
Grothendieck Duality∗

1 Gorenstein Rings

1.1 Injective envelopes and duals

Proposition 1 Let A be any commutative ring, M an A-module. Then
there is an injective A-module I0 containing M such that for any non-zero
submodule N ⊂ I0, we have N ∩M 6= 0. This injective module I0 is unique
up to an isomorphism which is the identity on M .

Proof: Let I be an injective A-module containing M . By Zorn’s lemma,
we can find an A-module M ′ with M ⊂M ′ ⊂ I such that

(i) for any A-submodule N ⊂ I , we have N ∩M ′ 6= φ ⇒ N ∩M 6= φ.

(ii) M ′ is maximal with respect to this property.

Further, again by Zorn, we can find a maximal K ⊂ I such that K ∩M ′ = 0.
If η : I → I/K is the natural map, then η |M ′ is a monomorphism, so that
(by the injectivity of I) we can find ψ : I/K → I such that ψ ◦ η |M ′ is the
identity on M ′. Thus

K = ker η ⊂ ker(ψ ◦ η), M ′ ∩ ker(ψ ◦ η) = 0,

and so by maximality of K, we have K = ker η = ker(ψ ◦ η). Hence ψ is an
injection split by η. In particular, K and I/K are injective A-modules.

The inclusion M ′ →֒ I/K has the property that any non-zero submodule
N of I/K meets M ′; else, ψ−1(N) = N ⊂ I would be strictly larger than K
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and will meetM ′ trivially, contradiciting the choice of K. Hence N ∩M 6= 0.
Thus any non-zero submodule of ψ(I/K) meets M non-trivially; since M ′ ⊂
ψ(I/K), the maximality of M ′ implies that M ′ = ψ(I/K). Thus we have
shown that I =M ′ ⊕K, and so I0 =M ′ is an injective A-module containing
M with the desired property.

To prove the uniqueness, letM ⊂ I1 be another inclusion into an injective
A-module with the same property. Since the Ij are injective, there exist A-
linear maps α : I0 → I1 and β : I1 → I0 which are the identity on M . Since
kerα∩M = 0, we have kerα = 0. Regarding I0 as a submodule of I1 via the
inclusion α, since I0 is an injective module, α is a split inclusion, and we can
write I1 = I0 ⊕ N for some submodule N . But then N ∩M = 0, so N = 0
i.e., α : I0 → I1 is an isomorphism. ✷

Definition: A monomorphism 0 → M → I as in Proposition 1 is called
an injective hull of M .

Let A be a commutative ring, and let M , N be A-modules; let I be an
injective A-module. Let X· → M → 0 be a projective resolution of M over
A. We have a natural isomorphism of complexes

Hom A(X• ⊗N, I) ∼= Hom A(X•,HomA(N, I)).

Since HomA(−, I) is exact, the cohomology groups on the left are the groups
Hom A(Tor

A
i (M,N), I), and we get natural isomorphisms

Hom A(Tor
A
i (M,N), I) ∼= Ext iA(M,Hom A(N, I)).

Now suppose that A is a Noetherian local ring, M its maximal ideal,
k = A/M its residue field, and D an injective envelope of k as an A-module.
For any A-module M , let D(M) = Hom A(M,D). Then from the above
discussion, we get isomorphisms

D(Tor Ai (M,N)) ∼= Ext i(M,D(N)).

Now M 7→ D(M) is an exact, contravariant functor from the category of A-
modules into itself. If M 6= 0, then there is a non-zero submodule A/J ⊂M
for some ideal J ⊂ M (take a submodule Ax with x ∈M−{0}). Then there
is a surjection D(M)→→D(A/J). Next, there is a surjection A/J→→A/M =
k, so that there is an injection D(k) = Hom A(k,D) →֒ D(A/J). But D(k) 6=
0, so we conclude that D(M) 6= 0.
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Define the weak dimension of N to be the smallest integer d ≥ 0 such
that Tor Ai (M,N) = 0 for any A-module M for i > d. If N is finitely
generated, this equals the projective dimension of N . Then we have shown
above that the weak dimension of N is also the smallest d ≥ 0 such that
Ext iA(M,D(N)) = 0 for any A-module M , for all i > d. Thus, we have:

Lemma 1 The weak dimension of N equals the injective dimension of D(N).

Claim: Any finitely generated submodule of D has finite length.

If M is a finitely generated submodule of D, it suffices to show that M is
the only minimal prime of M . If not, M has a minimal prime P 6= M, and
so a submodule A/P ⊂ M ⊂ D. But then k ∩ A/P = 0, since there is no
injection k → A/P (of A-modules). This contradicts that D is the injective
hull of k.

The claim implies that D may be considered as a module over the M-
adic completion Â of A. Hence D(M) = Hom A(M,D) is an Â-module for
any A-module M , and M 7→ D(M) is an exact contravariant functor from
the category Mod(A) of A-modules to Mod(Â). Since a strict chain of
submodules ofM is carried into a strict chain of quotients of D(M), we have
the following lemma:

Lemma 2 With the above notation,

(i) D(M) is an Artinian Â-module ⇒ M is a Noetherian A-module,
and

(ii) D(M) is a Noetherian Â-module ⇒ M is an Artinian A-module.

Now denote by D̂ : Mod(Â) → Mod(Â) the functorM 7→ Hom
Â
(M,D).

We have a natural transformation (an A-homomorphism)

M
η→ D̂ ◦ D(M) = Hom

Â
(Hom A(M,D), D),

η(m)(f) = f(m) ∀ m ∈ M, f ∈ Hom A(M,D),

and since the target of η is an Â-module, an induced natural Â-homomorphism

θ(M) : Â⊗AM → D̂(D(M)),

for any A-module M .
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Theorem 2

(i) The mapping θ(M) is an isomorphism if M is Noetherian or Ar-
tinian. Further, if M is Noetherian (respectively Artinian) then D(M)
is Artinian (respectively Noetherian).

(ii) Â = End A(D) = End
Â
(D).

(iii) D gives an anti-equivalence between the category of Artinian A-
modules and the category of Noetherian Â-modules. If morever A = Â
(i.e., A is complete), then D = D̂ is its own quasi-inverse.

Proof: Suppose α, β are two non-zero homomorphisms k → D, where
α is the inclusion given by the definition of D as an injective hull. Then
β(k) ∩ k 6= 0, and so β(k) = k, and β = cα for some c 6= 0 in k. Thus
Hom A(k,D) ∼= k, and hence also D̂(D(k)) ∼= k. Clearly θ(k) : k → D̂(D(k))
is non-zero, and hence an isomorphism.

θ is a natural transformation between two exact functors

Mod(A) → Mod(Â).

Since θ(k) is an isomorphism, we deduce that θ(M) is an isomorphism if M
has finite length.

Next, suppose that M is Noetherian. If f ∈ Hom A(M,D), then f(M)
is a finitely generated submodule of D, and so has finite length; hence
f(MnM) = 0 for some n > 0. Thus, we see that

D(M) = lim
−→
n

D(M/MnM),

and so
D̂(D(M)) = lim

←−
n

D̂(D(M/MnM))

(we have used the formula Hom (lim
−→
n

Mn, N) = lim
←−
n

Hom (Mn, N), which is

just a restatement of the universal property of the direct limit lim
−→
n

Mn). Since

θ(M/MnM) :M/MnM → D̂(D(M/MnM))
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is an isomorphism, and we have a commutative diagram for each n (since θ
is a natural transformation)

Â⊗AM
θ(M)−→ D̂(D(M))

↓ ↓
M/MnM

θ(M/cMnM)−→ D̂(D(M/MnM))

we see that θ(M) is an isomorphism.
This proves that θ(M) is an isomorphism for NoetherianM , and in partic-

ular that θ(A) : Â→ Hom
Â
(D,D) is an isomorphism. If f ∈ Hom A(D,D),

d ∈ D and α ∈ Â, then for a ∈ A which is a sufficiently good approximation
to α,

f(αd) = f(ad) = af(d) = αf(d).

Thus HomA(D,D) = Hom
Â
(D,D) i.e., D(D) ∼= Â, and so θ(D) : D →

D̂(D(D)) is an isomorphism. Hence θ(D⊕n) is an isomorphism for any n > 0.
Now if M is Noetherian, there is a surjection A⊕n→→M , and so an in-

jection D(M) →֒ D(A⊕n) ∼= D⊕n which is Artinian, since D̂(D⊕n) = Â⊕n is
Noetherian (see lemma 2). Hence D(M) is Artinian too. This proves (i) for
Noetherian M .

Suppose that M is Artinian, and let M ⊂ I be an injective hull of M .
If M 6= 0, it has a non-zero finitely generated submodule, which has finite
length; so we can find an element x1 ∈ M − {0} with annihilator M i.e., a
monomorphism k →֒ I. This extends to an A-linear map i : D → I, whose
kernel has trivial intersection with k, and so is zero. Since D is injective, i is a
split inclusion, and we may write I = D⊕I1. If I1 6= 0, thenM1 =M∩I1 6= 0,
so that we may repeat the argument with an element x2 ∈ M1 − {0} with
annihilator M, and obtain an isomorphism I = D⊕2 ⊕ I2, etc. This process
must stop after a finite number of steps, since M is Artinian (else the chain
of submodules M ⊃ M1 ⊃ M2 ⊃ · · · is a strictly decreasing infinite chain of
submodules). Hence I = D⊕n for some n > 0. Since D is Artinian, I/M is
also Artinian, and we have an inclusion I/M →֒ D⊕m for some m > 0 i.e.,
an exact sequence

0 →M → D⊕n → D⊕m.

As noted earlier, θ(D⊕n) is an isomorphism for any n > 0; since θ is an exact
functor, we see that θ(M) is an isomorphism, from the diagram with exact

5



rows
0 →M −→ D⊕n → D⊕m

↓ ∼=↓ ∼=↓
0 → D̂(D(M)) → D̂(D(D⊕n)) → D̂(D(D⊕m))

Thus, when A = Â, D defines an anti-equivalence of categories between
the categories of Noetherian and Artinian A-modules, being its own quasi-
inverse. When A is not complete, the categories of Artinian A-modules
and Artinian Â-modules are equivalent, so D gives an anti-equivalence be-
tween Artinian A-modules and Noetherian Â-modules, since D̂ is an anti-
equivalence (from the case A = Â of (iii)). ✷

Definition: If A is a Noetherian local ring, D an injective hull of k as an
A-module, and M an A-module, the module D(M) = Hom A(M,D) is called
the dual of M . Its isomorphism class is independent of the choice of D.

Remarks:

1. When A is not complete, the category of Noetherian A-modules is not
anti-equivalent to the category of Artinian Â- (or A-) modules.

2. Let A be a Noetherian local ring containing a coefficient field i.e., a
field k mapped isomorphically onto the residue field, which we again
denote by k. For any module M , denote by Hom k(M, k) the set of
k-linear maps f :M → k such that f(MnM) = 0 for some n > 0 i.e.,

Hom k(M, k) = lim
−→
n

Hom k(M/MnM, k).

Then Hom k(M, k) is an A-module in a natural way. Now set D =
Hom k(A, k). It is easy to see that for any finitely generated module
M , we have Hom A(M,D) = Hom k(M, k). Let I be an ideal of A,
and f : I → k an element of Hom k(I, k), so that f(MnI) = 0 for
some n > 0. By the Artin-Rees lemma, there exists n′ > 0 such that
Mn′∩I ⊂ MnI, and we get f : I/(Mn′∩I) → k, which we may regard
as a map I + Mn′/Mn′ → k. We may extend this to a k-linear map
g : A/Mn′ → k. Thus the element f ∈ Hom k(I, k) is the image of g ∈
Hom k(A, k) i.e.,D is an injective A-module. Further, Hom A(k,D) = k
and any element of D is killed by some Mn. Hence D is the injective
hull of k – if x ∈ D − {0}, then Mr+1x = 0 while Mrx 6= 0 for
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some r ≥ 0, and then Mrx = k ⊂ D (since Hom A(k,D) = k); hence
Ax ∩ k 6= 0.

1.2 Gorenstein rings

Lemma 3 Let A be a Noetherian local ring with residue field k, and M a
finitely generated A-module. Suppose that for some integer n > 0, we have
Ext nA(k,M) 6= 0 and Ext iA(k,M) = 0 for all i > n. Then M has injective
dimension n, and we must have n = depthA.

Proof: To show that n = inj.dim.M , we have to show that for any module
P of finite type, Ext i(P,M) = 0 for all i > n (this follows by induction on
n). Since we can find a composition series for P with quotients A/P where
P is a prime ideal, it suffices to consider the case P = A/P. If P = M, the
maximal ideal, there is nothing to prove. If the assertion is false for some
P, then we may choose a P which is maximal with respect to this property.
Choose x ∈ (M−P). Then x is a non zero divisor on A/P, so that we have
an exact sequence

0 → A/P x→ A/P → A/(P + Ax) → 0.

Now A/(P + Ax) has a composition series with quotients A/Q where Q is
prime and (strictly) contains P (since (P+Ax)AQ 6= AQ). By the maximality
of P, we have Ext iA(A/Q,M) = 0 for i > n, and so Ext iA(A/(P+Ax),M) =
0 for i > n. Hence

Ext iA(A/P,M)
x→ Ext i(A/P,M)

is surjective for i > n; hence

MExt iA(A/P,M) = Ext iA(A/P,M).

Since M , A/P are finite A-modules, Ext iA(A/P,M) is finitely generated (we
may compute it using a resolution of A/P by free A-modules of finite rank).
By Nakayama’s lemma, we conclude that Ext iA(A/P,M) = 0 for i > n, a
contradiction.
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Now if x1, x2, . . . , xr is a maximal A-sequence inM (so that depthA = r),
we see by using the Koszul complex that

Ext rA(A/(x1, . . . , xr),M) ∼=M/(x1, . . . , xr)M 6= 0,

by Nakayama’s lemma, since M 6= 0 is a finite A-module. Hence r ≤ n. On
the other hand, depthA/(x1, . . . , xr) = depthA − r = 0, and so there is an
exact sequence of A-modules

0 → k → A/(x1, . . . , xr) → P → 0.

This gives an exact sequence of Ext groups

Ext nA(A/(x1, . . . , xr),M) → Ext nA(k,M) → Ext n+1
A (P,M)

where the last term is zero, as seen above. Hence

Ext nA(A/(x1, . . . , xr),M)→→Ext nA(k,M) 6= 0.

From the Koszul complex, this implies that n ≤ r. Hence n = r = depthA.
✷

Recall that a submodule N ⊂ M is called irreducible if we cannot write
N = P ∩Q for submodules P,Q ⊂M with N 6= P , N 6= Q.

Lemma 4 Let A be a Noetherian local ring,M an Artinian A-module. Then
we can find irreducible submodules Ni ⊂M, i = 1, . . . , m such that ∩mi=1Ni =
(0), but (0) is not the intersection of any subfamily of the Ni. The integer m
then equals dimk Hom A(k,M).

Proof: For an Artinian module M , we claim the following are equivalent:

(i) (0) is irreducible in M

(ii) dimk HomA(k,M) = 1

(iii) D(M) is generated by one element.

Indeed, sinceM is Artinian, D(M) is a Noetherian Â-module, by Theorem 2,
and

Hom A(k,M) ∼= Hom
Â
(D(M),D(k)) = Hom

Â
(D(M), k) ∼= Hom k(k⊗AD(M), k).
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Hence
dimk Hom A(k,M) = dimk k ⊗A D(M)

which is the minimal number of generators of D(M) as an Â-module, and
the second and third statements above are equivalent. Now suppose that (0)
is irreducible in M , and α, β ∈ HomA(k,M) − {0}. If α(k) 6= β(k), then
α(k) ∩ β(k) = (0), contradicting irreducibility. Hence α(k) = β(k) ∼= k and
so α = cβ for some c ∈ k − {0}. Thus dimk Hom A(k,M) = 1. Suppose
that M1,M2 ⊂ M are non-zero with M1 ∩M2 = (0). We can find non-zero
homomorphisms α : k → M1, β : k → M2 since Mi are Artinian. Since the
images of α and β have trivial intersection, α and β are k-linearly independent
in Hom A(k,M). Hence dimk Hom A(k,M) > 1, completing the proof of the
claimed equivalence.

