Grothendieck Duality[∗]

1 Gorenstein Rings

1.1 Injective envelopes and duals

Proposition 1 Let A be any commutative ring, M an A-module. Then there is an injective A-module I_0 containing M such that for any non-zero submodule $N \subset I_0$, we have $N \cap M \neq 0$. This injective module I_0 is unique up to an isomorphism which is the identity on M.

Proof: Let I be an injective A-module containing M. By Zorn's lemma, we can find an A-module M' with $M \subset M' \subset I$ such that

- (i) for any A-submodule $N \subset I$, we have $N \cap M' \neq \emptyset \Rightarrow N \cap M \neq \emptyset$.
- (ii) M' is maximal with respect to this property.

Further, again by Zorn, we can find a maximal $K \subset I$ such that $K \cap M' = 0$. If $\eta: I \to I/K$ is the natural map, then $\eta|_{M'}$ is a monomorphism, so that (by the injectivity of I) we can find $\psi : I/K \to I$ such that $\psi \circ \eta \mid_{M'}$ is the identity on M′ . Thus

$$
K = \ker \eta \subset \ker(\psi \circ \eta), \ M' \cap \ker(\psi \circ \eta) = 0,
$$

and so by maximality of K, we have $K = \ker \eta = \ker(\psi \circ \eta)$. Hence ψ is an injection split by η . In particular, K and I/K are injective A-modules.

The inclusion $M' \hookrightarrow I/K$ has the property that any non-zero submodule \overline{N} of I/K meets M' ; else, $\psi^{-1}(\overline{N}) = N \subset I$ would be strictly larger than K

[∗]Notes of C. P. Ramanujam, edited by V. Srinivas

and will meet M' trivially, contradiciting the choice of K. Hence $\overline{N} \cap M \neq 0$. Thus any non-zero submodule of $\psi(I/K)$ meets M non-trivially; since $M' \subset$ $\psi(I/K)$, the maximality of M' implies that $M' = \psi(I/K)$. Thus we have shown that $I = M' \oplus K$, and so $I_0 = M'$ is an injective A-module containing M with the desired property.

To prove the uniqueness, let $M \subset I_1$ be another inclusion into an injective A-module with the same property. Since the I_j are injective, there exist Alinear maps $\alpha : I_0 \to I_1$ and $\beta : I_1 \to I_0$ which are the identity on M. Since ker $\alpha \cap M = 0$, we have ker $\alpha = 0$. Regarding I_0 as a submodule of I_1 via the inclusion α , since I_0 is an injective module, α is a split inclusion, and we can write $I_1 = I_0 \oplus N$ for some submodule N. But then $N \cap M = 0$, so $N = 0$
i.e. $\alpha \cdot I_0 \rightarrow I_1$ is an isomorphism *i.e.*, $\alpha: I_0 \to I_1$ is an isomorphism.

Definition: A monomorphism $0 \to M \to I$ as in Proposition 1 is called an injective hull of M.

Let A be a commutative ring, and let M , N be A -modules; let I be an injective A-module. Let $X \to M \to 0$ be a projective resolution of M over A. We have a natural isomorphism of complexes

$$
\operatorname{Hom}_{A}(X_{\bullet} \otimes N, I) \cong \operatorname{Hom}_{A}(X_{\bullet}, \operatorname{Hom}_{A}(N, I)).
$$

Since Hom $_A(-, I)$ is exact, the cohomology groups on the left are the groups $\text{Hom}_A(\text{Tor}_i^A(M, N), I)$, and we get natural isomorphisms

$$
\operatorname{Hom}_{A}(\operatorname{Tor}_{i}^{A}(M, N), I) \cong \operatorname{Ext}_{A}^{i}(M, \operatorname{Hom}_{A}(N, I)).
$$

Now suppose that A is a Noetherian local ring, M its maximal ideal, $k = A/M$ its residue field, and D an injective envelope of k as an A-module. For any A-module M, let $\mathcal{D}(M) = \text{Hom}_A(M, D)$. Then from the above discussion, we get isomorphisms

$$
\mathcal{D}(\text{Tor}_{i}^{A}(M,N)) \cong \text{Ext}^{i}(M,\mathcal{D}(N)).
$$

Now $M \mapsto \mathcal{D}(M)$ is an exact, contravariant functor from the category of Amodules into itself. If $M \neq 0$, then there is a non-zero submodule $A/J \subset M$ for some ideal $J \subset \mathcal{M}$ (take a submodule Ax with $x \in M - \{0\}$). Then there is a surjection $\mathcal{D}(M) \rightarrow \mathcal{D}(A/J)$. Next, there is a surjection $A/J \rightarrow \mathcal{A}/\mathcal{M} =$ k, so that there is an injection $\mathcal{D}(k) = \text{Hom}_A(k, D) \hookrightarrow \mathcal{D}(A/J)$. But $\mathcal{D}(k) \neq$ 0, so we conclude that $\mathcal{D}(M) \neq 0$.

Define the *weak dimension* of N to be the smallest integer $d \geq 0$ such that $\text{Tor}_{i}^{A}(M, N) = 0$ for any A-module M for $i > d$. If N is finitely generated, this equals the projective dimension of N. Then we have shown above that the weak dimension of N is also the smallest $d > 0$ such that $\text{Ext}_{A}^{i}(M, \mathcal{D}(N)) = 0$ for any A-module M, for all $i > d$. Thus, we have:

Lemma 1 The weak dimension of N equals the injective dimension of $\mathcal{D}(N)$.

Claim: Any finitely generated submodule of D has finite length.

If M is a finitely generated submodule of D, it suffices to show that $\mathcal M$ is the only minimal prime of M. If not, M has a minimal prime $P \neq M$, and so a submodule $A/P \subset M \subset D$. But then $k \cap A/P = 0$, since there is no injection $k \to A/\mathcal{P}$ (of A-modules). This contradicts that D is the injective hull of k.

The claim implies that D may be considered as a module over the M adic completion A of A. Hence $\mathcal{D}(M) = \text{Hom}_A(M, D)$ is an A-module for any A-module M, and $M \mapsto \mathcal{D}(M)$ is an exact contravariant functor from the category $Mod(A)$ of A-modules to $Mod(A)$. Since a strict chain of submodules of M is carried into a strict chain of quotients of $\mathcal{D}(M)$, we have the following lemma:

Lemma 2 With the above notation,

- (i) $\mathcal{D}(M)$ is an Artinian \widehat{A} -module $\Rightarrow M$ is a Noetherian A-module, and
- (ii) $\mathcal{D}(M)$ is a Noetherian \widehat{A} -module $\Rightarrow M$ is an Artinian A-module.

Now denote by $\mathcal{D}: \mathcal{M}od(A) \to \mathcal{M}od(A)$ the functor $M \mapsto \text{Hom}_{\widehat{A}}(M, D)$. We have a natural transformation (an A-homomorphism)

$$
M \stackrel{\eta}{\to} \widehat{\mathcal{D}} \circ \mathcal{D}(M) = \text{Hom}_{\widehat{A}}(\text{Hom}_A(M, D), D),
$$

$$
\eta(m)(f) = f(m) \,\forall \, m \in M, f \in \text{Hom}_A(M, D),
$$

and since the target of η is an \hat{A} -module, an induced natural \hat{A} -homomorphism

 $\theta(M) : \widehat{A} \otimes_A M \to \widehat{\mathcal{D}}(\mathcal{D}(M)),$

for any A-module M.

Theorem 2

- (i) The mapping $\theta(M)$ is an isomorphism if M is Noetherian or Artinian. Further, if M is Noetherian (respectively Artinian) then $\mathcal{D}(M)$ is Artinian (respectively Noetherian).
- (*ii*) $A = \text{End}_A(D) = \text{End}_{\widehat{A}}(D).$
- (iii) $\mathcal D$ gives an anti-equivalence between the category of Artinian Amodules and the category of Noetherian \hat{A} -modules. If morever $A = \hat{A}$ (i.e., A is complete), then $\mathcal{D} = \mathcal{D}$ is its own quasi-inverse.

Proof: Suppose α , β are two non-zero homomorphisms $k \to D$, where α is the inclusion given by the definition of D as an injective hull. Then $\beta(k) \cap k \neq 0$, and so $\beta(k) = k$, and $\beta = c\alpha$ for some $c \neq 0$ in k. Thus Hom $_A(k, D) \cong k$, and hence also $\widehat{\mathcal{D}}(\mathcal{D}(k)) \cong k$. Clearly $\theta(k) : k \to \widehat{\mathcal{D}}(\mathcal{D}(k))$ is non-zero, and hence an isomorphism.

 θ is a natural transformation between two exact functors

$$
\mathcal{M}od(A) \to \mathcal{M}od(\widehat{A}).
$$

Since $\theta(k)$ is an isomorphism, we deduce that $\theta(M)$ is an isomorphism if M has finite length.

Next, suppose that M is Noetherian. If $f \in \text{Hom}_A(M, D)$, then $f(M)$ is a finitely generated submodule of D , and so has finite length; hence $f(\mathcal{M}^nM) = 0$ for some $n > 0$. Thus, we see that

$$
\mathcal{D}(M) = \lim_{\substack{\longrightarrow \\ n}} \mathcal{D}(M/\mathcal{M}^n M),
$$

and so

$$
\widehat{\mathcal{D}}(\mathcal{D}(M))=\lim_{\substack{\longleftarrow\\n}}\widehat{\mathcal{D}}(\mathcal{D}(M/\mathcal{M}^nM))
$$

(we have used the formula Hom $(\lim_{\substack{\longrightarrow \\ n}} M_n, N) = \lim_{\substack{\longleftarrow \\ n}}$ $(M_n, N) = \lim_{n \to \infty}$ Hom (M_n, N) , which is just a restatement of the universal property of the direct limit $\lim_{n} M_n$). Since

$$
\theta(M/M^nM): M/\mathcal{M}^nM \to \hat{\mathcal{D}}(\mathcal{D}(M/\mathcal{M}^nM))
$$

is an isomorphism, and we have a commutative diagram for each n (since θ) is a natural transformation)

$$
\begin{array}{ccc}\n\widehat{A}\otimes_A M & \stackrel{\theta(M)}{\longrightarrow} & \widehat{\mathcal{D}}(\mathcal{D}(M))\\
\downarrow & & \downarrow\\
M/\mathcal{M}^n M & \stackrel{\theta(M/\mathcal{L}M^nM)}{\longrightarrow} & \widehat{\mathcal{D}}(\mathcal{D}(M/\mathcal{M}^nM))\n\end{array}
$$

we see that $\theta(M)$ is an isomorphism.

This proves that $\theta(M)$ is an isomorphism for Noetherian M, and in particular that $\theta(A) : A \to \text{Hom}_{\widehat{A}}(D, D)$ is an isomorphism. If $f \in \text{Hom}_{A}(D, D)$, $d \in D$ and $\alpha \in \hat{A}$, then for $a \in A$ which is a sufficiently good approximation to α ,

$$
f(\alpha d) = f(ad) = af(d) = \alpha f(d).
$$

Thus $\text{Hom}_A(D, D) = \text{Hom}_{\widehat{A}}(D, D)$ *i.e.*, $\mathcal{D}(D) \cong A$, and so $\theta(D) : D \to \widehat{A}(\mathcal{D}(D))$. $\mathcal{D}(\mathcal{D}(D))$ is an isomorphism. Hence $\theta(D^{\oplus n})$ is an isomorphism for any $n > 0$.

Now if M is Noetherian, there is a surjection $A^{\oplus n} \to M$, and so an injection $D(M) \hookrightarrow \mathcal{D}(A^{\oplus n}) \cong D^{\oplus n}$ which is Artinian, since $\widehat{\mathcal{D}}(D^{\oplus n}) = \widehat{A}^{\oplus n}$ is Noetherian (see lemma 2). Hence $\mathcal{D}(M)$ is Artinian too. This proves (i) for Noetherian M.

Suppose that M is Artinian, and let $M \subset I$ be an injective hull of M. If $M \neq 0$, it has a non-zero finitely generated submodule, which has finite length; so we can find an element $x_1 \in M - \{0\}$ with annihilator M *i.e.*, a monomorphism $k \hookrightarrow I$. This extends to an A-linear map $i: D \to I$, whose kernel has trivial intersection with k , and so is zero. Since D is injective, i is a split inclusion, and we may write $I = D \oplus I_1$. If $I_1 \neq 0$, then $M_1 = M \cap I_1 \neq 0$, so that we may repeat the argument with an element $x_2 \in M_1 - \{0\}$ with annihilator M, and obtain an isomorphism $I = D^{\oplus 2} \oplus I_2$, etc. This process must stop after a finite number of steps, since M is Artinian (else the chain of submodules $M \supset M_1 \supset M_2 \supset \cdots$ is a strictly decreasing infinite chain of submodules). Hence $I = D^{\oplus n}$ for some $n > 0$. Since D is Artinian, I/M is also Artinian, and we have an inclusion $I/M \hookrightarrow D^{\oplus m}$ for some $m > 0$ *i.e.*, an exact sequence

$$
0 \to M \to D^{\oplus n} \to D^{\oplus m}.
$$

As noted earlier, $\theta(D^{\oplus n})$ is an isomorphism for any $n > 0$; since θ is an exact functor, we see that $\theta(M)$ is an isomorphism, from the diagram with exact rows

$$
\begin{array}{ccccccc}\n0 \to M & \longrightarrow & D^{\oplus n} & \to & D^{\oplus m} \\
& \downarrow & & \cong \downarrow & & \cong \downarrow \\
0 \to \hat{\mathcal{D}}(\mathcal{D}(M)) & \to & \hat{\mathcal{D}}(\mathcal{D}(D^{\oplus n})) & \to & \hat{\mathcal{D}}(\mathcal{D}(D^{\oplus m}))\n\end{array}
$$

Thus, when $A = \hat{A}$, D defines an anti-equivalence of categories between the categories of Noetherian and Artinian A-modules, being its own quasiinverse. When A is not complete, the categories of Artinian A-modules and Artinian \hat{A} -modules are equivalent, so \hat{D} gives an anti-equivalence between Artinian A-modules and Noetherian A-modules, since $\hat{\mathcal{D}}$ is an anti-
equivalence (from the case $A = \hat{A}$ of (iii)). equivalence (from the case $A = \hat{A}$ of (iii)).

Definition: If A is a Noetherian local ring, D an injective hull of k as an A-module, and M an A-module, the module $\mathcal{D}(M) = \text{Hom}_A(M, D)$ is called the dual of M. Its isomorphism class is independent of the choice of D.

Remarks:

- 1. When A is not complete, the category of Noetherian A-modules is not anti-equivalent to the category of Artinian A - (or A -) modules.
- 2. Let A be a Noetherian local ring containing a coefficient field i.e., a field k mapped isomorphically onto the residue field, which we again denote by k. For any module M, denote by $\text{Hom}_k(M, k)$ the set of k-linear maps $f: M \to k$ such that $f(M^nM) = 0$ for some $n > 0$ *i.e.*,

$$
\overline{\operatorname{Hom}}_k(M,k) = \lim_{\substack{\longrightarrow \\ n}} \operatorname{Hom}_k(M/\mathcal{M}^n M, k).
$$

Then $\overline{\text{Hom}}_k(M, k)$ is an A-module in a natural way. Now set $D =$ $\overline{\text{Hom}}_k(A, k)$. It is easy to see that for any finitely generated module M, we have Hom $_A(M, D) = \overline{\text{Hom}}_k(M, k)$. Let I be an ideal of A, and $f: I \to k$ an element of $\overline{\text{Hom}}_k(I,k)$, so that $f(\mathcal{M}^nI) = 0$ for some $n > 0$. By the Artin-Rees lemma, there exists $n' > 0$ such that $\mathcal{M}^{n'} \cap I \subset \mathcal{M}^n I$, and we get $f: I/(\mathcal{M}^{n'} \cap I) \to k$, which we may regard as a map $I + \mathcal{M}^{n'} / \mathcal{M}^{n'} \to k$. We may extend this to a k-linear map $g: A/\mathcal{M}^{n'} \to k$. Thus the element $f \in \overline{\text{Hom}}_k(I, k)$ is the image of $g \in$ $\overline{\text{Hom}}_k(A, k)$ *i.e.*, *D* is an injective *A*-module. Further, Hom $_A(k, D) = k$ and any element of D is killed by some \mathcal{M}^n . Hence D is the injective hull of $k - if x \in D - \{0\}$, then $\mathcal{M}^{r+1}x = 0$ while $\mathcal{M}^r x \neq 0$ for some $r \geq 0$, and then $\mathcal{M}^r x = k \subset D$ (since $\text{Hom}_A(k, D) = k$); hence $Ax \cap k \neq 0.$

1.2 Gorenstein rings

Lemma 3 Let A be a Noetherian local ring with residue field k , and M a finitely generated A-module. Suppose that for some integer $n > 0$, we have $\text{Ext}_{A}^{n}(k, M) \neq 0$ and $\text{Ext}_{A}^{i}(k, M) = 0$ for all $i > n$. Then M has injective dimension n, and we must have $n = \operatorname{depth} A$.

Proof: To show that $n = \text{inj.dim. } M$, we have to show that for any module P of finite type, $\text{Ext}^{i}(P, M) = 0$ for all $i > n$ (this follows by induction on n). Since we can find a composition series for P with quotients A/P where P is a prime ideal, it suffices to consider the case $P = A/P$. If $P = M$, the maximal ideal, there is nothing to prove. If the assertion is false for some P , then we may choose a P which is maximal with respect to this property. Choose $x \in (\mathcal{M} - \mathcal{P})$. Then x is a non zero divisor on A/\mathcal{P} , so that we have an exact sequence

$$
0 \to A/\mathcal{P} \xrightarrow{x} A/\mathcal{P} \to A/(\mathcal{P} + Ax) \to 0.
$$

Now $A/(\mathcal{P} + Ax)$ has a composition series with quotients A/\mathcal{Q} where $\mathcal Q$ is prime and (strictly) contains \mathcal{P} (since $(\mathcal{P}+Ax)A_{\mathcal{Q}}\neq A_{\mathcal{Q}}$). By the maximality of P, we have $\text{Ext}^i_A(A/\mathcal{Q},M) = 0$ for $i > n$, and so $\text{Ext}^i_A(A/(\mathcal{P}+Ax),M) =$ 0 for $i > n$. Hence

$$
\operatorname{Ext}\nolimits_A^i(A/{\mathcal P},M)\xrightarrow{x}\operatorname{Ext}\nolimits^i(A/{\mathcal P},M)
$$

is surjective for $i > n$; hence

$$
\mathcal{M} \mathrm{Ext}^i_A(A/\mathcal{P}, M) = \mathrm{Ext}^i_A(A/\mathcal{P}, M).
$$

Since M , A/\mathcal{P} are finite A-modules, $\text{Ext}_{A}^{i}(A/\mathcal{P},M)$ is finitely generated (we may compute it using a resolution of A/P by free A-modules of finite rank). By Nakayama's lemma, we conclude that $\text{Ext}_{A}^{i}(A/\mathcal{P},M) = 0$ for $i > n$, a contradiction.

Now if x_1, x_2, \ldots, x_r is a maximal A-sequence in M (so that depth $A = r$), we see by using the Koszul complex that

$$
\operatorname{Ext}^r_A(A/(x_1,\ldots,x_r),M)\cong M/(x_1,\ldots,x_r)M\neq 0,
$$

by Nakayama's lemma, since $M \neq 0$ is a finite A-module. Hence $r \leq n$. On the other hand, depth $A/(x_1, \ldots, x_r) = \text{depth } A - r = 0$, and so there is an exact sequence of A-modules

$$
0 \to k \to A/(x_1, \ldots, x_r) \to P \to 0.
$$

This gives an exact sequence of Ext groups

 $\text{Ext}_{A}^{n}(A/(x_1,\ldots,x_r),M)\to \text{Ext}_{A}^{n}(k,M)\to \text{Ext}_{A}^{n+1}(P,M)$

where the last term is zero, as seen above. Hence

$$
\operatorname{Ext}^n_A(A/(x_1,\ldots,x_r),M) \to \operatorname{Ext}^n_A(k,M) \neq 0.
$$

From the Koszul complex, this implies that $n \leq r$. Hence $n = r = \text{depth } A$. \Box

Recall that a submodule $N \subset M$ is called *irreducible* if we cannot write $N = P \cap Q$ for submodules $P, Q \subset M$ with $N \neq P, N \neq Q$.

Lemma 4 Let A be a Noetherian local ring, M an Artinian A-module. Then we can find irreducible submodules $N_i \subset M$, $i = 1, \ldots, m$ such that $\bigcap_{i=1}^{m} N_i =$ (0) , but (0) is not the intersection of any subfamily of the N_i . The integer m then equals $\dim_k \text{Hom}_A(k, M)$.

Proof: For an Artinian module M , we claim the following are equivalent:

- (i) (0) is irreducible in M
- (ii) dim_k Hom $_A(k, M) = 1$
- (iii) $\mathcal{D}(M)$ is generated by one element.

Indeed, since M is Artinian, $\mathcal{D}(M)$ is a Noetherian \widehat{A} -module, by Theorem 2, and

Hom $_A(k, M) \cong \text{Hom}_{\widehat{A}}(\mathcal{D}(M), \mathcal{D}(k)) = \text{Hom}_{\widehat{A}}(\mathcal{D}(M), k) \cong \text{Hom}_{k}(k \otimes_A \mathcal{D}(M), k).$

Hence

$$
\dim_k \operatorname{Hom}_A(k,M) = \dim_k k \otimes_A \mathcal{D}(M)
$$

which is the minimal number of generators of $\mathcal{D}(M)$ as an A-module, and the second and third statements above are equivalent. Now suppose that (0) is irreducible in M, and $\alpha, \beta \in \text{Hom}_{A}(k, M) - \{0\}$. If $\alpha(k) \neq \beta(k)$, then $\alpha(k) \cap \beta(k) = (0)$, contradicting irreducibility. Hence $\alpha(k) = \beta(k) \cong k$ and so $\alpha = c\beta$ for some $c \in k - \{0\}$. Thus $\dim_k \text{Hom}_A(k, M) = 1$. Suppose that $M_1, M_2 \subset M$ are non-zero with $M_1 \cap M_2 = (0)$. We can find non-zero homomorphisms $\alpha : k \to M_1, \beta : k \to M_2$ since M_i are Artinian. Since the images of α and β have trivial intersection, α and β are k-linearly independent in Hom $_A(k, M)$. Hence \dim_k Hom $_A(k, M) > 1$, completing the proof of the claimed equivalence.

Now irreducible submodules $N \subset M$ correspond to \widehat{A} -submodules $\mathcal{D}(M/N) \subset \mathcal{D}(M)$ generated by 1 element, since N is irreducible in $M \Leftrightarrow$ 0 is irreducible in M/N . Further, $\bigcap_i N_i = (0) \iff M \to \bigoplus M/N_i$ is injective $\Leftrightarrow \bigoplus \mathcal{D}(M/N_i) \to \mathcal{D}(M)$ is surjective. Thus irredundant representations $(0) = \bigcap_i N_i$ with N_i irreducible correspond precisely to picking minimal sets of cyclic A-submodules of $\mathcal{D}(M)$ generating $\mathcal{D}(M)$ i.e., to picking minimal sets of generators for $\mathcal{D}(M)$ as an \hat{A} -module. sets of generators for $\mathcal{D}(M)$ as an A-module.

Theorem 3 Let A be a Noetherian local ring of dimension n with residue field k. The following are equivalent:

- (i) for any system of parameters x_1, x_2, \ldots, x_n of A, the ideal (x_1, \ldots, x_n) is irreducible in A
- (ii) A is Cohen-Macaulay, and there is a system of parameters x_1, \ldots, x_n such that (x_1, \ldots, x_n) is irreducible in A
- (iii) for $0 \leq i < n$, $\operatorname{Ext}_{A}^{i}(k, A) = 0$ and $\operatorname{Ext}_{k}^{n}(k, A) = k$
- (iv) for large i, $\text{Ext}^i_A(k, A) = 0$
- (v) A has injective dimension n as an A-module
- (vi) A has finite injective dimension as an A-module.

Proof: We proceed by induction on $n = \dim A$. Suppose first that $n = 0$ *i.e.*, A is Artinian. Then (i) \Leftrightarrow (ii) \Leftrightarrow the ideal (0) is irreducble in A \Leftrightarrow $\dim_k \text{Hom}_A(k, A) = 1$ *i.e.*, \Leftrightarrow (iii). Further, by lemma 3, since dim A = depth $A = 0$, we have (iv) \Leftrightarrow (v) \Leftrightarrow (vi) \Leftrightarrow A is injective as an A-module. Now, let D be the injective hull of k .

