
THE HODGE CHARACTERISTIC

V. SRINIVAS

1. Introduction

The goal of this lecture is to discuss the proof of the following result, used in
Kontsevich’s proof of the theorem that the Hodge numbers of two birationally
equivalent smooth Calabi-Yau varietes coincide.

Theorem 1.1. There is a unique way of assigning to each complex algebraic
variety X (not necessarily irreducible) a polynomial fX(u, v) ∈ Z[u, v] such that
we have the following properties.

(i) If X is smooth and proper over C, then

fX(u, v) =
∑
p,q≥0

hp,q(X)upvq

where

hp,q(X) = dimCH
q(X,Ωp

X) = dimension of the (p, q)-th piece of

the Hodge decomposition on Hp+q(X,C).

(ii) If Z ⊂ X is a closed subvariety, then

fX(u, v) = fZ(u, v) + fX\Z(u, v).

(iii) fX×Y (u, v) = fX(u, v)fY (u, v).

The proof relies on Deligne’s theory of Mixed Hodge Structures, as developed
in his fundamental papers [1], [2]. We’ll briefly review aspects of this theory, and
sketch a proof that it implies the above theorem.

2. Pure Hodge Structures

Definition 2.1. A pure Hodge Structure of weight n consists of data V =
(VZ, {V p,q}p+q=n), where

(i) VZ is a finitely generated abelian group
(ii) each V p,q ⊂ VC := VZ ⊗ C is a C-subspace, such that

(a) VC = ⊕p+q=nV p,q (this is called the Hodge decomposition of VC)
(b) V p,q = V q,p for all p, q, where for any C-subspace W ⊂ VC, W is

the image of W under the C-antilinear involution on VC = VZ ⊗ C
induced by complex conjugation on the C-factor.
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An element v ∈ VC can thus be uniquely written as a sum v =
∑
vp,q with

vp,q ∈ V p,q. If v = vp,q for some (p, q) we say v is (purely) of type (p, q).
Clearly pure Hodge structures of a given weight form an abelian category in a

natural way, with morphisms being given by homomorphisms of the underlying
abelian groups, whose complexifications respect the Hodge decompositions. Sim-
ilarly we can form the graded abelian category of graded pure Hodge structures,
where the n-th graded piece of an object is a pure Hodge structure of weight n.

Example 2.2. Let X be a proper smooth variety over C. Then the Hodge
Decomposition Theorem gives a decomposition of each singular cohomology group

Hn(X,C) =
⊕

dimX ≥ p, q ≥ 0
p+ q = n

Hp,q(X),

such that Hn(X) = (Hn(X,Z), {Hp,q(X)}) is a pure Hodge structure of weight
n. The assignment X 7→ H∗(X) = ⊕nHn(X) is a contravariant functor from
smooth proper C-varieties to graded pure Hodge structures.

We will be sloppy below, and often write “=” where we really mean “canonically
isomorphic”.

Lemma 2.3. The category of graded pure Hodge structures admits tensor prod-
ucts, duals, and internal Hom’s, with “expected” properties.

Proof. We discuss the operations for pure Hodge structures; everything is then
easily extended to graded pure Hodge structures. If V and V ′ are pure Hodge
structures of weightsm and n respectively, then V⊗V ′ is the pure Hodge structure
of weight m+n with underlying abelian group VZ⊗V ′Z, and Hodge decomposition
induced by

(V ⊗ V ′)a,b =
⊕

p+ q = m, r + s = n,
p+ r = a, q + s = b

V p,q ⊗C (V ′)r,s ⊂ VC ⊗ V ′C = (VZ ⊗ V ′Z)C.

Similarly, if V is pure of weight n, its dual V ∗ is the Hodge structure of weight
−n with

(V ∗)Z = HomZ(VZ,Z),

and Hodge decomposition

(V ∗)−p,−q = (V p,q)∗ ⊂ ⊕r+s=n(V r,s)∗ = (⊕r+s=nV r,s)∗.

If V and V ′ are pure of weights m and n, then

HomZ(VZ, V
′
Z)C = (V ∗ ⊗ V ′)C,

and we may take the Hodge decomposition already defined on the right side as
the definition of the Hodge decomposition for Hom(V, V ′). �

Example 2.4. The functor X 7→ H∗(X,Z) = ⊕n≥0Hn(X,Z) is a covariant
functor from smooth proper varieties to graded pure Hodge structures, where
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Hn(X,Z) carries the unique pure Hodge structure of weight −n such that the
natural (universal coefficient) homomorphism

Hn(X,Z)→ Hom(Hn(X,Z),Z)

is a morhism of pure Hodge structures of weight n; here Z = H0(point,Z) is the
“trivial” Hodge structure, which is the unit with respect to tensor products of
Hodge structures (i.e., it is purely of type (0, 0)).

Definition 2.5. The Tate Hodge structure, denoted Z(1), is the Hodge structure
on H2(P1

C,Z). Thus, it is a Hodge structure with underlying abelian group ∼= Z,
whose complexification is defined to be purely of type (−1,−1). We may identify
Z(1)C with C so that Z(1)Z ⊂ C is the cyclic additive subgroup generated by
2π
√
−1.

We define

Z(n) =

{
Z(1)⊗n if n ≥ 0
Z(−n)∗ if n < 0

Then there are canonical isomorphisms Z(m)⊗ Z(n) ∼= Z(m+ n).
For any pure Hodge structure V , let V (n) := V ⊗ Z(n) for any n ∈ Z. Then

V (n) is a pure Hodge structure of weight (weight V ) − 2n. More generally, if
V = ⊕m∈ZVm is a graded pure Hodge structure, where Vm is pure of weight m,
we can define a new graded pure Hodge structure V (n)[2n], whose m-th graded
piece is Vm+2n(n), which is again pure of weight m.

Example 2.6. With the above definitions and conventions, we see that if X
is smooth and proper over C of pure dimension d, then cap product with its
fundamental class may be viewed as an isomorphism of pure Hodge structures of
weight −(2d− n)

Hn(X,Z)(d)→ H2d−n(X,Z),

or equivalently, the Poincaré duality pairing may be viewed as a pairing of Hodge
structures

Hn(X,Z)⊗H2d−n(X,Z)→ Z(−d).

As a consequence, if X, Y are smooth, pure dimensional, proper C-varieties, and
f : X → Y is a morphism of relative dimension e (i.e., dimX−dimY = e, which
may be negative), then the Gysin homomorphism defines a morphism of graded
pure Hodge structures

f∗ : H∗(X,Z)→ H∗(Y,Z)(e)[2e].

In particular, if X is smooth and proper over C, Z ⊂ X a subvariety purely of

codimension p, and Z̃ → Z a resolution of singularities, giving a morphism f :

Z̃ → X which is of relative dimension p, then there is an induced homomorphism
of pure Hodge structures of weight 0

(free abelian group on irreducible components of Z) = H0(Z̃,Z)→ H2p(X,Z(p)).

This defines the cycle class of any algebraic cycle of codimension p in X which is
supported on Z (i.e., which is a Z-linear combination of irreducible components
of Z).
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In this language, the Hodge conjecture asserts, conversely, that for any ele-
ment α ∈ H2p(X,Z(p)) whose complexification is purely of type (0, 0) (so that α
determines a morphism of Hodge structures Z → H2p(X,Z(p))), some non-zero
integral multiple of α is the cycle class of some codimension p algebraic cycle on
X, obtained by the procedure described in the previous paragraph.

3. The Hodge filtration

We’ll use the following conventions regarding filtered objects (in an abelian
category, say): we regard all filtrations as indexed by Z; a decreasing filtration
{F pA} is one where F p+1A ⊂ F pA for all p, and we write gr pFA for F pA/F p+1A.
Similarly an increasing filtration {WmA} is one where Wm−1A ⊂ WmA for all
m, and we write grWmA = WmA/Wm−1A. We may interchange between the two
notions: if {WmA} is an increasing filtration, then FmA := W−mA defines an
increasing filtration such that grmFA = grW−mA.