Now irreducible submodules N ⊂ M correspond to Â-submodules
D(M/N) ⊂ D(M) generated by 1 element, since N is irreducible in M ⇔
0 is irreducible in M/N . Further, ∩iNi = (0) ⇔ M → ⊕M/Ni is injective
⇔ ⊕D(M/Ni) → D(M) is surjective. Thus irredundant representations
(0) = ∩iNi with Ni irreducible correspond precisely to picking minimal sets
of cyclic Â-submodules of D(M) generating D(M) i.e., to picking minimal
sets of generators for D(M) as an Â-module. ✷

Theorem 3 Let A be a Noetherian local ring of dimension n with residue
field k. The following are equivalent:

(i) for any system of parameters x1, x2, . . . , xn of A, the ideal (x1, . . . , xn)
is irreducible in A

(ii) A is Cohen-Macaulay, and there is a system of parameters x1, . . . , xn
such that (x1, . . . , xn) is irreducible in A

(iii) for 0 ≤ i < n, Ext iA(k, A) = 0 and Ext nk(k, A) = k

(iv) for large i, Ext iA(k, A) = 0

(v) A has injective dimension n as an A-module

(vi) A has finite injective dimension as an A-module.
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Proof: We proceed by induction on n = dimA. Suppose first that n = 0
i.e., A is Artinian. Then (i) ⇔ (ii) ⇔ the ideal (0) is irreducble in A ⇔
dimk Hom A(k, A) = 1 i.e., ⇔ (iii). Further, by lemma 3, since dimA =
depthA = 0, we have (iv) ⇔ (v) ⇔ (vi) ⇔ A is injective as an A-module.
Now, let D be the injective hull of k.

Suppose (0) is irreducible in A. We can find an injection f : k → A.
Since D is injective, f fits into a diagram

0 → k
f−→ A

iց ւ α
D

Since kerα ∩ k = (0) and (0) is irreducible, kerα = (0) and α is injective;
in particular, lengthA ≤ lengthD. Applying the functor D, we obtain a
surjection

A = Â = D(D)
D(α)→ D(A) = D.

Hence lengthA = lengthD, and so α is an isomorphism, and A is an injective
A-module.

Conversely, if A is an injective A-module, then any monomorphism
f : k → A extends to a monomorphism β : D → A (since it extends to a
map β, with ker β ∩ k = 0). As above, applying D, we conclude that in fact
β is an isomorphism. Further, HomA(k, A) = Hom A(k,D) = k, so (0) is
irreducible. This proves the Theorem for n = 0.

Suppose that n > 0 and the Theorem holds for all rings of smaller di-
mension. We have in any case by lemma 3 the equivalences (iv) ⇔ (vi) ⇔
inj.dim. A = depthA, and (v) ⇔ (iv). We shall first show that each one of
the hypothesis (i)-(vi) implies the existence of a non-zero divisor x ∈ M, the
maximal ideal of A; or equivalently, that depthA > 0, or that M 6∈ AssA.
This is clear for (ii) (since n > 0) and (iii) (since Hom A(k, A) = 0). Thus it
suffices to check that (i) and (vi) imply this.

Assume (i), and suppose that M ∈ AssA, so that there exists x ∈ A,
x 6= 0 with Mx = (0). Let y ∈ M such that y does not lie in any minimal
prime ideal of (0). Since ∩k≥0y

kA = (0), replacing y by yk if necessary, we
may assume that x 6∈ Ay. Now B = A/Ay has dimB = n− 1, and satisfies
the hypothesis (i) with n−1 in place of n. Hence by induction, B satisfies (ii)-
(vi); in particular, B is Cohen-Macaulay. But depthB = 0, since the image of
x in B is non-zero and is annihilated by the maximal ideal. Hence dimB = 0,
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and n = 1. Suppose that (0) = Q ∩Q′ is a primary decomposition of (0) in
A, where Q′ is the intersection of the primary components for the minimal
primes, and Q is the intersection of non-minimal primary components. Since
depthA = 0, Q 6= (0). Let z ∈ Q such that z does not lie in any minimal
prime. Replacing z by zn for large n, we may assume (since ∩nznA = (0))
that Az 6= Q, and Q′ 6⊂ Az. Now Az ⊂ (Q+Az)∩(Q′+Az) = Q∩(Q′+Az).
If t+µz ∈ Q∩(Q′+Az), with t ∈ Q′, then µz ∈ Q ⇒ t ∈ Q, so t ∈ Q∩Q′ =
(0). Hence Az = Q∩ (Az +Q′). But Az 6= Q and Az 6= (Az +Q′), so Az is
not irreducible. Since dimA = 1 and z ∈ A is a parameter (as it does not lie
in any minimal prime), we see that (i) is contradicted.

Next, assume (vi), so that inj.dim. A = depthA. We want to show
depthA > 0; if depthA = 0, then A must itself be injective. Also, we
have an injection f : k → A (since depthA = 0), which factors (since A is
injective) through i : k → D, giving an injection D → A. Since D is the
injective hull of k, the map D → A must be a split inclusion. Applying D
to the surjection A → D, we obtain an injection Â = D(D) → D(A) = D.
Hence Â is Artinian i.e., A is Artinian, contradicting that dimA > 0.

Thus, each of the hypothesis (i)-(vi) implies that there exists a non-zero
divisor x ∈ A. Let us put B = A/Ax, and denote by (i)′,. . .,(vi)′ the hy-
potheses (i) to (vi) for B. Then, we have

(i) ⇒ (i)′ ⇔ (ii)′ ⇔ (ii),

where the middle equivalence is by the induction hypothesis.
Now, assume (ii) and let x1, . . . , xn be a system of parameters in A. Then

x1, . . . , xn is a regular sequence, since we have assumed A is Cohen-Macaulay.
From the exact sequences

0 → A/(x1, . . . , xi)
xi+1−→ A/(x1, . . . , xi) → A/(x1, . . . , xi+1) → 0,

we see by descending induction on i that

Ext jA(k, A/(x1, . . . , xi)) = 0 ∀j < n− i,

Ext n−iA (k, A/(x1, . . . , xi) ∼= Hom A(k, A/(x1, . . . , xn)).

In particular, for i = 0, we get

Ext iA(k, A) = 0 ∀i < n, Ext nA(k, A)
∼= Hom A(k, A/(x1, . . . , xn)).
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By assumption, there is some system of parameters y1, . . . , yn such that
(y1, . . . , yn) is irreducible in A i.e., by lemma 4, we have
dimk Hom A(k, A/(y1, . . . , yn) = 1. Hence Ext nA(k, A) = k. This implies that
Hom A(k, A/(x1, . . . , xn)) = k i.e., (x1, . . . , xn) is irreducible in A. Hence (ii)
⇒ (i) and (ii) ⇒ (iii).

Suppose (iii) holds, and let y1, . . . , ym be a maximal A-sequence. Then
m ≤ n. The long exact sequence of Ext groups associated to the exact
sequences of A-modules

0 → A/(x1, . . . , xi)
xi+1→ A/(x1, . . . , xi) → A/(x1, . . . , xi+1) → 0, 0 ≤ i < m,

yields, by induction on i,

Ext jA(k, A/(x1, . . . , xi)) = 0 for j < n− i,

Ext n−iA (k, A/(x1, . . . , xi)) ∼= Ext nA(k, A) = k.

On the other hand,

Ext 0
A(k, A/(x1, . . . , xm)) = Hom A(k, A/(x1, . . . , xm)) 6= 0

since depthA = m. We deduce that m = n, and Hom A(k, A/(x1, . . . , xn) =
k, which implies (ii). Hence we have shown:
(i) ⇔ (ii) ⇔ (iii).

Now (ii) implies that in the Artin ring A/(x1, . . . , xn) = C, the ideal (0)
is irreducible. Hence C is injective over itself, by the Theorem for rings of
dimension 0. Further, we had seen in this case that C is an injective envelope
of k as a C-module. On the other hand, if J is an injective A-module, then
for any ideal I of A, and any A/I-module M , we have

Hom A/I(M,HomA(A/I, J)) = Hom A(M,J);

hence Hom A(A/I, J) is A/I-injective. In particular, if J = D, the injec-
tive hull of k as an A-module, we see that Hom A(A/I,D) is an injective
A/I module. Further, HomA/I(k,Hom A(A/I,D)) = Hom A(k,D) = k, so
Hom A(A/I,D) is in fact the injective hull of k as an A/I-module. Applying
this to C, we see that HomA(C,D) ∼= C. Thus, we see that

DA(C) ∼= C = A/(x1, . . . , xn).
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Since C has projective dimension n over A, we see by lemma 1 that D(C) ∼= C
has injective dimension n over A. Hence, by descending induction on i,
Ext jA(k, A/(x1, . . . , xi) = 0 for j > n. Thus (ii) ⇒ (vi).

Finally, suppose that (vi) holds, and let x ∈ A be a non-zero divisor.
From the exact sequence

0 → A
x→ A→ A/Ax→ 0,

we see that Ext 1
A(A/Ax,A)

∼= A/Ax, and Ext iA(A/Ax,A) = 0 for i 6= 1. Let

0 → A→ I0 → · · · → In → 0

be a finite injective resolution of A. The complex Hom A(A/Ax, I
•
) has

Ext iA(A/Ax,A) as cohomology groups i.e., has all cohomologies except the
first equal to 0, and the first cohomology is Ext 1

A(A/Ax,A)
∼= A/Ax. Thus

we have exact sequences (the bottom one defines Z1)

0 → Hom A(A/Ax, I
0) → Z1 → Ext 1

A(A/Ax,A) → 0,

0 → Z1 → Hom A(A/Ax, I
1) → Hom A(A/Ax, I

2) → · · · → HomA(A/Ax, I
n) → 0.

The bottom row gives an injective resolution for Z1 as an A/Ax module, and
so Z1 has finite injective dimension over A/Ax. Since Hom A(A/Ax, I

0) is an
injective A/Ax-module, the top sequence splits; this shows that Ext 1

A(A/Ax,A)
∼=

A/Ax has finite injective dimension as an A/Ax-module, so (vi) is satisfied
by A/Ax. This implies (ii) is satisfied by A/Ax, and hence by A. This
completes the proof. ✷

Definition: A Noetherian local ring A satisfying any of the equivalent
conditions (i)-(vi) of the Theorem is called a Gorenstein ring.

Remarks:

1. Any regular local ring is Gorenstein, since it has finite global dimension.

2. If A is Gorenstein and x1, . . . , xr is an A-sequence, then A/(x1, . . . , xr)
is Gorenstein. In fact (ii) above is fulfilled.

3. More generally, let A be any Noetherian local ring, I an ideal in A, and
d = dimA/I. Then A/I is Gorenstein ⇔ (a) Ext dA(k, A/I) = 0 for
i < d and (b) Ext dA(k, A/I) = k.

13



In fact, (a) is equivalent to the existence of an A/I-sequence x1, . . . , xd
of length d i.e., to A/I being Cohen-Macaulay. Next, if A/I is Cohen-
Macaulay and x1, . . . , xd is a regular A/I-sequence, the Koszul complex
yields

Ext d(k, A/I) ∼= Hom A(k, A/(I + (x1, . . . , xd))),

so (b) ⇔ I + (x1, . . . , xd) is irreducible in A ⇔ I + (x1, . . . , xd)/I is
irreducible inA/I. Thus (a) and (b) hold ⇔ A/I satisfies the condition
(ii).

4. Let A be a one dimensional non-normal Noetherian local domain with
quotient field K such that its integral closure A (in K) is a finite A-
module. Then A is Cohen-Macaulay, and Ext 1

A(k, A)
∼= M−1/A, as

follows from the exact sequence

0 → M → A→ k → 0,

where M−1 = {x ∈ K | xM ⊂ A} (thus Hom A(k,K/A) = M−1/A).
If M−1M = A, then there exist x ∈ M−1, y ∈ M such that xy 6∈ M,
so that xy is a unit; then for z ∈ M, we have z = zx(xy)−1y ∈ Ay, so
that M = Ay, and A is regular, a contradiction. Hence M−1M ⊂ M,
and so M−1 ⊂ A. Thus Hom A(k, A/A) = Hom A(k,K/A) = M−1/A.

Now if I ⊂ A is the conductor, then by definition, I = Ann A(A/A),
so that A/A is a faithful A/I-module. Hence so is its dual D(A/A),
since D(D(A/A) = A/A. Now A is Gorenstein ⇔ Ext 1

A(k, A) = k
⇔ Hom A(k, A/A) = k ⇔ D(A/A) is generated by one element ⇔
D(A/A) ∼= A/I. Now for any Artinian moduleM over an Artinian local
ring B, length (D(M)) = length (M), since this is true for M = k, the
residue field. Hence A is Gorenstein ⇒ length (A/A) = length (A/I).

2 Local duality theory

Theorem 4 (The local duality theorem) Let A be a Noetherian Cohen-
Macaulay local ring of dimension n, with maximal ideal M and residue field
k, and put

lim
−→
p

Ext nA(A/Mp, A) = J.

14



Then we have a natural isomorphism

lim
−→
p

Ext n−iA (A/Mp,M) ∼= Tor Ai (M,J) · · · (#)

for all A-modules M , for all I ≥ 0.

Proof: Let x1, . . . , xn be a maximal A-sequence, and setMp = (xp1, . . . , x
p
n).

Now xp1, . . . , x
p
n is also an A-sequence, and if Mr ⊂ M1, then we have inclu-

sions Mnpr ⊂ Mnp
1 ⊂ Mp ⊂ Mp, so that

lim
−→
p

Ext jA(A/Mp,M) = lim
−→
p

Ext jA(A/Mp,M)

for any A-module M . Since Mp is generated by an A-sequence, the Koszul
complex yields Ext jA(A/Mp,M) = 0 for j > n, and Ext jA(A/Mp, A) = 0 for
j < n.

Define covariant functors Ti, 0 ≤ i ≤ n, on the category of A-modules by

Ti(M) = lim
−→
p

Ext n−iA (A/Mp,M)

Then

(i) the Ti form a covariant ∂-functor inM i.e., given a short exact sequence

0 →M ′ →M →M ′′ → 0,

we have a long exact sequence

0 → Tn(M
′) → Tn(M) → Tn(M

′′)
∂→ Tn−1(M

′′) → · · ·

· · · → T1(M
′′)

∂→ T0(M
′) → T0(M) → T0(M) → 0;

given a commutative diagram of short exact sequences

0 →M ′ → M →M ′′ → 0
↓ ↓ ↓

0 → N ′ → N → N ′′ → 0

the diagrams

Ti+1(M
′′)

∂→ Ti(M
′)

↓ ↓
Ti+1(N

′′)
∂→ Ti(N

′)

commute;
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(ii) Ti commutes with direct sums, and Ti(A) = 0 for i > 0; hence Ti is
effaceable.

The above shows that the Ti form a universal ∂-functor in the sense of
Grothendieck.

Next, for any three A-modulesM , N , P there is a natural homomorphism
Ext iA(N,P ) ⊗A M → Ext i(N,P ⊗M) for each i – if m ∈ M , there is an
induced A-module map ψ(m) : P → P ⊗A M , p 7→ p ⊗m, which induces a
map

ψ(m)∗ : Ext
i
A(N,P ) → Ext iA(N,P ⊗AM);

one verifies that ψ(α⊗m) = ψ(m)∗(α) gives the desired map.
In particular, there is a natural mapM⊗AExt

n(A/Mp, A) → Ext nA(A/Mp,M)
for each p > 0. Taking the direct limit over p, we obtain a natural transfor-
mation of functors of M

M ⊗A J → T0(M).