Suppose (0) is irreducible in A. We can find an injection $f: k \to A$. Since D is injective, f fits into a diagram

$$
\begin{array}{cccc}\n0 \to & k & \xrightarrow{f} & A \\
& i \searrow & & \swarrow \alpha \\
& & D & & \n\end{array}
$$

Since ker $\alpha \cap k = (0)$ and (0) is irreducible, ker $\alpha = (0)$ and α is injective; in particular, length $A \leq \text{length } D$. Applying the functor D , we obtain a surjection

$$
A = \widehat{A} = \mathcal{D}(D) \stackrel{\mathcal{D}(\alpha)}{\rightarrow} \mathcal{D}(A) = D.
$$

Hence length $A = \text{length } D$, and so α is an isomorphism, and A is an injective A-module.

Conversely, if A is an injective A-module, then any monomorphism $f: k \to A$ extends to a monomorphism $\beta: D \to A$ (since it extends to a map β , with ker $\beta \cap k = 0$). As above, applying D, we conclude that in fact β is an isomorphism. Further, Hom $_A(k, A) =$ Hom $_A(k, D) = k$, so (0) is irreducible. This proves the Theorem for $n = 0$.

Suppose that $n > 0$ and the Theorem holds for all rings of smaller dimension. We have in any case by lemma 3 the equivalences (iv) \Leftrightarrow (vi) \Leftrightarrow inj.dim. $A = \text{depth } A$, and $(v) \Leftrightarrow (iv)$. We shall first show that each one of the hypothesis (i)-(vi) implies the existence of a non-zero divisor $x \in \mathcal{M}$, the maximal ideal of A; or equivalently, that depth $A > 0$, or that $\mathcal{M} \notin \text{Ass } A$. This is clear for (ii) (since $n > 0$) and (iii) (since Hom $_A(k, A) = 0$). Thus it suffices to check that (i) and (vi) imply this.

Assume (i), and suppose that $\mathcal{M} \in \text{Ass } A$, so that there exists $x \in A$, $x \neq 0$ with $\mathcal{M}x = (0)$. Let $y \in \mathcal{M}$ such that y does not lie in any minimal prime ideal of (0). Since $\bigcap_{k\geq 0} y^k A = (0)$, replacing y by y^k if necessary, we may assume that $x \notin Ay$. Now $B = A/Ay$ has dim $B = n - 1$, and satisfies the hypothesis (i) with $n-1$ in place of n. Hence by induction, B satisfies (ii)-(vi); in particular, B is Cohen-Macaulay. But depth $B = 0$, since the image of x in B is non-zero and is annihilated by the maximal ideal. Hence dim $B = 0$,

and $n = 1$. Suppose that $(0) = Q \cap Q'$ is a primary decomposition of (0) in A, where Q' is the intersection of the primary components for the minimal primes, and $\mathcal Q$ is the intersection of non-minimal primary components. Since depth $A = 0$, $\mathcal{Q} \neq (0)$. Let $z \in \mathcal{Q}$ such that z does not lie in any minimal prime. Replacing z by z^n for large n, we may assume (since $\bigcap_n z^n A = (0)$) that $Az \neq Q$, and $Q' \not\subset Az$. Now $Az \subset (Q+Az) \cap (Q'+Az) = Q \cap (Q'+Az)$. If $t+\mu z \in \mathcal{Q} \cap (\mathcal{Q}'+Az)$, with $t \in \mathcal{Q}'$, then $\mu z \in \mathcal{Q} \Rightarrow t \in \mathcal{Q}$, so $t \in \mathcal{Q} \cap \mathcal{Q}' =$ (0). Hence $Az = Q \cap (Az + Q')$. But $Az \neq Q$ and $Az \neq (Az + Q')$, so Az is not irreducible. Since dim $A = 1$ and $z \in A$ is a parameter (as it does not lie in any minimal prime), we see that (i) is contradicted.

Next, assume (vi), so that inj.dim. $A = \text{depth } A$. We want to show depth $A > 0$; if depth $A = 0$, then A must itself be injective. Also, we have an injection $f : k \to A$ (since depth $A = 0$), which factors (since A is injective) through $i : k \to D$, giving an injection $D \to A$. Since D is the injective hull of k, the map $D \to A$ must be a split inclusion. Applying D to the surjection $A \to D$, we obtain an injection $\hat{A} = \mathcal{D}(D) \to \mathcal{D}(A) = D$. Hence \tilde{A} is Artinian *i.e.*, A is Artinian, contradicting that dim $A > 0$.

Thus, each of the hypothesis (i)-(vi) implies that there exists a non-zero divisor $x \in A$. Let us put $B = A/Ax$, and denote by $(i)'$, ...,(vi)' the hypotheses (i) to (vi) for B . Then, we have

$$
(i) \Rightarrow (i)' \Leftrightarrow (ii)' \Leftrightarrow (ii),
$$

where the middle equivalence is by the induction hypothesis.

Now, assume (ii) and let x_1, \ldots, x_n be a system of parameters in A. Then x_1, \ldots, x_n is a regular sequence, since we have assumed A is Cohen-Macaulay. From the exact sequences

$$
0 \to A/(x_1,\ldots,x_i) \xrightarrow{x_{i+1}} A/(x_1,\ldots,x_i) \to A/(x_1,\ldots,x_{i+1}) \to 0,
$$

we see by descending induction on i that

$$
\operatorname{Ext}_{A}^{j}(k, A/(x_1, \dots, x_i)) = 0 \,\forall j < n - i,
$$
\n
$$
\operatorname{Ext}_{A}^{n-i}(k, A/(x_1, \dots, x_i) \cong \operatorname{Hom}_{A}(k, A/(x_1, \dots, x_n)).
$$

In particular, for $i = 0$, we get

$$
\operatorname{Ext}^i_A(k, A) = 0 \,\forall i < n, \, \operatorname{Ext}^n_A(k, A) \cong \operatorname{Hom}_A(k, A/(x_1, \ldots, x_n)).
$$

By assumption, there is some system of parameters y_1, \ldots, y_n such that (y_1, \ldots, y_n) is irreducible in A *i.e.*, by lemma 4, we have

 $\dim_k \text{Hom}_A(k, A/(y_1, \ldots, y_n)) = 1.$ Hence $\text{Ext}_A^n(k, A) = k$. This implies that Hom $_A(k, A/(x_1, \ldots, x_n)) = k$ *i.e.*, (x_1, \ldots, x_n) is irreducible in A. Hence (ii) \Rightarrow (i) and (ii) \Rightarrow (iii).

Suppose (iii) holds, and let y_1, \ldots, y_m be a maximal A-sequence. Then $m \leq n$. The long exact sequence of Ext groups associated to the exact sequences of A-modules

$$
0 \to A/(x_1, \ldots, x_i) \stackrel{x_{i+1}}{\to} A/(x_1, \ldots, x_i) \to A/(x_1, \ldots, x_{i+1}) \to 0, \ 0 \le i < m,
$$

yields, by induction on i ,

$$
\operatorname{Ext}^j_A(k, A/(x_1, \dots, x_i)) = 0 \text{ for } j < n - i,
$$
\n
$$
\operatorname{Ext}^{n-i}_A(k, A/(x_1, \dots, x_i)) \cong \operatorname{Ext}^n_A(k, A) = k.
$$

On the other hand,

$$
Ext_A^0(k, A/(x_1, ..., x_m)) = Hom_A(k, A/(x_1, ..., x_m)) \neq 0
$$

since depth $A = m$. We deduce that $m = n$, and Hom $_A(k, A/(x_1, \ldots, x_n))$ k , which implies (ii). Hence we have shown: $(i) \Leftrightarrow (ii) \Leftrightarrow (iii)$.

Now (ii) implies that in the Artin ring $A/(x_1, \ldots, x_n) = C$, the ideal (0) is irreducible. Hence C is injective over itself, by the Theorem for rings of dimension 0. Further, we had seen in this case that C is an injective envelope of k as a C-module. On the other hand, if J is an injective A-module, then for any ideal I of A , and any A/I -module M , we have

$$
\text{Hom}_{A/I}(M, \text{Hom}_A(A/I, J)) = \text{Hom}_A(M, J);
$$

hence Hom $_A(A/I, J)$ is A/I-injective. In particular, if $J = D$, the injective hull of k as an A-module, we see that $\text{Hom}_A(A/I, D)$ is an injective A/I module. Further, Hom $_{A/I}(k, \text{Hom }_{A}(A/I, D)) = \text{Hom }_{A}(k, D) = k$, so Hom $_A(A/I, D)$ is in fact the injective hull of k as an A/I -module. Applying this to C, we see that Hom $_A(C, D) \cong C$. Thus, we see that

$$
\mathcal{D}_A(C) \cong C = A/(x_1,\ldots,x_n).
$$

Since C has projective dimension n over A, we see by lemma 1 that $\mathcal{D}(C) \cong C$ has injective dimension *n* over A. Hence, by descending induction on i , $\text{Ext}_{A}^{j}(k, A/(x_1, \ldots, x_i) = 0 \text{ for } j > n.$ Thus (ii) \Rightarrow (vi).

Finally, suppose that (vi) holds, and let $x \in A$ be a non-zero divisor. From the exact sequence

$$
0 \to A \xrightarrow{x} A \to A/Ax \to 0,
$$

we see that $\text{Ext}^1_A(A/Ax, A) \cong A/Ax$, and $\text{Ext}^i_A(A/Ax, A) = 0$ for $i \neq 1$. Let

 $0 \to A \to I^0 \to \cdots \to I^n \to 0$

be a finite injective resolution of A. The complex $\text{Hom}_A(A/Ax, I^{\bullet})$ has $\text{Ext}_{A}^{i}(A/Ax, A)$ as cohomology groups *i.e.*, has all cohomologies except the first equal to 0, and the first cohomology is $\text{Ext}^1_A(A/Ax, A) \cong A/Ax$. Thus we have exact sequences (the bottom one defines Z^1)

$$
0 \to \text{Hom}_A(A/Ax, I^0) \to Z^1 \to \text{Ext}_A^1(A/Ax, A) \to 0,
$$

 $0 \to Z^1 \to \text{Hom}_A(A/Ax, I^1) \to \text{Hom}_A(A/Ax, I^2) \to \cdots \to \text{Hom}_A(A/Ax, I^n) \to 0.$

The bottom row gives an injective resolution for Z^1 as an A/Ax module, and so Z^1 has finite injective dimension over A/Ax . Since Hom $_A(A/Ax, I^0)$ is an injective A/Ax -module, the top sequence splits; this shows that $\text{Ext}^1_A(A/Ax, A) \cong$ A/Ax has finite injective dimension as an A/Ax -module, so (vi) is satisfied by A/Ax . This implies (ii) is satisfied by A/Ax , and hence by A. This completes the proof. \Box

Definition: A Noetherian local ring A satisfying any of the equivalent conditions (i)-(vi) of the Theorem is called a Gorenstein ring.

Remarks:

- 1. Any regular local ring is Gorenstein, since it has finite global dimension.
- 2. If A is Gorenstein and x_1, \ldots, x_r is an A-sequence, then $A/(x_1, \ldots, x_r)$ is Gorenstein. In fact (ii) above is fulfilled.
- 3. More generally, let A be any Noetherian local ring, I an ideal in A, and $d = \dim A/I$. Then A/I is Gorenstein \Leftrightarrow (a) $\text{Ext}_{A}^{d}(k, A/I) = 0$ for $i < d$ and (b) $\text{Ext}_{A}^{d}(k, A/I) = k$.

In fact, (a) is equivalent to the existence of an A/I -sequence x_1, \ldots, x_d of length d i.e., to A/I being Cohen-Macaulay. Next, if A/I is Cohen-Macaulay and x_1, \ldots, x_d is a regular A/I -sequence, the Koszul complex yields

Ext^d(k, A/I) ≅ Hom _A(k, A/(I + (x₁, . . . , x_d))),

so (b) $\Leftrightarrow I + (x_1, \ldots, x_d)$ is irreducible in $A \Leftrightarrow I + (x_1, \ldots, x_d)/I$ is irreducible in A/I . Thus (a) and (b) hold $\Leftrightarrow A/I$ satisfies the condition (ii).

4. Let A be a one dimensional non-normal Noetherian local domain with quotient field K such that its integral closure \overline{A} (in K) is a finite Amodule. Then A is Cohen-Macaulay, and $\text{Ext}^1_A(k, A) \cong \mathcal{M}^{-1}/A$, as follows from the exact sequence

$$
0 \to \mathcal{M} \to A \to k \to 0,
$$

where $\mathcal{M}^{-1} = \{x \in K \mid x\mathcal{M} \subset A\}$ (thus $\text{Hom}_A(k, K/A) = \mathcal{M}^{-1}/A$). If $\mathcal{M}^{-1}\mathcal{M} = A$, then there exist $x \in \mathcal{M}^{-1}$, $y \in \mathcal{M}$ such that $xy \notin \mathcal{M}$, so that xy is a unit; then for $z \in \mathcal{M}$, we have $z = zx(xy)^{-1}y \in Ay$, so that $\mathcal{M} = Ay$, and A is regular, a contradiction. Hence $\mathcal{M}^{-1}\mathcal{M} \subset \mathcal{M}$, and so $\mathcal{M}^{-1} \subset \overline{A}$. Thus $\text{Hom}_{A}(k, \overline{A}/A) = \text{Hom}_{A}(k, K/A) = \mathcal{M}^{-1}/A$. Now if $I \subset A$ is the conductor, then by definition, $I = \text{Ann }_{A}(\overline{A}/A)$, so that \overline{A}/A is a faithful A/I -module. Hence so is its dual $\mathcal{D}(\overline{A}/A)$, since $\mathcal{D}(\mathcal{D}(\overline{A}/\underline{A}) = \overline{A}/A$. Now A is Gorenstein \Leftrightarrow $\text{Ext}^1_A(k, A) = k$ \Leftrightarrow Hom $_A(k, \overline{A}/A) = k \Leftrightarrow \mathcal{D}(\overline{A}/A)$ is generated by one element \Leftrightarrow $\mathcal{D}(\overline{A}/A) \cong A/I$. Now for any Artinian module M over an Artinian local ring B, length $(\mathcal{D}(M)) =$ length (M) , since this is true for $M = k$, the residue field. Hence A is Gorenstein \Rightarrow length $(\overline{A}/A) =$ length (A/I) .

2 Local duality theory

Theorem 4 (The local duality theorem) Let A be a Noetherian Cohen-Macaulay local ring of dimension n, with maximal ideal $\mathcal M$ and residue field k, and put

$$
\lim_{\stackrel{\longrightarrow}{p}} \operatorname{Ext}^n_A(A/\mathcal{M}^p, A) = J.
$$

Then we have a natural isomorphism

$$
\lim_{\stackrel{\longrightarrow}{p}} \operatorname{Ext}^{n-i}_A(A/\mathcal{M}^p, M) \cong \operatorname{Tor}_i^A(M, J) \qquad \cdots \qquad (\#)
$$

for all A-modules M, for all $I \geq 0$.

Proof: Let x_1, \ldots, x_n be a maximal A-sequence, and set $\mathcal{M}_p = (x_1^p)$ $_1^p,\ldots,x_n^p$). Now x_1^p T_1^p, \ldots, T_n^p is also an A-sequence, and if $\mathcal{M}^r \subset \mathcal{M}_1$, then we have inclusions $\mathcal{M}^{npr} \subset \mathcal{M}_1^{np} \subset \mathcal{M}_p \subset \mathcal{M}^p$, so that

$$
\lim_{\overrightarrow{p}} \operatorname{Ext}_{A}^{j}(A/M^{p}, M) = \lim_{\overrightarrow{p}} \operatorname{Ext}_{A}^{j}(A/M_{p}, M)
$$

for any A-module M. Since \mathcal{M}_p is generated by an A-sequence, the Koszul complex yields $\text{Ext}_{A}^{j}(A/M_{p}, M) = 0$ for $j > n$, and $\text{Ext}_{A}^{j}(A/M_{p}, A) = 0$ for $j < n$.

Define covariant functors T_i , $0 \le i \le n$, on the category of A-modules by Ext ⁿ−ⁱ

$$
T_i(M) = \lim_{\substack{p \to 0}} \operatorname{Ext}\nolimits_A^{n-i}(A/\mathcal{M}_p, M)
$$

Then

(i) the T_i form a covariant ∂ -functor in M *i.e.*, given a short exact sequence

$$
0 \to M' \to M \to M'' \to 0,
$$

we have a long exact sequence

$$
0 \to T_n(M') \to T_n(M) \to T_n(M'') \xrightarrow{\partial} T_{n-1}(M'') \to \cdots
$$

$$
\cdots \to T_1(M'') \xrightarrow{\partial} T_0(M') \to T_0(M) \to T_0(M) \to 0;
$$

given a commutative diagram of short exact sequences

$$
0 \to M' \to M \to M'' \to 0
$$

\n
$$
\downarrow \qquad \downarrow \qquad \downarrow
$$

\n
$$
0 \to N' \to N \to N'' \to 0
$$

the diagrams

$$
T_{i+1}(M'') \stackrel{\partial}{\to} T_i(M')
$$

$$
T_{i+1}(N'') \stackrel{\partial}{\to} T_i(N')
$$

commute;

(ii) T_i commutes with direct sums, and $T_i(A) = 0$ for $i > 0$; hence T_i is effaceable.

The above shows that the T_i form a *universal ∂-functor* in the sense of Grothendieck.

Next, for any three A-modules M, N, P there is a *natural* homomorphism $\text{Ext}_{A}^{i}(N, P) \otimes_{A} M \to \text{Ext}^{i}(N, P \otimes M)$ for each $i - \text{if } m \in M$, there is an induced A-module map $\psi(m) : P \to P \otimes_A M$, $p \mapsto p \otimes m$, which induces a map

$$
\psi(m)_{*}: \operatorname{Ext}_{A}^{i}(N, P) \to \operatorname{Ext}_{A}^{i}(N, P \otimes_{A} M);
$$

one verifies that $\psi(\alpha \otimes m) = \psi(m)_*(\alpha)$ gives the desired map.

In particular, there is a natural map $M \otimes_A \text{Ext}^n(A/\mathcal{M}^p, A) \to \text{Ext}^n_A(A/\mathcal{M}^p, M)$ for each $p > 0$. Taking the direct limit over p, we obtain a natural transformation of functors of M

$$
M\otimes_A J\to T_0(M).
$$

This is an isomorphism for $M = A$, commutes with direct sums, and both functors are right exact. Hence, looking at a presentation of M as a cokernel of a mapping of free A-modules, we see that the above natural transformation is an isomorphism for all M. Since $\text{Tor}_i^A(M, J)$ and $T_i(M)$ are both universal ∂-functors, this means that the above natural transformation extends uniquely to a natural isomorphism of ∂ -functors *i.e.*, to natural isomorphisms

$$
T_i(M) \cong \text{Tor}_i^A(M, J)
$$

which are compatible with the ∂ -maps. \Box

Since A is Cohen-Macaulay, $\text{Ext}_{A}^{i}(k, A) = 0, 0 \leq i \leq n$, and hence $\text{Ext}_{A}^{i}(N, A) = 0$ for $0 \leq i < n$ for any A-module N of finite length. Thus, the natural homomorphisms

$$
J_p = \text{Ext}^n_A(A/\mathcal{M}_p, A) \to \text{Ext}^n_A(A/\mathcal{M}_{p+1}, A) = J_{p+1}
$$

are all injective, from the long exact sequence of Ext 's. Further,

$$
\dim_k \text{Hom}_A(k, J_p) = \dim_k \text{Hom}_A(k, A/(x_1^p, \ldots, x_n^p)) = \dim_k \text{Ext}_A^n(k, A)
$$

is independent of p, and so Hom $_A(k, J_p) \rightarrow$ Hom $_A(k, J_{p+1})$ is an isomorphism. Hence $k \otimes \mathcal{D}(J_{p+1}) \to k \otimes \mathcal{D}(J_p)$ is an isomorphism, and so $\mathcal{D}(J_{p+1}) \to$ $\mathcal{D}(J_p)$ is surjective (note that J_p , J_{p+1} have finite length, hence so do their duals). Let $m = \dim_k \text{Ext}_{A}^{n}(k, A)$, and F a free \widehat{A} -module of rank m with basis e_1, \ldots, e_m . Inductively, we can find surjective A-homomorphisms $\varphi_p : F \to \mathcal{D}(J_p)$ such that the diagrams

$$
\begin{array}{ccc}\nF & \xrightarrow{\varphi_p} & \mathcal{D}(J_p) \\
\varphi_{p+1} & \swarrow & \swarrow \\
& \mathcal{D}(J_{p+1}) & \end{array}
$$

commute. Hence we obtain a homomorphism $\varphi : F \to \mathcal{D}(J) = \lim_{\substack{\leftarrow \\ p}} \mathcal{D}(J_p)$.

Let im $\varphi = G$, so that $G \subset \mathcal{D}(J)$ is a finitely generated \hat{A} -submodule. If $G \neq \mathcal{D}(J)$, then we can find a finitely generated \hat{A} -submodule $H \subset \mathcal{D}(J)$ which strictly contains G. Since $G \to \mathcal{D}(J_p)$ is surjective for each p, so is $H \to \mathcal{D}(J_p)$. Let $H_p = \text{ker } H \to \mathcal{D}(J_p)$, so that $G + H_p = H$, and $H/H_p =$ $\mathcal{D}(J_p)$ is Artinian; also, $\cap_p H_p = \ker(H \to \mathcal{D}(J)) = 0$. Hence for any $r > 0$ we can find $p(r)$ such that $H_{p(r)} \subset \mathcal{M}^r H$. Thus, $H \subset \cap_n(G+\mathcal{M}^nH) = G$, since G is closed in H for the M-adic topology (as G , H are finite A-modules). Hence we must have $G = \mathcal{D}(J)$.

Thus, $\mathcal{D}(J) = \Omega_A$ is a finite A-module, and so J is Artinian. For any finite A-module M, Tor ${}^A_i(M, J)$ is Artinian, since M has a resolution $F_{\bullet} \to M \to 0$ where F_i are free of finite rank, and $F_i \otimes_A J$ is Artinian for each i. Hence by Theorem 2 and the discussion preceeding lemma 1,

$$
\operatorname{Tor}^A_i(M, J) \cong \hat{A} \otimes_A \operatorname{Tor}^A_i(M, J) \cong \operatorname{Tor}^{\hat{A}}_i(\hat{A} \otimes_A M, J) \cong
$$

$$
\hat{\mathcal{D}}(\operatorname{Ext}^i_{\hat{A}}(\hat{A} \otimes_A M, \mathcal{D}(J)) \cong \hat{\mathcal{D}}(\operatorname{Ext}^i_{\hat{A}}(\hat{A} \otimes_A M, \Omega_A)).
$$

Thus, we have:

Corollary 1 The module $\Omega_A = \mathcal{D}(J)$ is finitely generated over \hat{A} , and for any finitely generated A-module M, we have an isomorphism

$$
\lim_{\stackrel{\longrightarrow}{p}} \operatorname{Ext}^j_A(A/\mathcal{M}^n, M) \cong \mathcal{D}(\operatorname{Ext}^{n-j}_{\widehat{A}}(\widehat{A}\otimes_A M, \Omega_A)) \quad \cdots \quad (\dagger).
$$

The minimal number of generators of Ω as an \widehat{A} -module is dim_k Extⁿ(k, A). Further, $\text{Ext} \frac{i}{\hat{A}}(k, \Omega_A) = 0$ for $0 \leq i < n$, $\text{Ext} \frac{n}{\hat{A}}(k, \Omega_A) = k$, so that Ω_A is $A^{(1)}$ and $A^{(2)}$ and $A^{(3)}$ a Cohen-Macaulay module of dimension n over A, such that if y_1, \ldots, y_n is any system of parameters of \widehat{A} , the submodule $(y_1, \ldots, y_n)\Omega_A$ is irreducible in Ω_A . Lastly, Ω_A is a faithful A-module.

Proof: The first assertion (*i.e.*, finite generation of Ω_A , and the isomorphism (†)) has already been proved. We have also shown above that (with the earlier notations) there is a surjection $F \rightarrow \Omega_A$, such that $F \otimes k \cong \Omega_A \otimes k \cong$ $J_p \otimes k$ for all $p > 0$, where $F = \hat{A}^{\oplus r}$, and $r = \dim_k \text{Ext}^n(k, A)$. Hence Ω_A is minimally generated by r elements. Now, $\mathcal{D}(\Omega_A) \cong A \otimes_A J \cong J$, by Theorem 2, since J is Artinian. If $\alpha \in A$ kills Ω_A , then it kills each of the submodules $J_p = \hat{A}/(x_1^p)$ $\widehat{p}_1, \ldots, x_n^p$ of $J = \widehat{\mathcal{D}}(\Omega_A)$, and so $\alpha \in \bigcap (x_1^p)$ $_1^p, \ldots, x_n^p \rangle = 0.$ Hence Ω_A is a faithful \hat{A} -module.