A decreasing filtration {F pA} is called finite if F pA = 0 and F−pA = A for all
p >> 0; we can similarly definte finiteness for increasing filtrations.

Notice that if A is an abelian category, then we can form a new category Fil•A
of pairs (A, {F pA}), with A ∈ A, and a finite decreasing filtration {F pA} on A,
where morphisms f : (A, {F pA}) → (B, {F pB}) are morphisms f : A → B in
A which are compatible with the filtrations, i.e., satisfy f(F pA) ⊂ F pB. Then
Fil•A is an additive category in a natural way, where every arrow has a kernel and
cokernel, but Fil•A is not in general an abelian category: if f : (A, {F pA}) →
(B, {F pB}) is any morphism in Fil•A, then image (f) ⊂ B inherits F -filtrations
in two ways: as a quotient of A, and as a subobject of B. These need not coincide!

We may similarly consider the category Fil•A of objects in A with finite in-
creasing filtrations; again it is naturally an additive category with kernels and
cokernels, which need not be abelian.

Definition 3.1. A morphism f : (A, {F pA}) → (B, {F pB}) in Fil•A is strict
with respect to the F -filtrations if the two natural F -filtrations on image (f)
coincide, i.e., f(F pA) = f(A) ∩ F pB for each p ∈ Z.

Lemma 3.2. (a) Let V = (VZ, {V p.q}) be a pure Hodge structure of weight n.
Define F pVC = ⊕p′≥pV p′,n−p′ ⊂ VC. Then {F pVC} is a finite, decreasing
filtration by C-subspaces, such that for each p,

(i) the natural map F pVC ⊕ F n−p+1VC → VC, induced by inclusions on
the two factors, is an isomorphism

(ii) F pVC ∩ F n−pVC = V p,n−p ⊂ VC.
(b) Conversely, suppose VZ is a finitely generated abelian group, and {F pVC}

is a finite, decreasing filtration on VC := VZ⊗C by C-subspaces, such that
we have the isomorphisms in (i) above for each p. Then, setting

V p,n−p = F pVC ∩ F n−pVC,

the data
V = (VZ, {V p,q}p+q=n)

define a pure Hodge structure of weight n.
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(c) The category of pure Hodge structures of weight n is equivalent to the
category of finitely generated abelian groups whose complexifications have
finite decreasing filtrations, such that the isomorphisms in (a) (i) above
hold, with morphisms being homomorphisms f of abelian groups whose
complexifications fC preserve the F -filtrations (i.e., satisfy fC(F p) ⊂ F p).

The filtration {F pVC} is called the Hodge filtration of the pure Hodge structure
V . There is similarly a Hodge filtration on any graded pure Hodge structure.
Morphisms of graded pure Hodge structures are homomorphisms f of graded
abelian groups which preserve the Hodge filtrations, i.e., satisfy f(F p) ⊂ F p.
From lemma 3.2 and the respective Hodge decompositions, it follows that

f(F p) = (image f) ∩ F p,

that is, “any morphism of (graded) pure Hodge structures is strict with respect to
the Hodge filtrations”.

We may similarly define the category of pure A-Hodge structures of weight n,
where A is a Noetherian subring of the field R of reals, where instead of a finitely
generated abelian group VZ, we’re given a finitely generated A-module VA, as
well as a suitable filtration on VC = VA ⊗A C by C-subspaces; the isomorphism
property in lemma 3.2 (a)(i) above makes sense, since A ⊂ R, so that VC does
admit a natural complex conjugation involution. Of particular use to us later is
the notion of a pure Q-Hodge structure of weight n.

4. Mixed Hodge Structures

We begin with some further remarks on filtered objects in an abelian category.
If (A, {F pA}) ∈ Fil•A, and C ⊂ B ⊂ A are subobjects in A, there is a unique
induced F -filtration on the subquotient B/C. Indeed, at first sight there are two
ways of defining F p(B/C), namely as “a subobject of a quotient object” or as a
“quotient object of a subobject”, that is,

(imageF pA→ A

C
) ∩ B

C
=

(F pA+ C) ∩B
C

,

or as
F pA ∩B
F pA ∩ C

∼=
(F pA ∩B) + C

C
⊂ B

C
.

However,

(F pA+ C) ∩B = (F pA ∩B) + C

since C ⊂ B. Thus, both recipes give the same F -filtrations on B/C.
As a consequence, if {F pA} and {GqA} are two decreasing filtrations on A,

then

(i) there is a well-defined F -filtration on gr qGA for each q ∈ Z, so we can form
the subquotient gr pFgr qGA for each p, q ∈ Z

(ii) there is a well-defined G-filtration on gr pFA for each p ∈ Z, so we can form
the subquotient gr qGgr pFA
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(iii) there is in fact a canonical isomorphism between these subquotients:

gr pFgr qGA
∼= gr qGgr pFA,

since gr pFgr qGA may be identified with

F pA∩GqA
F pA∩Gq+1A
F p+1A∩GqA
F p+1A∩Gq+1A

∼=
F pA ∩GqA

(F pA ∩Gq+1A) + (F p+1A ∩GqA)

where the roles of the F and G filtrations in the new expression may
clearly be interchanged.

Since we may re-index an increasing filtration to convert it into a decreasing one,
similar remarks apply when an object has two filtrations, one or both of which
may be increasing.

We are now ready to give the main definition of this lecture, that of a mixed
Hodge structure.

Definition 4.1. A mixed Hodge structure V = (VZ, {WnVQ}, {F pVC}) consists of
data

(i) a finitely generated abelian group VZ
(ii) a finite, increasing filtration {WnVQ} on VQ = VZ ⊗ Q by Q-subspaces,

called the weight filtration,
(iii) a finite decreasing filtration {F pVC} on VC by C-subspaces, called the

Hodge filtration,

which satisfy the condition that

(grW• VQ, {F pgrW• VQ})
is a graded pure Q-Hodge structure, whose graded piece of degree n (which is a
pure Q-Hodge structure of weight n) is (grWn VQ, {F pgrW⊗Cn VC}).

A morphism of mixed Hodge structures is defined to be a homomorphism of
abelian groups which, when tensored with Q, is compatible with the weight fil-
trations W•, and which when tensored with C, is compatible with the Hodge
filtrations F •.

We will abuse notation, and write W•VC = {WnVC} for the complexification of
the weight filtration as well. Thus

gr pFgrWn VC

is the (p, n−p)-th piece of the Hodge decomposition of the pure Q-Hodge structure
on grWn VQ.

The category MHS has natural tensor products, duals and internal Hom’s,
obtained from the corresponding operations on the underlying abelian groups,
and invoking the similar properties for pure Hodge structures. For example, one
finds that

F pHom(VC, V
′
C) = {f ∈ Hom(VC, V

′
C) | f(F iVC) ⊂ F i+pV ′C ∀i ∈ Z}.

For any subring A ⊂ R, we may also define the notion of an A-mixed Hodge
structure, abbreviated A-MHS, in the obvious way, where W• is now a filtration
by A⊗Q-submodules of VA⊗Q; of interest to us is the case A = Q.
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A remarkable property of mixed Hodge structures is the following, which is
crucial in the proof of Theorem 1.1, and in most applications of mixed Hodge
structures.

Proposition 4.2. Let V = (VZ,W•VQ, F
•VC) and V ′ = (V ′Z,W•V ′Q, F

•V ′C) be
mixed Hodge structures, f : V → V ′ a morphism of mixed Hodge structures.
Then

(i) fQ : VQ → V ′Q is strict with respect to the weight filtrations
(ii) fC : VC → V ′C is strict with respect to the Hodge filtrations.