This is an isomorphism for M = A, commutes with direct sums, and both
functors are right exact. Hence, looking at a presentation of M as a cokernel
of a mapping of free A-modules, we see that the above natural transforma-
tion is an isomorphism for allM . Since Tor Ai (M,J) and Ti(M) are both uni-
versal ∂-functors, this means that the above natural transformation extends
uniquely to a natural isomorphism of ∂-functors i.e., to natural isomorphisms

Ti(M) ∼= Tor Ai (M,J)

which are compatible with the ∂-maps. ✷

Since A is Cohen-Macaulay, Ext iA(k, A) = 0, 0 ≤ i < n, and hence
Ext iA(N,A) = 0 for 0 ≤ i < n for any A-module N of finite length. Thus,
the natural homomorphisms

Jp = Ext nA(A/Mp, A) → Ext nA(A/Mp+1, A) = Jp+1

are all injective, from the long exact sequence of Ext ’s. Further,

dimk Hom A(k, Jp) = dimk HomA(k, A/(x
p
1, . . . , x

p
n)) = dimk Ext

n
A(k, A)

is independent of p, and so Hom A(k, Jp) → HomA(k, Jp+1) is an isomor-
phism. Hence k⊗D(Jp+1) → k⊗D(Jp) is an isomorphism, and so D(Jp+1) →
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D(Jp) is surjective (note that Jp, Jp+1 have finite length, hence so do their
duals). Let m = dimk Ext

n
A(k, A), and F a free Â-module of rank m

with basis e1, . . . , em. Inductively, we can find surjective Â-homomorphisms
ϕp : F → D(Jp) such that the diagrams

F
ϕp−→ D(Jp)

ϕp+1 ց ւ
D(Jp+1)

commute. Hence we obtain a homomorphism ϕ : F → D(J) = lim
←−
p

D(Jp).

Let imϕ = G, so that G ⊂ D(J) is a finitely generated Â-submodule. If
G 6= D(J), then we can find a finitely generated Â-submodule H ⊂ D(J)
which strictly contains G. Since G → D(Jp) is surjective for each p, so is
H → D(Jp). Let Hp = kerH → D(Jp), so that G +Hp = H , and H/Hp =
D(Jp) is Artinian; also, ∩pHp = ker(H → D(J)) = 0. Hence for any r > 0 we
can find p(r) such that Hp(r) ⊂ MrH . Thus, H ⊂ ∩n(G+MnH) = G, since

G is closed in H for the M-adic topology (as G, H are finite Â-modules).
Hence we must have G = D(J).

Thus, D(J) = ΩA is a finite Â-module, and so J is Artinian. For any finite
A-moduleM , Tor Ai (M,J) is Artinian, sinceM has a resolution F• →M → 0
where Fi are free of finite rank, and Fi⊗A J is Artinian for each i. Hence by
Theorem 2 and the discussion preceeding lemma 1,

Tor Ai (M,J) ∼= Â⊗A Tor Ai (M,J) ∼= Tor Âi (Â⊗AM,J) ∼=
D̂(Ext i

Â
(Â⊗AM,D(J)) ∼= D̂(Ext i

Â
(Â⊗AM,ΩA)).

Thus, we have:

Corollary 1 The module ΩA = D(J) is finitely generated over Â, and for
any finitely generated A-module M , we have an isomorphism

lim
−→
p

Ext jA(A/Mn,M) ∼= D(Ext n−j
Â

(Â⊗AM,ΩA)) · · · (†).

The minimal number of generators of Ω as an Â-module is dimk Ext
n(k, A).

Further, Ext i
Â
(k,ΩA) = 0 for 0 ≤ i < n, Ext n

Â
(k,ΩA) = k, so that ΩA is

a Cohen-Macaulay module of dimension n over Â, such that if y1, . . . , yn is
any system of parameters of Â, the submodule (y1, . . . , yn)ΩA is irreducible
in ΩA. Lastly, ΩA is a faithful Â-module.
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Proof: The first assertion (i.e., finite generation of ΩA, and the isomor-
phism (†)) has already been proved. We have also shown above that (with the
earlier notations) there is a surjection F→→ΩA, such that F ⊗ k ∼= ΩA⊗ k ∼=
Jp ⊗ k for all p > 0, where F = Â⊕r, and r = dimk Ext

n(k, A). Hence
ΩA is minimally generated by r elements. Now, D̂(ΩA) ∼= Â ⊗A J ∼= J , by
Theorem 2, since J is Artinian. If α ∈ Â kills ΩA, then it kills each of the sub-
modules Jp = Â/(xp1, . . . , x

p
n) of J = D̂(ΩA), and so α ∈ ∩(xp1, . . . , xpn) = 0.

Hence ΩA is a faithful Â-module.
Now to calculate Ext i

Â
(k,ΩA). We apply the duality isomorphism (†)

with M = k. For each p > 0, set as before Mp = (xp1, . . . , x
p
n) and

K•(x
p
1, . . . , x

p
n) the Koszul complex over Â with respect to xp1, . . . , x

p
n. Then

K•(x
p
1, . . . , x

p
n) resolves Â/Mp, and we have a map of complexes ψp : K•(x

p+1
1 , . . . , xp+1

n ) →
K•(x

p
1, . . . , x

p
n) lifting Â/Mp+1 → Â/Mp, given by

ei1ei2 · · · eik 7→ xi1xi2 · · ·xikei1ei2 · · · eik .

Hence

Hom (ψp, k) : Hom (Kr(x
p
1, . . . , x

p
n), k) → Hom (Kr(x

p+1
1 , . . . , xp+1

n ), k)

is 0 for r ≥ 1, so that Ext rA(A/Mp, k) → Ext rA(A/Mp+1, k) is 0 for 0 ≤
r < n, and Hom (A/Mp, k)⊗ k → Hom (A/Mp+1, k)⊗ k is an isomorphism.
Thus

Ext i
Â
(k,ΩA) = 0, 0 ≤ i < n,

Ext n
Â
(k,ΩA) ∼= k.

This evidently implies the remaining assertions. ✷

Corollary 2 The following assertions are equivalent on a Cohen-Macaulay
ring A:

(i) A is a Gorenstein ring

(ii) J ∼= D

(iii) ΩA ∼= Â

(iv) ΩA is generated by 1 element as an Â-module

(v) J is injective
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(vi) ΩA is Â-free.

Proof: A is Gorenstein ⇔ Ext n(k, A) = k ⇔ ΩA is generated by 1
element as an Â-module ⇔ ΩA ∼= Â (since ΩA is a faithful Â-module) ⇔
J ∼= D. Thus, (i), (ii), (iii), (iv) are equivalent, and they clearly imply (v)
and (vi), and (v) ⇔ (vi). On the other hand, since Ext n

Â
(k,ΩA) = k, (vi)

⇒ (iii). ✷

Remarks:

1. ΩA has finite injective dimension (as an Â-module). Indeed, we may
assume A is complete; by lemma 1, it suffices to show that J has weak
dimension ≤ n. But the duality theorem (#) implies that for any A-
module M , Tor Ai (M,J) = 0 for i > n, since Ext n−iA (A/Mp,M) = 0
for all p > 0.

2. The associated prime ideals to Â and ΩA (or what is the same, the
minimal prime ideals of (0) in Â and ΩA, since dimΩA = dimA and
both are Cohen-Macaulay) are the same.

To see this, note that since ΩA is Cohen-Macaulay of dimension n,
Ass (ΩA) ⊂ Ass (Â). If P ∈ Ass (Â), P 6∈ Ass (ΩA), choose an x 6∈ P
such that x lies in all the associated primes of ΩA. Then xm 6= 0 for
any m > 0, but xm kills ΩA for large m. This is impossible since ΩA is
a faithful Â-module.

3. We want to compute End
Â
(ΩA). We may assume that A is complete

without loss of generality. Then from Corollary 1 (with j = 0, M =
ΩA), we have

D(End A(ΩA)) ∼= lim
−→
p

Ext nA(A/Mp,ΩA),

and so

End A(ΩA) ∼= D(lim
−→
p

Ext n(A/Mp,ΩA)) ∼= lim
←−
p

D(Ext nA(A/Mp,ΩA))

∼= lim
←−
p

(lim
−→
q

Hom A(A/Mq, A/Mp)) ∼= lim
←−
p

HomA(A/Mp, A/Mp) ∼= A.

Thus, End
Â
(ΩA) ∼= Â.
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4. Since ΩA has finite injective dimension over Â, for any prime ideal P of
Â, the localised module (ΩA)P has finite injective dimension over ÂP .
Indeed, if N is an ÂP-module of finite type, then there exists an Â-
moduleN1 of finite type such thatN ∼= (N1)P , and Ext i

ÂP
(N, (ΩA)P) ∼=

Ext i
Â
(N1,ΩA)⊗Â

ÂP = 0 for i sufficiently large.

Hence, if P is any minimal prime of (0) in Â, then (ΩA)P has finite
injective dimension over the Artin ring ÂP so that (since it is of finite
type) it is injective over ÂP (by lemma 3). Hence, (ΩA)P is a direct
sum of finitely many copies of the injective hull over ÂP of its residue
field. But since End

Â
(ΩA) = Â, we have

(ΩA)P = injective hull of residue field of ÂP over ÂP .

In particular,
length (ÂP) = length ((ΩA)P).

Thus, if A is a domain, ΩA is of rank 1 over Â.

Here we made use of the fact that if A is an Artin ring and M an
A-module of finite type, then length (M) = length (D(M)), since this
holds for M = k and both sides are additive on short exact sequences.

Definition: A module Ω0 of finite type over a Cohen-Macaulay local ring
A is said to be a dualising module if Â⊗A Ω0

∼= ΩA.

Note that if Ω0 is dualising for A, we have the duality ismorphism

lim
−→
p

Ext jA(A/Mp,M) ∼= D(Ext n−jA (M,Ω0))

for any finitely generated A-moduleM . This follows immediately from Corol-
lary 1.

Remark: A dualising module need not always exist for a local Cohen-
Macaulay ring A, if A is not complete. However, we shall see that if it
exists for A, then it exists for any localisation of A and any Cohen-Macaulay
quotient A/I. Since it exists for Gorenstein rings (Ω0 = A), it exists for the
localisations of Cohen-Macaulay quotients of A. Note that Ω0 is unique up
to isomorphism.
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The next Proposition will be used to give a characterisation of the dual-
ising module.

Proposition 5 Let A be a Noetherian Cohen-Macaulay local ring and M
an A-module of finite type which is Cohen-Macaulay of dimension equal to
dimA and of finite injective dimension. Then there is an integer r such that
Â⊗AM ∼= Ω⊕r

A .

Proof: Let r = dimExt nA(k,M) where n = dimA.
First note that since Ext iA(k,M) = 0 for i < n (since M is Cohen-

Macaulay), Ext iA(N,M) = 0 for i < n and N of finite length. Thus,

Ext nA(A/Mp−1,M) → Ext nA(A/Mp,M)

is injective for every p, and

D(Ext nA(A/Mp+1,M)) → D(Ext nA(A/Mp,M))

is surjective for every p. Choose a basis y1, . . . , yr of D(Ext nA(k,M)) ∼=
Ext nA(k,M). It follows that we can find z1, . . . , zr ∈ lim

←−
p

D(Ext nA(A/Mp,M))

whose images in D(Ext nA(k,M)) are y1, . . . , yr respectively. Now, we have a
natural isomorphism (from (†))

lim
←−
p

D(Ext nA(A/Mp,M)) ∼= Hom
Â
(Â⊗AM,ΩA) ∼= Hom A(M,ΩA),

and we get elements α1, . . . , αr ∈ HomA(M,ΩA), and hence a homomorphism
α = (α1, . . . , αr) : M → Ω⊕r

A . Now, we know that Hom
Â
(ΩA,ΩA) ∼= Â, and

under the composite

Hom
Â
(ΩA,ΩA) ∼= lim

←−
p

D(Ext nA(A/Mp,ΩA)) → D(Ext nA(k,ΩA))
∼= D(k) ∼= k,

the image of 1 ∈ End (ΩA) is a non-zero element (this is because the com-
posite map End

Â
(ΩA) → k is surjective. Also, the diagram

Hom A(M,ΩA) → D(Ext nA(k,M))
Hom (αi,ΩA) ↓ ↓ D(Ext n(k, αi))

Hom
Â
(ΩA,ΩA) → D(Ext nA(k,ΩA))
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is commutative, by the naturality of the duality isomorphism. Thus, we
deduce that

Ext nA(k, α) : Ext
n
A(k,M) → Ext nA(k,Ω

⊕r
A )

is an isomorphism. Since Ext iA(k,M) = Ext iA(k,ΩA) = 0 for i 6= n, we
deduce (by the five-lemma and induction on length (N)) that for any A-
module N of finite length,

Ext nA(N,M)
Ext n

A
(N,α)−→ Ext nA(N,Ω

⊕r
A )

is an isomorphism. If x1, . . . , xn is a system of parameters and p > 0 an
integer, then we have an isomorphism

Ext nA(A/(x
p
1, . . . , x

p
n),M) ∼= M/(xp1, . . . , x

p
n)M,

which is natural in M , since M is Cohen-Macaulay. Thus, as p vaaries, we
have a compatible family of isomorphisms

M

(xp1, . . . , x
p
n)M

∼= Ω⊕r
A

(xp1, . . . , x
p
n)Ω⊕r

A

.

Passing to the inverse limit over p, M̂ ∼= Ω⊕r
A , as desired. ✷

Corollary 3 Let A be as in the Proposition, and M an A-module such that

(i) M is Cohen-Macaulay of dimension n = dimA

(ii) M is of finite injective dimension over A

(iii) End A(M) = A.

Then M is a dualising module. The same conclusion holds if (iii) is replaced
by
(iii)′ Ext nA(k,M) = k.

Proof: We know that M̂ ∼= Ω⊕r
A , where r ≥ 1. If r > 1, then End A(M)⊗A

Â ∼= End
Â
(Ω⊕r

A ) ∼= Mr(Â), where Mr(Â) is the ring of r × r matrices over

Â. In particular, End A(M) 6= A. Thus r = 1, proving that M is dualising
for A. Since r = dimk Ext

n
A(k,M), we may replace (iii) by (iii)′. ✷
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Corollary 4 Let A be as in the Proposition, and suppose a dualising module
Ω0 exists for A. Then, we have

(i) for any prime ideal P of A, Ω0 ⊗AAP is a dualising module for AP

(ii) if I is any ideal of A such that A/I is Cohen-Macaulay and ht I =
h, the Ext hA(A/I,Ω0) is a dualising module for A/I.

Proof: (i) In fact, Ω0 ⊗A AP is Cohen-Macaulay of dimension equal to
dimAP , oof finite injective dimension, and End P(Ω0 ⊗A AP) ∼= AP .
(ii) First, we check that Ext iA(A/I,Ω0) = 0 if i 6= h. This follows from:

Sublemma 1 Let A be as in the Proposition. Suppose M is a finite A-
module of finite injective dimension which is Cohen-Macaulay of dimension
equal to dimA, and N is Cohen-Macaulay of dimension r. Then Ext iA(N,M) =
0 for i 6= n− r.