Now to calculate $\text{Ext}^i_{\widehat{A}}(k, \Omega_A)$. We apply the duality isomorphism (†) with $M = k$. For each $p > 0$, set as before $\mathcal{M}_p = (x_1^p)$ $_1^p, \ldots, x_n^p$ and $K_{\bullet}(x_1^p)$ $\widehat{p}_1, \ldots, x_n^p$ the Koszul complex over \widehat{A} with respect to x_1^p x_1^p, \ldots, x_n^p . Then $K_{\bullet}(x_1^p)$ $\hat{p}_1^p, \ldots, \hat{x}_n^p$ resolves \hat{A}/\mathcal{M}_p , and we have a map of complexes $\psi_p : K_{\bullet}(x_1^{p+1})$ $x_1^{p+1},\ldots,x_n^{p+1}) \rightarrow$ $K_{\bullet}(x_1^p)$ $\hat{A}_{1}^{p}, \ldots, x_{n}^{p}$ lifting $\hat{A}/\mathcal{M}_{p+1} \rightarrow \hat{A}/\mathcal{M}_{p}$, given by

$$
e_{i_1}e_{i_2}\cdots e_{i_k}\mapsto x_{i_1}x_{i_2}\cdots x_{i_k}e_{i_1}e_{i_2}\cdots e_{i_k}.
$$

Hence

Hom
$$
(\psi_p, k)
$$
: Hom $(K_r(x_1^p, \ldots, x_n^p), k) \to \text{Hom } (K_r(x_1^{p+1}, \ldots, x_n^{p+1}), k)$

is 0 for $r \geq 1$, so that $\text{Ext}^r_A(A/M_p, k) \to \text{Ext}^r_A(A/M_{p+1}, k)$ is 0 for $0 \leq$ $r < n$, and Hom $(A/M_p, k) \otimes k \to \text{Hom}(A/M_{p+1}, k) \otimes k$ is an isomorphism. Thus

$$
\operatorname{Ext}^i_{\widehat{A}}(k, \Omega_A) = 0, \ 0 \le i < n,
$$
\n
$$
\operatorname{Ext}^n_{\widehat{A}}(k, \Omega_A) \cong k.
$$

This evidently implies the remaining assertions. \Box

Corollary 2 The following assertions are equivalent on a Cohen-Macaulay ring A:

- (i) A is a Gorenstein ring
- (ii) $J \cong D$
- (iii) $\Omega_A \cong A$
- (iv) Ω_A is generated by 1 element as an \hat{A} -module
- (v) *J* is injective

(*vi*) Ω_A *is* \hat{A} -free.

Proof: A is Gorenstein \Leftrightarrow $\operatorname{Ext}^n_{\widehat{\mathcal{C}}}(k, A) = k \Leftrightarrow \Omega_A$ is generated by 1 element as an A-module $\Leftrightarrow \Omega_A \cong A$ (since Ω_A is a faithful A-module) ⇔ $J \cong D$. Thus, (i), (ii), (iii), (iv) are equivalent, and they clearly imply (v) and (vi), and (v) \Leftrightarrow (vi). On the other hand, since $\text{Ext}^n_{\widehat{A}}(k, \Omega_A) = k$, (vi) \Rightarrow (iii).

Remarks:

- 1. Ω_A has finite injective dimension (as an \hat{A} -module). Indeed, we may assume A is complete; by lemma 1, it suffices to show that J has weak dimension $\leq n$. But the duality theorem $(\#)$ implies that for any Amodule M, Tor $_i^A(M, J) = 0$ for $i > n$, since $\text{Ext}_{A}^{n-i}(A/M^p, M) = 0$ for all $p > 0$.
- 2. The associated prime ideals to A and Ω_A (or what is the same, the minimal prime ideals of (0) in \hat{A} and Ω_A , since dim $\Omega_A = \dim A$ and both are Cohen-Macaulay) are the same.

To see this, note that since Ω_A is Cohen-Macaulay of dimension n, Ass (Ω_A) ⊂ Ass (\widehat{A}) . If $\mathcal{P} \in \text{Ass}(\widehat{A}), \mathcal{P} \notin \text{Ass}(\Omega_A)$, choose an $x \notin \mathcal{P}$ such that x lies in all the associated primes of Ω_A . Then $x^m \neq 0$ for any $m > 0$, but x^m kills Ω_A for large m. This is impossible since Ω_A is a faithful \hat{A} -module.

3. We want to compute End $_{\widehat{A}}(\Omega_A)$. We may assume that A is complete without loss of generality. Then from Corollary 1 (with $j = 0$, $M =$ Ω_A), we have

$$
\mathcal{D}(\mathrm{End}_{A}(\Omega_{A})) \cong \varinjlim_{p} \mathrm{Ext}^{n}_{A}(A/\mathcal{M}^{p}, \Omega_{A}),
$$

and so

$$
\operatorname{End}_{A}(\Omega_{A}) \cong \mathcal{D}(\lim_{\substack{\longrightarrow \\ p}} \operatorname{Ext}^{n}(A/\mathcal{M}^{p}, \Omega_{A})) \cong \lim_{\substack{\longleftarrow \\ p}} \mathcal{D}(\operatorname{Ext}^{n}_{A}(A/\mathcal{M}^{p}, \Omega_{A}))
$$

$$
\cong \lim_{\substack{\longleftarrow \\ p}} (\lim_{\substack{\longrightarrow \\ q}} \operatorname{Hom}_{A}(A/\mathcal{M}^{q}, A/\mathcal{M}^{p})) \cong \lim_{\substack{\longrightarrow \\ p}} \operatorname{Hom}_{A}(A/\mathcal{M}^{p}, A/\mathcal{M}^{p}) \cong A.
$$
Thus,
$$
\operatorname{End}_{\widehat{A}}(\Omega_{A}) \cong \widehat{A}.
$$

4. Since Ω_A has finite injective dimension over \hat{A} , for any prime ideal P of A, the localised module $(\Omega_A)_{\mathcal{P}}$ has finite injective dimension over $A_{\mathcal{P}}$. Indeed, if N is an $A_{\mathcal{P}}$ -module of finite type, then there exists an Amodule N_1 of finite type such that $N \cong (N_1)_{\mathcal{P}}$, and $\text{Ext}^i_{\widehat{A}_{\mathcal{P}}}(N,(\Omega_A)_{\mathcal{P}}) \cong$ $\text{Ext}^i_{\widehat{A}}(N_1, \Omega_A) \otimes_{\widehat{A}} \widehat{A}_{\mathcal{P}} = 0$ for *i* sufficiently large.

Hence, if P is any minimal prime of (0) in \hat{A} , then $(\Omega_A)_{\mathcal{P}}$ has finite injective dimension over the Artin ring $A_{\mathcal{P}}$ so that (since it is of finite type) it is injective over $A_{\mathcal{P}}$ (by lemma 3). Hence, $(\Omega_A)_{\mathcal{P}}$ is a direct sum of finitely many copies of the injective hull over $A_{\mathcal{P}}$ of its residue field. But since $\text{End}_{\widehat{A}}(\Omega_A) = A$, we have

 $(\Omega_A)_{\mathcal{P}} =$ injective hull of residue field of $A_{\mathcal{P}}$ over $A_{\mathcal{P}}$.

In particular,

length $(A_{\mathcal{P}}) =$ length $((\Omega_A)_{\mathcal{P}})$.

Thus, if A is a domain, Ω_A is of rank 1 over \widehat{A} .

Here we made use of the fact that if A is an Artin ring and M and A-module of finite type, then length $(M) =$ length $(\mathcal{D}(M))$, since this holds for $M = k$ and both sides are additive on short exact sequences.

Definition: A module Ω_0 of finite type over a Cohen-Macaulay local ring A is said to be a *dualising module* if $A \otimes_A \Omega_0 \cong \Omega_A$.

Note that if Ω_0 is dualising for A, we have the duality ismorphism

$$
\lim_{\stackrel{\longrightarrow}{p}} \operatorname{Ext}^j_A(A/\mathcal{M}^p, M) \cong \mathcal{D}(\operatorname{Ext}^{n-j}_A(M, \Omega_0))
$$

for any finitely generated A-module M. This follows immediately from Corollary 1.

Remark: A dualising module need not always exist for a local Cohen-Macaulay ring A , if A is not complete. However, we shall see that if it exists for A, then it exists for any localisation of A and any Cohen-Macaulay quotient A/I . Since it exists for Gorenstein rings $(\Omega_0 = A)$, it exists for the localisations of Cohen-Macaulay quotients of A. Note that Ω_0 is unique up to isomorphism.

The next Proposition will be used to give a characterisation of the dualising module.

Proposition 5 Let A be a Noetherian Cohen-Macaulay local ring and M an A-module of finite type which is Cohen-Macaulay of dimension equal to dim A and of finite injective dimension. Then there is an integer r such that $\widehat{A}\otimes_A M \cong \Omega_A^{\oplus r}.$

Proof: Let $r = \dim \operatorname{Ext}_A^n(k, M)$ where $n = \dim A$.

First note that since $\text{Ext}_{A}^{i}(k, M) = 0$ for $i < n$ (since M is Cohen-Macaulay), $\text{Ext}_{A}^{i}(N, M) = 0$ for $i < n$ and N of finite length. Thus,

$$
\operatorname{Ext}^n_A(A/\mathcal{M}^{p-1},M)\to\operatorname{Ext}^n_A(A/\mathcal{M}^p,M)
$$

is injective for every p, and

$$
\mathcal{D}(\operatorname{Ext}\nolimits_A^n(A/\mathcal{M}^{p+1},M))\to\mathcal{D}(\operatorname{Ext}\nolimits_A^n(A/\mathcal{M}^p,M))
$$

is surjective for every p. Choose a basis y_1, \ldots, y_r of $\mathcal{D}(\mathrm{Ext}_A^n(k,M)) \cong$ Ext $_A^n(k, M)$. It follows that we can find $z_1, \ldots, z_r \in \lim_{r \to \infty} \mathcal{D}(\text{Ext}_A^n(A/\mathcal{M}^p, M))$ whose images in $\mathcal{D}(\text{Ext}_{A}^{n}(k, M))$ are y_1, \ldots, y_r respectively. Now, we have a natural isomorphism (from (†))

$$
\lim_{\substack{\longleftarrow \\ p}} \mathcal{D}(\text{Ext}_{A}^{n}(A/\mathcal{M}^{p}, M)) \cong \text{Hom}_{\widehat{A}}(\widehat{A}\otimes_{A} M, \Omega_{A}) \cong \text{Hom}_{A}(M, \Omega_{A}),
$$

and we get elements $\alpha_1, \ldots, \alpha_r \in \text{Hom}_A(M, \Omega_A)$, and hence a homomorphism $\alpha = (\alpha_1, \ldots, \alpha_r) : M \to \Omega_A^{\oplus r}$. Now, we know that $\text{Hom}_{\widehat{A}}(\Omega_A, \Omega_A) \cong \widehat{A}$, and under the composite

$$
\text{Hom}_{\widehat{A}}(\Omega_A, \Omega_A) \cong \lim_{\substack{\longleftarrow \\ p}} \mathcal{D}(\text{Ext}_{A}^{n}(A/\mathcal{M}^p, \Omega_A)) \to \mathcal{D}(\text{Ext}_{A}^{n}(k, \Omega_A)) \cong \mathcal{D}(k) \cong k,
$$

the image of $1 \in$ End (Ω_A) is a non-zero element (this is because the composite map End $_{\widehat{A}}(\Omega_A) \to k$ is surjective. Also, the diagram

$$
\text{Hom}_{A}(M, \Omega_A) \rightarrow \mathcal{D}(\text{Ext}_{A}^{n}(k, M))
$$
\n
$$
\text{Hom}(\alpha_i, \Omega_A) \downarrow \qquad \qquad \downarrow \mathcal{D}(\text{Ext}^{n}(k, \alpha_i))
$$
\n
$$
\text{Hom}_{\widehat{A}}(\Omega_A, \Omega_A) \rightarrow \mathcal{D}(\text{Ext}^{n}(k, \Omega_A))
$$

is commutative, by the naturality of the duality isomorphism. Thus, we deduce that

$$
\operatorname{Ext}^n_A(k, \alpha) : \operatorname{Ext}^n_A(k, M) \to \operatorname{Ext}^n_A(k, \Omega_A^{\oplus r})
$$

is an isomorphism. Since $\text{Ext}_{A}^{i}(k, M) = \text{Ext}_{A}^{i}(k, \Omega_{A}) = 0$ for $i \neq n$, we deduce (by the five-lemma and induction on length (N)) that for any Amodule N of finite length,

$$
\operatorname{Ext}^n_A(N,M) \xrightarrow{\operatorname{Ext}^n_A(N,\alpha)} \operatorname{Ext}^n_A(N,\Omega_A^{\oplus r})
$$

is an isomorphism. If x_1, \ldots, x_n is a system of parameters and $p > 0$ an integer, then we have an isomorphism

$$
\operatorname{Ext}^n_A(A/(x_1^p,\ldots,x_n^p),M)\cong M/(x_1^p,\ldots,x_n^p)M,
$$

which is natural in M , since M is Cohen-Macaulay. Thus, as p vaaries, we have a compatible family of isomorphisms

$$
\frac{M}{(x_1^p,\ldots,x_n^p)M} \cong \frac{\Omega_A^{\oplus r}}{(x_1^p,\ldots,x_n^p)\Omega_A^{\oplus r}}.
$$

Passing to the inverse limit over $p, \widehat{M} \cong \Omega_A^{\oplus r}$, as desired. \Box

Corollary 3 Let A be as in the Proposition, and M an A-module such that

- (i) M is Cohen-Macaulay of dimension $n = \dim A$
- (ii) M is of finite injective dimension over A
- (iii) End $_A(M) = A$.

Then M is a dualising module. The same conclusion holds if (iii) is replaced by

(iii)' Ext ⁿ_A(k, M) = k.

Proof: We know that $\widehat{M} \cong \Omega_A^{\oplus r}$, where $r \geq 1$. If $r > 1$, then End $_A(M) \otimes_A$ $\widehat{A} \cong \text{End}_{\widehat{A}}(\Omega_A^{\oplus r}) \cong M_r(\widehat{A})$, where $M_r(\widehat{A})$ is the ring of $r \times r$ matrices over A. In particular, End $_A(M) \neq A$. Thus $r = 1$, proving that M is dualising for A. Since $r = \dim_k \operatorname{Ext}^n_A(k, M)$, we may replace (iii) by (iii)' . \Box

Corollary 4 Let A be as in the Proposition, and suppose a dualising module Ω_0 exists for A. Then, we have

- (i) for any prime ideal P of A , $\Omega_0 \otimes_A A_P$ is a dualising module for A_P
- (ii) if I is any ideal of A such that A/I is Cohen-Macaulay and $\text{ht } I =$ h, the $\operatorname{Ext}_A^h(A/I, \Omega_0)$ is a dualising module for A/I .

Proof: (i) In fact, $\Omega_0 \otimes_A A_p$ is Cohen-Macaulay of dimension equal to dim $A_{\mathcal{P}}$, oof finite injective dimension, and End $_{\mathcal{P}}(\Omega_0 \otimes_A A_{\mathcal{P}}) \cong A_{\mathcal{P}}$. (ii) First, we check that $\text{Ext}_{A}^{i}(A/I, \Omega_{0}) = 0$ if $i \neq h$. This follows from:

Sublemma 1 Let A be as in the Proposition. Suppose M is a finite A module of finite injective dimension which is Cohen-Macaulay of dimension equal to dim A, and N is Cohen-Macaulay of dimension r. Then $\text{Ext}_{A}^{i}(N, M)$ = 0 for $i \neq n-r$.

Proof: We proceed by induction on r. If $r = 0$, we are through since N is Artinian and the result holds for $N = k$. Suppose $r > 0$, and the result holds for smaller values of r. Let x be a non-zero divisor on N . Then we have the exact sequence

$$
\operatorname{Ext}\nolimits_A^i(N,M) \xrightarrow{x} \operatorname{Ext}\nolimits_A^i(N,M) \to \operatorname{Ext}\nolimits^{i+1}(N/xN,M)
$$

and by the induction hypothesis, the last group is 0 if $i+1 \neq n-(r-1)$ i.e., $i \neq$ $n - r$. Since Extⁱ_A(N, M) is then a finite A-module on which multiplication by x is surjective, we are done by Nakayama's lemma. \square

Now to the proof of (ii). Let $0 \to \Omega_0 \to I^{\bullet}$ be a finite injective resolution of Ω_0 . Then the sequences

$$
0 \to \text{Hom}_A(A/I, I^0) \to \cdots \to \text{Hom}_A(A/I, I^{h-1}) \to B^h \to 0
$$

and

$$
0 \to Z^h \to \text{Hom}_A(A/I, I^h) \to \text{Hom}_A(A/I, I^{h+1}) \to \cdots
$$

are exact (this defines B^h , Z^h) and $Z^h/B^h \cong \text{Ext}^h_A(A/I,\Omega_0)$. Further, Hom $_A(A/I, I^j)$ is an injective A/I -module for each j. Thus Z^h , B^h and hence $\text{Ext}_{A}^{h}(A/I, \Omega_{0})$ have finite injective dimension over A/I ; further, B^{h} is in fact injective, so that $Z^h \cong B^h \oplus \text{Ext}^h_A(A/I, \Omega_0)$. Now $\text{Ext}^i_A(k, \Omega_0) = 0$ for $i \neq n$, and $\text{Ext}_{A}^{n}(k, \Omega_{0}) = k$, where $\text{Ext}_{A}^{i}(k, \Omega_{0})$ is the i^{th} -cohomology of

the complex Hom $_A(k, I^{\bullet}) \cong \text{Hom }_{A/I}(k, \text{Hom }_{A}(A/I, I^{\bullet}))$. Hence we deduce that if $M = \text{Ext}^h_A(A/I, \Omega_0)$, then

$$
\operatorname{Ext}^{i}_{A/I}(k, M) = 0 \quad 0 \le i < n - h,
$$
\n
$$
\operatorname{Ext}^{n-h}_{A/I}(k, M) = k.
$$

In view of Corollary 3 we are through. \Box

3 Local cohomology

3.1 Sheaf theoretic preliminaries

We start with some preliminary definitions. A map $f: X \to Y$ of topological spaces is said to be an *immersion* if f factors as $X \xrightarrow{g} Z \xrightarrow{i} Y$, where g is a homeomorphism, Z a locally closed subspace of Y , and i the inclusion. The immersion f is said to be *closed* or *open* if $Z \subset Y$ is closed or open, respectively.

Let F be a sheaf of abelian groups on a topological space $X, U \subset X$ and open set, and $\sigma \in \mathcal{F}(U)$ a section over U. Then the support of σ , denoted $|\sigma|$, is the set

$$
| \sigma | = \{ x \in U \mid \sigma_x \neq 0 \},
$$

where σ_x is the image of σ in the stalk \mathcal{F}_x of $\mathcal F$ at x. Clearly $|\sigma|$ is closed in U. Similarly we define the support of the sheaf $\mathcal F$ (which we denote supp $\mathcal F$) as

$$
\operatorname{supp} \mathcal{F} = \{ x \in X \mid \mathcal{F}_x \neq 0 \}.
$$

Recall the standard sheaf operations: if $f: X \to Y$ is a map of topological spaces, and F is a sheaf on X, its direct image $f_*\mathcal{F}$ is the sheaf

$$
f_*(\mathcal{F})(U) = \mathcal{F}(f^{-1}(U)),
$$

and if $\mathcal G$ is a sheaf on Y, its *inverse image* $f^{-1}\mathcal G$ is the sheaf on X associated to the presheaf

$$
U \mapsto \lim_{\substack{V \supset f(U) \\ V \text{ open in } Y}} \mathcal{G}(V).
$$

Then $f^{-1}\mathcal{G}$ has stalks $(f^{-1}\mathcal{G})_x = \mathcal{G}_{f(x)}$. In the case when f is the inclusion of an open set, $(f^{-1}\mathcal{G})(U) = \mathcal{G}(U)$ for all open sets $U \subset X \subset Y$. The functors f^{-1} and f_* are adjoint *i.e.*, there are natural isomorphisms

$$
\mathrm{Hom}_{\mathcal{O}_X}(f^{-1}\mathcal{G}, \mathcal{F}) \cong \mathrm{Hom}_{\mathcal{O}_Y}(\mathcal{G}, f_*\mathcal{F}),
$$

for any sheaves of abelian groups \mathcal{F}, \mathcal{G} on X, Y respectively.

Let (X, \mathcal{O}_X) be a ringed space. We denote the category of \mathcal{O}_X -modules by \mathcal{M}_X , and for a locally closed subspace $Y \subset X$, we denote by $\mathcal{M}_{X,Y}$ the full subcategory of \mathcal{M}_X consisting of sheaves with support contained in Y.

Proposition 6 Let (X, \mathcal{O}_X) be a ringed space, $i: Y \to X$ the inclusion of a locally closed subset, and $\mathcal{M}_Y = i^{-1} \mathcal{M}_X$. Then the restriction of i^{-1} : $\mathcal{M}_X \to \mathcal{M}_Y$ to $\mathcal{M}_{X,Y}$ gives an equivalence of categories $i^{-1}: \mathcal{M}_{X,Y} \to \mathcal{M}_Y$.

Proof: We have to construct a quasi-inverse functor $\tilde{i}: \mathcal{M}_Y \to \mathcal{M}_{X,Y}$ (*i.e.*, a functor \tilde{i} such that $\tilde{i} \circ i^{-1}$ and $i^{-1} \circ \tilde{i}$ are naturally isomorphic to the respective identity functors). If $\mathcal{F} \in \mathcal{M}_X$ and $x \in Y$, then $(i^{-1}\mathcal{F})_x = \mathcal{F}_x$, so $\text{supp } i^{-1}\mathcal{F} = \text{supp }\mathcal{F} \cap Y$. If $\mathcal{F} \in \mathcal{M}_{X,Y}$ then (if i exists) we have $i \circ i^{-1}\mathcal{F} \cong \mathcal{F}$, and if $\mathcal{G} \in \mathcal{M}_Y$, then $i^{-1} \circ \tilde{i} \mathcal{G} \cong \mathcal{G}$. Hence $\tilde{i} : \mathcal{M}_Y \to \mathcal{M}_{X,Y}$ must preserve supports. Hence, it suffices to construct i when i is either a closed immersion or an open immersion, since an arbitrary immersion i is the composite $i_1 \circ i_2$ where i_2 is an open immersion and i_1 is a closed immersion, and we may then define $i = i_1 \circ i_2$.

When i is a closed immersion, we can take $\tilde{i} = i_*$, since we evidently have $\text{supp } i_*\mathcal{G} \subset Y \text{ and } i^{-1} \circ i_*\mathcal{G} \cong \mathcal{G} \text{ for } \mathcal{G} \in \mathcal{M}_Y, \text{ and for } \mathcal{F} \in \mathcal{M}_{X,Y}, \text{ the natural }$ map $\mathcal{F} \to i_* \circ i^{-1} \mathcal{F}$ is an isomorphism. Note that for $\mathcal{G} \in \mathcal{M}_Y$, we consider $i_*\mathcal{G}$ as an \mathcal{O}_X -module via the homomorphism $\mathcal{O}_X \to i_*\mathcal{O}_Y = i_* \circ i^{-1}\mathcal{O}_X$.

Suppose that i is an open immersion, and $\mathcal{G} \in \mathcal{M}_Y$. Then define ig by

$$
i(G)(U) = \{ \sigma \in \mathcal{G}(Y \cap U) \mid \mid \sigma \mid \text{is closed in } U \}.
$$

One verifies easily that the sheaf conditions are satisfied. This is an \mathcal{O}_X module in a natural way, and we have evidently $i^{-1} \circ \tilde{i} = 1_{\mathcal{M}_Y}$, the identity functor. Suppose on the other hand that $\mathcal{F} \in \mathcal{M}_{X,Y}$. We have an evident injection of \mathcal{O}_X -modules $\tilde{i} \circ i^{-1} \mathcal{F} \hookrightarrow \mathcal{F}$ and this is an isomorphism, since both sides have support in Y and we get the identity on applying i^{-1} to both $sides.$

Definition: For a locally closed subset Y of X and an $i^{-1}\mathcal{O}_X$ -module G on Y, if $i : \mathcal{M}_Y \to \mathcal{M}_{X,Y}$ is the quasi-inverse to $i^{-1} : \mathcal{M}_{X,Y} \to \mathcal{M}_Y$, we put $\mathcal{G}_Y = \tilde{i}\mathcal{G}$. Further, for any $\mathcal{F} \in \mathcal{M}_X$, we shall put $\mathcal{F}_Y = \tilde{i}i^{-1}\mathcal{F}$.