Proof. See [1], Théorème (2.3.5). �

Corollary 4.3. The category MHS of mixed Hodge structures is an abelian cat-
egory, on which the functors Wn, grWn , F p, gr pF , gr pFgrWn = grWn gr pF are exact
functors (the first two to Q-vector spaces, and the last three to C-vector spaces).

Corollary 4.4. A morphism between MHS is an isomorphism ⇐⇒ the under-
lying homomorphism of abelian groups is an isomorphism. Thus, the forgetful
functor from MHS to abelian groups is a faithful functor reflecting isomorphisms.

We may view a pure Hodge structure of weight n as an object of MHS for
which the weight filtration has at most 1 non-trivial jump: Wn−1 = 0, Wn =
(everything). Similarly, if ⊕n∈ZVn is a graded pure Hodge structure (with a
finite number of non-zero weighted pieces), it may be viewed as a MHS with
Wn = ⊕m≤n(Vm)Q ⊂ VQ.

The following example illustrates why there are “naturally occuring” interesting
mixed Hodge structures in algebraic geometry, which are not just graded pure
Hodge structures.

Example 4.5. Let X be a smooth projective curve over C, and x, y distinct
points of X. Consider the long exact sequence of the pair (X, {x, y}) in singular
cohomology, part of which is

H0(X,Z)
ρ→ H0({x, y},Z)→ H1(X, {x, y},Z)→ H1(X,Z)→ 0.

This gives rise to an extension

0→ Z→ H1(X, {x, y},Z)→ H1(X,Z)→ 0.

Here, we may regard

coker (H0(X,Z)→ H0({x, y},Z)) ∼= Z
as the trivial Hodge structure Z = Z(0), and give H1(X,Z) its standard pure
Hodge structure of weight 1. Suppose we were to define a MHS on the relative
cohomology H1(X, {x, y},Z), such that the above extension is in the category
MHS; then we would obtain an extension class in Ext 1

MHS(H1(X,Z),Z), which
has a natural abelian group structure.

It is an exercise in “linear algebra” (left to the reader!) to show that if V =
(VZ, F

•VC) is a pure Hodge structure of weight 1, where VZ is torsion-free, then
there is a natural isomorphism of abelian groups

Ext 1
MHS(V,Z) ∼=

VC
F 1VC + VZ

∼=
gr 0

FVC
imageVZ

∼=
V 0,1

imageVZ
.
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In particular, we have that

Ext 1
MHS(H1(X,Z),Z) ∼=

H0,1(X)

imageH1(X,Z)
=

H1(X,OX)

imageH1(X,Z)
.

Here, we observe that the Hodge decomposition on H1(X,Z) is such that the
map H1(X,C)−−→→ H0,1(X) = H1(X,OX) is just the natural map on cohomology
induced by the sheaf map CX → OX from the constant sheaf CX on X determined
by C, to the (analytic) structure sheaf of holomorphic functions on X. Thus the
induced map H1(X,Z) → H1(X,OX) is similarly induced by the sheaf map
ZX → OX . From the cohomology sequence associated to the exponential sheaf
sequence

0→ ZX → OX
f 7→e2π

√
−1f

−→ O∗X → 0

we thus identify the quotient

H1(X,OX)

imageH1(X,Z)

with
kerH1(X,O∗X)→ H2(X,Z),

i.e., with the group of isomorphism class of line bundles on X of degree 0, which
is the Jacobian variety of the curve X. Thus, associated to an ordered pair1 (x, y)
of distinct points of X, we would obtain an isomorphism class of a line bundle of
degree 0 on X. Clearly, the “natural” choice of MHS on the relative cohomology
H1(X, {x, y},Z) is the one where this line bundle is just OX([x]− [y])! With this
choice, the Abel-Jacobi mapping on the curve X acquires a description in terms
of extension classes in MHS. In particular, the MHS on H1(X, {x, y},Z) is not a
graded pure Hodge structure, if X has genus > 0.

A result giving the existence of many such mixed Hodge structures is the
following theorem, which summarizes several results in [1], [2]. This will suffice
to obtain Theorem 1.1.

Theorem 4.6. (Main Theorem on existence of MHS)
There is a unique way to assign a MHS to the singular cohomology groups

Hn(X, Y,Z), where X is an arbitrary C-variety (possibly reducible), Y ⊂ X a
closed subvariety (possibly empty), and n ≥ 0 an integer, such that the following
properties hold.

(i) If X is smooth and proper over C, the MHS on Hn(X, ∅,Z) = Hn(X,Z)
is the standard pure Hodge structure of weight n.

(ii) If f : (X, Y ) → (X ′, Y ′) is a morphism of pairs (i.e., f : X → X ′

is a morphism of varieties such that f(Y ) ⊂ Y ′), then the natural map
f ∗ : Hn(X ′, Y ′,Z)→ Hn(X, Y,Z) is a morphism of MHS.

(iii) If (X, Y ) and (X ′, Y ′) are pairs, then the external product map

Hn(X, Y,Z)⊗Hm(X ′, Y ′,Z)→ Hm+n(X ×X ′, (Y ×X ′ ∪X × Y ′),Z)

is a morphism of MHS.

1When we identify coker ρ with Z, we are ordering the points.
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(iv) If (X, Y ) is a pair, then the boundary maps in the long exact sequence for
singular cohomology of the pair

∂ : Hn(Y,Z)→ Hn+1(X, Y,Z)

are morphisms of MHS.
(v) For any pair (X, Y ) with dimX = d, we have

W−1H
n(X, Y,Q) = 0, W 2dHn(X, Y,Q) = Hn(X, Y,Q),

F 0Hn(X, Y,C) = Hn(X, Y,C), F d+1Hn(X, Y,C) = 0.

Remark 4.7. The statement in (v) above can be sharpened, see [2](8.2.4) and
(8.3.10) (particularly the top of page 45).

Corollary 4.8. If Z ⊂ Y ⊂ X are closed subvarieties, then the long exact
sequence in singular cohomology for the triple (X, Y, Z) is an exact sequence in
MHS, for the MHS’s on relative cohomology given in Theorem 4.6.

Proof. The long exact sequence in question has the form

· · · → Hn(X, Y,Z)→ Hn(X,Z,Z)→ Hn(Y, Z,Z)
∂→ Hn+1(X, Y,Z)→ · · ·

where the functoriality assertion (ii) in Theorem 4.6 implies that the first two
homomorphisms are morphisms of MHS, induced by morphisms of pairs (X,Z) ⊂
(X, Y ) and (Y, Z) ⊂ (X,Z). The boundary map ∂ in the exact sequence, in the
topological context, is defined to be the composition

Hn(Y, Z,Z)→ Hn(Y,Z)
∂→ Hn+1(X, Y ).

This factorization also shows it is a morphism of MHS. �

If X is an arbitrary variety, let X be a proper variety over C which contains
X as a Zariski open subset, and define ∂X = X \ X. We’ll call (X, ∂X) a
compactification of X, with boundary ∂X. The compactifications of X form a
category, where morphisms are morphisms of the proper varieties which “are the
identity on the open subset X”.

We claim that the relative cohomology group Hn(X, ∂X,A), for any coefficient
abelian group A, depends only on X (upto canonical isomorphism). Indeed, if

(X̃, ∂X̃) is another compactification, the closure of the image of the “diagonal”

inclusion of X yields another compactification which maps to both X and X̃,
in the sense of morphisms of compactifications. So it suffices to remark that
any morphism of compactifications yields a relative homeomorphism of pairs of
topological spaces (which are “reasonable”, i.e., are homeomorphic to finite CW
pairs of complexes, for example), and hence induces an isomorphism on relative
singular cohomology, by the excision theorem in topology.