Proof: We proceed by induction on r. If r = 0, we are through since N
is Artinian and the result holds for N = k. Suppose r > 0, and the result
holds for smaller values of r. Let x be a non-zero divisor on N . Then we
have the exact sequence

Ext iA(N,M)
x→ Ext iA(N,M) → Ext i+1(N/xN,M)

and by the induction hypothesis, the last group is 0 if i+1 6= n−(r−1) i.e., i 6=
n− r. Since Ext iA(N,M) is then a finite A-module on which multiplication
by x is surjective, we are done by Nakayama’s lemma. ✷

Now to the proof of (ii). Let 0 → Ω0 → I
•
be a finite injective resolution

of Ω0. Then the sequences

0 → Hom A(A/I, I
0) → · · · → Hom A(A/I, I

h−1) → Bh → 0

and
0 → Zh → Hom A(A/I, I

h) → Hom AA(A/I, I
h+1) → · · ·

are exact (this defines Bh, Zh) and Zh/Bh ∼= Ext hA(A/I,Ω0). Further,
Hom A(A/I, I

j) is an injective A/I-module for each j. Thus Zh, Bh and
hence Ext hA(A/I,Ω0) have finite injective dimension over A/I; further, Bh

is in fact injective, so that Zh ∼= Bh⊕Ext hA(A/I,Ω0). Now Ext iA(k,Ω0) = 0
for i 6= n, and Ext nA(k,Ω0) = k, where Ext iA(k,Ω0) is the i

th-cohomology of

23



the complex Hom A(k, I
•
) ∼= HomA/I(k,Hom A(A/I, I

•
)). Hence we deduce

that if M = Ext hA(A/I,Ω0), then

Ext iA/I(k,M) = 0 0 ≤ i < n− h,

Ext n−hA/I (k,M) = k.

In view of Corollary 3 we are through. ✷

3 Local cohomology

3.1 Sheaf theoretic preliminaries

We start with some preliminary definitions. A map f : X → Y of topological

spaces is said to be an immersion if f factors as X
g→ Z

i→ Y , where g is
a homeomorphism, Z a locally closed subspace of Y , and i the inclusion.
The immersion f is said to be closed or open if Z ⊂ Y is closed or open,
respectively.

Let F be a sheaf of abelian groups on a topological space X , U ⊂ X an
open set, and σ ∈ F(U) a section over U . Then the support of σ, denoted
| σ |, is the set

| σ | = {x ∈ U | σx 6= 0},
where σx is the image of σ in the stalk Fx of F at x. Clearly | σ | is closed in
U . Similarly we define the support of the sheaf F (which we denote suppF)
as

suppF = {x ∈ X | Fx 6= 0}.
Recall the standard sheaf operations: if f : X → Y is a map of topological

spaces, and F is a sheaf on X , its direct image f∗F is the sheaf

f∗(F)(U) = F(f−1(U)),

and if G is a sheaf on Y , its inverse image f−1G is the sheaf on X associated
to the presheaf

U 7→ lim
−→

V ⊃ f(U)
V open in Y

G(V ).
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Then f−1G has stalks (f−1G)x = Gf(x). In the case when f is the inclusion of
an open set, (f−1G)(U) = G(U) for all open sets U ⊂ X ⊂ Y . The functors
f−1 and f∗ are adjoint i.e., there are natural isomorphisms

HomOX
(f−1G,F) ∼= HomOY

(G, f∗F),

for any sheaves of abelian groups F , G on X, Y respectively.
Let (X,OX) be a ringed space. We denote the category of OX -modules

by MX , and for a locally closed subspace Y ⊂ X , we denote by MX,Y the
full subcategory of MX consisting of sheaves with support contained in Y .

Proposition 6 Let (X,OX) be a ringed space, i : Y → X the inclusion of
a locally closed subset, and MY = i−1MX . Then the restriction of i−1 :
MX → MY to MX,Y gives an equivalence of categories i−1 : MX,Y → MY .

Proof: We have to construct a quasi-inverse functor ĩ : MY → MX,Y

(i.e., a functor ĩ such that ĩ ◦ i−1 and i−1 ◦ ĩ are naturally isomorphic to the
respective identity functors). If F ∈ MX and x ∈ Y , then (i−1F)x = Fx, so
supp i−1F = suppF∩Y . If F ∈ MX,Y then (if ĩ exists) we have ĩ◦i−1F ∼= F ,
and if G ∈ MY , then i

−1 ◦ ĩG ∼= G. Hence ĩ : MY → MX,Y must preserve
supports. Hence, it suffices to construct ĩ when i is either a closed immersion
or an open immersion, since an arbitrary immersion i is the composite i1 ◦ i2
where i2 is an open immersion and i1 is a closed immersion, and we may then
define ĩ = ĩ1 ◦ ĩ2.

When i is a closed immersion, we can take ĩ = i∗, since we evidently have
supp i∗G ⊂ Y and i−1 ◦ i∗G ∼= G for G ∈ MY , and for F ∈ MX,Y , the natural
map F → i∗ ◦ i−1F is an isomorphism. Note that for G ∈ MY , we consider
i∗G as an OX-module via the homomorphism OX → i∗OY = i∗ ◦ i−1OX .

Suppose that i is an open immersion, and G ∈ MY . Then define ĩG by

ĩ(G)(U) = {σ ∈ G(Y ∩ U) | | σ | is closed in U}.

One verifies easily that the sheaf conditions are satisfied. This is an OX-
module in a natural way, and we have evidently i−1 ◦ ĩ = 1MY

, the identity
functor. Suppose on the other hand that F ∈ MX,Y . We have an evident
injection of OX -modules ĩ ◦ i−1F →֒ F and this is an isomorphism, since
both sides have support in Y and we get the identity on applying i−1 to both
sides. ✷
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Definition: For a locally closed subset Y of X and an i−1OX-module G
on Y , if ĩ : MY → MX,Y is the quasi-inverse to i−1 : MX,Y → MY , we put
GY = ĩG. Further, for any F ∈ MX , we shall put FY = ĩi−1F .

Note that (̃iG)y = Gy for any y ∈ Y , while (̃iG)x = 0 for x 6∈ Y .

Now, if Y
i→ X , Z

j→ Y are immersions, we have (i ◦ j)−1 = j−1 ◦ i−1;

hence ˜(i ◦ j = ĩ ◦ j̃. Further, i−1 and ĩ are both exact functors, hence so is
ĩ ◦ i−1 : MX → MX,Y , F 7→ FY .

If i : Y → X is a closed immersion, then ĩ = i∗, so that for any F ∈ MX ,
G ∈ MY we have natural isomorphisms

HomOX
(F , ĩG) ∼= HomOY

(i−1F ,G) · · · (1)

where Y is closed in X , F ∈ MX , G ∈ MY , and in paticular, for any F , a
natural transformation of functors F → ĩ ◦ i−1F = FY , which is evidently
surjective.

On the other hand, suppose Y ⊂ X is open. It follows from the definition
of ĩ in this case that there is a natural transformation ĩ ◦ i−1F = FY → F
which is injective, and an isomorphism when restricted to Y . Hence F/FY

has support in the closed set X − Y , so that if F ∈ MX,Y , F ′ ∈ MX , then

HomOX
(F ,F ′/F ′

Y ) = 0

and so
HomOX

(F ,F ′) = HomOX
(F ,F ′

Y ).

Hence, if G ∈ MY , F ∈ MX , we have an isomorphism of functors

HomOY
(G, i−1F) ∼= HomOX

(̃iG, ĩ ◦ i−1F) ∼= HomOX
(̃iG,FY )

∼= HomOX
(̃iG,F),

that is,

HomOY
(G, i−1F) ∼= HomOX

(̃iG,F) · · · (2)

if i : Y → X is the inclusion of an open set.

Finally, if Z
j→ Y

i→ X where Z ⊂ Y is locally closed, and Y ⊂ X is
locally closed, then Z ⊂ X is locally closed, and the relations (i ◦ j)−1 =

j−1 ◦ i−1 and ˜(i ◦ j) = ĩ ◦ j̃ imply

˜(i ◦ j ◦ (i ◦ j)−1 ◦ ĩ ◦ i−1 = ˜(i ◦ j ◦ j−1 ◦ i−1 ◦ ĩ ◦ i−1
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= ˜(i ◦ j ◦ j−1 ◦ i−1 = ˜(i ◦ j ◦ (i ◦ j)−1

i.e., there is a natural isomorphism

(FY )Z ∼= FZ

for any F ∈ MX . More generally, for any two locally closed subsets Y, Z ⊂
X , and F ∈ MX , we have

(FY )Z ∼= ((FY )Z)Y ∩Z
∼= (FY )Y ∩Z

∼= FY ∩Z · · · (3).

Suppose now that Y is locally closed in X , and Z is closed in Y . Then
we have natural transformations

FY−Z = (FY )Y−Z →֒ FY (since Y − Z ⊂ Y is open)

and
FY→→(FY )Z ∼= FZ (since Z is closed in Y ).

The sequence of sheaves

0 → FY−Z → FY → FZ → 0 · · · (4)

is exact.

Proposition 7 For any locally closed subspace Y of X, the functor

ĩ ◦ i−1 : MX → MX , F 7→ FY ,

has a right adjoint H0
Y (−) : MX → MX , so that there are natural isomor-

phisms

HomOX
(FY ,F ′) ∼= HomOX

(F ,H0
Y (F ′)) · · · (5)

Proof: In view of (3), it suffices to prove the statement when Y is open
or Y is closed in X . When Y is open, we have by (2),

HomOX
(FY ,F ′) ∼= Hom −OX (̃i ◦ i−1F ,F ′) ∼= HomOY

(i−1F , i−1F ′)
∼= HomOX

(F , i∗ ◦ i−1F ′),

so we can take H0
Y (F ′) = i∗ ◦ i−1F ′.
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When Y is closed in X , define

H0
Y (F)(U) = {σ ∈ F(U) | | σ | ⊂ Y }.

Clearly, H0
Y (F) is the maximal subsheaf of F whose support is contained in

Y . Hence for F ∈ MX,Y , HomOX
(F ,F ′) = HomOX

(F ,H0
Y (F ′)) and in

particular,

HomOX
(FY ,F ′) = HomOX

(FY ,H0
Y (F ′)) ∼= HomOY

(i−1F , i−1H0
Y (F ′))

∼= HomOX
(F , i∗i−1H0

Y (F ′)) ∼= HomOX
(F ,H0

Y (F ′)).

This verifies that H0
Y is right adjoint to ĩ ◦ i−1. ✷

Corollary 5 If Z ⊂ Y ⊂ X are immersions, then

H0
Z(H0

Y (F)) ∼= H0
Z(F). · · · (6)

Proof: This follows from (3) and (5). ✷

Corollary 6 For Y closed in X we have a natural isomorphism of functors

HomOX
(̃iG,F) ∼= HomOY

(G, i−1H0
Y (F)) · · · (7)

for all G ∈ MY , F ∈ MX .

Proof: This follows on substituting F = ĩG in (5), and noting that H0
Y (F)

has support in Y . ✷

Remarks:

1. Since for Y open in X , H0
Y (F) = i∗ ◦ i−1F , and for Y closed in X ,

H0
Y (F)(U) = {σ ∈ F(U) | | σ | ⊂ Y }, if Y ⊂ U ⊂ X with Y closed in

U and U open in X , then we have the explicit description

H0
Y (F)(V ) = {σ ∈ F(U ∩ V ) | | σ | ⊂ Y } · · · (8)

since H0
Y (F) = H0

Y (H0
U(F)). For Y , Z locally closed in X , we have

H0
Y ◦ H0

Z = H0
Y ∩Z · · · (9)

as follows immediately from (FY )Z ∼= FY ∩Z (see (3)).
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2. The functors ĩ, F 7→ FY , H0
Y are all ‘independent’ of the structure

sheaf OX , in the sense that they commute with the ‘restriction of
scalars’ functors from the category of OX-modules to the category of
ÕX -modules, for a homomorphism of sheaves of rings ÕX → OX , and
the corresponding restrictions to Y , etc. Thus, we can form ĩ(F), FY ,
H0
Y (F) as sheaves of abelian groups and get the same resulting sheaves

(take ÕX = ZX , the constant sheaf associated to the ring Z of integers).

Proposition 8 (i) For Y locally closed in X, the functor H0
Y : MX →

MX is left exact and takes injectives to injectives.

(ii) If Y ⊂ X is locally closed and Z ⊂ Y is closed, we have natural
transformations

H0
Z → H0

Y , H0
Y → H0

Y−Z · · · (10)

and for any F ∈ MX the sequence

0 → H0
Z(F) → H0

Y (F) → H0
Y−Z(F) · · · (11)

is exact.

Proof: (i) is clear from (5) and the fact that F 7→ FY is exact.
The natural transformations (10), and the exactness of (11), follow from

(5) and the existence of the natural tranformations FY−Z → FY and FY →
FZ (see the discussion preceeding Proposition 7), and the exact sequence
associated with these natural transformations (note that if we have a short
exact sequence of functors A → B which all have right adjoints, the corre-
sponding ‘dual’ sequence of adjoint functors B → A need not be exact on
the right, in general). ✷

Lemma 5 Suppose F is a flasque sheaf on X. Then

(i) H0
Y (F) is flasque for any locally closed subspace Y of X

(ii) for Y ⊂ X locally closed and Z ⊂ Y closed, the sequence

0 → H0
Z(F) → H0

Y (F) → H0
Y−Z(F) → 0 · · · (12)

is exact.
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Proof: (i) If Y = U ∩ F where U ⊂ X is open, F ⊂ X is closed, we
have H0

Y (F) = H0
U(H0

F (F)). Hence it suffices to prove (i) if Y is open or
closed. If Y is open, H0

Y (F) = i∗◦ i−1(F), and i−1(F), i∗◦ i−1(F) are flasque,
so we are through. Suppose that Y ⊂ X is closed, and let σ ∈ H0

Y (F)(U)
i.e., σ ∈ F(U), and | σ | ⊂ Y ∩ U . Let Z = Y − (Y ∩ U). We can define
τ ∈ F(X − Z) by taking τ |U= σ, and τ |X−Y= 0. Extend τ to a section
η ∈ F(X) (F is flasque). Then | η | ⊂ Y , since η |X−Y= τ |X−Y= 0, so
η ∈ H0

Y (F)(X), and clearly η |U= σ.
(ii) Since Z = Y ∩ F where F is closed in X (take F = closure of Z in

X), the sequence (12) can be rewritten as

0 → H0
F (H0

Y (F)) → H0
Y (F) → H0

X−F (H0
Y (F)) → 0.

Since H0
Y (F) is flasque by (i) we are reduced to considering the case Y = X ,

where Z ⊂ X is closed. By (11) we are reduced to showing that for any U ,
F(U) → H0

X−Z(F)(U) = F(U ∩ (X − Z)) is surjective, which is clear since
F is flasque. ✷

Definition: For an OX-module F and Y ⊂ X a locally closed subset,
define

H0
Y (F) = H0

Y (F)(X).

It follows from the above that H0
Y (F) is left exact in F , and if

0 → F ′ → F → F ′′ → 0

is exact with F ′ flasque (in particular, if F ′ is OX -injective), then

0 → H0
Y (F ′) → H0

Y (F) → H0
Y (F ′′) → 0

is exact. Further, if F is flasque, and Z ⊂ Y is closed, then

0 → H0
Z(F) → H0

Y (F) → H0
Y−Z(F) → 0

is exact.

Definition: For p ≥ 0, Hp
Y (F) and Hp

Y (F) are the right derived functors
of H0

Y (F), H0
Y (F).

Now, if
0 → F ′ → F → F ′′ → 0
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is exact, and F ′, F ′′ are flasque, then F is flasque; if F ′ is flasque and F
is injective, then F ′′ is flasque. It now follows by standard arguments that
by induction on p, Hp

Y (F) = 0 and Hp
Y (F) = 0 (as a sheaf) for p > 0, if

F is flasque. This shows in particular that the objects Hp
Y (F), Hp

Y (F) are
‘independent of the structure sheaf OX ’ since they may be computed as ZX-
modules, where ZX is the constant sheaf Z on X . This is because an injective
OX -resolution is a flasque resolution by ZX-modules (i.e., by flasque sheaves
of abelian groups).

