ⊕nj=1q

∗
j (γ1), where qj : (P

∞
C )n → P∞

C , 1 ≤ j ≤ n,
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are the projections. Finally f is the classifying map for EC, if n = 2r, and for
(E ⊕ ((P∞

C )r ×R))C, if n = 2r+1. Note that in fact EC
∼= ⊕rj=1(p

∗
j (γ1)⊕ p∗j (γ1)).

The above homotopy commutative diagram induces a commutative diagram
on cohomology algebras. Here the cohomology algebras 3 of the terms have the
following descriptions, as polynomial algebras:

H∗((P∞
C )r;Z[1/2]) = Z[1/2][π∗

1c1(γ1), . . . , π
∗
rc1(γ1)],

H∗((P∞
C )n;Z[1/2]) = Z[1/2][q∗1c1(γ1), . . . , q

∗
nc1(γ1)],

H∗(GC(n);Z[1/2]) = Z[1/2][c1(γn), . . . , cn(γn)].

With these descriptions, the maps on cohomology have the following descriptions,
from our results proved so far:

(i) f ∗(q∗1(c1(γ1))) = −f ∗(q∗2(c1(γ1)) = π∗
1c1(γ1), . . . ,

f ∗(q∗2r−1c1(γ1)) = −f ∗(q∗2r(c1(γ1))) = π∗
rc1(γ1), and if n = 2r+1, f ∗(q∗n(c1(γ1)) =

0;
(ii) η∗cm(γn) = m-th elementary symmetric function in q∗j (c1(γ1)), 1 ≤ j ≤ n;
(iii) i∗c2m(γn) = (−1)mpm(γ+n ), i∗c2m+1(γn) = 0;
(iv) π∗pm(γ

+
m) = m-th elementray symmetric function in p1(π

∗
i γ1), 1 ≤ i ≤ r,

where p1(π
∗γ1) = π∗

i (c1(γ1))
2;

(v) π∗(e(γ+n )) =
∏r

j=1 π
∗
j (c1(γ1)), if n = 2r. If n = 2r + 1, of course e(γ+n ) = 0

in Hn(G+
R ;Z[1/2]).

Combining all of these formulas, we see easily that p1(γ
+
n ), . . . , pr(γ

+
n ) are al-

gebraically independent elements of H∗(G+
R ;Z[1/2]), since these map to the el-

ementary symmetric polynomials s1, . . . , sr in the squares of the variables in a
polynomial ring in r variables; further, if n = 2m, the image of the universal
Euler class e is the product of these variables, and the only relation satisfied by
(the image of) e over the above subring of symmetric polynomials Z[s1, . . . , sr]
is the obvious one, that e2 = sr.

7. The Signature Theorem

If M is a compact, oriented manifold of dimension n, define its signature σ(M)
as follows: if n is not a multiple of 4, define σ(M) = 0; if n = 4m, the pairing

H2m(M ;Q)⊗H2m(M ;Q)→ Q, x⊗ y 7→< x ∪ y, [M ] >,

where [M ] ∈ Hn(M ;Z) is the fundamental class, is in fact a symmetric bilin-
ear form, which is non-degenerate, by Poincaré duality. The signature of the
corresponding real bilinear form, i.e., the integer

(number of positive eigenvalues)− (number of negative eigenvalues),

is defined to be σ(M).
This has the following obvious properties; the third property follows from

Poincaré duality for manifolds with boundary.

Lemma 7.1. (i) σ(M
∐
M ′) = σ(M) + σ(M ′).

(ii) σ(M ×M ′) = σ(M)σ(M ′).
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(iii) if M is the oriented boundary of another oriented manifold B, then σ(M) =
0.

Hirzebruch’s signature theorem gives a formula for the signature of a 4m-
dimensional oriented C∞ manifold M in terms of the Pontryagin numbers of
the manifold M , which are defined to be the Kronecker indices

pi1,... ,ir(M) =< pi1(TM) ∪ pi2(TM) ∪ · · · ∪ pir(TM), [M ] >∈ Z,

where TM is the tangent bundle, [M ] is the fundamental class in H4m(M ;Z), and
i1, . . . , ir are non-negative integers such that i1+ · · ·+ ir = m (here we define the
0-th Pontryagin class to be the unit element 1 ∈ H0(M ;Z)). If I = {i1, . . . , ir}
we also use pI(M) to denote pi1,... ,ir(M). The Pontryagin numbers are clearly
invariants of the oriented C∞ manifold M , which change sign on reversing the
orientation (since the Pontryagin classes are invariant under change of orienta-
tion, while the fundamental class changes sign). In contrast, note that by similar
reasoning, the Euler number < e(TM), [M ] > is invariant under reversing ori-
entation, which is of course also clear since it is just the Euler characteristic of
M .
Before stating the signature theorem in detail, we first note that, as with the

signature, the Pontryagin numbers of a compact oriented C∞ manifold M vanish
if it is the oriented boundary of another manifold B. Indeed, by considering the
inward normal direction toM within B, we have an isomorphism of vector bundles
TB |M= TM ⊕ (M ×R). Hence the Pontryagin classes of TB restrict to those of
TM . If [B] ∈ Hn+1(B,M ;Z) is the fundamental class of the oriented pair (B,M),
then under the connecting homomorphism ∂ : Hn+1(B,M ;Z) → Hn(M ;Z), we
have ∂[B] = [M ]. Hence if δ : Hn(M ;Z) → Hn+1(B,M ;Z) is the connecting
homomorphism in cohomology, then for any a ∈ Hn(M ;Z), we have an equality
between Kronecker indices < a, [M ] >=< δ(a), [B] >. Since the Pontrygin classes
of TM lie in the image of H∗(B;Z)→ H∗(M ;Z), and hence in the kernel of the
connecting homomorphism, we see that for any appropriate set of non-negative
integers I = {i1, . . . , ir}, we have that δ(pi1(TM) ∪ · · · ∪ pir(TM)) = 0, and so
pI(M) = 0.
Note that we have a similar definition for Steifel-Whitney numbers of a C∞