We define the compactly supported cohomology groups Hn
c (X,A) to be the rel-

ative cohomology groups Hn(X, ∂X,A) for any compactification (X, ∂X) and
any abelian group A. The argument above shows that this is well-defined,
yielding a finitely generated abelian group when A = Z, which vanishes unless
0 ≤ n ≤ 2 dimX; further, combining Theorem 4.6 with Corollary 4.4, it follows
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that V = Hn
c (X,Z) also carries a natural mixed Hodge structure, such that the

indices (p, q) with V p,q 6= 0 are a finite set of pairs of non-negative numbers.

Lemma 4.9. For any two varieties X, Y there is a Kunneth isomorphism

⊕r+s=nHr
c (X,Q)⊗Hs

c (Y,Q)→ Hn
c (X × Y,Q)

which is an isomorphism of Q-MHS.

Proof. If X, Y have compactifications (X, ∂X) and (Y , ∂Y ) respectively, then
the product pair

(X × Y , ∂(X × Y )) := (X × Y , ∂X × Y ∪X × ∂Y )

is a compactification of X × Y . Theorem 4.6(iii) implies that the direct sum of
the external product maps

⊕r+s=nHr(X, ∂X,Z)⊗Hs(Y , ∂Y ,Z)→ Hn(X × Y , ∂(X × Y ),Z)

is a morphism of MHS, which becomes an isomorphism of rational vector spaces
when tensored with Q, from the topological Kunneth theorem; from Proposi-
tion 4.2 it is then an isomorphism of Q-MHS. �

Lemma 4.10. Let X be a variety, Y ⊂ X a closed subvariety, and U = X \ Y
the complementary open set. Then there is a long exact sequence in MHS

0→ H0
c (U,Z)→ H0

c (X,Z)→ H0
c (Y,Z)→ · · ·

→ Hn
c (U,Z)→ Hn

c (X,Z)→ Hn
c (Y,Z)→ Hn+1

c (U,Z)→ · · ·

Proof. Let (X, ∂X) be a compactification of X, and let Y be the (Zariski, or
equivalently Euclidean) closure of Y in X. Then (Y ∪ ∂X, ∂X) is a compact-
ification of Y , and (X, ∂X ∪ Y ) is a compactification of U . Hence we have a
well-defined triple (X, ∂X ∪ Y , ∂X) consisting of a variety and a chain of closed
subvarietes. The associated long exact sequence, which by Corollary 4.8 is a
sequence of MHS, is the sequence whose existence is asserted in the lemma. �

Remark 4.11. This lemma only used the existence and properties of MHS for
pairs (X, Y ) where X is proper over C.

Let KQH denote the Grothendieck ring of mixed Q-Hodge structures. Since any
Q-MHS has a canonical finite filtration (the weight filtration itself!) by sub-MHS
whose associated graded object is a graded pure Q-MHS, such that passage to
any gven filtration level is an exact functor, it follows easily that KQH coincides
with the Grothendieck ring of graded pure Q-Hodge structures.

Proposition 4.12. The assignment X 7→ FX ∈ KQH given by

FX =
∑
n≥0

(−1)n[Hn
c (X,Q)] =

2 dimX∑
n=0

(−1)n
2 dimX∑
i=0

[grWi H
n
c (X,Q)]

satisfies the following properties.
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(i)

FX =
∑
n≥0

(−1)n[Hn(X,Q)]

if X is proper (not necessarily smooth).
(ii)

FX×Y = FX · FY
where on the right, · denotes the multiplication on KQH induced by tensor
products of MHS.

(iii) If X is any C-variety, Y a closed subvariety, U = X \ Y , then FX =
FU + FY in KQH .

Proof. From Theorem 4.6(i), if X is proper, then (X, ∅) is a compactification of
X, and Hn

c (X,Z) = Hn(X,Z) as MHS. Next, if X is a variety, Y ⊂ X a closed
subvariety, and U = X \ Y , then the exact sequence in lemma 4.10 immediately
yields the relation FX = FY +FU in KQH . Finally the compatibility with products
follows from lemma 4.9. �

Remark 4.13. Again we only need the existence and properties of MHS for pairs
(X, Y ) where X is proper over C.

Now notice that there is a natural ring homomorphism

χ : KQH → Z[u, u−1, v, v−1]

obtained by mapping a pure Q-Hodge structure V of weight n to

χ([V ]) = (−1)n
∑
p+q=n

(dimC V
p,q)upvq.

If V is a Q-MHS, then we clearly must have

χ([V ]) =
∑
n

χ([grWn V ]) =
∑
p,q

(−1)p+q(dimC gr pFgr p+qW VC)upvq.

This last formula is compatible with exact sequences of MHS, and so χ is well-
defined as an additive homomorphism. Since χ(V1 ⊗ V2) = χ(V1)χ(V2) for pure
Q-Hodge structures Vi, we see that χ is in fact a ring homomorphism.

Corollary 4.14. The assignment

X 7→ fX(u, v) =
∑
p,q≥0

(−1)p+q
∑
n≥0

(−1)n dimC gr pFgrWp+qH
n
c (X,C)upvq

satisfies the conditions of Theorem 1.1.

Proof. We first define fX = χ(FX) ∈ Z[u, u−1, v, v−1]. Then fX satisfies proper-
ties (ii) and (iii) in Theorem 1.1, from Proposition 4.12 above. If X is smooth
and proper over C, then Hn

c (X,Z) = Hn(X,Z) carries the standard pure Hodge
structure of weight n, and so gr p+qW Hn(X,C) = 0 unless n = p + q, and further
gr pFgrWp+qH

p+q(X,C) is naturally identifed with the Hodge piece Hp,q(X) in this
case. Hence

fX(u, v) =
∑
p,q≥0

dimCH
p,q(X)upvq
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as desired. Finally, since

[Hn
c (X,Q)] =

∑
i≥0

[grWi H
n
c (X,Q)]

in KQH , we obtain the explicit formula for fX stated in the corollary. �

5. Some ideas in the proof of Theorem 4.6

The construction of the MHS on the relative cohomology groups Hn(X, Y,Z)
of a pair (X, Y ) use the notions of hypercohomology, and simplicial schemes. We
will try to brifely review these notions as needed below, to give an idea of the
desired constructions of MHS.

5.1. Hypercohomology. If C• is a (cochain) complex of sheaves of abelian
groups on a topological space X, bounded below (i.e., with Cn = 0 for n << 0),
then we can find a complex of injective sheaves I•, also bounded below, and
a map of complexes C• → I•, which induces an isomorphism on cohomology
sheaves (i.e., is a quasi-isomorphism of complexes of sheaves). If C• consists of
a single non-zero sheaf C = C0 occuring in degree 0 (say), this complex I• may
be taken to be an injective resolution of C. The general assertion can be proved
using this case, by an induction argument, and using the universal property of
injectives (proof left to the reader). Further, given any two such injective com-
plexes I•, there is a unique chain homotopy class of maps between them (relative
to the maps from C•), which is itself a chain homotopy equivalence. Thus, the
cohomology group Hn(Γ(X, I•)) depends only on C•, and is defined to be the n-
th hypercohomology group of C• on X, denoted Hn(X, C•); further, if C• → D• is
a quasi-isomorphism between (bounded below) complexes, it induces an isomor-
phism on hypercohomology (if D• → I• is a quasi-isomorphism to a (bounded
below) complex of injectives, then the composition C• → D• → I• is also a
quasi-isomorphism).