If U ⊂ X is open, then

H0
Y ∩U(FU) = H0

Y ∩U(F)U = H0
U(H0

Y (F))U = H0
Y (F)U ,

so that we have a natural map

H0
Y (F)

ρX
U→ H0

Y ∩U(FU) = H0
Y ∩U(F |U).

Since F flasque ⇒ F |U flasque, we have for all p ≥ 0 a map

Hp
Y (F)

ρX
U→ Hp

Y ∩U(F |U),

and clearly ρVW ◦ ρUV = ρUW for U ⊃ V ⊃W . Hence we obtain a presheaf

U 7→ Hp
Y ∩U(F |U)

on X . Let (F)pY be the associated sheaf. Then for any exact sequence

0 → F ′ → F → F ′′ → 0

of OX -modules, there is a long exact sequence

· · · → (F ′)pY → (F)pY → (F ′′)pY → (F ′)p+1
Y → · · ·

which is deduced from the long exact sequence of presheaves. Further, F
injective ⇒ F |U flasque for any open U ⊂ X ⇒ (F)pY = 0 for p > 0, since
the presheaf is itself 0. Hence F 7→ (F)pY is a universal ∂-functor in the sense
of Grothendieck. Lastly, (F)0Y = H0

Y (F), from the definition of H0
Y ∩U(F |U).

We deduce that (F)pY
∼= Hp

Y (F). Hence we have proved:

Lemma 6 The sheaves Hp
Y (F) are associated to the presheaves

U 7→ Hp
Y ∩U(F |U).
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Suppose that Y ⊂ X is locally closed, and Z ⊂ Y is closed. Let
0 → F → I•

be an injective resolution of F . In view of our earlier remarks
(see (12)) we have short exact sequences of complexes

0 → H0
Z(I

•
) → H0

Y (I
•
) → H0

Y−Z(I
•
) → 0,

0 → H0
Z(I

•
) → H0

Y (I
•
) → H0

Y−Z(I
•
) → 0,

and so we get long exact sequences

0 → H0
Z(F) → H0

Y (F) → H0
Y−Z(F) → · · · → Hp

Z(F)

→ Hp
Y (F) → Hp

Y−Z(F) → Hp+1
Z (F) → · · · · · · (13)

0 → H0
Z(F) → H0

Y (F) → H0
Y−Z(F) → · · · → Hp

Z(F)

→ Hp
Y (F) → Hp

Y−Z(F) → Hp+1
Z (F) → · · · · · · (14)

Since H0
Y takes injectives to injectives (Proposition 8), and H0

Y ◦ H0
Z =

H0
Y ∩Z , and Γ◦H0

Y = H0
Y , we get convergent spectral sequences (of composite

functors)

Ep,q
2 = Hp

Y (Hq
Z(F))⇒Hp+q

Y ∩Z(F) · · · (15)

Ep,q
2 = Hp(X,Hq

Y (F))⇒Hp+q
Y (F) · · · (16)

We recall some well known facts on the functors Ext and Ext . Let F , G
be OX-modules, and define a sheaf HomOX

(F ,G) by

HomOX
(F ,G)(U) = HomOX |U

(F |U ,G |U).

Then HomOX
(F ,G) and HomOX

(F ,G) are left exact covariant functors in
G for fixed F . For p ≥ 0 define Ext pOX

(F ,−), Ext pOX
(F ,−) to be the pth

right derived functors of HomOX
(F ,−), HomOX

(F ,−) respectively.
Suppose now that G is injective. We assert that HomOX

(F ,G) is flasque.
In fact, if σ ∈ HomOX

(F ,G)(U), then σ is anOX |U -linear sheaf map F |U→
G |U , which we may regard as an OX -map FU → G. Since FU is a subsheaf of
F , this extends to an OX -map τ : F → G. Then τ ∈ HomOX

(F ,G)(X) and
τ |U= σ. Since Γ(X,HomOX

(F ,G)) = HomOX
(F ,G), we get a spectral

sequence

Ep,q
2 = Hp(X, Ext qOX

(F ,G))⇒Ext p+qOX
(F ,G) · · · (17)
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Note that since i−1 : MX → MU (U open) admits a left adjoint
ĩ : MU → MX (see (2)) which is exact, we see that for any injective OX-
module I ∈ MX , i

−1I ∈ MU is an injective OU -module. It follows that

Ext pOX
(F ,G) |U= Ext pOU

(F |U ,G |U) · · · (18)

where OU = OX |U . If

0 → F ′ → F → F ′′ → 0

is an exact sequence of OX -modules, and

0 → G → I•

is an injective resolution of G, then there are exact sequences of complexes

0 → HomOX
(F ′, I•

) → HomOX
(F , I•

) → HomOX
(F ′′, I•

) → 0

and

0 → HomOX
(F ′, I•

) → HomOX
(F , I•

) → HomOX
(F ′′, I•

) → 0,

which yield long exact sequences

· · · → Ext pOX
(F ′,G) → Ext pOX

(F ,G) →
Ext pOX

(F ′′,G) → Ext p+1

OX
(F ′,G) → · · · · · · (19)

and

· · · → Ext pOX
(F ′,G) → Ext pOX

(F ,G) →
Ext pOX

(F ′′,G) → Ext p+1

OX
(F ′,G) → · · · · · · (20)

Again, for any open U ⊂ X , we have restrictions

ρXU : Ext pOX
(F ,G) → Ext pOX |U

(F |U ,G |U)

induced by the restrictions on Hom , and we get a presheaf

U 7→ Ext pOX |U
(F |U ,G |U)
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for every p > 0. If Ẽxt
p
(F ,G) is the associated sheaf, then Ẽxt

p
(F , I)

vanishes for I injective (since I |U is injective for every U), and for a given F ,
there is a functorial long exact sequence associated to any exact sequence of
G’s. Hence Ẽxt p(F ,−) is a universal ∂-functor in Grothendieck’s sense; since

Ẽxt
0
(F ,G) = HomOX

(F ,G), we deduce that there is a natural isomorphism

Ẽxt
p
(F ,G) ∼= Ext pOX

(F ,G). Thus we have proved:

Lemma 7 The sheaves Ext p are associated to the presheaves

U 7→ Ext pOX |U
(F |U ,G |U).

Lemma 8 (i) The natural map

HomOX
(F ,G)x → HomOX,x

(Fx,Gx)

induces a natural map for each p > 0

Ext pOX
(F ,G)x → Ext pOX,x

(Fx,Gx) · · · (21)

which is a morphism of ∂-functors in G (i.e., is compatible with the
respective long exact sequences associated to a short exact sequences of
G’s).

(ii) Suppose that OX is OX-coherent and F is OX-coherent. Then the
maps in (21) are isomorphisms for all p ≥ 0 for all G ∈ MX .

Proof: (i) Since Ext pOX
(F ,−)x and Ext pOX,x

(Fx,−) are both δ-functors,

and the first is universal (since it is effaceable), the natural transformation
for p = 0 induces a unique natural transformation of ∂-functors.

(ii) For p = 0, the result is clear for F = OX . Next, for any coherent F ,
since the problem is local, by (18), we may assume that there exists an exact
sequence

OX
⊕m → OX

⊕n → F → 0,

and the result follows from the 5-lemma.
We assume that the result holds for a given value of p for all coherent F ,

and prove it for p+ 1. Given a coherent sheaf F , then again after replacing
X by an open neighbourhood of x, we can find an exact sequence

0 → F ′ → OX
⊕n → F → 0
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for some n, with F ′ coherent.
We claim that this yields a commutative diagram

Ext pOX
(OX

⊕n,G)x → Ext pOX
(F ′,G)x → Ext p+1

OX
(F ,G)x → Ext p+1

OX
(OX

⊕n,G)x
∼=↓ ∼=↓ ↓ ↓

Ext pOX,x
(OX,x

⊕n,Gx) → Ext pOX,x
(F ′

x,Gx) → Ext p+1

OX,x
(Fx,Gx) → Ext p+1

OX,x
(OX,x

⊕n,Gx)

Now HomOX
(OX ,G) ∼= G, so that HomOX

(OX ,−) is the identity functor

on MX . Hence Ext iOX
(OX ,−) = 0 for i > 0. Thus Ext p+1

OX
(OX

⊕n,G) = 0.

Similarly, Ext p+1

OX,x
(OX,x

⊕n,Gx) = 0; thus, granting the claim, the result

follows.
To prove the claim, let 0 → G → I•

be an injective resolution of G. Let
0 → Gx → I

•
be an injective resolution of Gx over OX,x. We can find a map

of complexes I•
x → I lifting the identity map on Gx, since I• is a complex of

injectives. Using the natural transformation (in G)

HomOX
(F ,G)x → HomOX,x

(Fx,Gx)

we then have a commutative diagram, whose rows are exact sequences of
complexes,

0 → HomOX
(F , I•

)x → HomOX
(OX

⊕n, I•
)x → HomOX

(F ′, I•
)x → 0

↓ ↓ ↓
0 → HomOX,x

(Fx, I
•
) → HomOX,x

(OX,x
⊕n, I

•
) → HomOX,x

(F ′
x, I

•
) → 0

where the rows yield the long exact sequences used in the earlier diagram,
and the vertical maps induce the vertical maps of that diagram. This proves
the claim. ✷

Note that (ii) does not follow from the general result about ∂-functors, since
G 7→ Ext pOX,x

(F ,G) is not known to be effaceable.

3.2 Inductive limits and dimension

Lemma 9 Let X be a Noetherian topological space, I a directed set, and let

Fi, i ∈ I,

ψij : Fj → Fi ∀ i, j ∈ I, i ≥ j
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be an inductive (=direct) system of sheaves of abelian groups on X. Let

F = lim
−→

i∈I

Fi,

and let Y be a locally closed subset of X. Then we have

(i) for any open set U ⊂ X,

F(U) = lim
−→

i∈I

Fi(U).

(ii) lim
−→

i∈I

H0
Y (Fi) = H0

Y (F).

(iii) if Fi is flasque for each i, the F is flasque.

Proof: (i) Let
G(U) = lim

−→

i∈I

Fi(U).

Then U 7→ G(U) is a presheaf, such that the direct limit F is the associated
sheaf. We claim that in fact G is a sheaf, so that G = F (see Hartshorne,
Algebraic Geometry, Ch. II, Exercise 1.11). Suppose U = ∪Uα where {Uα}α∈A
is a family of open sets, and let σ ∈ G(U) with σ 7→ 0 ∈ G(Uα) for all α. Since
U is Noetherian, it is quasi-compact, and we may replace the cover {Uα} by
a finite subcover, say {U1, · · · , Un}. Now σ is the image of some σi ∈ Fi(U).
For each 1 ≤ t ≤ n, we can find an index it ≥ i such that σi |Ut

7→ 0 ∈ Fit(Ut).
We can find j ≥ it for all 1 ≤ t ≤ n, since any two elements of I have a
common upper bound. If σi 7→ σj ∈ Fj(U), then σj |Ut

= 0 for each t, so
σj = 0. Hence σ = 0.

On the other hand, suppose given σα ∈ G(Uα) with

σα |Uα∩Uβ
= σβ |Uα∩Uβ

∀ α, β ∈ A;

we wish to find σ ∈ G(U) with σ |Uα
= σα. Let A ⊂ A be a finite subset such

that ∪α∈AUα = U . As before, we can find an index i ∈ I which is sufficiently
large so that for each α ∈ A, there exist σi,α ∈ Fi(Uα) such that σi,α 7→ σα.
Further, for α, β ∈ A,

σi,α |Uα∩Uβ
−σi,β |Uα∩Uβ
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restricts to zero on Uα ∩Uβ. Hence, by replacing i by a still larger index, we
may assume that the sections σi,α patch to yield a section σi ∈ Fi(U). Let
σ ∈ G(U) be the image of σi; it suffices to show that σ |Uα

= σα, where we
know this for α ∈ A. But for any α ∈ A, Uα is covered by Uα ∩ Uβ with
β ∈ A, and

σ |Uα∩Uβ
= σβ |Uα∩Uβ

= σα |Uα∩Uβ
,

so that σ |Uα
−σα is a ‘locally zero’ element of G(Uα). By the argument given

above, this shows it is zero, as desired.
(ii) For any sheaf G, H0

Y (G) depends only on the restriction of G to an
open neighbourhood of Y in X ; also, lim

−→

i

(Fi |U) = F |U for any open set

U ; hence we may replace X by an open subset containing Y , and so we
may assume that Y is closed in X . If U = X − Y , then (see (14)) for any
sheaf G, H0

Y (G) = ker(ρXU : G(X) → G(U)). Since lim
−→

is exact, we have a

commutative diagram with exact rows

0 → lim
−→

i

H0
Y (Fi) → lim

−→

i

Fi(X) → lim
−→

i

Fi(U)

↓ ↓∼= ↓∼=
0 → H0

Y (F) → F(X) → F(U)

where the second and third vertical arrows are isomorphisms. This proves
the first arrow is one too.

(iii) If Fi is flasque for each i ∈ I, then for any open U ⊂ X , we have an
exact sequence Fi(X) → Fi(U) → 0; since lim

−→
is exact,

lim
−→

i

Fi(X) → lim
−→

i

Fi(U) → 0 is exact i.e., F(X) → F(U) → 0 is exact. ✷

We recall the Godement resolution of any sheaf of abelian groups by
flasque sheaves. For any abelian sheaf F define

God0(F)(U) =
∏

x∈U

Fx,

and let i = i(F) : F → God0(F) be the map given by

iU : F(U) → God0(F)(U) =
∏

x∈U

Fx, σ 7→ (σx)x∈U ,

where σ 7→ σx ∈ Fx. Then i is injective. Having defined

0 → F i→ God0(F)
i0→ God1(F)

i1→ · · · in−1→ Godn(F),
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define Godn+1(F) = God0(coker in−1), and let in : Godn(F) → Godn+1(F) be
the composite

Godn(F)→→coker (in−1)
i(coker (in−1))−→ Godn+1(F).

Clearly God0(F) is flasque for any F , and hence so is Godn(F) for each
n. Further, by induction on n, F → Godn(F) is an exact functor on the

category of abelian sheaves, since God0 is one. Hence F 7→ God•(F) is an
exact functor from the category of abelian sheaves on X to the category of
flasque complexes; also i(F) : F → God0(F) is a natural transformation.

Proposition 9 Let X be a Noetherian space, Y ⊂ X a locally closed set,
and

Fi, i ∈ I,

ψij : Fj → Fi ∀ i, j ∈ I, i ≥ j

be an inductive (=direct) system of abelian sheaves. Then for each p > 0, we
have natural isomorphisms

lim
−→

i

Hp
Y (Fi) ∼= Hp

Y (lim−→
i

Fi).

Proof: Let F = lim
−→

i

Fi. Since lim
−→

is exact, the above remarks on the

Godement resolution imply that we have a resolution

0 → F → lim
−→

i

God•(Fi),

which by lemma 9(ii) is in fact a flasque resolution. By lemma 9(i), there is
a natural isomorphism

H0
Y (lim−→

i

Godn(Fi)) ∼= lim
−→

i

H0
Y (Godn(Fi))

for each n, and hence an isomorphism of complexes

H0
Y (lim−→

i

God•(Fi)) ∼= lim
−→

i

H0
Y (God

•
(Fi)).
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Since lim
−→

i

is exact, it commutes with taking cohomology, and so we obtain

isomorphisms

Hn
Y (F) = Hn(H0

Y (lim−→
i

God•(Fi))) ∼= lim
−→

i

Hn(H0
Y (God

•
(Fi))) = lim

−→

i

Hn
Y (Fi).

✷

Theorem 10 (i) Let X be a Noetherian space of (combinatorial)1 di-
mension n, Y a locally closed subspace and F any abelian sheaf on X.
Then

Hp
Y (X,F) = 0 ∀ p > n.