manifold M , as Kronecker indices with values in Z/2Z, defined similarly using
the Z/2Z-orientation and the Stiefel-Whitney classes of the tangent bundle; we
have a similar vanishing argument for Stiefel-Whitney numbers of M , provided
M is a boundary of a C∞ manifold B.
Recall that two compact, oriented C∞ n-manifolds M,M ′ are oriented cobor-

dant if M
∐
M ′ is the oriented boundary of a C∞ manifold B. For n ≥ 0, let Ω+

n

denote the set of oriented cobordism classes of compact, oriented C∞ n-manifolds,
which is an abelian group with respect to oriented disjoint union (as addition),
with 0 element being the class of any oriented boundary. An orientation of a
0-manifold M is defined to be an function with values in {1,−1}, with the obvi-
ous notions of oriented cobordism, etc. For any compact oriented manifold M ,
the oriented boundary of M × [0, 1] is just M

∐
(−M), where −M denotes the
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manifold underlying M with its opposite orientation; thus the additive inverse of
the cobordism class of M is that of −M .
Then Ω+

0 = Z, and ⊕n≥0Ω
+
n has the structure of a graded ring, when endowed

with the oriented product as multiplication; this is graded commutative, in the
sense that the class of M × M ′ equals (−1)nn′

times that of M ′ × M , where
dimM = n, dimM ′ = n′.
From lemma 7.1, the signature determines a ring homomorphism Ω+ → Z, and

hence a homomorphism Ω+ ⊗ Q → Q. A fundamental theorem of Thom, which
we do not prove here, states the following (see Milnor’s book, Chapter 18, for
more details).

Theorem 7.2. For each n, Ω+
n is a finitely generated abelian group, which is

finite if n is not a multiple of 4. The Q-algebra Ω+⊗Q is the polynomial algebra
Q[[P2n

C ], n ≥ 0] in a countable set of variables, namely the oriented (rational)
cobordism classes of the even dimensional complex projective spaces. Further, any
Q-linear functional on Ω+

4m is a linear combination of the functionals determined
by Pontryagin numbers pI(M) for all partitions I = {1, . . . , ir} of m.

In particular, the signature functional on each Ω+
4m ⊗ Q must be so express-

ible, for each m, and since signature is a ring homomorphism, the corresponding
Pontryagin number functionals must have appropriate multiplicativity properties.
Consider the Taylor series expansion

f(t) =

√
t

tanh
√
t
= 1 +

∑

k≥1

λkt
k = 1 +

1

3
t− 1

45
t2 + · · ·+ (−1)k−12

2kBk

(2k)!
tk + · · · ,

where Bk are the Bernoulli numbers, which may be defined by the identity

x

ex − 1
= 1− x

2
+
B1

2!
x2 − B2

4!
x4 +

B3

6!
x6 − · · ·

(the Taylor series expansion above is then easily proved using the definition of
tanh). Associated to this power series f(t), we can define a sequence of polynomi-
als Lk,n = Lk,n(x1, . . . , xn) ∈ Q[x1, . . . , xn] as follows: let y1, . . . , yn be indeter-
minates such that xi is the i-th elementary symmetric polynomial in y1, . . . , yn;
now Lk,n is defined by the condition that we have an equality between formal
power series in t with coefficients in Q[y1, . . . , yn]

L(x1, x2, . . . , xn, t) = 1 +
∑

k≥1

Lk,n(x1, . . . , xn)t
k =

n∏

i=1

f(yit).

Note that
∏n

i=1 f(yit) is indeed a formal power series in t, such that the coefficient
of tk is a homogeneous symmetric polynomial over Q in y1, . . . , yn of degree k.
Note that, as a result, for n > k, the polynomial Lk,n depends only on x1, . . . , xk,
and coincides with Lk,k(x1, . . . , xk), which we denote by just Lk. Further, for
n < k, Lk,n(x1, . . . , xn) = Lk(x1, . . . , xn, 0, . . . , 0).
For a compact oriented C∞ manifold M of dimension 4k, the L-genus of M is

defined to be the rational number

L[M ] =< Lk(p1(TM), . . . , pk(TM)), [M ] > .
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From the definitions, one can show that, if we define L[M ] = 0 when dimM is not
a multiple of 4, then the L-genus does determine a homomorphism of Q-algebras
Ω+ ⊗Q→ Q.

Theorem 7.3. (Hirzebruch Signature Theorem) The signature σ(M) of a com-
pact, oriented C∞ manifold M of dimension 4k coincides with its L-genus.

As a corollary, the L-genus is in fact an integer; this implies certain divisibility
properties for Pontryagin numbers. We do not prove this theorem here, but one
proof is to deduce it from Thom’s theorem stated above, describing the oriented
rational cobordism ring Ω+ ⊗ Q. This reduces one to checking the theorem for
the generators of this Q-algebra, i.e., for the even dimensional complex projective
spaces P2k

C , where on the one hand, we obviously have σ(P2k
C ) = 1, and on the

other hand, from the definitions and the formulas for pi(TP
2k
C ) for all i, one can

verify, after some calculation, that indeed L[P2k
C ] = 1.
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