One next shows: if C• → D• is any morphism of complexes, one can “lift” it to a
compatible morphism between quasi-isomorphic complexes of injectives, and the
“lifted” map is unique upto chain homotopy. This makes the hypercohomology
groups functors on the category of complexes. Further, if

0→ C•1 → C
•
2 → C

•
3 → 0

is an exact sequence of complexes, we can find compatible quasi-isomorphic in-
jective complexes C•j → I

•
j fitting into an exact sequence of complexes

0→ I•1 → I
•
2 → I

•
3 → 0

where the sequences of terms

0→ In1 → In2 → In3 → 0

are in fact split exact (as with the familiar special case where one lifts a short
exact sequence of sheaves to a short exact sequence, termwise split, of injective
resolutions, one first constructs Cj → I•j for j = 1, 3, then one defines the terms
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of the middle resolution In2 by In2 = In1 ⊕In3 , then one inductively constructs the
differentials and maps....). This yields: if

0→ C•1 → C
•
2 → C

•
3 → 0

is an exact sequence of (bounded below) complexes, there is an associated long
exact sequence

· · ·Hn(X, C•1 )→ Hn(X, C•2 )→ Hn(X, C•3 )→ Hn+1(X, C•1 )→ · · ·

“Concretely” one may compute hypercohomology of a complex C• using a
quasi-isomorphic complex of Γ(X,−)-acyclic sheaves, just as for sheaf cohomol-
ogy, one may use acyclic resolutions instead of injective resolutions. One functo-
rial way to do it is to use the “canonical” Godement flasque (=flabby) resolution,
which we recall. If C is any sheaf of abelian groups on a topological space X, and
i : Xdisc → X is the identity map on the set X, where Xdisc has the discrete topol-
ogy, then define G0(C) = i∗i

−1C. One sees that Γ(U,G0(C)) =
∏

x∈U Cx where Cx
is the stalk at x, and restriction to a smaller open set is given by projection; thus
G0(C) is flasque. There is a canonical inclusion C ↪→ G0(C). We now inductively
define maps Gi(C)→ Gi+1(C) by

G1(C) = G
(
coker C → G0(C)

)
, Gi+1(C) = G

(
cokerGi−1(C)→ Gi(C)

)
for i ≥ 1.

Then C → G•(C) is a flasque resolution of C.
Applying this to the terms of a (bounded below) complex C•, we obtain a double

complex G•(C•), with associated total complex Tot•(G•(C•)), whose terms are

Totn(G•(C•)) = ⊕i+j=nGi(Cj)

(these are finite direct sums, by our boundedness hypothesis), such that there is
a quasi-isomorphism of (bounded below) complexes C• → Tot•(G•(C•)). So we
may compute hypercohomology as

Hn(X, C•) = Hn(Γ(X,Tot
•
(G•(C•))).

This may not be a very practical way of actually computing hypercohomology,
but is good for theoretical purposes, since we won’t have to worry about any
“higher homotopies” in our constructions below involving simplicial schemes.

Finally, we discuss the spectral sequences in hypercohomology. One way to view
these is through filtered complexes (we discuss decreasing filtrations, the case of
increasing filtrations is obtained by re-indexing). Let C• be a bounded below
complex, and {F pC•} a decreasing filtration by subcomplexes, which induces a
finite filtration on each term Cn (such a filtration will be called finite). Then we
have the following.

(i) There is an induced finite filtration on hypercohomology

F pHn(X, C•) = imageHn(X,F pC•)→ Hn(X, C•)

(ii) There are short exact sequences of complexes

0→ F p+1C• → F pC• → gr pFC
• → 0
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and associated families of long exact sequences

· · ·Hn(X,F p+1C•) i→ Hn(X,F pC•) j→ Hn(X, gr pFC
•
)

∂→ Hn+1(X,F p+1C•)→ · · ·

These may be assembled together into an exact couple

D
i−−→ D

J
J]∂ 



�
j

E

with D = ⊕n,pHn(X,F pC•), E = ⊕n,pHn(X, gr pFC
•) and maps induced

by those with the same labels in the exact sequences.

In a standard way, we obtain an induced spectral sequence

Ep,q
1 = Hp+q(X, gr pFC

•
) =⇒ Hp+q(X, C•).

Because our complexes are bounded below, and the filtration by subcomplexes
is finite, the spectral sequence is convergent, i.e., for any p, q, for all n >> 0, we
have

Ep,q
n
∼= Ep,q

∞ = gr pFH
p+q(X, C•),

where F pHn(X, C•) is the filtration in (i) above. The E1 differentials

Hp+q(X, gr pFC
•
) = Ep,q

1 → Ep+1,q
1 = Hp+q+1(X, gr p+1

F C
•
)

also have a “concrete description” as the composition

Hp+q(X, gr pFC
•
)

∂→ Hp+q+1(X,F p+1C•) j→ Hp+q+1(X, gr p+1
F C

•
)

of maps from two “adjacent” exact sequences.
Two examples of such filtrations on a (bounded below) complex C• are as

follows; these are needed later.

(i) Let F pC• ⊂ C• be defined by

F pCn =

{
Cn if n ≥ p
0 otherwise.

The induced spectral sequence looks like

Ep,q
1 = Hq(X, Cp) =⇒ Hp+q(X, C•).

This is sometimes called the first spectral sequence for hypercohomology.
It depends on the complex itself, in general, and not just on the quasi-
isomorphism class of the complex (or its class “in the derived category”).
We will often write C•≥p to denote the subcomplex F pC• in this filtration.

(ii) Let W−pC• ⊂ C• be defined by

W−pCn =

 Cn if n < p
0 if n > p

ker Cp → Cp+1 if n = p.
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(The funny indexing is because we want to get a decreasing filtration.)
Now the spectral sequence looks like

Ep′,q′

1 = H2p′+q′(X,H−p′(C•)) =⇒ Hp′+q′(X, C•).
Here Hi(C•) is the i-th cohomology sheaf of C•. We may make a substi-
tution p = 2p′ + q′, q = −p′. Then p′ + q′ = p + q, and we may view the
above spectral sequence as being of the form

Ep,q
2 = Hp(X,Hq(C•)) =⇒ Hp+q(X, C•).

Note that, with the original indexing, the differential dr : Ep′,q
r → Ep′+r,q′−r+1

r

becomes, with the new numering, a map Ep,q
r+1 → Ep+r+1,q−r

r+1 , which is what
it should be for an Er+1 differential! This (renumbered) spectral sequence
is sometimes called the second spectral sequence for hypercohomology. It
depends only on the quasi-isomorphism class of the complex C•.

5.2. MHS on the cohomology of a smooth variety. We now return to Hodge
theory. First, we interpret the Hodge decomposition on a smooth proper C-variety
in terms of hypercohomology. If X is, more generally, a complex manifold, and
Ω•
X is the de Rham complex of sheaves of holomorphic differentials (with exterior

derivative maps), then it is a resolution of the constant sheaf CX associated
to C on X, i.e., CX → Ω•

X is a quasi-isomorphism (this is usually called the
holomorphic Poincaré lemma). Hence there is a canonical isomorphism

Hn(X,C) ∼= Hn(X,Ω
•
X),

where we have also identified singular cohomology with cohomology of the corre-
sponding constant sheaf. Thus we have a spectral sequence

Ep,q
1 = Hq(X,Ωp

X) =⇒ Hp+q(X,C),

sometimes called the “Hodge to de Rham spectral sequence”. The induced filtra-
tion

F pHn(X,C) = imageHn(X,F pΩ
•
X)→ Hn(X,Ω

•
X) = Hn(X,C)

is called the Hodge filtration. If X is a compact, “bimeromorphically Kahler”
manifold, e.g., a proper smooth variety over C, then Hodge theory implies that
(Hn(X,Z), {F pHn(X,C)}) is a pure Hodge structure of weight n, and this is
the “standard” Hodge structure on Hn(X,C). As a consequence of the Hodge
decomposition, it follows that the above spectral sequence degenerates at E1,
giving isomorphisms

Hq(X,Ωp
X) = Ep,q

1
∼= Ep,q

∞ = gr pFH
p+q(X,C).