(ii) If X and F are as above and

0 → F → F0 → F1 → · · · → Fn−1 → Fn → 0

is exact with F i flasque for 0 ≤ i < n, then Fn is also flasque.

Proof: Assume (i) for Y closed. We shall deduce (ii). Since F i is flasque
for 0 ≤ i < n, by splitting the given exact sequence into short exact se-
quences, we obtain isomorphisms Hp

Y (Fn) ∼= Hn+p
Y (F) = 0 for all p > 0.

From the exact sequence (see (14))

H0(X,Fn) → H0(X − Y,Fn) → H1
Y (Fn)

we see that Fn(X) → Fn(X−Y ) is surjective for every closed set Y i.e., Fn

is flasque. On the other hand, (ii) implies (i), since we may apply H0
Y (−) to

such a finite flasque resolution to compute the Hp
Y (F).

Thus it suffices to prove (i) when Y is closed. Since this is clear for
n = 0, we may assume n > 0 and that the theorem holds for all X of smaller
dimension. Further, by Noetherian induction, we may assume the theorem
is valid if X is replaced by any proper closed subset. Now, if S is the class
of all sheaves for which the theorem holds, then S is closed under extensions
i.e., if

0 → F ′ → F → F ′′ → 0

1Any open cover has a refinement such that all n+2-fold intersections of distinct open
sets vanish, and n is the smallest such integer. If X is irreducible, this means any open
cover has a refinement consisting of at most n+ 1 open sets.
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is an exact sequence with F ′,F ′′ ∈ S, then F ∈ S. Further, by Proposition 9,
S is closed under inductive limits. Now any sheaf F on X is the inductive
limit of quotients of finite direct sums ⊕r

i=1ZUi
, where the Ui are open in X ,

and ZUi
is the constant sheaf Z on Ui, extended by zero to all of X . Arguing

by induction on r, it suffices to prove the theorem when F is a quotient of
ZU for some open U ⊂ X . Suppose then that

0 → G → ZU → F → 0

is exact. Identify (ZU)x with Z for all x ∈ U . For any r > 0, the sets
Er = {x ∈ U | rFx = 0} are open in U . If all the Er are empty, then G = 0
and F = ZU . If not, choose the smallest r such that V = Er is non-empty.
Then for x ∈ V , Gx = rZ, so that F |V= (Z/rZ) |V , and we have an exact
sequence

0 → (Z/rZ)V → F → F ′ → 0

with F ′ supported on a proper closed subset F ⊂ U . Since Hp
Y (F ′) =

Hp
Y ∩F (F ′ |F ), by the induction hypothesis it suffices to consider the sheaf

(Z/rZ)V . Thus, in any case, we may assume F = AV , where A is an abelian
group, and V ⊂ X is open. If X is reducible, we can express F as an
extension of two sheaves having supports contained in proper closed subsets
of X , and we are through. Hence we may assume X is irreducible. We then
have an exact sequence

0 → AV → AX → AX−V → 0.

Since X is irreducible, AX is flasque, and if F = X−V , then dimF < dimX .
Since Hp

Y (AF ) = Hp
Y ∩F (AF |F ) = 0 for p > n− 1, the exact sequence

Hp
Y (AF ) → Hp+1

Y (AV ) → Hp+1
Y (AX)

finishes the proof. ✷

Corollary 7 If X is Noetherian of dimension n, Y locally closed on X, then
the sheaves Hp

Y (F) are 0 for p > n.

Proof: Immediate from the Theorem and lemma 6. ✷
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3.3 Application to schemes

Lemma 10 Let X be a Noetherian scheme, QC(X) the category of quasi-
coherent OX-modules on X, and I an injective object of QC(X). Then for
any open U ⊂ X, I |U is an injective object of QC(U).

Proof: We first make a remark: on a Noetherian scheme Y , in order that
F ∈ QC(Y ) be an injective object, it is sufficient to assume that if 0 → G →
G ′ is an exact sequence of coherent sheaves on Y , any homomorphism G → F
extends to G ′. Indeed, suppose this condition holds, and let 0 → G1 → G2 be
an exact sequence in QC(Y ) and α1 : G1 → F a homomorphism. By Zorn’s
lemma we can find a maximal quasi-coherent subsheaf G3 of G2 to which α1

extends; replacing (G1, α1) by G3 and the extension, we can assume that G1

is itself maximal. If G1 6= G2, we can find a coherent subsheaf G4 of G2 such
that G4 is not a subsheaf of G1. Let G5 = G4 ∩ G1; now α |G5

extends to
β : G4 → F ; hence α extends to the subsheaf of G2 generated by G1 and G4,
contradicting the maximality of G1.

Now to the proof of the lemma. Let 0 → F1 → G1 be an exact sequence
of coherent sheaves on U . Now G1 can be extended to a coherent sheaf
G on X , and F1 can be extended to a coherent subsheaf of G. Suppose
α : F1 → I |U is a homomorphism. If J is any ideal sheaf of definition
for X − U in X , then since F is coherent and F |U= F1, we can extend
α to a homomorphism α1 : J nF → I for some sufficiently large n (where
J nF = im (J n ⊗ F → F)). Since J nF is a subsheaf of G, α1 extends to a
homomorphism β : G → I, whose restriction to U is the desired extension.
✷

Lemma 11 Let X be a Noetherian scheme and I an injective object of
QC(X). Then I is an injective object in the category MX of all OX-modules.

Proof: To check that an OX -module I is an injective object of MX , it
suffices to check that given a sheaf of ideals J ⊂ OX and a homomorphism
J → I, it extends to OX . Indeed, suppose this holds, and F ⊂ G are any
OX -modules, and α : F → I a homomorphism. By Zorn’s lemma there is
a maximal subsheaf of G to which α extends, so we may assume that F is
itself maximal. If F 6= G, then we can find a homomorphism β : (OX)U → G
with im β 6⊂ F . Let J = β−1(F), so that J ⊂ (OX)U ⊂ OX is a sheaf of
ideals (perhaps not coherent); if γ : J → I is the induced map, it extends
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to (OX)U (as it does to all of OX), giving an extension of α to F + im β,
contradicting maximality.

Now, let I be an injective object in QC(X), J a sheaf of ideals and
α : J → I a homomorphism. By Zorn’s lemma, we may assume that α
does not extend to any strictly larger ideal sheaf. Suppose J 6= OX , and let
F = OX/J . Then F = supp (F) is closed, since it equals the support of
the image of the section 1 ∈ Γ(X,OX). Let x be the generic point of some
component of F , and suppose f1x, . . . , fnx generate Jx over OX,x. We can
choose an affine open neighbourhood U of x such that

(i) F ∩ U = F1 is irreducible

(ii) there exist f1, . . . , fn ∈ J (U) whose images in Jx are the fix

(iii) if A = Γ(U,OX), J =
∑
iAfi, and η : A → Ax = OX,x the canonical

map, then η−1(Jx) = J .

Let V = U − F . Then J |V= OV , so (OU)V ⊂ J |U .
Claim: J |U= J̃ + (OU)V , where J̃ is the coherent sheaf of ideals on U
associated to J ⊂ A.

Granting the claim, let αU = α |U ; since I |U is (by lemma 10) an injective
object of QC(U), we see that (αU) |J̃ : J̃ → I |U extends to a map β : OU →
I |U . Next, since I |U∈ QC(U), we see that (αU) |(OU )V

: (OU)V → I |U
extends to a map γ : K → I |U , where K is a defining ideal for F1 in U .
Then β and γ both yield maps J̃ ∩K → I |U which have the same restriction
to V . Hence they have the same restriction to Kn(J̃ ∩ K), for some n ≥ 0.
By Artin-Rees, J̃ ∩ KN = KN−r(J̃ ∩ Kr) ⊂ Kn(J̃ ∩ K) for sufficiently large
N . Thus, β and γ yield a well defined map δ : KN + J̃ → I |U , which
restricts to αU on J |U= (OU)V + J̃ . Since I |U is an injective object in
QC(U), δ extends to a map OU → I |U ; this means α extends to a map
J + (OX)U → I. But this is a contradiction, since J + (OX)U is a strictly
larger ideal sheaf than J .

To prove the claim, note that since J ⊂ Γ(U,J ), we have J̃ ⊂ J , and so
for any point y ∈ U , Jy = (J̃)y ⊂ Jy ⊂ Ay = OX,y. Next, J̃y + ((OU)V )y =

42



Jy = Ay for y 6∈ F . For y ∈ F1, note that there is a commutative diagram

Ay
ψ→ Ax

χտ ր η
A

since Ax is a localisation of Ay (as y ∈ F1, and x ∈ F1 is the generic point).
Further, ψ(Jy) ⊂ Jx; hence χ−1(Jy) ⊂ η−1(Jx) = J . Since Jy ⊂ Ay satisfies
Jy = Ayχ(χ

−1(Jy)) (this is true of any ideal in Ay), we have Jy ⊂ Jy i.e.,
Jy = Jy. Since J |U , J̃+(OU)V are ideal sheaves in OU with the same stalks,
they are equal. ✷

Lemma 12 Let X be a Noetherian scheme, F ∈ QC(X) a quasi-coherent
sheaf on X. Then there is a monomorphism 0 → F → I where I is an
injective object in MX which is quasi-coherent.

Proof: When X is affine this is clear - if X = SpecA, F = M̃ , choose
an injection M →֒ I where I is an injective A-module; then F →֒ Ĩ is the
desired monomorphism. In the general case, since X is Noetherian, we may
cover it by a finite number of open affines, say X = ∪iUi; let µi : Ui → X be
the inclusions. Choose monomorphisms F |Ui

→֒ Ii, leading to an injection
F →֒ ⊕iµi∗Ii. But µi∗Ii is an injective object in QC(X) for each i (since µi∗
has a left adjoint µ−1

i ), and by lemma 11, is then in fact an injective object
of MX . ✷

Corollary 8 Let X be a Noetherian scheme, Y a locally closed subscheme,
F a coherent sheaf and G a quasi-coherent sheaf. Then for any p ≥ 0,

(i) Ext pOX
(F ,G) is quasi-coherent

(ii) Hp
Y (G) is quasi-coherent.

Proof: Choose an injective resolution 0 → G → I•
with In quasi-coherent

injective. Then we claim that HomOX
(F , I•

) and H0
Y (I

•
) are complexes of

quasi-coherent sheaves, so the cohomology sheaves are quasi-coherent. This
is clear for Hom because F is coherent.

So it suffices to show that if G is quasi-coherent, then H0
Y (G) is too.

It suffices to check this separately for Y open and Y closed, for if Y =
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U ∩ F with U open, F closed, then by (9), H0
Y = (H0

U)F . When Y is
open, H0

Y (G) = i∗ ◦ i−1(G) is quasi-coherent, since i−1 and i∗ preserve quasi-
coherence. Suppose that Y is closed. Since G is the union of its coherent
subsheaves Gi and ∪iH0

Y (Gi) = H0
Y (G) (by lemma 9), and a union of coherent

subsheaves of a quasi-coherent sheaf is quasi-coherent, we may assume that
G is coherent. But if J is the defining ideal of Y in X and n is sufficiently
large, then

H0
Y (G) = lim

−→
n

HomOX
(OX/J n,G) = HomOX

(OX/J N ,G)

if N is sufficiently large, and the last sheaf is coherent. ✷

Corollary 9 If X = SpecA is affine, M and N are A-modules with M
finitely generated, then

Ext pOX
(M,N) = Ẽxt

p

A(M,N) · · · (22)

(where Ẽxt
p

A(M,N) denotes the quasi-coherent OX-module associated to the
A-module Ext pA(M,N)).

Proof: Choose an injective resolution 0 → N → I
•
of N as an A-module.

Then
HomOX

(M̃, Ĩn) = H̃omA(M, In)

for each n, and 0 → Ñ → Ĩ• is an injective resolution of Ñ . ✷

Let X be a Noetherian scheme, Y a closed subset, J a defining ideal of
Y , and n > 0 an integer. Let G ∈ QC(X) be a quasi-coherent sheaf on X .
We have natural homomorphisms

HomOX
(OX/J n,G) → H0

Y (G),

HomOX
(OX/J n,G) → H0

Y (G)
and hence homomorphisms

lim
−→
n

HomOX
(OX/J n,G) → H0

Y (G),

lim
−→
n

HomOX
(OX/J n,G) → H0

Y (G).
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We assert that these are isomorphisms. It suffices to check this locally and
this is clear when X is affine, by taking G = M̃ . Now, substituting for G any
injective quasi-coherent resolution of G and using the fact that cohomology
commutes with inductive limits, we get isomorphisms

lim
−→
n

Ext pOX
(OX/J n,G) ∼=→ Hp

Y (G), · · · (23)

lim
−→
n

Ext pOX
(OX/J n,G) ∼=→ Hp

Y (G). · · · (24)

In view of the fact that the maps (21) are isomorphisms for F coherent, we
get the following: if X is a Noetherian scheme, Y closed in X , x ∈ X , Ax
the local ring at x, I ⊂ Ax any defining ideal of Y at x, then

lim
−→
n

Ext pAx
(Ax/I

n,Gx) ∼= Hp
Y (F)x · · · (25)

Note that by Corollary 7, Hp
Y (F)x = 0 for p > dimX .

Proposition 11 Let X be a Noetherian scheme, Y ⊂ X a closed subset,
F coherent on X, and x ∈ X. Let Ax = OX,x. Then the following are
equivalent:

(i) for every finitely generated Ax-module N such that suppN ⊂ Yx,

Ext iAx
(N,Fx) = 0 for i < p

(ii) for one finitely generated Ax-module N with suppN = Yx,

Ext iAx
(N,Fx) = 0 for i < p

(iii) if I is some (or any) defining ideal of Y at x, there are elements
f1, . . . , fp in I such that fi is a non-zero divisor in Fx/(f1, . . . , fi−1)Fx

for i = 1, . . . , p

(iv) for any prime ideal P ⊃ I, we have

depth (Ax)P (Fx)P ≥ p

(v) Hi
Y (F)x = 0 for i < p.
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Proof: We proceed by induction on p. The proposition has content only
for p > 0; suppose first that p = 1. Clearly (i)⇒(ii). Suppose that (ii) holds,
and let J = Ann Ax

N , so that J defines Y at x, and so
√
J =

√
I. If (iii) is

false for I, there is a P ∈ Ass (Fx) with J ⊂ P. Now, Hom Ax
(N,Ax/P) =

Hom Ax
(N/PN,Ax/P) 6= 0 since N/PN is a finitely generated faithful Ax/P-

module. Since P ∈ Ass (Fx) there is a monomorphism Ax/P →֒ Fx; hence
Hom Ax

(N,Fx) 6= 0, contradicting (ii). Hence (ii) ⇒(iii). Clearly (iii) ⇒(iv).
We shall show that (iv) ⇒(i). Since N admits a composition series with
quotients Ax/P with P ∈ Yx, we may assume N = Ax/P with P ∈ Yx. If
Hom Ax

(Ax/P,Fx) 6= 0, then there is a Q ∈ Ass (Fx) with P ⊂ Q, and hence
I ⊂ Q, so that depth (Ax)Q(Fx)Q = 0, contradicting (iv).

Hence (i) ⇔ (ii) ⇔ (iii) ⇔ (iv). Now

HomAx
(Ax/I

n,Fx) →֒ HomAx
(Ax/I

n+1,Fx)

and the union of this increasing sequence is H0
Y (F)x. Thus, (v) is false

⇔ there exists n > 0 with Hom Ax
(Ax/I

n,Fx) 6= 0. Hence (i) ⇒(v) ⇒(ii).
Thus we are through for p = 1.
Suppose now that p > 1, and the assertion of the proposition holds for

all smaller values of p. If (a) denotes any one of (i)-(v), let (a)′ denote the
same condition for p− 1 instead of p. Now, (i) ⇒(ii) is trivial. Assume (ii).
By what we have already shown (the case p = 1), there is an f ∈ Ann Ax

(N)
such that f is a non-zero divisor on Fx. The exact sequence

0 → Fx
f→ Fx → F/fFx → 0

gives that Ext iAx
(N,Fx/fFx) = 0 for i < p−1, so that (ii)′ holds for Fx/fFx.