Note that $(\tilde{i}\mathcal{G})_y = \mathcal{G}_y$ for any $y \in Y$, while $(\tilde{i}\mathcal{G})_x = 0$ for $x \notin Y$.

Now, if $Y \stackrel{i}{\rightarrow} X$, $Z \stackrel{j}{\rightarrow} Y$ are immersions, we have $(i \circ j)^{-1} = j^{-1} \circ i^{-1}$; hence $(i \circ j = \tilde{i} \circ \tilde{j}$. Further, i^{-1} and \tilde{i} are both exact functors, hence so is $\widetilde{i} \circ i^{-1}: \mathcal{M}_X \to \mathcal{M}_{X,Y}, \, \mathcal{F} \mapsto \mathcal{F}_Y.$

If $i: Y \to X$ is a closed immersion, then $\tilde{i} = i_*$, so that for any $\mathcal{F} \in \mathcal{M}_X$, $\mathcal{G} \in \mathcal{M}_Y$ we have natural isomorphisms

$$
\text{Hom}_{\mathcal{O}_X}(\mathcal{F}, \tilde{i}\mathcal{G}) \cong \text{Hom}_{\mathcal{O}_Y}(i^{-1}\mathcal{F}, \mathcal{G}) \qquad \cdots \qquad (1)
$$

where Y is closed in X, $\mathcal{F} \in \mathcal{M}_X$, $\mathcal{G} \in \mathcal{M}_Y$, and in paticular, for any \mathcal{F} , a natural transformation of functors $\mathcal{F} \to \tilde{i} \circ i^{-1} \mathcal{F} = \mathcal{F}_Y$, which is evidently surjective.

On the other hand, suppose $Y \subset X$ is open. It follows from the definition of \tilde{i} in this case that there is a natural transformation $\tilde{i} \circ i^{-1} \mathcal{F} = \mathcal{F}_Y \to \mathcal{F}$ which is injective, and an isomorphism when restricted to Y. Hence $\mathcal{F}/\mathcal{F}_Y$ has support in the closed set $X - Y$, so that if $\mathcal{F} \in \mathcal{M}_{X,Y}$, $\mathcal{F}' \in \mathcal{M}_X$, then

$$
\operatorname{Hom}\nolimits_{{\mathcal O}_X}({\mathcal F},{\mathcal F}'/{\mathcal F}'_Y)=0
$$

and so

$$
\operatorname{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{F}') = \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{F}'_Y).
$$

Hence, if $\mathcal{G} \in \mathcal{M}_Y, \mathcal{F} \in \mathcal{M}_X$, we have an isomorphism of functors

$$
\text{Hom}_{\mathcal{O}_Y}(\mathcal{G}, i^{-1}\mathcal{F}) \cong \text{Hom}_{\mathcal{O}_X}(\tilde{i}\mathcal{G}, \tilde{i} \circ i^{-1}\mathcal{F}) \cong \text{Hom}_{\mathcal{O}_X}(\tilde{i}\mathcal{G}, \mathcal{F}_Y)
$$
\n
$$
\cong \text{Hom}_{\mathcal{O}_X}(\tilde{i}\mathcal{G}, \mathcal{F}),
$$

that is,

$$
\text{Hom}_{\mathcal{O}_Y}(\mathcal{G}, i^{-1}\mathcal{F}) \cong \text{Hom}_{\mathcal{O}_X}(\tilde{i}\mathcal{G}, \mathcal{F}) \qquad \cdots \qquad (2)
$$

if $i: Y \to X$ is the inclusion of an open set.

Finally, if $Z \stackrel{j}{\to} Y \stackrel{i}{\to} X$ where $Z \subset Y$ is locally closed, and $Y \subset X$ is locally closed, then $Z \subset X$ is locally closed, and the relations $(i \circ j)^{-1} =$ $j^{-1} \circ i^{-1}$ and $(i \circ j) = i \circ j$ imply

$$
(\widetilde{i \circ j} \circ (i \circ j)^{-1} \circ \widetilde{i} \circ i^{-1} = (\widetilde{i \circ j} \circ j^{-1} \circ i^{-1} \circ \widetilde{i} \circ i^{-1})
$$

$$
= (\widetilde{i \circ j} \circ j^{-1} \circ i^{-1} = (\widetilde{i \circ j} \circ (i \circ j)^{-1})
$$

i.e., there is a natural isomorphism

$$
(\mathcal{F}_Y)_Z \cong \mathcal{F}_Z
$$

for any $\mathcal{F} \in \mathcal{M}_X$. More generally, for any two locally closed subsets $Y, Z \subset$ X, and $\mathcal{F} \in \mathcal{M}_X$, we have

$$
(\mathcal{F}_Y)_Z \cong ((\mathcal{F}_Y)_Z)_{Y \cap Z} \cong (\mathcal{F}_Y)_{Y \cap Z} \cong \mathcal{F}_{Y \cap Z} \qquad \cdots \qquad (3).
$$

Suppose now that Y is locally closed in X , and Z is closed in Y . Then we have natural transformations

$$
\mathcal{F}_{Y-Z} = (\mathcal{F}_Y)_{Y-Z} \hookrightarrow \mathcal{F}_Y \quad \text{(since } Y - Z \subset Y \text{ is open)}
$$

and

 $\mathcal{F}_Y \rightarrow (\mathcal{F}_Y)_Z \cong \mathcal{F}_Z$ (since Z is closed in Y).

The sequence of sheaves

$$
0 \to \mathcal{F}_{Y-Z} \to \mathcal{F}_Y \to \mathcal{F}_Z \to 0 \qquad \cdots \qquad (4)
$$

is exact.

Proposition 7 For any locally closed subspace Y of X , the functor

$$
\widetilde{i} \circ i^{-1} : \mathcal{M}_X \to \mathcal{M}_X, \quad \mathcal{F} \mapsto \mathcal{F}_Y,
$$

has a right adjoint $\mathcal{H}_Y^0(-) : \mathcal{M}_X \to \mathcal{M}_X$, so that there are natural isomorphisms

$$
\text{Hom}_{\mathcal{O}_X}(\mathcal{F}_Y, \mathcal{F}') \cong \text{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{H}_Y^0(\mathcal{F}')) \qquad \cdots \qquad (5)
$$

Proof: In view of (3) , it suffices to prove the statement when Y is open or Y is closed in X. When Y is open, we have by (2) ,

$$
\text{Hom}_{\mathcal{O}_X}(\mathcal{F}_Y, \mathcal{F}') \cong \text{Hom } -\mathcal{O}_X(\tilde{i} \circ i^{-1}\mathcal{F}, \mathcal{F}') \cong \text{Hom}_{\mathcal{O}_Y}(i^{-1}\mathcal{F}, i^{-1}\mathcal{F}')
$$
\n
$$
\cong \text{Hom}_{\mathcal{O}_X}(\mathcal{F}, i_* \circ i^{-1}\mathcal{F}'),
$$

so we can take $\mathcal{H}_Y^0(\mathcal{F}') = i_* \circ i^{-1}\mathcal{F}'$.

When Y is closed in X , define

$$
\mathcal{H}_Y^0(\mathcal{F})(U) = \{ \sigma \in \mathcal{F}(U) \mid \mid \sigma \mid \subset Y \}.
$$

Clearly, $\mathcal{H}_{Y}^{0}(\mathcal{F})$ is the maximal subsheaf of \mathcal{F} whose support is contained in Y. Hence for $\mathcal{F} \in \mathcal{M}_{X,Y}$, Hom $\mathcal{O}_X(\mathcal{F}, \mathcal{F}') = \text{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{H}_Y^0(\mathcal{F}'))$ and in particular,

Hom
$$
\mathcal{O}_X(\mathcal{F}_Y, \mathcal{F}') = \text{Hom } \mathcal{O}_X(\mathcal{F}_Y, \mathcal{H}_Y^0(\mathcal{F}')) \cong \text{Hom } \mathcal{O}_Y(i^{-1}\mathcal{F}, i^{-1}\mathcal{H}_Y^0(\mathcal{F}'))
$$

\n
$$
\cong \text{Hom } \mathcal{O}_X(\mathcal{F}, i_*i^{-1}\mathcal{H}_Y^0(\mathcal{F}')) \cong \text{Hom } \mathcal{O}_X(\mathcal{F}, \mathcal{H}_Y^0(\mathcal{F}')).
$$

\nhis verifies that \mathcal{H}_Y^0 is right adjoint to $\tilde{i} \circ i^{-1}$.

This verifies that \mathcal{H}_Y^0 is right adjoint to $i \circ i^{-1}$

Corollary 5 If $Z \subset Y \subset X$ are immersions, then

$$
\mathcal{H}_Z^0(\mathcal{H}_Y^0(\mathcal{F})) \cong \mathcal{H}_Z^0(\mathcal{F}). \qquad \cdots \qquad (6)
$$

Proof: This follows from (3) and (5). \Box

Corollary 6 For Y closed in X we have a natural isomorphism of functors

$$
\text{Hom}_{\mathcal{O}_X}(\tilde{i}\mathcal{G},\mathcal{F}) \cong \text{Hom}_{\mathcal{O}_Y}(\mathcal{G},i^{-1}\mathcal{H}_Y^0(\mathcal{F})) \qquad \cdots \qquad (7)
$$

for all $\mathcal{G} \in \mathcal{M}_Y, \, \mathcal{F} \in \mathcal{M}_X.$

Proof: This follows on substituting $\mathcal{F} = \tilde{i}\mathcal{G}$ in (5), and noting that $\mathcal{H}_Y^0(\mathcal{F})$ has support in Y. \Box

Remarks:

1. Since for Y open in X, $\mathcal{H}_Y^0(\mathcal{F}) = i_* \circ i^{-1}\mathcal{F}$, and for Y closed in X, $\mathcal{H}_Y^0(\mathcal{F})(U) = \{ \sigma \in \mathcal{F}(U) \mid \mid \sigma \mid \subset Y \}$, if $Y \subset U \subset X$ with Y closed in U and U open in X , then we have the explicit description

$$
\mathcal{H}_Y^0(\mathcal{F})(V) = \{ \sigma \in \mathcal{F}(U \cap V) \mid \mid \sigma \mid \subset Y \} \tag{8}
$$

since $\mathcal{H}_Y^0(\mathcal{F}) = \mathcal{H}_Y^0(\mathcal{H}_U^0(\mathcal{F}))$. For Y, Z locally closed in X, we have

$$
\mathcal{H}_Y^0 \circ \mathcal{H}_Z^0 = \mathcal{H}_{Y \cap Z}^0 \qquad \qquad \cdots \qquad (9)
$$

as follows immediately from $(\mathcal{F}_Y)_Z \cong \mathcal{F}_{Y \cap Z}$ (see (3)).

- 2. The functors \tilde{i} , $\mathcal{F} \mapsto \mathcal{F}_Y$, \mathcal{H}_Y^0 are all 'independent' of the structure sheaf \mathcal{O}_X , in the sense that they commute with the 'restriction of scalars' functors from the category of \mathcal{O}_X -modules to the category of \mathcal{O}_X -modules, for a homomorphism of sheaves of rings $\mathcal{O}_X \to \mathcal{O}_X$, and the corresponding restrictions to Y, etc. Thus, we can form $i(\mathcal{F})$, \mathcal{F}_Y , $\mathcal{H}_Y^0(\mathcal{F})$ as sheaves of abelian groups and get the same resulting sheaves (take $\mathcal{O}_X = \mathbf{Z}_X$, the constant sheaf associated to the ring **Z** of integers).
- **Proposition 8** (i) For Y locally closed in X, the functor $\mathcal{H}_Y^0 : \mathcal{M}_X \to$ \mathcal{M}_X is left exact and takes injectives to injectives.
	- (ii) If $Y \subset X$ is locally closed and $Z \subset Y$ is closed, we have natural transformations

$$
\mathcal{H}_Z^0 \to \mathcal{H}_Y^0, \quad \mathcal{H}_Y^0 \to \mathcal{H}_{Y-Z}^0 \qquad \cdots \qquad (10)
$$

and for any $\mathcal{F} \in \mathcal{M}_X$ the sequence

$$
0 \to \mathcal{H}_Z^0(\mathcal{F}) \to \mathcal{H}_Y^0(\mathcal{F}) \to \mathcal{H}_{Y-Z}^0(\mathcal{F}) \qquad \cdots \qquad (11)
$$

is exact.

Proof: (i) is clear from (5) and the fact that $\mathcal{F} \mapsto \mathcal{F}_Y$ is exact.

The natural transformations (10), and the exactness of (11), follow from (5) and the existence of the natural tranformations $\mathcal{F}_{Y-Z} \to \mathcal{F}_Y$ and $\mathcal{F}_Y \to$ \mathcal{F}_Z (see the discussion preceeding Proposition 7), and the exact sequence associated with these natural transformations (note that if we have a short exact sequence of functors $A \rightarrow B$ which all have right adjoints, the corresponding 'dual' sequence of adjoint functors $\mathcal{B} \to \mathcal{A}$ need not be exact on the right, in general). the right, in general).

Lemma 5 Suppose $\mathcal F$ is a flasque sheaf on X . Then

- (i) $\mathcal{H}_Y^0(\mathcal{F})$ is flasque for any locally closed subspace Y of X
- (ii) for $Y \subset X$ locally closed and $Z \subset Y$ closed, the sequence

$$
0 \to \mathcal{H}_Z^0(\mathcal{F}) \to \mathcal{H}_Y^0(\mathcal{F}) \to \mathcal{H}_{Y-Z}^0(\mathcal{F}) \to 0 \qquad \cdots \qquad (12)
$$

is exact.

Proof: (i) If $Y = U \cap F$ where $U \subset X$ is open, $F \subset X$ is closed, we have $\mathcal{H}_Y^0(\mathcal{F}) = \mathcal{H}_U^0(\mathcal{H}_F^0(\mathcal{F}))$. Hence it suffices to prove (i) if Y is open or closed. If Y is open, $\mathcal{H}_Y^0(\mathcal{F}) = i_* \circ i^{-1}(\mathcal{F})$, and $i^{-1}(\mathcal{F})$, $i_* \circ i^{-1}(\mathcal{F})$ are flasque, so we are through. Suppose that $Y \subset X$ is closed, and let $\sigma \in \mathcal{H}_Y^0(\mathcal{F})(U)$ *i.e.*, $\sigma \in \mathcal{F}(U)$, and $|\sigma| \subset Y \cap U$. Let $Z = Y - (Y \cap U)$. We can define $\tau \in \mathcal{F}(X - Z)$ by taking $\tau |_{U} = \sigma$, and $\tau |_{X-Y} = 0$. Extend τ to a section $\eta \in \mathcal{F}(X)$ (F is flasque). Then $|\eta| \subset Y$, since $\eta |_{X-Y} = \tau |_{X-Y} = 0$, so $\eta \in \mathcal{H}_Y^0(\mathcal{F})(X)$, and clearly $\eta \mid_U = \sigma$.

(ii) Since $Z = Y \cap F$ where F is closed in X (take $F =$ closure of Z in X , the sequence (12) can be rewritten as

$$
0 \to \mathcal{H}_F^0(\mathcal{H}_Y^0(\mathcal{F})) \to \mathcal{H}_Y^0(\mathcal{F}) \to \mathcal{H}_{X-F}^0(\mathcal{H}_Y^0(\mathcal{F})) \to 0.
$$

Since $\mathcal{H}_Y^0(\mathcal{F})$ is flasque by (i) we are reduced to considering the case $Y = X$, where $Z \subset X$ is closed. By (11) we are reduced to showing that for any U, $\mathcal{F}(U) \to \mathcal{H}_{X-Z}^0(\mathcal{F})(U) = \mathcal{F}(U \cap (X - Z))$ is surjective, which is clear since $\mathcal F$ is flasque.

Definition: For an \mathcal{O}_X -module F and $Y \subset X$ a locally closed subset, define

$$
H_Y^0(\mathcal{F}) = \mathcal{H}_Y^0(\mathcal{F})(X).
$$

It follows from the above that $H_Y^0(\mathcal{F})$ is left exact in \mathcal{F} , and if

 $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$

is exact with \mathcal{F}' flasque (in particular, if \mathcal{F}' is \mathcal{O}_X -injective), then

$$
0 \to H_Y^0(\mathcal{F}') \to H_Y^0(\mathcal{F}) \to H_Y^0(\mathcal{F}'') \to 0
$$

is exact. Further, if F is flasque, and $Z \subset Y$ is closed, then

$$
0 \to H^0_Z(\mathcal{F}) \to H^0_Y(\mathcal{F}) \to H^0_{Y-Z}(\mathcal{F}) \to 0
$$

is exact.

Definition: For $p \geq 0$, H_Y^p $Y^p(Y)$ and \mathcal{H}_Y^p $P_Y^p(\mathcal{F})$ are the right derived functors of $H_Y^0(\mathcal{F}), \, \mathcal{H}_Y^0(\mathcal{F})$.

Now, if

$$
0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0
$$

is exact, and $\mathcal{F}', \mathcal{F}''$ are flasque, then $\mathcal F$ is flasque; if $\mathcal F'$ is flasque and $\mathcal F$ is injective, then \mathcal{F}'' is flasque. It now follows by standard arguments that by induction on p, H_Y^p $P_Y^p(\mathcal{F}) = 0$ and \mathcal{H}_Y^p $\mathcal{P}_Y(\mathcal{F}) = 0$ (as a sheaf) for $p > 0$, if $\mathcal F$ is flasque. This shows in particular that the objects H_Y^p ${}_{Y}^{p}(\mathcal{F}), \ \mathcal{H}_{Y}^{p}$ $\frac{p}{Y}(\mathcal{F})$ are 'independent of the structure sheaf \mathcal{O}_X ' since they may be computed as \mathbf{Z}_X modules, where \mathbf{Z}_X is the constant sheaf \mathbf{Z} on X . This is because an injective \mathcal{O}_X -resolution is a flasque resolution by \mathbf{Z}_X -modules (*i.e.*, by flasque sheaves of abelian groups).

If $U \subset X$ is open, then

$$
\mathcal{H}_{Y\cap U}^0(\mathcal{F}_U)=\mathcal{H}_{Y\cap U}^0(\mathcal{F})_U=\mathcal{H}_U^0(\mathcal{H}_Y^0(\mathcal{F}))_U=\mathcal{H}_Y^0(\mathcal{F})_U,
$$

so that we have a natural map

$$
H_Y^0(\mathcal{F}) \stackrel{\rho^X_U}{\to} H_{Y \cap U}^0(\mathcal{F}_U) = H_{Y \cap U}^0(\mathcal{F}|_U).
$$

Since F flasque \Rightarrow F |U flasque, we have for all $p \geq 0$ a map

$$
H_Y^p(\mathcal{F}) \stackrel{\rho_X^X}{\to} H_{Y \cap U}^p(\mathcal{F}|_U),
$$

and clearly $\rho_W^V \circ \rho_V^U = \rho_W^U$ for $U \supset V \supset W$. Hence we obtain a presheaf

 $U \mapsto H_Y^p$ $\frac{p}{Y\cap U}(\mathcal{F}\mid_{U})$

on X. Let $(\mathcal{F})_Y^p$ be the associated sheaf. Then for any exact sequence

$$
0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0
$$

of \mathcal{O}_X -modules, there is a long exact sequence

$$
\cdots \to (\mathcal{F}')^p_Y \to (\mathcal{F})^p_Y \to (\mathcal{F}'')^p_Y \to (\mathcal{F}')^{p+1}_Y \to \cdots
$$

which is deduced from the long exact sequence of presheaves. Further, $\mathcal F$ injective $\Rightarrow \mathcal{F}|_U$ flasque for any open $U \subset X \Rightarrow (\mathcal{F})_Y^p = 0$ for $p > 0$, since the presheaf is itself 0. Hence $\mathcal{F} \mapsto (\mathcal{F})_Y^p$ $_Y^p$ is a universal ∂-functor in the sense of Grothendieck. Lastly, $(\mathcal{F})_Y^0 = \mathcal{H}_Y^0(\mathcal{F})$, from the definition of $H_{Y \cap U}^0(\mathcal{F}|_U)$. We deduce that $(\mathcal{F})_Y^p$ $P_Y^p \cong \mathcal{H}_Y^p$ $_{Y}^{p}(\mathcal{F})$. Hence we have proved:

Lemma 6 The sheaves \mathcal{H}_Y^p $_{Y}^{p}(\mathcal{F})$ are associated to the presheaves

$$
U \mapsto H^p_{Y \cap U}(\mathcal{F}|_U).
$$

Suppose that $Y \subset X$ is locally closed, and $Z \subset Y$ is closed. Let $0 \to \mathcal{F} \to \mathcal{I}^{\bullet}$ be an injective resolution of \mathcal{F} . In view of our earlier remarks (see (12)) we have short exact sequences of complexes

$$
0 \to \mathcal{H}_Z^0(\mathcal{I}^{\bullet}) \to \mathcal{H}_Y^0(\mathcal{I}^{\bullet}) \to \mathcal{H}_{Y-Z}^0(\mathcal{I}^{\bullet}) \to 0,
$$

$$
0 \to H_Z^0(\mathcal{I}^{\bullet}) \to H_Y^0(\mathcal{I}^{\bullet}) \to H_{Y-Z}^0(\mathcal{I}^{\bullet}) \to 0,
$$

and so we get long exact sequences

$$
0 \to \mathcal{H}_Z^0(\mathcal{F}) \to \mathcal{H}_Y^0(\mathcal{F}) \to \mathcal{H}_{Y-Z}^0(\mathcal{F}) \to \cdots \to \mathcal{H}_Z^p(\mathcal{F})
$$

$$
\to \mathcal{H}_Y^p(\mathcal{F}) \to \mathcal{H}_{Y-Z}^p(\mathcal{F}) \to \mathcal{H}_Z^{p+1}(\mathcal{F}) \to \cdots \qquad \cdots \qquad (13)
$$

$$
0 \to H_Z^0(\mathcal{F}) \to H_Y^0(\mathcal{F}) \to H_{Y-Z}^0(\mathcal{F}) \to \cdots \to H_Z^p(\mathcal{F})
$$

\n
$$
\to H_Y^p(\mathcal{F}) \to H_{Y-Z}^p(\mathcal{F}) \to H_Z^{p+1}(\mathcal{F}) \to \cdots \qquad \cdots \qquad (14)
$$

Since \mathcal{H}_{Y}^{0} takes injectives to injectives (Proposition 8), and $\mathcal{H}_{Y}^{0} \circ \mathcal{H}_{Z}^{0} =$ $\mathcal{H}_{Y\cap Z}^0$, and $\Gamma \circ \mathcal{H}_Y^0 = H_Y^0$, we get convergent spectral sequences (of composite functors)

$$
E_2^{p,q} = \mathcal{H}_Y^p(\mathcal{H}_Z^q(\mathcal{F})) \Rightarrow \mathcal{H}_{Y \cap Z}^{p+q}(\mathcal{F}) \qquad \cdots \qquad (15)
$$

$$
E_2^{p,q} = H^p(X, \mathcal{H}_Y^q(\mathcal{F})) \Rightarrow H_Y^{p+q}(\mathcal{F}) \qquad \cdots \qquad (16)
$$

We recall some well known facts on the functors Ext and $\mathcal{E}xt$. Let F, G be \mathcal{O}_X -modules, and define a sheaf \mathcal{H} *om* $\mathcal{O}_X(\mathcal{F}, \mathcal{G})$ by

$$
\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})(U) = \text{Hom}_{\mathcal{O}_X|_U}(\mathcal{F}|_U, \mathcal{G}|_U).
$$

Then Hom $_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})$ and $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})$ are left exact covariant functors in G for fixed $\hat{\mathcal{F}}$. For $p \geq 0$ define $\operatorname{Ext}^p_{{\mathcal{O}}_X}(\mathcal{F}, -)$, $\mathcal{E}xt^p_{{\mathcal{O}}_X}(\mathcal{F}, -)$ to be the p^{th} right derived functors of Hom $\mathcal{O}_X(\mathcal{F}, -)$, Hom $\mathcal{O}_X(\mathcal{F}, -)$ respectively.