This degeneration assertion can now be proved “algebraically”, by first invok-
ing Serre’s GAGA to reinterpret it in terms of hypercohomology (in the Zariski
topology) of the complex of algebraic Kahler differentials, and then by reduction
to prime characteristic, for example following Deligne and Illusie [3]. The Hodge
decomposition is obtained by also using complex conjugation on Hn(X,C) =
Hn(X,R)⊗R C, which (presumably) is “not algebraically defined”.

If now X is a smooth variety over C (which we may assume to be connected),
then one can find a smooth proper compactification (X,Y ) with boundary Y
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which is a divisor in X with simple normal crossings. Then one has the logarith-
mic de Rham complex Ω•

X
(log Y ) of meromorphic differentials on X which are

holomorphic on X, and have at worst logarithmic poles along Y . We now recall
its definition.

Let Y = ∪ti=1Yi where Yi are the (non-singular) irreducible components of the
divisor Y . If j : X → X is the inclusion (of complex manifolds), then we may
regard j∗Ω

•
X as a differential graded OX-algebra2; now define Ω•

X
(log Y ) to be the

graded OX-sub-algebra of j∗Ω
•
X generated by the subsheaf Ω1

X
(log Y ) ⊂ j∗Ω

1
X ,

where
Ω1
X

(log Y ) = ker(Ω1
X
→ ⊕Ω1

Yi
)⊗OX OX(Y ).

One verifies that this subalgebra in fact defines a sub-DGA, and in particular, a
complex of sheaves on X. Further, Ω1

X
(log Y ) is easily seen to be a locally free

OX-module of rank N = dimX = dimX, so that the terms of the log de Rham
complex are all locally free as well, just as in the de Rham complex of X.

Lemma 5.1. There is a natural identification of Hn(X,C) with the hypercoho-
mology Hn(X,Ω•

X
(log Y )).

Proof. Locally near a point x ∈ X, we may choose holomorphic coordinates
z1, . . . , zN so that the ideal of Y is generated (near x) by the product function
z1 · · · zr, say, for some 0 ≤ r ≤ N . Then Ω1

X
(log Y ) is, near x, the free OX-module

generated by
dz1
z1
, . . . ,

dzr
zr
, dzr+1, . . . , dzN .

Further, restricting to a small enough polydisc neighbourhood

U(ε) = {y | |zi(y)| < ε},
we may (using the zi, and the holomorphic inverse function theorem, for example)
identify U(ε) with ∆N , where ∆ = {z ∈ C | |z| < 1} is the unit disk in the plane.
Then we may identify j : X ∩ U(ε) ↪→ U(ε) with

(∆∗)r ×∆N−r ↪→ ∆N ,

where ∆∗ = ∆ \ {0} is the punctured unit disc.
Notice that, since (∆∗)r ×∆N−r is a Stein manifold, the “Hodge” cohomology

groups Hp(Ωi) vanish for all i and all p > 0. This means that Hp(U(ε)∩X,Ωi
X) =

0 for all i, and all p > 0, for any small enough ε > 0, and hence, by considering
stalks, we have that

Rpj∗Ω
i
X = 0 ∀ p > 0.

This implies that Hq(X,Ωp
X) ∼= Hq(X, j∗Ω

p
X) for all p, q. Hence, by comparing

the two first hypercohomology spectral sequences, we get isomorphisms

Hn(X,C) = Hn(X,Ω
•
X) = Hn(X, j∗Ω

•
X).

The lemma will now follow if we prove a local assertion, that

Ω
•
X

(log Y ) ↪→ j∗Ω
•
X

2I mean here that j∗Ω
•
X is a graded OX -algebra, as well as a sheaf of DGA’s over C.
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is a quasi-isomorphism.
Since Ω•

X is a resolution of the constant sheaf CX by sheaves which are j∗-

acyclic, the cohomology sheaves of j∗Ω
•
X may be interpreted as the higher direct

image sheaves Rpj∗CX . The “second spectral sequence” for the hypercohomology
of Ω•

X
(log Y ) thus takes the form

(5.1) Ep,q
2 = Hp(X,Rqj∗CX) =⇒ Hp+q(X, j∗Ω

•
X) = Hp+q(X,C).

This is just the Leray spectral sequence, for the continuous map j : X → X,
and the sheaf CX (in fact the Leray spectral sequence for any continuous map
f : X → Y , and any sheaf F on X, which takes the form

Ep,q
2 = Hp(Y,Rqf∗F) =⇒ Hp+q(X,F),

may similarly be viewed as the second spectral sequence in hypercohomology
on Y of f∗C•, where F → C• is any resolution of F by sheaves Ci satisfying
Rpf∗Ci = 0 for p > 0, for all i). In particular, (5.1) is obtained from a similar
spectral sequence

Ep,q
2 = Hp(X,Rqj∗ZX) =⇒ Hp+q(X,Z)

by tensoring with C. Hence the induced filtration on Hn(X,C) = Hn(X,Q)⊗C
is obtained from a filtration on Hn(X,Q) by Q-subspaces, on tensoring with C.

From our local topological description of the map j as an inclusion

(∆∗)r ×∆N−r ↪→ ∆N ,

we see easily that Rpj∗C is described by a simple formula (recall Y = Y1∪· · ·∪Yt):

Rpj∗CX =
⊕

1≤i1<i2···<ip≤t

CYi1∩···∩Yip , ∀ p ≥ 1.

This may be related to the log-de Rham complex as follows. If I ⊂ {1, . . . , t}
is non-empty, let

YI =
∑
i∈I

Yi, Y (I) = ∩i∈IYi.

Then Y (I) is either empty, or a smooth complete intersection in X of pure codi-
mension #I, where #I is the cardinality of I, while YI is a divisor in X with
normal crossings, so that we have a log-de Rham complex Ω•

X
(log YI) which is a

sub-complex (even a sub OX-DGA) of Ω•
X

(log Y ). For I = ∅ define this subcom-

plex to be Ω•
X

, and define Y (I) = X. Notice that for subsets I 6= J of the same
cardinality, Y (I) and Y (J) have no common irreducible components, since Y is
a normal crossing divisor.

We can now define an increasing filtration on Ω•
X

(log Y ) by subcomplexes:

WnΩ
•
X

(log Y ) :=

(∑
#I=n

Ω
•
X

(log YI)

)
⊂ Ω

•
X

(log Y ) for 0 ≤ n ≤ t

(set Wn = W0 for n < 0, and Wn = Wt for n > t). By examining this locally near
a point x ∈ X as above, one sees that
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(i) there are natural isomorphisms of complexes

grWn Ω
•
X

(log Y ) ∼=
⊕
#I=n

Ω
•
Y (I)[−n], 0 ≤ n ≤ t

(here [−n] indicates a shift of n places to the right)
(ii) for any n ≥ 0, the natural inclusion

WnΩ
•
X
↪→ j∗Ω

•
X

is an isomorphism on cohomology sheaves in degree ≤ n
(iii) for any n ≥ 0, the complex WnΩ•

X
(log Y ) has vanishing cohomology

sheaves in degrees ≥ n.