Replacing f by a power if necessary, we may assume f ∈ I. Now (ii)′

⇔ (iii)′, so there exist f2, . . . , fp in I such that fi is a non-zero divisor on
Fx/(f, f2 . . . , fi−1)Fx. Thus (ii) ⇒(iii). Again trivially (iii) ⇒(iv).

Now (iv) ⇒(since p > 1) that I is not contained in any P ∈ Ass (Fx),
for any defining ideal I of Y at x; in particular, if N is any finite Ax-module
with supp (N) ⊂ Yx, then Ann (N) 6⊂ P for any P ∈ Ass (Fx). Thus we can
find f ∈ Ann (N) such that f is a non-zero divisor on Fx. For any P ⊃ I,

depth (Ax)P (Fx/fFx)P = depth (Ax)P (Fx)P − 1 ≥ p− 1,

so that by induction hypothesis, Ext iAx
(N,Fx/fFx) = 0 for i < p−1. Hence

the sequence

0 → Ext iAx
(N,Fx)

f→ Ext iAx
(N,Fx)
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is exact for i < p; since f ∈ Ann (N), this implies (i). Finally, as before, (i)
⇒(v) since

lim
−→
n

Ext iAx
(Ax/I

n,Fx) = Hi
Y (F)x.

On the other hand, suppose (v) holds, so that (v) ⇒(v)′ ⇒(i)′. We have
exact sequences

Ext i−1
Ax

(In/In+1,Fx) → Ext iAx
(Ax/I

n,Fx) → Ext iAx
(Ax/I

n+1,Fx)

where (i)′ ⇒Ext i−1
Ax

(In/In+1,Fx) = 0 for i − 1 < p − 1. Hence (v) ⇒(i)′

⇒Ext iAx
(Ax/I,Fx) →֒ Hi

Y (F)x = 0 for i < p ⇒(ii) is valid with N = Ax/I.
✷

4 Global duality theory

Theorem 12 Let X be a scheme of dimension n, proper over a field k. Then
there is a complex

0 → In → In−1 → · · · → I0 → 0

of injective quasi-coherent sheaves on X such that for any quasi-coherent
sheaf F on X, we have a natural isomorphism

Hp(X,F)∗
∼=−→ Hp(HomOX

(F , I•)) · · · (∗∗)

(where M∗ denotes the k-linear dual of M).
Any complex I• of quasi-coherent injectives on X satisfying (**) has the

following properties.
(a) The homology sheaves Hp(I•) are independent of the particular complex
I•, and are coherent.
(b) If X ′ is again proper over k, I ′

• a similar complex on X ′, U ⊂ X, U ′ ⊂ X ′

open subsets and f : U → U ′ an isomorphism, then there is an isomorphism

Hp(I•) |U
∼=−→ Hp(I ′

•) |U ′

over f .
(c) If X is Cohen-Macaulay at a point where dimxX = n, then Hp(I•)x = 0
for p 6= n and Hn(I•)x = ΩOX,x

is the dualising module2 of OX,x.

2Since OX,x is a quotient of a regular local ring, it has a dualising module.
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Proof: First, we prove the existence of such a finite complex I• (concen-
trated in degrees ≥ 0). Let F be quasi-coherent on X , U = SpecA an affine
open subset of X , andM = Γ(U,F). Let iU : U → X be the inclusion. Then
we have a sequence of natural isomorphisms

Γ(U,F)∗ =M∗ = Hom A(M,Hom k(A, k)) ∼= HomOU
(F |U , H̃om k(A, k))

∼= HomOX
(F , iU∗H̃om k(A, k)) = HomOX

(F , IU)

where IU = iU∗H̃om k(A, k). The above composite isomorphism shows that
IU is an injective OX -module (since it is an injective object of QC(X) - see
lemma 11). Hence, if U = {Ui}i∈I is a finite affine open cover of X (since X
is proper over k, it is Noetherian), then there is an injective quasi-coherent
sheaf

Ip =
⊕

i0,...,ip∈I

IUi0,...,ip
,

where Ui0,...,ip = Ui0 ∩ Ui1 ∩ · · · ∩ Uip (which is affine). By its definition, Ip
has the property that if Č

p
(U ,F) is the pth term of the Čech complex of

alternating cochains with values in F , we have a natural isomorphism

Č
p
(U ,F)∗

∼=−→ HomOX
(F , Ip).

Further, the natural transformations

δp : Č
p
(U ,F) → Č

p+1
(U ,F)

induce natural transformations Č
p+1

(U ,F)∗ → Č
p
(U ,F)∗, hence homomor-

phisms ψp : Ip+1 → Ip. We clearly have ψp ◦ ψp+1 = 0, so that I• is a finite
(because U is finite) complex of quasi-coherent injective sheaves, such that
there are natural isomorphisms

Hp(X,F)∗ ∼= Hp(Č
p
(U ,F)∗) ∼= Hp(HomOX

(F , I•)).

Now, for p > n,

(0) = Hp(X,F)∗ ∼= Hp(HomOX
(F , I•)).

If Zp = ker(Ip → Ip−1), then Zp is quasi-coherent, so applying the above
vanishing statement with F = Zp, we see that the inclusion Zp → Ip rep-
resents 0 in Hp(HomOX

(Zp, I•)), so that Ip+1 → Zp is a split surjection;
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hence Hp(I•) = 0 for p > n. Let m be the largest integer p such that Ip 6= 0.
If m > n, then Hm(I•) = 0⇒Im →֒ Im−1, and since Im is an injective OX-
module, this inclusion is split. Writing Im−1 = Im ⊕ I ′

m−1, we thus obtain a
shorter complex

0 → I ′
m−1 → Im−2 → · · · I0 → 0

with the same property as I•. Repeating this procedure, we end up with a
complex of length n

0 → In → In−1 → · · · → I0 → 0

with the requisite property (**).
Now, let I• be any complex of quasi-coherent injectives having the desired

property (**), and U = SpecA an affine open subset ofX such that the closed
subset Y = X − U has defining ideal J . Then we have

Hp(I•)(U) = Hp(I•(U)) (since U is affine)
∼= Hp(lim

−→
n

HomOX
(J n, I•)) ∼= lim

−→
n

Hp(HomOX
(J n, I•))

∼= lim
−→
n

Hp(X,J n)∗ · · · (∗)

This can be considered as an A-module in the following manner. Any f ∈ A
defines a homomorphism Jm → OX for a suitably large m, hence a ho-
momorphism Jm+r → J r, hence Hp(X,Jm+r) → Hp(X,J p), and finally
Hp(X,J r)∗ → Hp(X,Jm+r)∗. Hence, in the inductive limit, we get that
lim
−→
n

Hp(X,J n)∗ is an A-module. One checks easily that this A-module struc-

ture is independent of the choice of the ideal of definition J and the homo-
morphism Jm → OX representing f .

Now suppose that U ′ ⊂ U is a smaller open set, and let Y ′ = X −U ′; let
J ′ be a defining ideal for Y ′ with J ′ ⊂ J . Then we have homomorphisms
(J ′)n → J n for n > 0, hence homomorphisms Hp(X,J n)∗ → Hp(X, (J ′)n)∗,
and hence a homomorphism of inductive limits. Now, it is easy to check that
(∗) is an isomorphism of A-modules, and is compatible with restrictions. This
shows, in particular, that the sheaves Hp are independent of the choice of I•.

We prove (b). We can clearly find an X ′′ proper over both X and X ′ and
an open subset U ′′ of X ′′ mapping isomorphically onto U and U ′ (take X ′′ to
be the closure in X ×k X

′ of the graph of the isomorphism f : U → U ′, and
U ′′ to be this graph). Thus we may assume without loss of generality that
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we have a morphism f : X → X ′ such that f−1(U ′) = U and f : U → U ′

is an isomorphism. To prove that there is an isomorphism of Hp(I•)(U) and
Hp(I ′

•)(U
′) over f , it suffices to exhibit, for any V ′ affine open in U ′, an

isomorphism

Hp(I ′
•)(V

′)
∼=−→ Hp(I•)(f−1(V ′))

which is compatible with restrictions for inclusions V ′′ ⊂ V ′, f−1(V ′′) ⊂
f−1(V ′) of affine open sets. Then, replacing U ′ by V ′ and U by V = f−1(V ′),
it suffices to consider the case when U ′ and U are affine. Let J ′ be a defining
ideal of Y ′ = X ′ − U ′, so that J = im (f ∗J ′ → OX) is a defining ideal of
Y = X − U = f−1(Y ′). We then have natural homomorphisms (J ′)n →
f∗J n, hence homomorphisms

Hp(X ′, (J ′)n) → Hp(X ′, f∗J n) → Hp(X,J n),

and on dualising and passing to the direct limit, a homomorphism

lim
−→
n

Hp(X,J n)∗ → lim
−→
n

Hp(X ′, (J ′)n)∗. · · · (†)

This is a homomorphism of Γ(U,OX)-modules, compatible with restriction
to affine open subsets V ′ ⊂ U ′, V = f−1(V ′) ⊂ U . It suffices to show that
(†) is an isomorphism.

Let us recall the following theorem from E.G.A. III:

Theorem 0 Let f : X → Y be a proper morphism of Noetherian schemes,
F a coherent sheaf on X and I a sheaf of ideals on Y . Then for any q ≥ 0,
⊕n≥0R

qf∗(InF) can be considered as a graded sheaf of modules over the sheaf
of rings ⊕n≥0In, and as such it is finitely generated. In particular, there
exists m0 ≥ 0 such that IkRqf∗(ImF) = Rq(Im+kF) for all k ≥ 0,m ≥ m0.

In the theorem, the action of ⊕n≥0In on Rqf∗(InF) is defined as follows: if

x ∈ Im(U) and y ∈ Hq(f−1(U), InF), x defines a homomorphism (InF) |U x̃→
(Im+nF) |U , and x · y is the image in Hq(f−1(U), Im+nF) of y with respect
to x̃.

Now, the homomorphism (†) factorises as

lim
−→
n

Hp(X,J n)∗
g→ lim
−→
n

Hp(X ′, f∗(J n))∗
h→ lim
−→
n

Hp(X ′, (J ′)n)∗.
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Let us first show that h is an isomorphism.
Choose m0 as in the above Theorem where Y = X ′, F = OX , q = 0 and

I = J ′. Thus (J ′)kf∗(Jm) = f∗(Jm+k) for m ≥ m0.
Let K, L, C be the kernel, image and cokernel of (J ′)m0 → f∗Jm0 respec-

tively. Since f−1(U ′) → U ′ is an isomorphism, and K, C are coherent sheaves
with support in X ′ − U ′, K and C are both annihilated by (J ′)m1 for some
m1 > 0. We have the following exact sequences

0 → K ∩ (J ′)m0+k → (J ′)m0+k → (J ′)kL → 0,

0 → (J ′)kf∗(Jm0) ∩ L → (J ′)kf∗(Jm0) = f∗(Jm0+k) → (J ′)kC → 0,

(where the middle equality is by the choice of m0 made above) and by Artin-
Rees, this reduces for k ≥ k0 to the pair of isomorphisms

(J ′)m0+k ∼= (J ′)kL,

(J ′)kf∗(Jm0)∩L = (J ′)k−k0((J ′)k0f∗(Jm0)∩L) ∼=−→ (J ′)kf∗(Jm0) = f∗(Jm0+k).

Thus, it suffices to show that

lim
−→

k

Hp(X ′, (J ′)k−k0((J ′)k0f∗(Jm0) ∩ L))∗ → lim
−→

k

Hp(X ′, (J ′)kL)∗

is an isomorphism. This follows from the inclusions

(J ′)kL ⊂ (J ′)k−k0((J ′)k0f∗(Jm0)∩L) ⊂ (J ′)k−k0L ⊂ (J ′)k−2k0((J ′)k0f∗(Jm0)∩L).

Thus we are left with proving that g is an isomorphism. For every m > 0,
consider the Leray spectral sequence Ep,q

r (m),

Ep,q
2 (m) = Hp(X ′, Rqf∗Jm)⇒Hp+q(X,Jm).

For m′ > m, we have a morphism of spectral sequences

Ep,q
r (m′) → Ep,q

r (m).

Further, Ep,q
r (m) = Ep,q

∞ for r > p+ q and every m, and the homomorphism

Hp(X ′, f∗Jm) = Ep,0
2 →→Ep,0

∞ →֒ Hp(X,Jm)
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is the natural homomorphism. Thus, to prove g is an isomorphism, it suffices
to show that lim

−→
m

Ep,q
2 (m) = 0 for q > 0. This would follow if we can show

that for any m > 0 and q > 0, the map

Hp(X ′, Rqf∗Jm)∗ → Hp(X ′, Rqf∗Jm′)∗

is 0 for some m′ > m. Now, Rqf∗Jm has support in X ′ − U ′ for q > 0,
since f−1(U ′) → U ′ is an isomorphism. Further, for m sufficiently large and
k ≥ 0, Rqf∗Jm+k = (J ′)kRqf∗Jm. Hence, for k large, the map Rqf∗Jm+k →
Rqf∗Jm is 0 (take k so large that (J ′)k annihilates Rqf∗Jm). This proves
(b).

In view of (b), to prove the coherence statement in (a), which is an
assertion local on X , we may assume that X is a closed subset of (P1)N =
P1 × · · · × P1, since any point of x has an open neighbourhood which is a
closed subvariety of AN for some N . Further, if

0 → IN → · · · → I1 → I0 → 0

is a complex of quasi-coherent injectives on (P1)N with the requisite property
(∗∗) on (P1)N , and X is a closed subscheme of (P1)N , i : X →֒ (P1)N the
inclusion, then clearly the complex of quasi-coherent injective sheaves

0 → i−1Hom (P1)N (i∗OX , IN) → · · · → i−1Hom (P1)N (i∗OX , I1) → i−1Hom
(P

1
)N
(i∗OX , I0) → 0

is a complex of quasi-coherent injective OX -modules on X with the requisite
property (∗∗) on X . So it suffices to prove that

(i) Hi(I•) = 0 for i < N

(ii) HN(I•) is a coherent sheaf on (P1)N .

Indeed, granting (i) and (ii), I• is an injective resolution of the coherent sheaf
HN(I•), so that

Hi(Hom (i∗OX , I•))
∼=−→ Ext N−i

(P1)N
(i∗OX ,HN(I•))

which is coherent.
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Let I denote the ideal sheaf of the point {∞} ∈ P1, and let J be the
ideal sheaf of the divisor ∪ip∗i (∞) where pi : (P

1)N → P1 is the projection
onto the ith factor. Then

J = ⊗ip
∗
iI = I✷×I✷× · · ·✷×I.

It is sufficient to show that

(i) lim
−→
n

Hp((P1)N ,J n)∗ = 0 for 0 ≤ p < N ,

(ii) lim
−→
n

HN((P1)N ,J n)∗ is a finitely generated k[x1, . . . , xN ]-module.

This is because (P1)N is covered by affine open subsets isomorphic to (P1)N−
∪ip∗i (∞).

Now, one knows that H0(P1, In) = 0 for n > 0. Hence (i) follows from
the Kunneth formula. Also,

HN((P1)N ,J n) ∼= H1(P1, In)⊗k · · · ⊗k H
1(P1, In).