Suppose now that G is injective. We assert that $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})$ is flasque. In fact, if $\sigma \in \mathcal{H}$ on $\mathcal{O}_X(\mathcal{F}, \mathcal{G})(U)$, then σ is an $\mathcal{O}_X|_U$ -linear sheaf map $\mathcal{F}|_U \rightarrow$ $\mathcal{G}|_U$, which we may regard as an \mathcal{O}_X -map $\mathcal{F}_U \to \mathcal{G}$. Since \mathcal{F}_U is a subsheaf of F, this extends to an \mathcal{O}_X -map $\tau : \mathcal{F} \to \mathcal{G}$. Then $\tau \in \mathcal{H}$ on $\mathcal{O}_X(\mathcal{F}, \mathcal{G})(X)$ and $\tau |_{U} = \sigma$. Since $\Gamma(X, \mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})) = \text{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})$, we get a spectral sequence

$$
E_2^{p,q} = H^p(X, \mathcal{E}xt^q_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})) \Rightarrow \text{Ext}^{p+q}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G}) \qquad \cdots \qquad (17)
$$

Note that since $i^{-1}: \mathcal{M}_X \to \mathcal{M}_U$ (*U* open) admits a left adjoint $i: \mathcal{M}_U \to \mathcal{M}_X$ (see (2)) which is exact, we see that for any injective \mathcal{O}_X module $\mathcal{I} \in \mathcal{M}_X$, $i^{-1}\mathcal{I} \in \mathcal{M}_U$ is an injective \mathcal{O}_U -module. It follows that

$$
\mathcal{E}xt_{\mathcal{O}_X}^p(\mathcal{F},\mathcal{G})\mid_U=\mathcal{E}xt_{\mathcal{O}_U}^p(\mathcal{F}\mid_U,\mathcal{G}\mid_U) \qquad \cdots \qquad (18)
$$

where $\mathcal{O}_U = \mathcal{O}_X |_{U}$. If

$$
0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0
$$

is an exact sequence of \mathcal{O}_X -modules, and

$$
0\to \mathcal{G}\to \mathcal{I}^\bullet
$$

is an injective resolution of G , then there are exact sequences of complexes

$$
0 \to \operatorname{Hom}\nolimits_{{\mathcal O}_X}({\mathcal F}',{\mathcal I}^\bullet) \to \operatorname{Hom}\nolimits_{{\mathcal O}_X}({\mathcal F},{\mathcal I}^\bullet) \to \operatorname{Hom}\nolimits_{{\mathcal O}_X}({\mathcal F}'',{\mathcal I}^\bullet) \to 0
$$

and

$$
0\to \mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}',\mathcal{I}^{\bullet})\to \mathcal{H}om_{\mathcal{O}_X}(\mathcal{F},\mathcal{I}^{\bullet})\to \mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}'',\mathcal{I}^{\bullet})\to 0,
$$

which yield long exact sequences

$$
\cdots \to \operatorname{Ext}^{p}_{\mathcal{O}_{X}}(\mathcal{F}', \mathcal{G}) \to \operatorname{Ext}^{p}_{\mathcal{O}_{X}}(\mathcal{F}, \mathcal{G}) \to
$$

$$
\operatorname{Ext}^{p}_{\mathcal{O}_{X}}(\mathcal{F}'', \mathcal{G}) \to \operatorname{Ext}^{p+1}_{\mathcal{O}_{X}}(\mathcal{F}', \mathcal{G}) \to \cdots \qquad \cdots \qquad (19)
$$

and

$$
\cdots \to \mathcal{E}xt^p_{\mathcal{O}_X}(\mathcal{F}',\mathcal{G}) \to \mathcal{E}xt^p_{\mathcal{O}_X}(\mathcal{F},\mathcal{G}) \to
$$

$$
\mathcal{E}xt^p_{\mathcal{O}_X}(\mathcal{F}'',\mathcal{G}) \to \mathcal{E}xt^{p+1}_{\mathcal{O}_X}(\mathcal{F}',\mathcal{G}) \to \cdots \qquad \cdots \qquad (20)
$$

Again, for any open $U \subset X$, we have restrictions

$$
\rho_U^X: \text{Ext}^p_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G}) \to \text{Ext}^p_{\mathcal{O}_X|_U}(\mathcal{F}|_U, \mathcal{G}|_U)
$$

induced by the restrictions on Hom , and we get a presheaf

 $U \mapsto \text{Ext}^p_{\mathcal{O}_X|_U}(\mathcal{F}|_U, \mathcal{G}|_U)$

for every $p > 0$. If $\widetilde{\text{Ext}}^p(\mathcal{F}, \mathcal{G})$ is the associated sheaf, then $\widetilde{\text{Ext}}^p(\mathcal{F}, \mathcal{I})$ vanishes for I injective (since I $|_U$ is injective for every U), and for a given F, there is a functorial long exact sequence associated to any exact sequence of \mathcal{G} 's. Hence $\widetilde{\operatorname{Ext}}^p(\mathcal{F},-)$ is a universal ∂ -functor in Grothendieck's sense; since $\widetilde{\mathrm{Ext}}^0(\mathcal{F}, \mathcal{G}) = \mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G}),$ we deduce that there is a natural isomorphism $\widetilde{\mathrm{Ext}}^p(\mathcal{F}, \mathcal{G}) \cong \mathcal{E}xt^p_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G}).$ Thus we have proved:

Lemma 7 The sheaves $\mathcal{E}xt^p$ are associated to the presheaves

$$
U \mapsto \text{Ext}^p_{\mathcal{O}_X|_U}(\mathcal{F}|_U, \mathcal{G}|_U).
$$

Lemma 8 (i) The natural map

$$
\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})_x \to \text{Hom}_{\mathcal{O}_{X,x}}(\mathcal{F}_x, \mathcal{G}_x)
$$

induces a natural map for each $p > 0$

$$
\mathcal{E}xt^p_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})_x \to \mathrm{Ext}^p_{\mathcal{O}_{X,x}}(\mathcal{F}_x,\mathcal{G}_x) \qquad \cdots \qquad (21)
$$

which is a morphism of ∂ -functors in $\mathcal G$ (i.e., is compatible with the respective long exact sequences associated to a short exact sequences of $\mathcal{G}'s$).

(ii) Suppose that \mathcal{O}_X is \mathcal{O}_X -coherent and $\mathcal F$ is \mathcal{O}_X -coherent. Then the maps in (21) are isomorphisms for all $p \geq 0$ for all $\mathcal{G} \in \mathcal{M}_X$.

Proof: (i) Since $\mathcal{E}xt_{\mathcal{O}_X}^p(\mathcal{F},-)_x$ and $\mathcal{E}xt_{\mathcal{O}_{X,x}}^p(\mathcal{F}_x,-)$ are both δ -functors, and the first is universal (since it is effaceable), the natural transformation for $p = 0$ induces a unique natural transformation of ∂ -functors.

(ii) For $p = 0$, the result is clear for $\mathcal{F} = \mathcal{O}_X$. Next, for any coherent \mathcal{F} , since the problem is local, by (18), we may assume that there exists an exact sequence

$$
\mathcal{O}_X^{\oplus m} \to \mathcal{O}_X^{\oplus n} \to \mathcal{F} \to 0,
$$

and the result follows from the 5-lemma.

We assume that the result holds for a given value of p for all coherent \mathcal{F} , and prove it for $p + 1$. Given a coherent sheaf F, then again after replacing X by an open neighbourhood of x , we can find an exact sequence

$$
0 \to \mathcal{F}' \to \mathcal{O}_X^{\oplus n} \to \mathcal{F} \to 0
$$

for some *n*, with \mathcal{F}' coherent.

We claim that this yields a commutative diagram

$$
\mathcal{E}xt^p_{\mathcal{O}_X}(\mathcal{O}_X^{\oplus n},\mathcal{G})_x \rightarrow \mathcal{E}xt^p_{\mathcal{O}_X}(\mathcal{F}',\mathcal{G})_x \rightarrow \mathcal{E}xt^{p+1}_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})_x \rightarrow \mathcal{E}xt^{p+1}_{\mathcal{O}_X}(\mathcal{O}_X^{\oplus n},\mathcal{G})_x
$$

\n $\cong \downarrow$
\n $\text{Ext}^p_{\mathcal{O}_{X,x}}(\mathcal{O}_{X,x}^{\oplus n},\mathcal{G}_x) \rightarrow \text{Ext}^p_{\mathcal{O}_{X,x}}(\mathcal{F}'_x,\mathcal{G}_x) \rightarrow \text{Ext}^{p+1}_{\mathcal{O}_{X,x}}(\mathcal{F}_x,\mathcal{G}_x) \rightarrow \text{Ext}^{p+1}_{\mathcal{O}_{X,x}}(\mathcal{O}_{X,x}^{\oplus n},\mathcal{G}_x)$

Now $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{O}_X, \mathcal{G}) \cong \mathcal{G}$, so that $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{O}_X, -)$ is the identity functor on \mathcal{M}_X . Hence $\mathcal{E}xt^i_{\mathcal{O}_X}(\mathcal{O}_X,-)=0$ for $i>0$. Thus $\mathcal{E}xt^{p+1}_{\mathcal{O}_X}(\mathcal{O}_X^{m,p},\mathcal{G})=0$. Similarly, $\text{Ext}_{\mathcal{O}_X}^{p+1}(\mathcal{O}_{X,x}^{\oplus n},\mathcal{G}_x) = 0$; thus, granting the cl $\mathcal{O}_{X,x}^{p+1}(\mathcal{O}_{X,x}^{\oplus n},\mathcal{G}_x) = 0$; thus, granting the claim, the result follows.

To prove the claim, let $0 \to \mathcal{G} \to \mathcal{I}^{\bullet}$ be an injective resolution of \mathcal{G} . Let $0 \to \mathcal{G}_x \to I^{\bullet}$ be an injective resolution of \mathcal{G}_x over $\mathcal{O}_{X,x}$. We can find a map of complexes $\mathcal{I}^{\bullet}_x \to I$ lifting the identity map on \mathcal{G}_x , since I^{\bullet} is a complex of injectives. Using the natural transformation (in \mathcal{G})

$$
\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})_x \to \text{Hom}_{\mathcal{O}_{X,x}}(\mathcal{F}_x, \mathcal{G}_x)
$$

we then have a commutative diagram, whose rows are exact sequences of complexes,

$$
\begin{array}{ccc}\n0 \to \mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{I}^{\bullet})_x \to & \mathcal{H}om_{\mathcal{O}_X}(\mathcal{O}_X \oplus^n, \mathcal{I}^{\bullet})_x & \to \mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}', \mathcal{I}^{\bullet})_x \to 0 \\
\downarrow & & \downarrow & & \downarrow \\
0 \to \text{Hom}_{\mathcal{O}_{X,x}}(\mathcal{F}_x, I^{\bullet}) \to & \text{Hom}_{\mathcal{O}_{X,x}}(\mathcal{O}_{X,x} \oplus^n, I^{\bullet}) & \to \text{Hom}_{\mathcal{O}_{X,x}}(\mathcal{F}'_x, I^{\bullet}) \to 0\n\end{array}
$$

where the rows yield the long exact sequences used in the earlier diagram, and the vertical maps induce the vertical maps of that diagram. This proves the claim. \Box

Note that (ii) does not follow from the general result about ∂ -functors, since $\mathcal{G} \mapsto \text{Ext}^p_{\mathcal{O}_{X,x}}(\mathcal{F}, \mathcal{G})$ is not known to be effaceable.

3.2 Inductive limits and dimension

Lemma 9 Let X be a Noetherian topological space, I a directed set, and let

$$
\mathcal{F}_i, i \in I,
$$

$$
\psi_{ij} : \mathcal{F}_j \to \mathcal{F}_i \ \forall \ i, j \in I, i \geq j
$$

be an inductive $(=direct)$ system of sheaves of abelian groups on X. Let

$$
\mathcal{F}=\lim_{\substack{i\in I}}\mathcal{F}_i,
$$

and let Y be a locally closed subset of X. Then we have

(i) for any open set $U \subset X$,

$$
\mathcal{F}(U) = \lim_{\substack{\longrightarrow \\ i \in I}} \mathcal{F}_i(U).
$$

- (ii) \lim_{\longrightarrow} i∈I $H_Y^0(\mathcal{F}_i) = H_Y^0(\mathcal{F}).$
- (iii) if \mathcal{F}_i is flasque for each i, the $\mathcal F$ is flasque.

Proof: (i) Let

$$
\mathcal{G}(U) = \lim_{\substack{\longrightarrow \\ i \in I}} \mathcal{F}_i(U).
$$

Then $U \mapsto \mathcal{G}(U)$ is a presheaf, such that the direct limit F is the associated sheaf. We claim that in fact $\mathcal G$ is a sheaf, so that $\mathcal G = \mathcal F$ (see Hartshorne, Algebraic Geometry, Ch. II, Exercise 1.11). Suppose $U = \bigcup_{\alpha} \text{where } \{U_{\alpha}\}_{{\alpha} \in A}$ is a family of open sets, and let $\sigma \in \mathcal{G}(U)$ with $\sigma \mapsto 0 \in \mathcal{G}(U_\alpha)$ for all α . Since U is Noetherian, it is quasi-compact, and we may replace the cover $\{U_{\alpha}\}\$ by a finite subcover, say $\{U_1, \dots, U_n\}$. Now σ is the image of some $\sigma_i \in \mathcal{F}_i(U)$. For each $1 \leq t \leq n$, we can find an index $i_t \geq i$ such that $\sigma_i \mid_{U_t} \mapsto 0 \in \mathcal{F}_{i_t}(U_t)$. We can find $j \geq i_t$ for all $1 \leq t \leq n$, since any two elements of I have a common upper bound. If $\sigma_i \mapsto \sigma_j \in \mathcal{F}_j(U)$, then $\sigma_j |_{U_t}=0$ for each t, so $\sigma_i = 0$. Hence $\sigma = 0$.

On the other hand, suppose given $\sigma_{\alpha} \in \mathcal{G}(U_{\alpha})$ with

$$
\sigma_{\alpha} |_{U_{\alpha} \cap U_{\beta}} = \sigma_{\beta} |_{U_{\alpha} \cap U_{\beta}} \quad \forall \alpha, \beta \in \mathcal{A};
$$

we wish to find $\sigma \in \mathcal{G}(U)$ with $\sigma|_{U_{\alpha}} = \sigma_{\alpha}$. Let $A \subset \mathcal{A}$ be a finite subset such that $\bigcup_{\alpha \in A} U_{\alpha} = U$. As before, we can find an index $i \in I$ which is sufficiently large so that for each $\alpha \in A$, there exist $\sigma_{i,\alpha} \in \mathcal{F}_i(U_\alpha)$ such that $\sigma_{i,\alpha} \mapsto \sigma_\alpha$. Further, for $\alpha, \beta \in A$,

$$
\sigma_{i,\alpha} |_{U_{\alpha} \cap U_{\beta}} - \sigma_{i,\beta} |_{U_{\alpha} \cap U_{\beta}}
$$

restricts to zero on $U_{\alpha} \cap U_{\beta}$. Hence, by replacing i by a still larger index, we may assume that the sections $\sigma_{i,\alpha}$ patch to yield a section $\sigma_i \in \mathcal{F}_i(U)$. Let $\sigma \in \mathcal{G}(U)$ be the image of σ_i ; it suffices to show that $\sigma|_{U_\alpha} = \sigma_\alpha$, where we know this for $\alpha \in A$. But for any $\alpha \in A$, U_{α} is covered by $U_{\alpha} \cap U_{\beta}$ with $\beta \in A$, and

$$
\sigma\mid_{U_{\alpha}\cap U_{\beta}}=\sigma_{\beta}\mid_{U_{\alpha}\cap U_{\beta}}=\sigma_{\alpha}\mid_{U_{\alpha}\cap U_{\beta}},
$$

so that $\sigma|_{U_{\alpha}} - \sigma_{\alpha}$ is a 'locally zero' element of $\mathcal{G}(U_{\alpha})$. By the argument given above, this shows it is zero, as desired.

(ii) For any sheaf $\mathcal{G}, H_Y^0(\mathcal{G})$ depends only on the restriction of \mathcal{G} to an open neighbourhood of Y in X; also, $\lim_{y \to \infty} (\mathcal{F}_i |_{U}) = \mathcal{F} |_{U}$ for any open set U; hence we may replace X by an open subset containing Y, and so we may assume that Y is closed in X. If $U = X - Y$, then (see (14)) for any sheaf $\mathcal{G}, H_Y^0(\mathcal{G}) = \ker(\rho_U^X : \mathcal{G}(X) \to \mathcal{G}(U))$. Since \lim_{\longrightarrow} is exact, we have a

commutative diagram with exact rows

$$
0 \to \varinjlim_{i} H_{Y}^{0}(\mathcal{F}_{i}) \to \varinjlim_{i} \mathcal{F}_{i}(X) \to \varinjlim_{i} \mathcal{F}_{i}(U)
$$

$$
0 \to H_{Y}^{0}(\mathcal{F}) \to \qquad \mathcal{F}(X) \qquad \to \mathcal{F}(U)
$$

where the second and third vertical arrows are isomorphisms. This proves the first arrow is one too.

(iii) If \mathcal{F}_i is flasque for each $i \in I$, then for any open $U \subset X$, we have an exact sequence $\mathcal{F}_i(X) \to \mathcal{F}_i(U) \to 0$; since \lim_{\longrightarrow} is exact,

$$
\varinjlim_{i} \mathcal{F}_{i}(X) \to \varinjlim_{i} \mathcal{F}_{i}(U) \to 0 \text{ is exact } i.e., \ \mathcal{F}(X) \to \mathcal{F}(U) \to 0 \text{ is exact.} \qquad \Box
$$

We recall the *Godement resolution* of any sheaf of abelian groups by flasque sheaves. For any abelian sheaf $\mathcal F$ define

$$
\mathcal{G}od^0(\mathcal{F})(U) = \prod_{x \in U} \mathcal{F}_x,
$$

and let $i = i(\mathcal{F}) : \mathcal{F} \to \mathcal{G}od^0(\mathcal{F})$ be the map given by

$$
i_U: \mathcal{F}(U) \to \mathcal{G}od^0(\mathcal{F})(U) = \prod_{x \in U} \mathcal{F}_x, \ \sigma \mapsto (\sigma_x)_{x \in U},
$$

where $\sigma \mapsto \sigma_x \in \mathcal{F}_x$. Then *i* is injective. Having defined

$$
0\to \mathcal{F}\stackrel{i}{\to} \mathcal{G}od^0(\mathcal{F})\stackrel{i_0}{\to} \mathcal{G}od^1(\mathcal{F})\stackrel{i_1}{\to} \cdots \stackrel{i_{n-1}}{\to} \mathcal{G}od^n(\mathcal{F}),
$$

define $\mathcal{G}od^{n+1}(\mathcal{F}) = \mathcal{G}od^0(\text{coker }i_{n-1}),$ and let $i_n : \mathcal{G}od^n(\mathcal{F}) \to \mathcal{G}od^{n+1}(\mathcal{F})$ be the composite

$$
\mathcal{G}od^{n}(\mathcal{F}) \longrightarrow \text{coker}\left(i_{n-1}\right) \stackrel{i(\text{coker}\left(i_{n-1}\right))}{\longrightarrow} \mathcal{G}od^{n+1}(\mathcal{F}).
$$

Clearly $\mathcal{G}od^0(\mathcal{F})$ is flasque for any \mathcal{F} , and hence so is $\mathcal{G}od^n(\mathcal{F})$ for each *n*. Further, by induction on $n, \mathcal{F} \to \mathcal{G}od^{n}(\mathcal{F})$ is an exact functor on the category of abelian sheaves, since $\mathcal{G}od^0$ is one. Hence $\mathcal{F} \mapsto \mathcal{G}od^{\bullet}(\mathcal{F})$ is an exact functor from the category of abelian sheaves on X to the category of flasque complexes; also $i(F) : \mathcal{F} \to \mathcal{G}od^0(\mathcal{F})$ is a natural transformation.

Proposition 9 Let X be a Noetherian space, $Y \subset X$ a locally closed set, and

$$
\mathcal{F}_i, i \in I,
$$

$$
\psi_{ij} : \mathcal{F}_j \to \mathcal{F}_i \ \forall \ i, j \in I, i \ge j
$$

be an inductive (=direct) system of abelian sheaves. Then for each $p > 0$, we have natural isomorphisms

$$
\lim_{\substack{\longrightarrow \\ i}} H_Y^p(\mathcal{F}_i) \cong H_Y^p(\lim_{\substack{\longrightarrow \\ i}} \mathcal{F}_i).
$$

Proof: Let $\mathcal{F} = \lim_{i \to \infty} \mathcal{F}_i$. Since $\lim_{i \to \infty}$ is exact, the above remarks on the Godement resolution imply that we have a resolution

$$
0 \to \mathcal{F} \to \varinjlim_{i} \mathcal{G}od^{\bullet}(\mathcal{F}_{i}),
$$

which by lemma $9(i)$ is in fact a flasque resolution. By lemma $9(i)$, there is a natural isomorphism

$$
H_Y^0(\lim_{\substack{\longrightarrow \\ i}} \mathcal{G}od^n(\mathcal{F}_i)) \cong \lim_{\substack{\longrightarrow \\ i}} H_Y^0(\mathcal{G}od^n(\mathcal{F}_i))
$$

for each n , and hence an isomorphism of complexes

$$
H_Y^0(\lim_{\substack{\longrightarrow \\ i}} \mathcal{G}od^{\bullet}(\mathcal{F}_i)) \cong \lim_{\substack{\longrightarrow \\ i}} H_Y^0(\mathcal{G}od^{\bullet}(\mathcal{F}_i)).
$$

Since $\lim_{n \to \infty}$ is exact, it commutes with taking cohomology, and so we obtain i isomorphisms

$$
H_Y^n(\mathcal{F}) = H^n(H_Y^0(\lim_i \mathcal{G}od^{\bullet}(\mathcal{F}_i))) \cong \lim_{\substack{\longrightarrow \\ i}} H^n(H_Y^0(\mathcal{G}od^{\bullet}(\mathcal{F}_i))) = \lim_{\substack{\longrightarrow \\ i}} H_Y^n(\mathcal{F}_i).
$$

Theorem 10 (i) Let X be a Noetherian space of (combinatorial)¹ dimension n, Y a locally closed subspace and $\mathcal F$ any abelian sheaf on X. Then

$$
H_Y^p(X, \mathcal{F}) = 0 \ \forall \ p > n.
$$

(ii) If X and $\mathcal F$ are as above and

$$
0 \to \mathcal{F} \to \mathcal{F}^0 \to \mathcal{F}^1 \to \cdots \to \mathcal{F}^{n-1} \to \mathcal{F}^n \to 0
$$

is exact with \mathcal{F}^i flasque for $0 \leq i < n$, then \mathcal{F}^n is also flasque.

Proof: Assume (i) for Y closed. We shall deduce (ii). Since \mathcal{F}^i is flasque for $0 \leq i \leq n$, by splitting the given exact sequence into short exact sequences, we obtain isomorphisms H_Y^p $Y^p(Y^n) \cong H_Y^{n+p}$ $y^{n+p}_Y(\mathcal{F}) = 0$ for all $p > 0$. From the exact sequence (see (14))

$$
H^0(X, \mathcal{F}^n) \to H^0(X - Y, \mathcal{F}^n) \to H^1_Y(\mathcal{F}^n)
$$

we see that $\mathcal{F}^n(X) \to \mathcal{F}^n(X-Y)$ is surjective for every closed set Y *i.e.*, \mathcal{F}^n is flasque. On the other hand, (ii) implies (i), since we may apply $H_Y^0(-)$ to such a finite flasque resolution to compute the H_Y^p $_{Y}^{p}(\mathcal{F}).$

Thus it suffices to prove (i) when Y is closed. Since this is clear for $n = 0$, we may assume $n > 0$ and that the theorem holds for all X of smaller dimension. Further, by Noetherian induction, we may assume the theorem is valid if X is replaced by any proper closed subset. Now, if $\mathcal S$ is the class of all sheaves for which the theorem holds, then S is closed under extensions i.e., if

$$
0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0
$$

¹Any open cover has a refinement such that all $n + 2$ -fold intersections of distinct open sets vanish, and n is the smallest such integer. If X is irreducible, this means any open cover has a refinement consisting of at most $n + 1$ open sets.

is an exact sequence with $\mathcal{F}', \mathcal{F}'' \in \mathcal{S}$, then $\mathcal{F} \in \mathcal{S}$. Further, by Proposition 9, S is closed under inductive limits. Now any sheaf $\mathcal F$ on X is the inductive limit of quotients of finite direct sums $\oplus_{i=1}^r \mathbf{Z}_{U_i}$, where the U_i are open in X, and \mathbf{Z}_{U_i} is the constant sheaf \mathbf{Z} on U_i , extended by zero to all of X. Arguing by induction on r, it suffices to prove the theorem when $\mathcal F$ is a quotient of \mathbf{Z}_U for some open $U \subset X$. Suppose then that

$$
0 \to \mathcal{G} \to \mathbf{Z}_U \to \mathcal{F} \to 0
$$

is exact. Identify $(\mathbf{Z}_U)_x$ with **Z** for all $x \in U$. For any $r > 0$, the sets $E_r = \{x \in U \mid r \mathcal{F}_x = 0\}$ are open in U. If all the E_r are empty, then $\mathcal{G} = 0$ and $\mathcal{F} = \mathbf{Z}_U$. If not, choose the smallest r such that $V = E_r$ is non-empty. Then for $x \in V$, $\mathcal{G}_x = r\mathbb{Z}$, so that $\mathcal{F}|_V = (\mathbb{Z}/r\mathbb{Z})|_V$, and we have an exact sequence

$$
0 \to (\mathbf{Z}/r\mathbf{Z})_V \to \mathcal{F} \to \mathcal{F}' \to 0
$$

with \mathcal{F}' supported on a proper closed subset $F \subset U$. Since H_Y^p $\frac{p}{Y}(\mathcal{F}') =$ H_Y^p $\mathcal{Y}_{\Omega F}(\mathcal{F}' | F)$, by the induction hypothesis it suffices to consider the sheaf $(\mathbf{Z}/r\mathbf{Z})_V$. Thus, in any case, we may assume $\mathcal{F} = A_V$, where A is an abelian group, and $V \subset X$ is open. If X is reducible, we can express $\mathcal F$ as an extension of two sheaves having supports contained in proper closed subsets of X , and we are through. Hence we may assume X is irreducible. We then have an exact sequence

$$
0 \to A_V \to A_X \to A_{X-V} \to 0.
$$

Since X is irreducible, A_X is flasque, and if $F = X - V$, then dim $F < \dim X$. Since H_Y^p ${}_{Y}^{p}(A_{F})=H_{Y}^{p}$ $Y_{\Gamma\Gamma}^p(A_F|_F) = 0$ for $p > n - 1$, the exact sequence

$$
H_Y^p(A_F) \to H_Y^{p+1}(A_V) \to H_Y^{p+1}(A_X)
$$

finishes the proof. \Box

Corollary 7 If X is Noetherian of dimension n, Y locally closed on X, then the sheaves \mathcal{H}_Y^p $_{Y}^{p}(\mathcal{F})$ are 0 for $p > n$.