In fact (ii) and (iii) follow from (i), since Ω•
Y (I) is a resolution of the constant

sheaf CY (I) on the smooth, codimension-n subvariety Y (I) ⊂ X (if Y (I) = ∅, we
take the corresponding de Rham complex to be the 0 complex); thus

grWn Ω
•
X

(log Y )

is a resolution of Rnj∗CX on X. The isomorphism in (i) is obtained using iterated
residue maps. Since we have ordered the components Y1, . . . , Yt of Y right in the
beginning, we have implicitly chosen an order in which to take repeated residues:
if I = {i1, . . . , in}, written in increasing order, we may take residues first along
Yi1 , then along Yi1 ∩ Yi2 (which is a divisor in Yi1), then along Yi1 ∩ Yi2 ∩ Yi3 , etc.
We leave the detailed verification to the reader.

Clearly (ii) and (iii) imply that Ω•
X

(log Y )→ j∗Ω
•
X is a quasi-isomorphism! �

Remark 5.2. The above proof gives us an identification

Rnj∗CX

∼=−→ 0th cohomology sheaf of
⊕
#I=n

Ω
•
Y (I) =

⊕
#I=n

CY (I).

It is natural to ask what the subsheaf Rnj∗QX ⊂ Rnj∗CX corresponds to un-
der this identification. A local analysis shows that in fact we have an induced
identification

Rnj∗QX

∼=−→ 1

(2π
√
−1)n

⊕
#I=n

QY (I).

Using our local analytic description of the map j, and the Kunneth formula, this
boils down to saying that

1

2π
√
−1

dz

z

represents (in de Rham cohomology) a generator of Q = H1(∆∗,Q) ⊂ H1(∆∗,C) =
C, i.e., that the integral of this particular closed form over a Q-cycle representing
a generator for H1(∆

∗,Q) (for example a positively oriented circle of radius 1/2)
is a non-zero rational number (equal to 1, for this choice of homology generator).

Theorem 5.3. Let X be a smooth variety over C, (X,Y ) a smooth compactifi-
cation with normal crossing boundary divisor Y = Y1 + · · ·+ Yt. Define

F pHn(X,C) = imageHn(X,Ω≥p
X

(log Y ))→ Hn(X,Ω
•
X

(log Y )) = Hn(X,C),
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WiH
n(X,C) = imageHn(X,Wi−nΩ

•
X

(log Y ))→ Hn(X,Ω
•
X

(log Y )) = Hn(X,C),

WiH
n(X,Q) = WiH

n(X,C) ∩Hn(X,Q).

Then the data

(Hn(X,Z), {WiH
n(X,Q)}, {F pHn(X,C)})

define a mixed Hodge structure on Hn(X,Z). This MHS is independent of the
choice of the normal crossing compactification (X,Y ). This defines (for each n)
a contravariant functor from the category of smooth C-varieties to MHS, in fact
to the subcategory of those MHS for which gr iW = 0 for i < n.

Proof. (Sketch!)
From the definitions, and an obvious functoriality property of log de Rham

complexes, it follows that if f : X → X ′ is a morphism between smooth varieties,
which we can extend to f : (X,Y )→ (X ′, Y ′), a morphism between normal cross-
ing compactifications, then the map f ∗ : Hn(X ′,C) → Hn(X,C) is compatible
with both the W and F filtrations, defined as in the statement of the theorem.
Thus, assuming these filtrations do define MHS’s, f ∗ : Hn(X ′,Z) → Hn(X,Z)
is a morphism of MHS, and further (by corollary 4.4), if f ∗ is an isomorphism
of abelian groups, it is also one of MHS. In particular, since any two normal
crossing compactifications of a given smooth variety X are dominated by a third,
we deduce that the MHS doesn’t depend on the choice of the compactification.
The functoriality is then also clear. In the smooth proper case, the W filtration
becomes trivial, and we get the usual F filtration, so recover the standard pure
HS.

So it suffices to fix a normal crossing compactification (X,Y ) of a given smooth
X, and show that the above definitions do yield a MHS on its cohomology.

First observe that the filtration

F pΩ
•
X

(log Y ) = Ω
•≥p
X

(log Y )

induces the Hodge filtration on

grWi Ω
•
X

(log Y )[i] =
⊕
#I=i

Ω
•
Y (I),

upto a shift by i. Combined with the compatibility with the Q-structures (Re-
mark 5.2) noted above, this means that

(Hn(X, gr iWΩ
•
X

(log Y )) ∼=
⊕
#I=i

Hn−i(Y (I),Q)(−i)⊗ C

compatibly with the rational structures and Hodge filtrations, i.e., corresponds
to an isomorphism of pure Q-Hodge structures of weight n+ i.

Next, consider the differentials in the (Leray) spectral sequence

Ep,q
2 = Hp(X,Rqj∗Q) =⇒ Hp+q(X,Q).

Tensored with C, the Leray spectral sequence may be viewed as the spectral
sequence associated to the W -filtration on Ω•

X
(log Y ), from the above discussion.
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The E2 differentials take the form

Ep,q
2 =

⊕
#I=q

Hp(Y (I),Q(−q))→
⊕

#J=q−1

Hp+2(Y (J),Q(−(q − 1))) = Ep+2,q−1
2 .

Both terms carry pure Q-Hodge structures of the same weight p+ 2q. The term
corresponding to Y (I) maps non-trivially to that corresponding to Y (J) only
when J ⊂ I; in this case, Y (I) ⊂ Y (J) is a smooth divisor, and one can show
the map

Hp(Y (I),Q(−q))→ Hp+2(Y (J),Q(−(q − 1))

is obtained from the Gysin map

Hp(Y (I),Q)→ Hp+2(Y (J),Q(1))

by tensoring with Q(−q), and multiplication by (−1)r, where I = {i1, . . . , ip}, J =
I \ {ir}. In other words, the E2 differential is an alternating sum of Gysin maps,
upto a Tate twist. In particular, it is a morphism of pure Hodge structures, and
is thus strictly compatible with the Hodge filtrations. Hence the E3 terms carry
natural pure Hodge structures as well, induced from the filtration F pΩ•

X
(log Y ).

Suppose we know that the E3-differentials are also strictly compatible with the
Hodge filtrations. Then they must all vanish, since they go between pure Hodge
structures of different weights! Hence the E4 terms, which then coincide with the
E3-terms, also carry pure Hodge structures. Again, strict compatibility of the
E4-differentials with F would force them to vanish, etc. We would then conclude
that Ep,q

3 = Ep,q
∞ carries a pure Hodge structure of weight p + 2q, induced from

the F -filtration on the log-de Rham complex. This means precisely that, on

grWn+qH
n(X,C) = grWn+qHn(X,Ω

•
X

)(log Y )),

F induces a filtration yielding a pure Hodge structure of weight n + q. In other
words, with our choices of F and W filtrations on cohomology, we have indeed
defined a MHS!

It remains to deal with the technical problem of showing that the differentials
above are strictly compatible with F -filtrations (in fact, to properly define the
F -filtration on the Er terms, where r > 2, we need to know this strictness on Es
terms for s < r; this is OK for r = 3, for example, because of the interpretation
via Gysin maps). That this holds is the content of the famous “lemma of two
filtrations” of Deligne (see [1], Théorème (1.3.16), and also the “cleaned-up”
version in [2], Proposition (7.2.5)). �

We now make further remarks, showing how additional results are obtained
from the proof above.

As a first by-product, we see that the Leray spectral sequence

Ep,q
2 = Hp(X,Rqj∗Q) =⇒ Hp+q(X,Q)

degenerates at E3. This is a purely topological assertion, though not proved here
topologically3.

3I don’t know any “purely topological” proof of this degeneration assertion, which (presum-
ably) is not true in general for the Leray spectral sequence with Z-coefficients.
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The filtration W•Ω
•
X

(log Y ) by subcomplexes determines, in particular, a fil-
tration on each term Ωn

X
(log Y ), with

grWi Ωn
X

(log Y ) =
⊕
#I=i

Ωn−i
Y (I).