Thus, it suffices to show that lim
−→
n

H1(P1, In) is a finitely generated k[x]-

module, where x is the coordinate on P1−{∞}. Using the standard covering
U0 = P1 − {∞}, U∞ = P1 − {0}, since I |U0

= OU0
, and I |U∞= x−1OU∞ , we

see that any element

ξ ∈ H1(P1, In) ∼= Γ(U0 ∩ U∞In)/(Γ(U0, In) + Γ(U∞, In))
∼= k[x, x−1]/(k[x] + x−nk[x−1])

has a unique representing cocycle ξ ∈ Γ(U0 ∩ U∞, In) of the form

ξ′ = a1x
−1 + a2x

−2 + · · ·+ an−1x
−n+1

Further, multiplication by x,

(x) : H1(P1, In) → H1(P1, In−1),

is represented by

(x) : a1x
−1 + · · · an−1x

1−n 7→ a2x
−1 + a3x

−2 + · · ·+ an−1x
−n+2.
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Now a1, . . . , an−1, considered as linear forms on the vector space H1(P1, In),
form a basis of this space, and the inclusion of H1(P1, In)∗ →֒ H1(P1, In+1)∗

induced by In+1 ⊂ In takes ai to ai for all i. Hence lim
−→
n

H1(P1, In) has a

basis given by ai, i > 0; the action of x induced by dualising (x) takes ai to
ai+1. Hence this direct limit is a free module over k[x] generated by a1. This
proves (a) of the theorem.

Now to the proof of (c). The set of points x ∈ X such that dimxX = n
and OX,x is Cohen-Macaulay is an open set (E.G.A. IV 6.11.2). Let us call
this set U . Suppose we show that for every closed point x ∈ U , Hp(I•)x = 0
for p < n, and Hn(I•)x is the dualising module of OX,x, then it follows
that (i) Hp(I•) |U= 0 for p < n (since Hp(I•) |U is a coherent sheaf with
vanishing stalks at all closed points), and (ii) for any x ∈ U , Hn(I•)x is
of finite injective dimension (because a localisation of an injective module
is injective), EndOX,x

(Hn(I•)x) = OX,x, and Hn(I•)x is Cohen-Macaulay

of dimension equal to dimOX,x. By our characterisation of the dualising
module (Corollary 3), it would follow that Hn(I•)x is the dualising module,
and (c) would be valid for all x ∈ U . So it suffices to prove (c) for closed
points x ∈ U .

Let f1, . . . , fn ∈ OX,x be a maximalOX,x-sequence, and F = OX,x/(f1, . . . , fn)
considered as a coherent sheaf on X with support at x (i.e., as a skyscraper
sheaf at x). Then H i(X,F) = 0 for i > 0. On the other hand, if we put
J p = In−p, the complex J •

is concentrated in degrees ≥ 0, and we claim
there is a spectral sequence

Ep,q
2 = Ext pOX

(F ,Hq(J •
))⇒Hp+q(HomOX

(F ,J •
)).

To see this, let J • → J •,• be a Cartan-Eilenberg resolution i.e., a double
complex of injectives, such that

(i) Jm → Jm,• is a resolution for each m, and

(ii) if Im,n = Hm
I (J

•m), then Im,• is an inejctive resolution of Hm(J •
).

The desired spectral sequence is obtained by considering spectral sequences
of the double complex

Am,n = HomOX
(F ,Jm,n).
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Since F , Hq(Jm) are coherent, and F is concentrated at the closed point
x, the spectral sequence of Sec. 2, (17) and lemmas 7 and 8 imply that in
the above spectral sequence, we have

Ep,q
2 = Ext pOX,x

(Fx,Hq(J •
)x).

Let q0 be the largest integer such that Hq(J •
)x 6= 0. From the Koszul

resolution for Fx, we have

Ext nOX,x
(Fx,Hq0(J •

)x) = Hq0(J •
)x/(f1, . . . , fn)Hq0(J •

)x 6= 0

by Nakayama’s lemma. It follows from the spectral sequence that
Hn+q0(HomOX

(F ,J •
)) 6= 0; butHn+q0(HomOX

(F ,J •
)) ∼= Hn−(n+q0)(X,F)∗,

so that q0 = 0. Hence Hp(I•)x = Hn−p(J •
) = 0 for p < n. Thus, on U , we

have an exact sequence

0 → Hn(I•) → In → In−1 → · · · → I0 → 0

i.e., an injective resolution of Hn(I•) on U . Hence, for any coherent F with
support in U , we have

Ext pOX
(F ,Hn(I•)) = Hp(HomOX

(F , I•)) ∼= Hn−p(X,F)∗

(since for such F , HomOX
(F ,G) = HomOU

(F |U ,G |U) for any G). Tak-
ing F = k(x), the residue field of x, we deduce that (with Ω = Hn(I•)x)
Ext pOX,x

(k(x),Ω) = 0 for p < n, and dimk Ext
n
OX,x

(k(x),Ω) is a k(x)-vector

space of dimension [k(x) : k] = dimH0(X, k(x)) over k. Since Ω is of finite
injective dimension, it is the dualising module of OX,x. ✷

Definition: A complex 0 → IN → IN−1 → · · · → I0 → 0 of quasi-
coherent injective OX-modules is called a dualising complex on X if there are
natural isomorphisms

Hp(X,F)∗
∼=−→ Hp(HomOX

(F , I•))

for any quasi-coherent sheaf F on X .

Then the formula (∗) in the proof of the Theorem shows that Hi(I•) = 0
for i > n = dimX , so we may split off an exact direct summand of I• so that
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the remaining summand is concentrated in degrees between 0 and n, and is
also a dualising complex.

Definition: If X is Cohen-Macaulay of dimension n everywhere, I• a
dualising complex on X , then Hn(I•) = ΩX is called a dualising sheaf on
X .

Note that in this case, a dualising complex yields an injective resolution of
ΩX , so that (**) yields a natural isomorphism

H i(X,F)∗
∼=−→ Ext n−iOX

(F ,ΩX)

for all i ≥ 0, for any quasi-coherent sheaf F on X .

Corollary 10 Let
0 → In → · · · → I0 → 0

be a dualising complex on X, Y ⊂ X a closed subscheme with defining ideal
sheaf J . Then

0 → HomOX
(J , In) → HomOX

(J , In−1) → · · · → HomOX
(J , I0) → 0

is a dualising complex on Y . In particular, if X and Y are equidimensional
and Cohen-Macaulay of dimensions n and m respectively, and h = n−m =
codimXY , then

ΩY = Ext hOX
(OY ,ΩX).

Proof: If F is a quasi-coherent OY -module, i : Y → X the inclusion, then
we have natural isomorphisms for each p

Hp(Y,F) ∼= Hp(X, i∗F),

HomOY
(F ,HomOX

(i∗OY , Ip)) ∼= HomOX
(i∗F , Ip).

Hence i−1HomOX
(i∗OY , I•) is a dualising complex for Y , and its mth ho-

mology sheaf ΩY . But I•
= In−• is an injective resolution for ΩX , so the

mth homology sheaf of i−1HomOX
(i∗OY , I•) is just Ext n−mOX

(i∗OY ,ΩX). ✷

Corollary 11 Suppose X is equidimensional Cohen-Macaulay of dimension
n. Then any stalk ΩX,x = (ΩX)x is Cohen-Macaulay. Further, if U is any
open subset of X with dim(XU) ≤ n−2, then ΩX → i∗(ΩX |U) = i∗◦ i−1(ΩX)
is an isomorphism, where I : U →֒ X is the inclusion.
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Proof: The first assertion follows from the fact that ΩX,x is the dualising
module of OX,x, and the second because ΩX,x is Cohen-Macaulay (proof
similar to that of A = ∩htP=1AP). ✷

Remark: This corollary is useful for the following reason. We shall show
below that if U consists of smooth points of X over k, then ΩX |U is the sheaf
of Kähler n-forms ΩnU/k. By the above corollary, if X is equidimensional and
Cohen-Macaulay, and is non-singular in the complement of a closed subset
of codimension ≥ 2, then ΩX is the sheaf of (meromorphic) n-forms on X
which are regular at all smooth points of X over k.

Corollary 12 Let f : X → Y be a birational finite morphism of Cohen-
Macaulay varieties (i.e., k-irreducible reduced schemes) which are proper over
k, and let ΩX , ΩY be the respective dualising sheaves. Then f∗(ΩX) can be
identified with the maximal f∗(OX)-submodule of ΩY (this makes sense, since
ΩY is a torsion free OY -module, and OY →֒ f∗(OX) is an isomorphism over
an open set).

Proof: On the category of coherent OX-modules, we have natural isomor-
phisms of functors of the coherent sheaf F

HomOX
(F ,ΩX) ∼= Hn(X,F)∗ ∼= Hn(Y, f∗F) ∼= HomOY

(f∗F ,ΩY ). · · · (∗)

In this take F = ΩX ; the image of the identity map on ΩX is an OY -linear
map η : f∗ΩX → ΩY . Since 1 6= 0 on ΩX , η 6= 0. Since ΩX , ΩY are Cohen-
Macaulay, they are torsion free, and they are also of rank 1. Hence η is
injective, and its image is an f∗(OX)-submodule of ΩY . Let F be a maximal
(= maximum) OX -submodule of ΩY , i.e.,

Fy = {my ∈ ΩY,y | f∗(OX)ymy ⊂ ΩY,y}

(since f∗(OX) is a sheaf of rings, this is an f∗(OX)-submodule). Then we
must have a factorisation

η = i ◦ λ, f∗(ΩX)
λ→ F i→ ΩY .

Further, since f is finite, there is a coherent OX -module G with F = f∗(G),
and an OX -linear map µ : ΩX → G such that λ = f∗(µ). Also, G is tor-
sion free of rank one since f∗(G) = F is. By (∗) above, the inclusion
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i : f∗(G) = F →֒ ΩY corresponds to an OX-linear mapping j : G → ΩX .
By the naturality of (∗) above, we have a commutative diagram, whose hor-
izontal arrows are isomorphisms (∗),

HomOX
(G,ΩX)

∼=−→ HomOY
(F ,ΩY )

(−) ◦ µ ↓ ↓ (−) ◦ λ
HomOX

(ΩX ,ΩX)
∼=−→ HomOY

(f∗(ΩX),ΩY )

Since η = i ◦ λ, j ◦ µ is the identity on ΩX , hence (since ΩX , G are torsion
free of rank one) j, µ are isomorphisms, and λ = f∗(µ) is one too. ✷

Remark: Suppose further in Corollary 12, Y is Gorenstein, so that ΩY
is locally free of rank one. Let C = AnnOY

(f∗(OX)/OY ) be the conductor.
Then we have clearly

f∗(ΩX) = C · ΩY .

Lemma 13 Let X ′, X ′′ be proper k-schemes with dualising complexes I ′
•,

I ′′
• , and let X = X ′ ×k X

′′. Let I• be a dualising complex on X. Then we
have isomorphisms

Hn(I•) ∼= ⊕
p+q=n

Hp(I ′
•)✷×kHq(I ′′

• ).

Proof: Let U ′, U ′′ be affine open subsets of X ′, X ′′ respectively with
F ′ = X ′ − U ′, F ′′ = X ′′ − U ′′, and let J ′, J ′′ be defining ideal sheaves for
F ′, F ′′ respectively. Then J ′

✷×kJ ′′ is a defining ideal of X − (U ′ ×k U
′′). We

have therefore isomorphisms compatible with restrictions

Hn(I•)(U) = lim
−→
m

Hn(X ′ ×X ′′, (J ′)m✷×k(J ′′)m)∗

= lim
−→
m

⊕p+q=nH
p(X ′, (J ′)m)∗ ⊗k H

q(X ′′, (J ′′)m)∗

= ⊕p+q=n(lim
−→
m

Hp(X ′, (J ′)m)∗)⊗k (lim
−→
m

Hq(X ′′, (J ′′)m)∗)

= ⊕p+q=nHp(I ′
•)(U

′)⊗k Hq(I ′′
• )(U

′′)
= ⊕p+q=n(Hp(I ′

•)✷×kHq(I ′′
• ))(U).

✷
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Corollary 13 Let X be a proper k-scheme and U an open subset of X con-
sisting of Gorenstein points of dimension n. Set Ω = Hn(I•) where I• is a
dualising complex on X. Let ∆ : X →֒ X ×k X be the diagonal embedding.
Then ∆∗Ext nOX×X

(∆∗OX ,OX×X) |U is a locally free OX-module of rank one,

and there is an isomorphism of invertible OU -modules

Ω |U∼= (∆∗Ext nOX×X
(∆∗OX ,OX×X) |U)∗.

Proof: Let I• be a dualising complex onX×X . By lemma 13,Hp(I•) |U×U=
0 for p < 2n = dimX ×X , and

H2n(I•) |U×U
∼= (Ω |U)✷×k(Ω |U).

Now apply Corollary 10 to the diagonal embedding of X in X×X , to obtain

Ω |U∼= ∆∗Ext nOU×U
((∆ |U)∗OU ,Ω |U ✷×kΩ |U).

Since U is Gorenstein, Ω |U is an invertible sheaf, and we get

Ω |U∼= ∆∗(Ext nOX×X
(∆∗(OX),OX×X)⊗OX×X

(Ω✷×kΩ) |U×U)
∼= ∆∗(Ext nOX×X

(∆∗(OX),OX×X))⊗OX
∆∗((Ω✷×kΩ) |U×U)

∼= ∆∗(Ext nOX×X
(∆∗(OX),OX×X))⊗OX

(Ω⊗OX
Ω) |U

Since Ω |U is an invertible OU -module, we may ‘cancel’ one factor of Ω |U
from both sides, to obtain the desired result. ✷

Corollary 14 With assumptions as in Corollary 13, if in addition U is
smooth over k, then

Ω |U∼= ΩnX/k |U .

Proof: One has to exhibit, for a scheme X which is pure of dimension n
and smooth over k, an isomorphism

∆∗(Ext nOX×X
(∆∗(OX ,OX×X))

∗ ∼= ΩnX/k,

where ∆ : X → X ×X is the diagonal embedding. Now ∆(X) ⊂ X×X is a
local complete intersection subvariety. If I is its sheaf of ideals, ∆∗(I/I2) ∼=
Ω1
X/k. Thus, the lemma follows from the next one. ✷
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Lemma 14 Let A be a commutative ring with 1 and I an ideal in A gen-
erated by an A-sequence f1, . . . , fn. Then there is a natural isomorphism,
compatible with localisations,

Ext nA(A/I, A)
∼= Hom A/I(

n∧ I/I2, A/I).

Proof: The Koszul complex K•(f1, . . . , fn) over A gives a free resolution of
A/I which we may use to compute Ext nA(A/I, A). Let f : F = A⊕n → A be
the mapping with f(ei) = fi, where ei is the i

th basis vector. Let g : A→ F ∗

be the induced mapping on duals. Then the Koszul complex is

0 →n∧ F
δn→n−1∧ F

δn−1→ · · · δ3→ 2∧ F
δ2→ F

δ1=f→ A→ 0

where the last differential δn :
n∧ F →n−1∧ F is

v1 ∧ · · · ∧ vn 7→
n∑

i=1

f(vi)(−1)i(v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vn)

Then Ext nA(A/I, A) is the cokernel of the dual mapping to δn, which is defined

(in terms of the generators for
n−1∧ F ∗ obtained from the dual basis {e∗i } of

the basis {ei}) by

e∗1 ∧ · · · ∧ ê∗i ∧ · · · ∧ e∗n 7→ (−1)ifi e
∗
1 ∧ · · · ∧ e∗n.

Thus there is an isomorphism φ : Ext nA(A/I, A)
∼=→ HomA(

n∧ F,A/I). gen-
erated by the image of e∗1 ∧ · · · ∧ e∗n. However F/IF ∼= I/I2 which is a free
A/I-module of rank n, and so

Ext nA/I(A/I, A)
∼= Hom A(

n∧ F,A/I) ∼= HomA/I(
n∧ F/IF,A/I) ∼= HomA/I(

n∧ I/I2, A/I).

This composite isomorphism is natural, and is clearly compatible with local-
isation. ✷
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