Proof: Immediate from the Theorem and lemma 6.

3.3 Application to schemes

Lemma 10 Let X be a Noetherian scheme, $\mathcal{QC}(X)$ the category of quasicoherent \mathcal{O}_X -modules on X, and $\mathcal I$ an injective object of $\mathcal{QC}(X)$. Then for any open $U \subset X$, $\mathcal{I}|_U$ is an injective object of $\mathcal{QC}(U)$.

Proof: We first make a remark: on a Noetherian scheme Y, in order that $\mathcal{F} \in \mathcal{QC}(Y)$ be an injective object, it is sufficient to assume that if $0 \to \mathcal{G} \to$ \mathcal{G}' is an exact sequence of *coherent* sheaves on Y, any homomorphism $\mathcal{G} \to \mathcal{F}$ extends to \mathcal{G}' . Indeed, suppose this condition holds, and let $0 \to \mathcal{G}_1 \to \mathcal{G}_2$ be an exact sequence in $\mathcal{QC}(Y)$ and $\alpha_1 : \mathcal{G}_1 \to \mathcal{F}$ a homomorphism. By Zorn's lemma we can find a maximal quasi-coherent subsheaf \mathcal{G}_3 of \mathcal{G}_2 to which α_1 extends; replacing $(\mathcal{G}_1, \alpha_1)$ by \mathcal{G}_3 and the extension, we can assume that \mathcal{G}_1 is itself maximal. If $\mathcal{G}_1 \neq \mathcal{G}_2$, we can find a coherent subsheaf \mathcal{G}_4 of \mathcal{G}_2 such that \mathcal{G}_4 is not a subsheaf of \mathcal{G}_1 . Let $\mathcal{G}_5 = \mathcal{G}_4 \cap \mathcal{G}_1$; now $\alpha \mid_{\mathcal{G}_5}$ extends to $\beta: \mathcal{G}_4 \to \mathcal{F}$; hence α extends to the subsheaf of \mathcal{G}_2 generated by \mathcal{G}_1 and \mathcal{G}_4 , contradicting the maximality of \mathcal{G}_1 .

Now to the proof of the lemma. Let $0 \to \mathcal{F}_1 \to \mathcal{G}_1$ be an exact sequence of coherent sheaves on U. Now \mathcal{G}_1 can be extended to a coherent sheaf $\mathcal G$ on X, and $\mathcal F_1$ can be extended to a coherent subsheaf of $\mathcal G$. Suppose $\alpha : \mathcal{F}_1 \to \mathcal{I}$ |U is a homomorphism. If $\mathcal J$ is any ideal sheaf of definition for $X - U$ in X, then since F is coherent and $\mathcal{F} |_{U} = \mathcal{F}_{1}$, we can extend α to a homomorphism $\alpha_1 : \mathcal{J}^n \mathcal{F} \to \mathcal{I}$ for some sufficiently large n (where $\mathcal{J}^n \mathcal{F} = \text{im}(\mathcal{J}^n \otimes \mathcal{F} \to \mathcal{F})$. Since $\mathcal{J}^n \mathcal{F}$ is a subsheaf of \mathcal{G}, α_1 extends to a homomorphism $\beta : \mathcal{G} \to \mathcal{I}$, whose restriction to U is the desired extension. \Box

Lemma 11 Let X be a Noetherian scheme and $\mathcal I$ an injective object of $\mathcal{QC}(X)$. Then *I* is an injective object in the category \mathcal{M}_X of all \mathcal{O}_X -modules.

Proof: To check that an \mathcal{O}_X -module $\mathcal I$ is an injective object of $\mathcal M_X$, it suffices to check that given a sheaf of ideals $\mathcal{J} \subset \mathcal{O}_X$ and a homomorphism $\mathcal{J} \to \mathcal{I}$, it extends to \mathcal{O}_X . Indeed, suppose this holds, and $\mathcal{F} \subset \mathcal{G}$ are any \mathcal{O}_X -modules, and $\alpha : \mathcal{F} \to \mathcal{I}$ a homomorphism. By Zorn's lemma there is a maximal subsheaf of G to which α extends, so we may assume that F is itself maximal. If $\mathcal{F} \neq \mathcal{G}$, then we can find a homomorphism $\beta : (\mathcal{O}_X)_U \to \mathcal{G}$ with $\text{im } \beta \not\subset \mathcal{F}$. Let $\mathcal{J} = \beta^{-1}(\mathcal{F})$, so that $\mathcal{J} \subset (\mathcal{O}_X)_U \subset \mathcal{O}_X$ is a sheaf of ideals (perhaps not coherent); if $\gamma : \mathcal{J} \to \mathcal{I}$ is the induced map, it extends to $(\mathcal{O}_X)_U$ (as it does to all of \mathcal{O}_X), giving an extension of α to $\mathcal{F} + \text{im } \beta$, contradicting maximality.

Now, let $\mathcal I$ be an injective object in $\mathcal{QC}(X)$, $\mathcal J$ a sheaf of ideals and $\alpha : \mathcal{J} \to \mathcal{I}$ a homomorphism. By Zorn's lemma, we may assume that α does not extend to any strictly larger ideal sheaf. Suppose $\mathcal{J} \neq \mathcal{O}_X$, and let $\mathcal{F} = \mathcal{O}_X/\mathcal{J}$. Then $F = \text{supp}(\mathcal{F})$ is closed, since it equals the support of the image of the section $1 \in \Gamma(X, \mathcal{O}_X)$. Let x be the generic point of some component of F, and suppose f_{1x}, \ldots, f_{nx} generate \mathcal{J}_x over $\mathcal{O}_{X,x}$. We can choose an affine open neighbourhood U of x such that

- (i) $F \cap U = F_1$ is irreducible
- (ii) there exist $f_1, \ldots, f_n \in \mathcal{J}(U)$ whose images in \mathcal{J}_x are the f_{ix}
- (iii) if $A = \Gamma(U, \mathcal{O}_X)$, $J = \sum_i Af_i$, and $\eta : A \to A_x = \mathcal{O}_{X,x}$ the canonical map, then $\eta^{-1}(\mathcal{J}_x) = J$.

Let $V = U - F$. Then $\mathcal{J}|_V = \mathcal{O}_V$, so $(\mathcal{O}_U)_V \subset \mathcal{J}|_U$.

Claim: $\mathcal{J}\vert_{U} = \tilde{J} + (\mathcal{O}_{U})_{V}$, where \tilde{J} is the coherent sheaf of ideals on U associated to $J \subset A$.

Granting the claim, let $\alpha_U = \alpha \mid_U$; since $\mathcal{I} \mid_U$ is (by lemma 10) an injective object of $\mathcal{QC}(U)$, we see that $(\alpha_U) |_{\widetilde{J}}: J \to \mathcal{I} |_{U}$ extends to a map $\beta: \mathcal{O}_U \to$ $\mathcal{I} \mid_{U}$. Next, since $\mathcal{I} \mid_{U} \in \mathcal{QC}(U)$, we see that $(\alpha_U) \mid_{(\mathcal{O}_U)_V} (\mathcal{O}_U)_V \to \mathcal{I} \mid_{U}$ extends to a map $\gamma : \mathcal{K} \to \mathcal{I} \mid_{U}$, where K is a defining ideal for F_1 in U. Then β and γ both yield maps $\tilde{J} \cap \mathcal{K} \to \mathcal{I}|_U$ which have the same restriction to V. Hence they have the same restriction to $\mathcal{K}^n(\tilde{J} \cap \mathcal{K})$, for some $n \geq 0$. By Artin-Rees, $\tilde{J} \cap \mathcal{K}^N = \mathcal{K}^{N-r}(\tilde{J} \cap \mathcal{K}^r) \subset \mathcal{K}^n(\tilde{J} \cap \mathcal{K})$ for sufficiently large N. Thus, β and γ yield a well defined map $\delta : \mathcal{K}^N + \tilde{J} \to \mathcal{I}$ |U, which restricts to α_U on $\mathcal{J}\mid_U=(\mathcal{O}_U)_V+\tilde{J}$. Since $\mathcal{I}\mid_U$ is an injective object in $\mathcal{QC}(U)$, δ extends to a map $\mathcal{O}_U \to \mathcal{I}$ | $_U$; this means α extends to a map $\mathcal{J} + (\mathcal{O}_X)_U \to \mathcal{I}$. But this is a contradiction, since $\mathcal{J} + (\mathcal{O}_X)_U$ is a strictly larger ideal sheaf than \mathcal{J} .

To prove the claim, note that since $J \subset \Gamma(U, \mathcal{J})$, we have $\tilde{J} \subset \mathcal{J}$, and so for any point $y \in U$, $J_y = (\tilde{J})_y \subset \mathcal{J}_y \subset A_y = \mathcal{O}_{X,y}$. Next, $\tilde{J}_y + ((\mathcal{O}_U)_V)_y =$ $\mathcal{J}_y = A_y$ for $y \notin F$. For $y \in F_1$, note that there is a commutative diagram

since A_x is a localisation of A_y (as $y \in F_1$, and $x \in F_1$ is the generic point). Further, $\psi(\mathcal{J}_y) \subset \mathcal{J}_x$; hence $\chi^{-1}(\mathcal{J}_y) \subset \eta^{-1}(\mathcal{J}_x) = J$. Since $\mathcal{J}_y \subset A_y$ satisfies $\mathcal{J}_y = A_y \chi(\chi^{-1}(\mathcal{J}_y))$ (this is true of any ideal in A_y), we have $\mathcal{J}_y \subset J_y$ *i.e.*, $\mathcal{J}_y = J_y$. Since $\mathcal{J}|_U, J + (\mathcal{O}_U)_V$ are ideal sheaves in \mathcal{O}_U with the same stalks, they are equal. \Box

Lemma 12 Let X be a Noetherian scheme, $\mathcal{F} \in \mathcal{QC}(X)$ a quasi-coherent sheaf on X. Then there is a monomorphism $0 \to \mathcal{F} \to \mathcal{I}$ where \mathcal{I} is an injective object in \mathcal{M}_X which is quasi-coherent.

Proof: When X is affine this is clear - if $X = \text{Spec } A$, $\mathcal{F} = \widetilde{M}$, choose an injection $M \hookrightarrow I$ where I is an injective A-module; then $\mathcal{F} \hookrightarrow I$ is the desired monomorphism. In the general case, since X is Noetherian, we may cover it by a finite number of open affines, say $X = \bigcup_i U_i$; let $\mu_i : U_i \to X$ be the inclusions. Choose monomorphisms $\mathcal{F}|_{U_i} \hookrightarrow \mathcal{I}_i$, leading to an injection $\mathcal{F} \hookrightarrow \bigoplus_i \mu_{i*} \mathcal{I}_i$. But $\mu_{i*} \mathcal{I}_i$ is an injective object in $\mathcal{QC}(X)$ for each i (since μ_{i*} has a left adjoint μ_i^{-1} , and by lemma 11, is then in fact an injective object of \mathcal{M}_X .

Corollary 8 Let X be a Noetherian scheme, Y a locally closed subscheme, F a coherent sheaf and G a quasi-coherent sheaf. Then for any $p \geq 0$,

- (i) $\mathcal{E}xt_{\mathcal{O}_X}^p(\mathcal{F},\mathcal{G})$ is quasi-coherent
- (*ii*) \mathcal{H}_{Y}^{p} $P_Y^p(\mathcal{G})$ is quasi-coherent.

Proof: Choose an injective resolution $0 \rightarrow \mathcal{G} \rightarrow \mathcal{I}^{\bullet}$ with \mathcal{I}^n quasi-coherent injective. Then we claim that $\mathcal{H}_{om}(\mathcal{F}, \mathcal{I}^{\bullet})$ and $\mathcal{H}_{Y}^{0}(\mathcal{I}^{\bullet})$ are complexes of quasi-coherent sheaves, so the cohomology sheaves are quasi-coherent. This is clear for \mathcal{H} om because $\mathcal F$ is coherent.

So it suffices to show that if G is quasi-coherent, then $\mathcal{H}_Y^0(\mathcal{G})$ is too. It suffices to check this separately for Y open and Y closed, for if $Y =$

 $U \cap F$ with U open, F closed, then by (9), $\mathcal{H}_Y^0 = (\mathcal{H}_U^0)_F$. When Y is open, $\mathcal{H}_Y^0(\mathcal{G}) = i_* \circ i^{-1}(\mathcal{G})$ is quasi-coherent, since i^{-1} and i_* preserve quasicoherence. Suppose that Y is closed. Since $\mathcal G$ is the union of its coherent subsheaves \mathcal{G}_i and $\cup_i \mathcal{H}_Y^0(\mathcal{G}_i) = \mathcal{H}_Y^0(\mathcal{G})$ (by lemma 9), and a union of coherent subsheaves of a quasi-coherent sheaf is quasi-coherent, we may assume that $\mathcal G$ is coherent. But if $\mathcal J$ is the defining ideal of Y in X and n is sufficiently large, then

$$
\mathcal{H}_Y^0(\mathcal{G}) = \lim_{\substack{\longrightarrow \\ n}} \mathcal{H}om \circ \mathcal{O}_X(\mathcal{O}_X/\mathcal{J}^n, \mathcal{G}) = \mathcal{H}om \circ \mathcal{O}_X(\mathcal{O}_X/\mathcal{J}^N, \mathcal{G})
$$

if N is sufficiently large, and the last sheaf is coherent. \Box

Corollary 9 If $X = \text{Spec } A$ is affine, M and N are A-modules with M finitely generated, then

$$
\mathcal{E}xt_{\mathcal{O}_X}^p(M,N) = \widetilde{\operatorname{Ext}}_A^p(M,N) \qquad \cdots \qquad (22)
$$

(where $\widetilde{\operatorname{Ext}}_{A}^{p}(M,N)$ denotes the quasi-coherent \mathcal{O}_{X} -module associated to the A-module $\operatorname{Ext}^p_A(M,N)$).

Proof: Choose an injective resolution $0 \to N \to I^{\bullet}$ of N as an A-module. Then

$$
\mathcal{H}om_{\mathcal{O}_X}(\widetilde{M}, \widetilde{I^n}) = \widetilde{\mathrm{Hom}}_A(M, I^n)
$$

for each *n*, and $0 \to \widetilde{N} \to I^{\bullet}$ is an injective resolution of \widetilde{N} .

Let X be a Noetherian scheme, Y a closed subset, $\mathcal J$ a defining ideal of Y, and $n > 0$ an integer. Let $\mathcal{G} \in \mathcal{QC}(X)$ be a quasi-coherent sheaf on X. We have natural homomorphisms

Hom
$$
\mathcal{O}_X(\mathcal{O}_X/\mathcal{J}^n, \mathcal{G}) \to H_Y^0(\mathcal{G}),
$$

Hom $\mathcal{O}_X(\mathcal{O}_X/\mathcal{J}^n, \mathcal{G}) \to \mathcal{H}_Y^0(\mathcal{G})$

and hence homomorphisms

$$
\lim_{\substack{\longrightarrow \\ n}} \text{Hom}_{\mathcal{O}_X}(\mathcal{O}_X/\mathcal{J}^n, \mathcal{G}) \to H^0_Y(\mathcal{G}),
$$

$$
\lim_{\substack{\longrightarrow \\ n}} \text{Hom}_{\mathcal{O}_X}(\mathcal{O}_X/\mathcal{J}^n, \mathcal{G}) \to \mathcal{H}^0_Y(\mathcal{G}).
$$

We assert that these are isomorphisms. It suffices to check this locally and this is clear when X is affine, by taking $\mathcal{G} = M$. Now, substituting for \mathcal{G} any injective quasi-coherent resolution of G and using the fact that cohomology commutes with inductive limits, we get isomorphisms

$$
\lim_{\substack{\longrightarrow \\ n}} \operatorname{Ext}^p_{\mathcal{O}_X}(\mathcal{O}_X/\mathcal{J}^n, \mathcal{G}) \stackrel{\cong}{\to} H^p_Y(\mathcal{G}), \qquad \cdots \qquad (23)
$$
\n
$$
\lim_{\substack{\longrightarrow \\ n}} \mathcal{E}xt^p_{\mathcal{O}_X}(\mathcal{O}_X/\mathcal{J}^n, \mathcal{G}) \stackrel{\cong}{\to} \mathcal{H}^p_Y(\mathcal{G}). \qquad \cdots \qquad (24)
$$

In view of the fact that the maps (21) are isomorphisms for $\mathcal F$ coherent, we get the following: if X is a Noetherian scheme, Y closed in X, $x \in X$, A_x the local ring at $x, I \subset A_x$ any defining ideal of Y at x, then

$$
\lim_{\substack{\longrightarrow \\ n}} \operatorname{Ext}^p_{A_x}(A_x/I^n, \mathcal{G}_x) \cong \mathcal{H}_Y^p(\mathcal{F})_x \qquad \cdots \qquad (25)
$$

Note that by Corollary 7, \mathcal{H}_{Y}^{p} $Y_Y^p(\mathcal{F})_x = 0$ for $p > \dim X$.

Proposition 11 Let X be a Noetherian scheme, $Y \subset X$ a closed subset, F coherent on X, and $x \in X$. Let $A_x = \mathcal{O}_{X,x}$. Then the following are equivalent:

(i) for every finitely generated A_x -module N such that supp $N \subset Y_x$,

$$
\operatorname{Ext}^i_{A_x}(N, \mathcal{F}_x) = 0 \ \text{for } i < p
$$

(ii) for one finitely generated A_x -module N with supp $N = Y_x$,

$$
\operatorname{Ext}^i_{A_x}(N, \mathcal{F}_x) = 0 \ \text{for } i < p
$$

(iii) if I is some (or any) defining ideal of Y at x, there are elements f_1, \ldots, f_p in I such that f_i is a non-zero divisor in $\mathcal{F}_x/(f_1, \ldots, f_{i-1})\mathcal{F}_x$ for $i = 1, \ldots, p$

(iv) for any prime ideal $P \supset I$, we have

$$
\mathrm{depth}_{(A_x)_{\mathcal{P}}}(\mathcal{F}_x)_{\mathcal{P}} \geq p
$$

(v) $\mathcal{H}_Y^i(\mathcal{F})_x = 0$ for $i < p$.

Proof: We proceed by induction on p. The proposition has content only for $p > 0$; suppose first that $p = 1$. Clearly (i)⇒(ii). Suppose that (ii) holds, and let $J = \text{Ann}_{A_x}N$, so that J defines Y at x, and so $\sqrt{J} = \sqrt{I}$. If (iii) is false for I, there is a $\mathcal{P} \in \text{Ass}(\mathcal{F}_x)$ with $J \subset \mathcal{P}$. Now, $\text{Hom}_{A_x}(N, A_x/\mathcal{P}) =$ $\text{Hom}_{A_x}(N/PN, A_x/\mathcal{P}) \neq 0$ since N/PN is a finitely generated faithful A_x/\mathcal{P} module. Since $\mathcal{P} \in \text{Ass}(\mathcal{F}_x)$ there is a monomorphism $A_x/\mathcal{P} \hookrightarrow \mathcal{F}_x$; hence Hom $_{A_x}(N, \mathcal{F}_x) \neq 0$, contradicting (ii). Hence (ii) \Rightarrow (iii). Clearly (iii) \Rightarrow (iv). We shall show that (iv) \Rightarrow (i). Since N admits a composition series with quotients A_x/\mathcal{P} with $\mathcal{P} \in Y_x$, we may assume $N = A_x/\mathcal{P}$ with $\mathcal{P} \in Y_x$. If $\text{Hom}_{A_x}(A_x/\mathcal{P}, \mathcal{F}_x) \neq 0$, then there is a $\mathcal{Q} \in \text{Ass}(\mathcal{F}_x)$ with $\mathcal{P} \subset \mathcal{Q}$, and hence $I \subset \mathcal{Q}$, so that depth $_{(A_x)_{\mathcal{Q}}}(\mathcal{F}_x)_{\mathcal{Q}} = 0$, contradicting (iv).

Hence (i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Leftrightarrow (iv). Now

$$
\text{Hom}_{A_x}(A_x/I^n, \mathcal{F}_x) \hookrightarrow \text{Hom}_{A_x}(A_x/I^{n+1}, \mathcal{F}_x)
$$

and the union of this increasing sequence is $\mathcal{H}_Y^0(\mathcal{F})_x$. Thus, (v) is false \Leftrightarrow there exists $n > 0$ with Hom $_{A_x}(A_x/I^n, \mathcal{F}_x) \neq 0$. Hence (i) \Rightarrow (v) \Rightarrow (ii).

Thus we are through for $p=1$.

Suppose now that $p > 1$, and the assertion of the proposition holds for all smaller values of p. If (a) denotes any one of $(i)-(v)$, let $(a)'$ denote the same condition for $p-1$ instead of p. Now, (i) \Rightarrow (ii) is trivial. Assume (ii). By what we have already shown (the case $p = 1$), there is an $f \in Ann_{A_x}(N)$ such that f is a non-zero divisor on \mathcal{F}_x . The exact sequence

$$
0 \to \mathcal{F}_x \xrightarrow{f} \mathcal{F}_x \to \mathcal{F}/f\mathcal{F}_x \to 0
$$

gives that $\text{Ext}\,^i_{A_x}(N,\mathcal{F}_x/f\mathcal{F}_x) = 0$ for $i < p-1$, so that (ii)' holds for $\mathcal{F}_x/f\mathcal{F}_x$. Replacing f by a power if necessary, we may assume $f \in I$. Now (ii)' \Leftrightarrow (iii)', so there exist f_2, \ldots, f_p in I such that f_i is a non-zero divisor on $\mathcal{F}_x/(f, f_2 \ldots, f_{i-1})\mathcal{F}_x$. Thus (ii) \Rightarrow (iii). Again trivially (iii) \Rightarrow (iv).

Now (iv) \Rightarrow (since $p > 1$) that I is not contained in any $P \in \text{Ass}(\mathcal{F}_x)$, for any defining ideal I of Y at x; in particular, if N is any finite A_x -module with supp $(N) \subset Y_x$, then Ann $(N) \not\subset \mathcal{P}$ for any $\mathcal{P} \in \text{Ass}(\mathcal{F}_x)$. Thus we can find $f \in Ann(N)$ such that f is a non-zero divisor on \mathcal{F}_x . For any $\mathcal{P} \supset I$,

$$
\operatorname{depth}_{(A_x)_\mathcal{P}}(\mathcal{F}_x/f\mathcal{F}_x)_\mathcal{P} = \operatorname{depth}_{(A_x)_\mathcal{P}}(\mathcal{F}_x)_\mathcal{P} - 1 \geq p - 1,
$$

so that by induction hypothesis, $\text{Ext}^i_{A_x}(N, \mathcal{F}_x/f\mathcal{F}_x) = 0$ for $i < p-1$. Hence the sequence

$$
0 \to \mathrm{Ext}^i_{A_x}(N, \mathcal{F}_x) \stackrel{f}{\to} \mathrm{Ext}^i_{A_x}(N, \mathcal{F}_x)
$$

is exact for $i < p$; since $f \in Ann(N)$, this implies (i). Finally, as before, (i) \Rightarrow (v) since

$$
\lim_{\substack{\longrightarrow \\ n}} \operatorname{Ext}^i_{A_x}(A_x/I^n, \mathcal{F}_x) = \mathcal{H}_Y^i(\mathcal{F})_x.
$$

On the other hand, suppose (v) holds, so that $(v) \Rightarrow (v)' \Rightarrow (i)'$. We have exact sequences

$$
\operatorname{Ext}_{A_x}^{i-1}(I^n/I^{n+1}, \mathcal{F}_x) \to \operatorname{Ext}_{A_x}^{i}(A_x/I^n, \mathcal{F}_x) \to \operatorname{Ext}_{A_x}^{i}(A_x/I^{n+1}, \mathcal{F}_x)
$$

where (i)' \Rightarrow Ext ${}_{A_x}^{i-1}(I^n/I^{n+1}, \mathcal{F}_x) = 0$ for $i-1 < p-1$. Hence (v) \Rightarrow (i)' \Rightarrow Ext $i_{A_x}(A_x/I, \mathcal{F}_x) \hookrightarrow \mathcal{H}_Y^i(\mathcal{F})_x = 0$ for $i < p \Rightarrow$ (ii) is valid with $N = A_x/I$. \Box

4 Global duality theory

Theorem 12 Let X be a scheme of dimension n, proper over a field k. Then there is a complex

$$
0 \to \mathcal{I}_n \to \mathcal{I}_{n-1} \to \cdots \to \mathcal{I}_0 \to 0
$$

of injective quasi-coherent sheaves on X such that for any quasi-coherent sheaf F on X , we have a natural isomorphism

 $H^p(X, \mathcal{F})^* \stackrel{\cong}{\longrightarrow} H_p(\text{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{I}_{\bullet})) \qquad \cdots \qquad (**)$

(where M^* denotes the k-linear dual of M).

Any complex \mathcal{I}_\bullet of quasi-coherent injectives on X satisfying $(*^*)$ has the following properties.

(a) The homology sheaves $\mathcal{H}_p(\mathcal{I}_\bullet)$ are independent of the particular complex \mathcal{I}_{\bullet} , and are coherent.

(b) If X' is again proper over k, \mathcal{I}'_{\bullet} a similar complex on X' , $U \subset X$, $U' \subset X'$ open subsets and $f: U \to U'$ an isomorphism, then there is an isomorphism

$$
\mathcal{H}_p(\mathcal{I}_{\bullet})\mid_U \stackrel{\cong}{\longrightarrow} \mathcal{H}_p(\mathcal{I}'_{\bullet})\mid_{U'}
$$

over f.

(c) If X is Cohen-Macaulay at a point where $\dim_x X = n$, then $\mathcal{H}_p(\mathcal{I}_{\bullet})_x = 0$ for $p \neq n$ and $\mathcal{H}_n(\mathcal{I}_{\bullet})_x = \Omega_{\mathcal{O}_{X,x}}$ is the dualising module² of $\mathcal{O}_{X,x}$.

²Since $\mathcal{O}_{X,x}$ is a quotient of a regular local ring, it has a dualising module.

Proof: First, we prove the existence of such a finite complex \mathcal{I}_{\bullet} (concentrated in degrees > 0). Let F be quasi-coherent on X, $U = \text{Spec } A$ an affine open subset of X, and $M = \Gamma(U, \mathcal{F})$. Let $i_U : U \to X$ be the inclusion. Then we have a sequence of natural isomorphisms

$$
\Gamma(U,\mathcal{F})^* = M^* = \text{Hom}_A(M, \text{Hom}_k(A,k)) \cong \text{Hom}_{\mathcal{O}_U}(\mathcal{F}|_U, \text{Hom}_k(A,k))
$$

$$
\cong \text{Hom}_{\mathcal{O}_X}(\mathcal{F}, i_{U*}\widetilde{\text{Hom}}_k(A,k)) = \text{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{I}_U)
$$

where $\mathcal{I}_U = i_{U^*}$ Hom $_k(A, k)$. The above composite isomorphism shows that \mathcal{I}_U is an *injective* \mathcal{O}_X -module (since it is an injective object of $\mathcal{QC}(X)$ - see lemma 11). Hence, if $\mathcal{U} = \{U_i\}_{i \in I}$ is a finite affine open cover of X (since X is proper over k , it is Noetherian), then there is an injective quasi-coherent sheaf

$$
\mathcal{I}_p = \bigoplus_{i_0,\ldots,i_p \in I} \mathcal{I}_{U_{i_0,\ldots,i_p}},
$$

where $U_{i_0,\dots,i_p} = U_{i_0} \cap U_{i_1} \cap \dots \cap U_{i_p}$ (which is affine). By its definition, \mathcal{I}_p has the property that if $\check{C}^p(\mathcal{U}, \mathcal{F})$ is the pth term of the Cech complex of alternating cochains with values in \mathcal{F} , we have a natural isomorphism

$$
\check{C}^p(\mathcal{U},\mathcal{F})^* \stackrel{\cong}{\longrightarrow} \text{Hom}_{\mathcal{O}_X}(\mathcal{F},\mathcal{I}_p).
$$

Further, the natural transformations

$$
\delta^p: \check{C}^p(\mathcal{U}, \mathcal{F}) \to \check{C}^{p+1}(\mathcal{U}, \mathcal{F})
$$

induce natural transformations $\check{C}^{p+1}(\mathcal{U}, \mathcal{F})^* \to \check{C}^p(\mathcal{U}, \mathcal{F})^*$, hence homomorphisms $\psi_p : \mathcal{I}_{p+1} \to \mathcal{I}_p$. We clearly have $\psi_p \circ \psi_{p+1} = 0$, so that \mathcal{I}_{\bullet} is a finite (because U is finite) complex of quasi-coherent injective sheaves, such that there are natural isomorphisms

$$
H^p(X,\mathcal{F})^* \cong H_p(\check{C}^p(\mathcal{U},\mathcal{F})^*) \cong H_p(\text{Hom}_{\mathcal{O}_X}(\mathcal{F},\mathcal{I}_{\bullet})).
$$

Now, for $p > n$,

$$
(0) = H^p(X, \mathcal{F})^* \cong H_p(\text{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{I}_{\bullet})).
$$

If $\mathcal{Z}_p = \text{ker}(\mathcal{I}_p \to \mathcal{I}_{p-1})$, then \mathcal{Z}_p is quasi-coherent, so applying the above vanishing statement with $\mathcal{F} = \mathcal{Z}_p$, we see that the inclusion $\mathcal{Z}_p \to \mathcal{I}_p$ represents 0 in $H_p(\text{Hom}_{\mathcal{O}_X}(\mathcal{Z}_p,\mathcal{I}_{\bullet}))$, so that $\mathcal{I}_{p+1} \to \mathcal{Z}_p$ is a split surjection;

hence $\mathcal{H}_p(\mathcal{I}_{\bullet}) = 0$ for $p > n$. Let m be the largest integer p such that $\mathcal{I}_p \neq 0$. If $m > n$, then $\mathcal{H}_m(\mathcal{I}_{\bullet}) = 0 \Rightarrow \mathcal{I}_m \hookrightarrow \mathcal{I}_{m-1}$, and since \mathcal{I}_m is an injective \mathcal{O}_X module, this inclusion is split. Writing $\mathcal{I}_{m-1} = \mathcal{I}_m \oplus \mathcal{I}'_{m-1}$, we thus obtain a shorter complex

$$
0 \to \mathcal{I}'_{m-1} \to \mathcal{I}_{m-2} \to \cdots \mathcal{I}_0 \to 0
$$

with the same property as \mathcal{I}_{\bullet} . Repeating this procedure, we end up with a complex of length n

$$
0 \to \mathcal{I}_n \to \mathcal{I}_{n-1} \to \cdots \to \mathcal{I}_0 \to 0
$$

with the requisite property $(*^*)$.

Now, let \mathcal{I}_{\bullet} be any complex of quasi-coherent injectives having the desired property $(*^*)$, and $U = \text{Spec } A$ an affine open subset of X such that the closed subset $Y = X - U$ has defining ideal \mathcal{J} . Then we have

$$
\mathcal{H}_p(\mathcal{I}_{\bullet})(U) = H_p(\mathcal{I}_{\bullet}(U)) \text{ (since } U \text{ is affine})
$$

\n
$$
\cong H_p(\lim_{\substack{\longrightarrow \\ n}} \text{Hom}_{\mathcal{O}_X}(\mathcal{J}^n, \mathcal{I}_{\bullet})) \cong \lim_{\substack{\longrightarrow \\ n}} H_p(\text{Hom}_{\mathcal{O}_X}(\mathcal{J}^n, \mathcal{I}_{\bullet}))
$$

\n
$$
\cong \lim_{\substack{\longrightarrow \\ n}} H^p(X, \mathcal{J}^n)^* \qquad \cdots \qquad (*)
$$

This can be considered as an A-module in the following manner. Any $f \in A$ defines a homomorphism $\mathcal{J}^m \to \mathcal{O}_X$ for a suitably large m, hence a homomorphism $\mathcal{J}^{m+r} \to \mathcal{J}^r$, hence $H^p(X, \mathcal{J}^{m+r}) \to H^p(X, \mathcal{J}^p)$, and finally $H^p(X, \mathcal{J}^r)^* \to H^p(X, \mathcal{J}^{m+r})^*$. Hence, in the inductive limit, we get that $\lim_{\substack{\longrightarrow \\n}} H^p(X, \mathcal{J}^n)^*$ is an A-module. One checks easily that this A-module structure is independent of the choice of the ideal of definition $\mathcal J$ and the homomorphism $\mathcal{J}^m \to \mathcal{O}_X$ representing f.

Now suppose that $U' \subset U$ is a smaller open set, and let $Y' = X - U'$; let \mathcal{J}' be a defining ideal for Y' with $\mathcal{J}' \subset \mathcal{J}$. Then we have homomorphisms $(\mathcal{J}')^n \to \mathcal{J}^n$ for $n > 0$, hence homomorphisms $H^p(X, \mathcal{J}^n)^* \to H^p(X, (\mathcal{J}')^n)^*$, and hence a homomorphism of inductive limits. Now, it is easy to check that (∗) is an isomorphism of A-modules, and is compatible with restrictions. This shows, in particular, that the sheaves \mathcal{H}_p are independent of the choice of \mathcal{I}_{\bullet} .

We prove (b). We can clearly find an X'' proper over both X and X' and an open subset U'' of X'' mapping isomorphically onto U and U' (take X'' to be the closure in $X \times_k X'$ of the graph of the isomorphism $f: U \to U'$, and U'' to be this graph). Thus we may assume without loss of generality that

we have a morphism $f: X \to X'$ such that $f^{-1}(U') = U$ and $f: U \to U'$ is an isomorphism. To prove that there is an isomorphism of $\mathcal{H}_p(\mathcal{I}_\bullet)(U)$ and $\mathcal{H}_p(\mathcal{I}_\bullet)(U')$ over f, it suffices to exhibit, for any V' affine open in U', an isomorphism

$$
\mathcal{H}_p(\mathcal{I}_{\bullet}')(V') \stackrel{\cong}{\longrightarrow} \mathcal{H}^p(\mathcal{I}_{\bullet})(f^{-1}(V'))
$$

which is compatible with restrictions for inclusions $V'' \subset V'$, $f^{-1}(V'') \subset$ $f^{-1}(V')$ of affine open sets. Then, replacing U' by V' and U by $V = f^{-1}(V')$, it suffices to consider the case when U' and U are affine. Let \mathcal{J}' be a defining ideal of $Y' = X' - U'$, so that $\mathcal{J} = \text{im}(f^* \mathcal{J}' \to \mathcal{O}_X)$ is a defining ideal of $Y = X - U = f^{-1}(Y')$. We then have natural homomorphisms $(\mathcal{J}')^n \to$ $f_*\mathcal{J}^n$, hence homomorphisms

$$
H^p(X',(\mathcal{J}')^n) \to H^p(X',f_*\mathcal{J}^n) \to H^p(X,\mathcal{J}^n),
$$

and on dualising and passing to the direct limit, a homomorphism

$$
\lim_{\substack{\longrightarrow \\ n}} H^p(X, \mathcal{J}^n)^* \to \lim_{\substack{\longrightarrow \\ n}} H^p(X', (\mathcal{J}')^n)^*.
$$
 (†)

This is a homomorphism of $\Gamma(U, \mathcal{O}_X)$ -modules, compatible with restriction to affine open subsets $V' \subset U'$, $V = f^{-1}(V') \subset U$. It suffices to show that (†) is an isomorphism.

Let us recall the following theorem from E.G.A. III:

Theorem 0 Let $f : X \to Y$ be a proper morphism of Noetherian schemes, F a coherent sheaf on X and I a sheaf of ideals on Y. Then for any $q \ge 0$, $\oplus_{n\geq 0} R^qf_*(\mathcal{I}^n\mathcal{F})$ can be considered as a graded sheaf of modules over the sheaf of rings $\bigoplus_{n\geq 0} \mathcal{I}^n$, and as such it is finitely generated. In particular, there exists $m_0 \geq 0$ such that $\mathcal{I}^k R^q f_*(\mathcal{I}^m \mathcal{F}) = R^q(\mathcal{I}^{m+k} \mathcal{F})$ for all $k \geq 0, m \geq m_0$.

In the theorem, the action of $\bigoplus_{n\geq 0} \mathcal{I}^n$ on $R^q f_*(\mathcal{I}^n \mathcal{F})$ is defined as follows: if $x \in \mathcal{I}^m(U)$ and $y \in H^q(f^{-1}(U), \mathcal{I}^n \mathcal{F}), x$ defines a homomorphism $(\mathcal{I}^n \mathcal{F}) |_{U} \stackrel{x}{\rightarrow}$ $(\mathcal{I}^{m+n}\mathcal{F})|_U$, and $x \cdot y$ is the image in $H^q(f^{-1}(U), \mathcal{I}^{m+n}\mathcal{F})$ of y with respect to \tilde{x} .

Now, the homomorphism (†) factorises as

$$
\varinjlim_{n} H^{p}(X, \mathcal{J}^{n})^{*} \stackrel{g}{\to} \varinjlim_{n} H^{p}(X', f_{*}(\mathcal{J}^{n}))^{*} \stackrel{h}{\to} \varinjlim_{n} H^{p}(X', (\mathcal{J}')^{n})^{*}.
$$

Let us first show that h is an isomorphism.

Choose m_0 as in the above Theorem where $Y = X'$, $\mathcal{F} = \mathcal{O}_X$, $q = 0$ and $\mathcal{I} = \mathcal{J}'$. Thus $(\mathcal{J}')^k f_*(\mathcal{J}^m) = f_*(\mathcal{J}^{m+k})$ for $m \ge m_0$.

Let K, C, C be the kernel, image and cokernel of $(\mathcal{J}')^{m_0} \to f_*\mathcal{J}^{m_0}$ respectively. Since $f^{-1}(U') \to U'$ is an isomorphism, and K, C are coherent sheaves with support in $X' - U'$, K and C are both annihilated by $(\mathcal{J}')^{m_1}$ for some $m_1 > 0$. We have the following exact sequences

$$
0 \to \mathcal{K} \cap (\mathcal{J}')^{m_0+k} \to (\mathcal{J}')^{m_0+k} \to (\mathcal{J}')^k \mathcal{L} \to 0,
$$

$$
0 \to (\mathcal{J}')^k f_*(\mathcal{J}^{m_0}) \cap \mathcal{L} \to (\mathcal{J}')^k f_*(\mathcal{J}^{m_0}) = f_*(\mathcal{J}^{m_0+k}) \to (\mathcal{J}')^k \mathcal{C} \to 0,
$$

(where the middle equality is by the choice of m_0 made above) and by Artin-Rees, this reduces for $k \geq k_0$ to the pair of isomorphisms

$$
(\mathcal{J}')^{m_0+k} \cong (\mathcal{J}')^k \mathcal{L},
$$

$$
(\mathcal{J}')^k f_*(\mathcal{J}^{m_0}) \cap \mathcal{L} = (\mathcal{J}')^{k-k_0} ((\mathcal{J}')^{k_0} f_*(\mathcal{J}^{m_0}) \cap \mathcal{L}) \stackrel{\cong}{\longrightarrow} (\mathcal{J}')^k f_*(\mathcal{J}^{m_0}) = f_*(\mathcal{J}^{m_0+k}).
$$

Thus, it suffices to show that

$$
\varinjlim_{\overrightarrow{k}} H^p(X', (\mathcal{J}')^{k-k_0}((\mathcal{J}')^{k_0}f_*(\mathcal{J}^{m_0}) \cap \mathcal{L}))^* \to \varinjlim_{\overrightarrow{k}} H^p(X', (\mathcal{J}')^k \mathcal{L})^*
$$

is an isomorphism. This follows from the inclusions

$$
(\mathcal{J}')^k \mathcal{L} \subset (\mathcal{J}')^{k-k_0}((\mathcal{J}')^{k_0} f_*(\mathcal{J}^{m_0}) \cap \mathcal{L}) \subset (\mathcal{J}')^{k-k_0} \mathcal{L} \subset (\mathcal{J}')^{k-2k_0}((\mathcal{J}')^{k_0} f_*(\mathcal{J}^{m_0}) \cap \mathcal{L}).
$$

Thus we are left with proving that q is an isomorphism. For every $m > 0$, consider the Leray spectral sequence $E_r^{p,q}(m)$,

$$
E_2^{p,q}(m) = H^p(X', R^q f_* \mathcal{J}^m) \Rightarrow H^{p+q}(X, \mathcal{J}^m).
$$

For $m' > m$, we have a morphism of spectral sequences

$$
E_r^{p,q}(m') \to E_r^{p,q}(m).
$$

Further, $E_r^{p,q}(m) = E_{\infty}^{p,q}$ for $r > p+q$ and every m, and the homomorphism

$$
H^p(X', f_*\mathcal{J}^m) = E_2^{p,0} \to E_\infty^{p,0} \hookrightarrow H^p(X, \mathcal{J}^m)
$$

is the natural homomorphism. Thus, to prove g is an isomorphism, it suffices to show that $\lim_{\substack{\longrightarrow \\ m}} E_2^{p,q}$ $2^{p,q}(m) = 0$ for $q > 0$. This would follow if we can show that for any $m > 0$ and $q > 0$, the map

$$
H^p(X', R^qf_*\mathcal{J}^m)^* \to H^p(X', R^qf_*\mathcal{J}^{m'})^*
$$

is 0 for some $m' > m$. Now, $R^q f_* \mathcal{J}^m$ has support in $X' - U'$ for $q > 0$, since $f^{-1}(U') \to U'$ is an isomorphism. Further, for m sufficiently large and $k \geq 0$, $R^q f_* \mathcal{J}^{m+k} = (\mathcal{J}')^k R^q f_* \mathcal{J}^m$. Hence, for k large, the map $R^q f_* \mathcal{J}^{m+k} \to$ $R^q f_* \mathcal{J}^m$ is 0 (take k so large that $(\mathcal{J}')^k$ annihilates $R^q f_* \mathcal{J}^m$). This proves (b).

In view of (b), to prove the coherence statement in (a), which is an assertion local on X, we may assume that X is a closed subset of $(\mathbf{P}^1)^N =$ $\mathbf{P}^1 \times \cdots \times \mathbf{P}^1$, since any point of x has an open neighbourhood which is a closed subvariety of \mathbf{A}^N for some N. Further, if

$$
0 \to \mathcal{I}_N \to \cdots \to \mathcal{I}_1 \to \mathcal{I}_0 \to 0
$$

is a complex of quasi-coherent injectives on $(\mathbf{P}^1)^N$ with the requisite property (**) on $(\mathbf{P}^1)^N$, and X is a closed subscheme of $(\mathbf{P}^1)^N$, $i: X \hookrightarrow (\mathbf{P}^1)^N$ the inclusion, then clearly the complex of quasi-coherent injective sheaves

$$
0 \to i^{-1} \mathcal{H}om_{(\mathbf{P}^1)^N}(i_*\mathcal{O}_X, \mathcal{I}_N) \to \cdots \to i^{-1} \mathcal{H}om_{(\mathbf{P}^1)^N}(i_*\mathcal{O}_X, \mathcal{I}_1) \to i^{-1} \mathcal{H}om_{(\mathbf{P}^1)^N}(i_*\mathcal{O}_X, \mathcal{I}_0) \to 0
$$

is a complex of quasi-coherent injective \mathcal{O}_X -modules on X with the requisite property $(**)$ on X. So it suffices to prove that

- (i) $\mathcal{H}_i(\mathcal{I}_{\bullet}) = 0$ for $i < N$
- (ii) $\mathcal{H}_N(\mathcal{I}_{\bullet})$ is a coherent sheaf on $(\mathbf{P}^1)^N$.

Indeed, granting (i) and (ii), \mathcal{I}_{\bullet} is an injective resolution of the coherent sheaf $\mathcal{H}_N(\mathcal{I}_{\bullet}),$ so that

$$
\mathcal{H}_i(\mathcal{H}om\left(i_*\mathcal{O}_X,\mathcal{I}_\bullet\right))\stackrel{\cong}{\longrightarrow} \mathcal{E}xt^{N-i}_{(\mathbf{P}^1)^N}(i_*\mathcal{O}_X,\mathcal{H}_N(\mathcal{I}_\bullet))
$$

which is coherent.

Let I denote the ideal sheaf of the point $\{\infty\} \in \mathbf{P}^1$, and let J be the ideal sheaf of the divisor $\cup_i p_i^*(\infty)$ where $p_i : (\mathbf{P}^1)^N \to \mathbf{P}^1$ is the projection onto the ith factor. Then

$$
\mathcal{J} = \otimes_i p_i^* \mathcal{I} = \mathcal{I} \boxtimes \mathcal{I} \boxtimes \cdots \boxtimes \mathcal{I}.
$$

It is sufficient to show that

- (i) $\lim_{\substack{\longrightarrow \\ n}} H^p((\mathbf{P}^1)^N, \mathcal{J}^n)^* = 0$ for $0 \le p < N$,
- (ii) $\lim_{n} H^N((\mathbf{P}^1)^N, \mathcal{J}^n)^*$ is a finitely generated $k[x_1, \ldots, x_N]$ -module.

This is because $(\mathbf{P}^1)^N$ is covered by affine open subsets isomorphic to $(\mathbf{P}^1)^N$ – $\cup_i p_i^*(\infty)$.

Now, one knows that $H^0(\mathbf{P}^1, \mathcal{I}^n) = 0$ for $n > 0$. Hence (i) follows from the Kunneth formula. Also,

$$
H^N((\mathbf{P}^1)^N, \mathcal{J}^n) \cong H^1(\mathbf{P}^1, \mathcal{I}^n) \otimes_k \cdots \otimes_k H^1(\mathbf{P}^1, \mathcal{I}^n).
$$

Thus, it suffices to show that $\lim_{\substack{\longrightarrow \\n}}$ $H^1(\mathbf{P}^1, \mathcal{I}^n)$ is a finitely generated $k[x]$ module, where x is the coordinate on $\mathbf{P}^1 - \{\infty\}$. Using the standard covering $U_0 = \mathbf{P}^1 - {\infty}$, $U_{\infty} = \mathbf{P}^1 - {0}$, since $\mathcal{I} \mid_{U_0} = \mathcal{O}_{U_0}$, and $\mathcal{I} \mid_{U_{\infty}} = x^{-1} \mathcal{O}_{U_{\infty}}$, we see that any element

$$
\xi \in H^1(\mathbf{P}^1, \mathcal{I}^n) \cong \Gamma(U_0 \cap U_{\infty} \mathcal{I}^n) / (\Gamma(U_0, \mathcal{I}^n) + \Gamma(U_{\infty}, \mathcal{I}^n))
$$

\n
$$
\cong k[x, x^{-1}] / (k[x] + x^{-n}k[x^{-1}])
$$

has a unique representing cocycle $\xi \in \Gamma(U_0 \cap U_{\infty}, \mathcal{I}^n)$ of the form

$$
\xi' = a_1 x^{-1} + a_2 x^{-2} + \dots + a_{n-1} x^{-n+1}
$$

Further, multiplication by x ,

$$
(x): H^1(\mathbf{P}^1, \mathcal{I}^n) \to H^1(\mathbf{P}^1, \mathcal{I}^{n-1}),
$$

is represented by

$$
(x): a_1x^{-1} + \cdots a_{n-1}x^{1-n} \mapsto a_2x^{-1} + a_3x^{-2} + \cdots + a_{n-1}x^{-n+2}.
$$

Now a_1, \ldots, a_{n-1} , considered as linear forms on the vector space $H^1(\mathbf{P}^1, \mathcal{I}^n)$, form a basis of this space, and the inclusion of $H^1(\mathbf{P}^1, \mathcal{I}^n)^* \hookrightarrow H^1(\mathbf{P}^1, \mathcal{I}^{n+1})^*$ induced by $\mathcal{I}^{n+1} \subset \mathcal{I}^n$ takes a_i to a_i for all i. Hence $\lim_{n} H^1(\mathbf{P}^1, \mathcal{I}^n)$ has a basis given by a_i , $i > 0$; the action of x induced by dualising (x) takes a_i to a_{i+1} . Hence this direct limit is a free module over $k[x]$ generated by a_1 . This proves (a) of the theorem.

Now to the proof of (c). The set of points $x \in X$ such that $\dim_{x} X = n$ and $\mathcal{O}_{X,x}$ is Cohen-Macaulay is an open set (E.G.A. IV 6.11.2). Let us call this set U. Suppose we show that for every closed point $x \in U$, $\mathcal{H}_p(\mathcal{I}_\bullet)_x = 0$ for $p \lt n$, and $\mathcal{H}_n(\mathcal{I}_\bullet)_x$ is the dualising module of $\mathcal{O}_{X,x}$, then it follows that (i) $\mathcal{H}_p(\mathcal{I}_\bullet) \mid_U = 0$ for $p < n$ (since $\mathcal{H}_p(\mathcal{I}_\bullet) \mid_U$ is a coherent sheaf with vanishing stalks at all closed points), and (ii) for any $x \in U$, $\mathcal{H}_n(\mathcal{I}_\bullet)_x$ is of finite injective dimension (because a localisation of an injective module is injective), End $\mathcal{O}_{X,x}(\mathcal{H}_n(\mathcal{I}_{\bullet})_x) = \mathcal{O}_{X,x}$, and $\mathcal{H}_n(\mathcal{I}_{\bullet})_x$ is Cohen-Macaulay of dimension equal to dim $\mathcal{O}_{X,x}$. By our characterisation of the dualising module (Corollary 3), it would follow that $\mathcal{H}_n(\mathcal{I}_\bullet)_x$ is the dualising module, and (c) would be valid for all $x \in U$. So it suffices to prove (c) for closed points $x \in U$.

Let $f_1, \ldots, f_n \in \mathcal{O}_{X,x}$ be a maximal $\mathcal{O}_{X,x}$ -sequence, and $\mathcal{F} = \mathcal{O}_{X,x}/(f_1, \ldots, f_n)$ considered as a coherent sheaf on X with support at x (*i.e.*, as a skyscraper sheaf at x). Then $H^{i}(X, \mathcal{F}) = 0$ for $i > 0$. On the other hand, if we put $\mathcal{J}^p = \mathcal{I}_{n-p}$, the complex \mathcal{J}^{\bullet} is concentrated in degrees ≥ 0 , and we claim there is a spectral sequence

$$
E_2^{p,q} = \mathrm{Ext}^p_{\mathcal{O}_X}(\mathcal{F}, \mathcal{H}^q(\mathcal{J}^{\bullet})) \Rightarrow H^{p+q}(\mathrm{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{J}^{\bullet})).
$$

To see this, let $\mathcal{J}^{\bullet} \to \mathcal{J}^{\bullet,\bullet}$ be a Cartan-Eilenberg resolution *i.e.*, a double complex of injectives, such that

- (i) $\mathcal{J}^m \to \mathcal{J}^{m,\bullet}$ is a resolution for each m , and
- (ii) if $\mathcal{I}^{m,n} = \mathcal{H}_I^m(\mathcal{J}^{\bullet_m})$, then $\mathcal{I}^{m,\bullet}$ is an inejctive resolution of $\mathcal{H}^m(\mathcal{J}^{\bullet})$.

The desired spectral sequence is obtained by considering spectral sequences of the double complex

$$
A^{m,n} = \text{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{J}^{m,n}).
$$

Since $\mathcal{F}, \mathcal{H}^q(\mathcal{J}^m)$ are coherent, and $\mathcal F$ is concentrated at the closed point x, the spectral sequence of Sec. 2, (17) and lemmas 7 and 8 imply that in the above spectral sequence, we have

$$
E_2^{p,q} = \mathrm{Ext}^p_{\mathcal{O}_{X,x}}(\mathcal{F}_x, \mathcal{H}^q(\mathcal{J}^{\bullet})_x).
$$

Let q_0 be the largest integer such that $\mathcal{H}^q(\mathcal{J}^{\bullet})_x \neq 0$. From the Koszul resolution for \mathcal{F}_x , we have

$$
\operatorname{Ext}^n_{\mathcal{O}_{X,x}}(\mathcal{F}_x,\mathcal{H}^{q_0}(\mathcal{J}^{\bullet})_x)=\mathcal{H}^{q_0}(\mathcal{J}^{\bullet})_x/(f_1,\ldots,f_n)\mathcal{H}^{q_0}(\mathcal{J}^{\bullet})_x\neq 0
$$

by Nakayama's lemma. It follows from the spectral sequence that $H^{n+q_0}(\text{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{J}^{\bullet})) \neq 0; \text{ but } H^{n+q_0}(\text{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{J}^{\bullet})) \cong H^{n-(n+q_0)}(X, \mathcal{F})^*,$ so that $q_0 = 0$. Hence $\mathcal{H}_p(\mathcal{I}_{\bullet})_x = \mathcal{H}^{n-p}(\mathcal{J}^{\bullet}) = 0$ for $p < n$. Thus, on U, we have an exact sequence

$$
0 \to \mathcal{H}_n(\mathcal{I}_{\bullet}) \to \mathcal{I}_n \to \mathcal{I}_{n-1} \to \cdots \to \mathcal{I}_0 \to 0
$$

i.e., an injective resolution of $\mathcal{H}_n(\mathcal{I}_\bullet)$ on U. Hence, for any coherent F with support in U , we have

$$
\operatorname{Ext}^p_{{\mathcal O}_X}({\mathcal F},{\mathcal H}_n({\mathcal I}_{\bullet}))=H_p(\operatorname{Hom}_{{\mathcal O}_X}({\mathcal F},{\mathcal I}_{\bullet}))\cong H^{n-p}(X,{\mathcal F})^*
$$

(since for such F, Hom $\mathcal{O}_X(\mathcal{F}, \mathcal{G}) =$ Hom $\mathcal{O}_U(\mathcal{F} \mid U, \mathcal{G} \mid U)$ for any \mathcal{G}). Taking $\mathcal{F} = k(x)$, the residue field of x, we deduce that (with $\Omega = \mathcal{H}_n(\mathcal{I}_\bullet)_x$) $\operatorname{Ext}^p_{\ell}$ $\mathcal{O}_{X,x}(k(x),\Omega) = 0$ for $p < n$, and dim_k Ext $\mathcal{O}_{X,x}(k(x),\Omega)$ is a $k(x)$ -vector space of dimension $[k(x):k] = \dim H^0(X,k(x))$ over k. Since Ω is of finite injective dimension, it is the dualising module of $\mathcal{O}_{X,x}$.

Definition: A complex $0 \to I_N \to I_{N-1} \to \cdots \to I_0 \to 0$ of quasicoherent injective \mathcal{O}_X -modules is called a *dualising complex* on X if there are natural isomorphisms

$$
H^p(X, \mathcal{F})^* \stackrel{\cong}{\longrightarrow} H_p(\text{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{I}_{\bullet}))
$$

for any quasi-coherent sheaf $\mathcal F$ on X .

Then the formula (*) in the proof of the Theorem shows that $\mathcal{H}_i(\mathcal{I}_{\bullet}) = 0$ for $i > n = \dim X$, so we may split off an exact direct summand of \mathcal{I}_{\bullet} so that the remaining summand is concentrated in degrees between 0 and n , and is also a dualising complex.

Definition: If X is Cohen-Macaulay of dimension n everywhere, \mathcal{I}_{\bullet} a dualising complex on X, then $\mathcal{H}_n(\mathcal{I}_\bullet) = \Omega_X$ is called a *dualising sheaf* on X.

Note that in this case, a dualising complex yields an injective resolution of Ω_X , so that (**) yields a natural isomorphism

$$
H^i(X,\mathcal{F})^* \stackrel{\cong}{\longrightarrow} \text{Ext}^{n-i}_{\mathcal{O}_X}(\mathcal{F},\Omega_X)
$$

for all $i \geq 0$, for any quasi-coherent sheaf $\mathcal F$ on X.

Corollary 10 Let

$$
0 \to \mathcal{I}_n \to \cdots \to \mathcal{I}_0 \to 0
$$

be a dualising complex on $X, Y \subset X$ a closed subscheme with defining ideal sheaf J . Then

$$
0 \to \mathcal{H}om_{\mathcal{O}_X}(\mathcal{J}, \mathcal{I}_n) \to \mathcal{H}om_{\mathcal{O}_X}(\mathcal{J}, \mathcal{I}_{n-1}) \to \cdots \to \mathcal{H}om_{\mathcal{O}_X}(\mathcal{J}, \mathcal{I}_0) \to 0
$$

is a dualising complex on Y. In particular, if X and Y are equidimensional and Cohen-Macaulay of dimensions n and m respectively, and $h = n - m =$ codim $_XY$, then

$$
\Omega_Y = \mathcal{E}xt_{\mathcal{O}_X}^h(\mathcal{O}_Y,\Omega_X).
$$

Proof: If F is a quasi-coherent \mathcal{O}_Y -module, $i: Y \to X$ the inclusion, then we have natural isomorphisms for each p

$$
H^p(Y, \mathcal{F}) \cong H^p(X, i_*\mathcal{F}),
$$

Hom $\mathcal{O}_Y(\mathcal{F}, \mathcal{H}om \mathcal{O}_X(i_*\mathcal{O}_Y, \mathcal{I}_p)) \cong \text{Hom } \mathcal{O}_X(i_*\mathcal{F}, \mathcal{I}_p).$

Hence i^{-1} Hom $\mathcal{O}_X(i_*\mathcal{O}_Y, \mathcal{I}_\bullet)$ is a dualising complex for Y, and its m^{th} homology sheaf Ω_Y . But $\mathcal{I}^{\bullet} = \mathcal{I}_{n-\bullet}$ is an injective resolution for Ω_X , so the m^{th} homology sheaf of i^{-1} H $om_{\mathcal{O}_X}(i_*\mathcal{O}_Y, \mathcal{I}_{\bullet})$ is just $\mathcal{E}xt_{\mathcal{O}_X}^{n-m}(i_*\mathcal{O}_Y, \Omega_X)$. \Box

Corollary 11 Suppose X is equidimensional Cohen-Macaulay of dimension n. Then any stalk $\Omega_{X,x} = (\Omega_X)_x$ is Cohen-Macaulay. Further, if U is any open subset of X with $\dim(X_U) \leq n-2$, then $\Omega_X \to i_*(\Omega_X |_U) = i_* \circ i^{-1}(\Omega_X)$ is an isomorphism, where $I: U \hookrightarrow X$ is the inclusion.

Proof: The first assertion follows from the fact that $\Omega_{X,x}$ is the dualising module of $\mathcal{O}_{X,x}$, and the second because $\Omega_{X,x}$ is Cohen-Macaulay (proof similar to that of $A = \bigcap_{h \in \mathcal{D}-1} A_{\mathcal{D}}$). similar to that of $A = \bigcap_{\text{ht } \mathcal{P}=1} A_{\mathcal{P}}$.

Remark: This corollary is useful for the following reason. We shall show below that if U consists of smooth points of X over k, then $\Omega_X |_{U}$ is the sheaf of Kähler *n*-forms $\Omega_{U/k}^n$. By the above corollary, if X is equidimensional and Cohen-Macaulay, and is non-singular in the complement of a closed subset of codimension ≥ 2 , then Ω_X is the sheaf of (meromorphic) *n*-forms on X which are regular at all smooth points of X over k .

Corollary 12 Let $f : X \to Y$ be a birational finite morphism of Cohen-Macaulay varieties (i.e., k-irreducible reduced schemes) which are proper over k, and let Ω_X , Ω_Y be the respective dualising sheaves. Then $f_*(\Omega_X)$ can be *identified with the maximal* $f_*(\mathcal{O}_X)$ -submodule of Ω_Y (this makes sense, since Ω_Y is a torsion free \mathcal{O}_Y -module, and $\mathcal{O}_Y \hookrightarrow f_*(\mathcal{O}_X)$ is an isomorphism over an open set).

Proof: On the category of coherent \mathcal{O}_X -modules, we have natural isomorphisms of functors of the coherent sheaf $\mathcal F$

$$
\text{Hom}_{\mathcal{O}_X}(\mathcal{F}, \Omega_X) \cong H^n(X, \mathcal{F})^* \cong H^n(Y, f_*\mathcal{F}) \cong \text{Hom}_{\mathcal{O}_Y}(f_*\mathcal{F}, \Omega_Y). \tag{*}
$$

In this take $\mathcal{F} = \Omega_X$; the image of the identity map on Ω_X is an \mathcal{O}_Y -linear map $\eta : f_*\Omega_X \to \Omega_Y$. Since $1 \neq 0$ on Ω_X , $\eta \neq 0$. Since Ω_X , Ω_Y are Cohen-Macaulay, they are torsion free, and they are also of rank 1. Hence η is injective, and its image is an $f_*(\mathcal{O}_X)$ -submodule of Ω_Y . Let F be a maximal (= maximum) \mathcal{O}_X -submodule of Ω_Y , *i.e.*,

$$
\mathcal{F}_y = \{ m_y \in \Omega_{Y,y} \mid f_*(\mathcal{O}_X)_y m_y \subset \Omega_{Y,y} \}
$$

(since $f_*(\mathcal{O}_X)$ is a sheaf of rings, this is an $f_*(\mathcal{O}_X)$ -submodule). Then we must have a factorisation

$$
\eta = i \circ \lambda, \ f_*(\Omega_X) \stackrel{\lambda}{\to} \mathcal{F} \stackrel{i}{\to} \Omega_Y.
$$

Further, since f is finite, there is a coherent \mathcal{O}_X -module G with $\mathcal{F} = f_*(\mathcal{G})$, and an \mathcal{O}_X -linear map $\mu : \Omega_X \to \mathcal{G}$ such that $\lambda = f_*(\mu)$. Also, \mathcal{G} is torsion free of rank one since $f_*(\mathcal{G}) = \mathcal{F}$ is. By $(*)$ above, the inclusion $i : f_*(\mathcal{G}) = \mathcal{F} \hookrightarrow \Omega_Y$ corresponds to an \mathcal{O}_X -linear mapping $j : \mathcal{G} \to \Omega_X$. By the naturality of $(*)$ above, we have a commutative diagram, whose horizontal arrows are isomorphisms (∗),

$$
\begin{array}{ccc}\n\text{Hom}_{\mathcal{O}_X}(\mathcal{G}, \Omega_X) & \stackrel{\cong}{\longrightarrow} & \text{Hom}_{\mathcal{O}_Y}(\mathcal{F}, \Omega_Y) \\
(-) \circ \mu \downarrow & & \downarrow (-) \circ \lambda \\
\text{Hom}_{\mathcal{O}_X}(\Omega_X, \Omega_X) & \stackrel{\cong}{\longrightarrow} & \text{Hom}_{\mathcal{O}_Y}(f_*(\Omega_X), \Omega_Y)\n\end{array}
$$

Since $\eta = i \circ \lambda$, $j \circ \mu$ is the identity on Ω_X , hence (since Ω_X , $\mathcal G$ are torsion free of rank one) i , μ are isomorphisms, and $\lambda = f_*(\mu)$ is one too. free of rank one) j, μ are isomorphisms, and $\lambda = f_*(\mu)$ is one too.

Remark: Suppose further in Corollary 12, Y is Gorenstein, so that Ω_Y is locally free of rank one. Let $\mathcal{C} = \text{Ann}_{\mathcal{O}_Y}(f_*(\mathcal{O}_X)/\mathcal{O}_Y)$ be the *conductor*. Then we have clearly

$$
f_*(\Omega_X) = \mathcal{C} \cdot \Omega_Y.
$$

Lemma 13 Let X', X'' be proper k-schemes with dualising complexes \mathcal{I}'_{\bullet} , \mathcal{I}_{\bullet}'' , and let $X = X' \times_k X''$. Let \mathcal{I}_{\bullet} be a dualising complex on X. Then we have isomorphisms

$$
\mathcal{H}_n(\mathcal{I}_{\bullet}) \cong \underset{p+q=n}{\oplus} \mathcal{H}_p(\mathcal{I}'_{\bullet}) \boxtimes_k \mathcal{H}_q(\mathcal{I}''_{\bullet}).
$$

Proof: ', U'' be affine open subsets of X' , X'' respectively with $F' = X' - U'$, $F'' = X'' - U''$, and let \mathcal{J}' , \mathcal{J}'' be defining ideal sheaves for F', F'' respectively. Then $\mathcal{J}' \boxtimes_k \mathcal{J}''$ is a defining ideal of $X - (U' \times_k U'')$. We have therefore isomorphisms compatible with restrictions

$$
\mathcal{H}_n(\mathcal{I}_{\bullet})(U) = \lim_{\substack{m \to \infty \\ m}} H^n(X' \times X'', (\mathcal{J}')^m \boxtimes_k (\mathcal{J}'')^m)^*
$$
\n
$$
= \lim_{\substack{m \to \infty \\ m}} \oplus_{p+q=n} H^p(X', (\mathcal{J}')^m)^* \otimes_k H^q(X'', (\mathcal{J}'')^m)^*
$$
\n
$$
= \oplus_{p+q=n} (\lim_{\substack{m \to \infty \\ m}} H^p(X', (\mathcal{J}')^m)^*) \otimes_k (\lim_{\substack{m \to \infty \\ m}} H^q(X'', (\mathcal{J}'')^m)^*)
$$
\n
$$
= \oplus_{p+q=n} \mathcal{H}_p(\mathcal{I}_{\bullet})(U') \otimes_k \mathcal{H}_q(\mathcal{I}_{\bullet}'')(U'')
$$
\n
$$
= \oplus_{p+q=n} (\mathcal{H}_p(\mathcal{I}_{\bullet}') \boxtimes_k \mathcal{H}_q(\mathcal{I}_{\bullet}'))(U).
$$

Corollary 13 Let X be a proper k-scheme and U an open subset of X consisting of Gorenstein points of dimension n. Set $\Omega = \mathcal{H}_n(\mathcal{I}_\bullet)$ where \mathcal{I}_\bullet is a dualising complex on X. Let $\Delta: X \hookrightarrow X \times_k X$ be the diagonal embedding. Then $\Delta^* \mathcal{E}xt_{\mathcal{O}_{X \times X}}^n(\Delta_* \mathcal{O}_X, \mathcal{O}_{X \times X})$ |*U* is a locally free \mathcal{O}_X -module of rank one, and there is an isomorphism of invertible \mathcal{O}_U -modules

$$
\Omega\mid_{U}\cong(\Delta^{*}\mathcal{E}xt^{n}_{\mathcal{O}_{X\times X}}(\Delta_{*}\mathcal{O}_{X},\mathcal{O}_{X\times X})\mid_{U})^{*}.
$$

Proof: Let \mathcal{I}_{\bullet} be a dualising complex on $X \times X$. By lemma 13, $\mathcal{H}_{p}(\mathcal{I}_{\bullet})|_{U \times U}$ 0 for $p < 2n = \dim X \times X$, and

$$
\mathcal{H}_{2n}(\mathcal{I}_{\bullet})\mid_{U\times U}\cong (\Omega\mid_{U})\boxtimes_{k}(\Omega\mid_{U}).
$$

Now apply Corollary 10 to the diagonal embedding of X in $X \times X$, to obtain

$$
\Omega\mid_{U}\cong\Delta^{*}\mathcal{E}xt^{n}_{\mathcal{O}_{U\times U}}((\Delta\mid_{U})_{*}\mathcal{O}_{U},\Omega\mid_{U}\boxtimes_{k}\Omega\mid_{U}).
$$

Since U is Gorenstein, $\Omega |_{U}$ is an invertible sheaf, and we get

$$
\begin{array}{rcl}\n\Omega \mid_{U} & \cong & \Delta^*(\mathcal{E}xt_{\mathcal{O}_{X \times X}}^n(\Delta_*(\mathcal{O}_X), \mathcal{O}_{X \times X}) \otimes_{\mathcal{O}_{X \times X}}(\Omega \boxtimes_k \Omega) \mid_{U \times U}) \\
& \cong & \Delta^*(\mathcal{E}xt_{\mathcal{O}_{X \times X}}^n(\Delta_*(\mathcal{O}_X), \mathcal{O}_{X \times X})) \otimes_{\mathcal{O}_X} \Delta^*((\Omega \boxtimes_k \Omega) \mid_{U \times U}) \\
& \cong & \Delta^*(\mathcal{E}xt_{\mathcal{O}_{X \times X}}^n(\Delta_*(\mathcal{O}_X), \mathcal{O}_{X \times X})) \otimes_{\mathcal{O}_X}(\Omega \otimes_{\mathcal{O}_X} \Omega) \mid_U\n\end{array}
$$

Since Ω |U is an invertible \mathcal{O}_U -module, we may 'cancel' one factor of Ω |U from both sides to obtain the desired result from both sides, to obtain the desired result.

Corollary 14 With assumptions as in Corollary 13, if in addition U is smooth over k, then

$$
\Omega\mid_{U}\cong\Omega^{n}_{X/k}\mid_{U}.
$$

Proof: One has to exhibit, for a scheme X which is pure of dimension n and smooth over k , an isomorphism

$$
\Delta^*(\mathcal{E}xt_{\mathcal{O}_{X\times X}}^n(\Delta_*(\mathcal{O}_X,\mathcal{O}_{X\times X}))^*\cong \Omega^n_{X/k},
$$

where $\Delta: X \to X \times X$ is the diagonal embedding. Now $\Delta(X) \subset X \times X$ is a local complete intersection subvariety. If $\mathcal I$ is its sheaf of ideals, $\Delta^*(\mathcal I/\mathcal I^2) \cong$ $\Omega^1_{X/k}$. Thus, the lemma follows from the next one.

Lemma 14 Let A be a commutative ring with 1 and I an ideal in A generated by an A-sequence f_1, \ldots, f_n . Then there is a natural isomorphism, compatible with localisations,

$$
\operatorname{Ext}^n_A(A/I, A) \cong \operatorname{Hom}_{A/I}(\stackrel{n}{\wedge} I/I^2, A/I).
$$

Proof: The Koszul complex $K_{\bullet}(f_1, \ldots, f_n)$ over A gives a free resolution of A/I which we may use to compute $\text{Ext}_{A}^{n}(A/I, A)$. Let $f: F = A^{\oplus n} \to A$ be the mapping with $f(e_i) = f_i$, where e_i is the ith basis vector. Let $g : A \to F^*$ be the induced mapping on duals. Then the Koszul complex is

$$
0 \to \stackrel{n}{\wedge} F \stackrel{\delta_n}{\to} \stackrel{n-1}{\wedge} F \stackrel{\delta_{n-1}}{\to} \cdots \stackrel{\delta_3}{\to} \stackrel{2}{\wedge} F \stackrel{\delta_2}{\to} F \stackrel{\delta_1=f}{\to} A \to 0
$$

where the last differential $\delta_n : \stackrel{n}{\wedge} F \to \stackrel{n-1}{\wedge} F$ is

$$
v_1 \wedge \cdots \wedge v_n \mapsto \sum_{i=1}^n f(v_i)(-1)^i (v_1 \wedge \cdots \wedge \widehat{v_i} \wedge \cdots \wedge v_n)
$$

Then Ext $_A^n(A/I, A)$ is the cokernel of the dual mapping to δ_n , which is defined (in terms of the generators for $\bigwedge^{n-1} F^*$ obtained from the dual basis $\{e_i^*\}$ of the basis $\{e_i\}$ by

$$
e_1^* \wedge \cdots \wedge \widehat{e_i^*} \wedge \cdots \wedge e_n^* \mapsto (-1)^i f_i e_1^* \wedge \cdots \wedge e_n^*.
$$

Thus there is an isomorphism ϕ : Ext $_A^n(A/I, A) \stackrel{\cong}{\to} \text{Hom}_A(\stackrel{n}{\wedge} F, A/I)$. generated by the image of $e_1^* \wedge \cdots \wedge e_n^*$. However $F/IF \cong I/I^2$ which is a free A/I -module of rank n, and so

$$
\operatorname{Ext}^n_{A/I}(A/I, A) \cong \operatorname{Hom}_A(\stackrel{n}{\wedge} F, A/I) \cong \operatorname{Hom}_{A/I}(\stackrel{n}{\wedge} F/IF, A/I) \cong \operatorname{Hom}_{A/I}(\stackrel{n}{\wedge} I/I^2, A/I).
$$

This composite isomorphism is natural, and is clearly compatible with local- \Box isation.