Re-indexing in a way compatible with the Leray spectral sequence, we obtain an
induced spectral sequence

nE
p,q
2 = Hp−q−n(X, grWq Ωn

X
(log Y )) =⇒ Hp−n(X,Ωn

X
(log Y )).

Here the notation is chosen to keep track of the index n as well. The E2-
differentials are just gr nF of the E2-differentials of the Leray spectral sequence,
and so the E3 terms of our new spectral sequence satisfy

(5.2) nE
p+q,q
3 = gr nFgrWq H

p(X,C).

Now ∑
q

dimC nE
p+q,q
3 ≥

∑
q

dimC nE
p+q,q
∞ = dimCH

p−n(X,Ωn
X

(log Y )).

There is also a spectral sequence induced by the F -filtration on Ω•
X

(log Y ) (first
spectral sequence for hypercohomology)

FE
r,s
1 = Hs(X,Ωr

X
(log Y )) =⇒ Hr+s(X,C),

with resulting inequalities

(5.3)
∑
r+s=p

dimC FE
r,s
1 ≥

∑
r+s=p

FE
r,s
∞ = dimCH

p(X,C).

Combining (5.2) and (5.3) we obtain inequalities∑
n,q

gr nFgrWq H
p(X,C) =

∑
n,q

dimC nE
p+q,q
3 ≥

∑
n,q

dimC nE
p+q,q
∞ =∑

n

dimC
n
FE

n,p−n
1 ≥

∑
n

dimC FE
n,p−n
∞ = dimCH

p(X,C).

But the extreme terms are equal, since F , W define a MHS! Hence all the in-
equalites must be equalities. We deduce that the spectral sequence

nE
p,q
2 = Hp(X, grWq Ωn

X
(log Y )) =⇒ Hp−n(X,Ωn

X
(log Y ))

degenerates at E3, and the “log-Hodge-to-de Rham spectral sequence”

FE
p,q
1 = Hq(X,Ωp

X
(log Y )) =⇒ Hp+q(X,C)

degenerates at E1.
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5.3. MHS for smooth simplicial schemes. To construct the MHS on the
cohomology of a singular variety, or pair, we need the notions of simplicial schemes
and hypercoverings (see [2], Sections 5 and 6). The compatibility with products
in Theorem 4.6(iii) requires also a discussion of bisimplicial schemes and spaces,
which we omit here (see [2]).

Recall that a simplicial scheme X• is a sequence of schemes {Xn}n≥0, together
with a collection of morphisms

(i) (face maps) δni : Xn → Xn−1, 0 ≤ i ≤ n, and n ≥ 1
(ii) (degeneracy maps) sni : Xn → Xn+1, 0 ≤ i ≤ n, for all n ≥ 0

which satisfy certain identities. The idea is to view Xn as a “parameter scheme”
for a “family of n-simplices”, and the face and degeneracy morphisms are sup-
posed to be induced by obvious operations on simplices (faces are obtained
by omitting a vertex, and degeneracies by collapsing along an edge). A good
way of keeping track of the identities involved (and to make the above “defi-
nition” precise) is to use an indexing category ∆, whose objects are the sets
n = {0, 1, . . . , n}, for each n ≥ 0, and morphisms are monotonic set maps. Then
a simplicial scheme is defined to be a contravariant functor from ∆ to schemes,
where the object n corresponds to the scheme Xn. The face maps are induced
by the obvious injective, monotonic maps fni : n− 1 → n, 0 ≤ i ≤ n (fi omits
the value i), and the degeneracies by the obvious surjective monotonic maps
gni : n + 1 → n, 0 ≤ i ≤ n (gni takes the value i twice). Any morphism m → n
in ∆ is clearly a composition of these basic injective and surjective monotonic
maps, and one easily works out the identities satisfied by these (for example, this
leads to δni ◦ sn−1j = snj ◦ δn+1

i+1 if i > j).
More generally, a simplicial object in any category may be defined to be a

contravariant functor from ∆ to that category. For example, we can define the
notion of a simplicial (topological) space X•. This has an associated geometric
realization, defined as the quotient

|X| =
∐
n≥0

Xn ×∆n/ ∼,

where ∆n is the standard n-simplex in Rn+1 (we may define ∆n to be the convex
hull of the basis vectors), and ∼ is the equivalence relation induced by the obvious
inclusions ∆n−1 ↪→ ∆n (as faces), and quotient maps ∆n+1−−→→ ∆n (collapsing
along an edge). More formally, if {vi(n)}ni=0 are the vertices of the standard
n-simplex, so that ∆n = {

∑
i tivi ∈ Rn+1 | ti ≥ 0,

∑
i ti = 1}, then for any

morphism f : n→m in ∆, we have an induced map

f∗ : ∆n → ∆m,∑
i

tivi(n) 7→
∑
i

tivf(i)(m).

If f ∗ : Xm → Xn is the map obtained from the structure of X• as a simplicial
space, then for any (x, s) ∈ Xm × ∆n, we identify (f ∗(x), s) with (x, f∗(s)).
This does indeed define an equivalence relation on

∐
nXn × ∆n, as one easily

verifies. Thus, even if we start with a simplicial set Xn, where we regard each Xn
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as a discrete topological space, we obtain interesting spaces through geometric
realization; in fact, one can show that any CW complex X is homotopy equivalent
to the geometric realization of the simplicial set S•(X), where Sn(X) is the set
of singular n-simplices of X.

We may define various topological invariants (e.g., singular cohomology, or
homotopy groups) of a simplicial space X• to be the corresponding invariants
of |X|. There is an increasing filtration on |X| by closed subsets |X|≤n =
image

∐
i≤nXi ×∆i, leading to a spectral sequence

(5.4) Ep,q
1 = Hq(Xp, A) =⇒ Hp+q(X•, A)

for singular cohomology with coefficients in A.
A sheaf on X• is defined to be a sequence {Fn}n≥0, where Fn is a sheaf on

Xn, and there are sheaf maps between various Fn covering the face and degen-
eracy maps defining the simplicial structure on X•, and satisfying the “obvious”
identities. To make this a bit more formal, consider a category S where objects
are pairs (X,F), where F is a sheaf on a topological space X, and morphisms
f : (X,F) → (Y,G) are continuous maps f : X → Y together with “pullback”
sheaf maps f−1G → F (or equivalently maps G → f∗F). There is an obvious
notion of composition, giving a category, with a “forgetful functor” to topological
spaces. A sheaf on a simplicial space X• : ∆op → Top is a “lifting” of X• to a
simplicial object of S.

Examples of simplicial spaces of interest to us are those undelying simpicial
schemes over C; on such a simplicial analytic space X•, the de Rham complex
Ω•
X• of analytic differentials defines a complex of simplicial sheaves.

It turns out that the category of sheaves on a given simplicial space is an
abelian category with enough injectives, allowing us to define derived functors of
any left exact functor. For example, we may define the global sections functor

Γ(X•,F•) = ker

(
Γ(X0,F0)

δ∗1−δ∗0−→ Γ(X1,F1)

)
,

where δ0, δ1 are the face maps X1 → X0. The derived functors give the sheaf
cohomology groups for the simplicial scheme Hn(X•,F•). It turns out that there
is a “component spectral sequence”

(5.5) Ep,q
1 = Hq(Xp,Fp) =⇒ Hp+q(X•,F•).

In particular, on a simplicial analytic spaceX•, the cohomology groupsHn(X•, AX•)
of the constant simplicial sheaf defined by an abelian group A, coincide with the
singular cohomolgy of the geometric realization, and the spectral sequence (5.5)
reduces to (5.4).

For an arbitrary simplicial sheaf F• on X•, one may compute the cohomology
groups H i(X•,F•) using resolutions F• → F i• by simplicial sheaves such that F in
is acyclic on Xn for each i, n, as follows: we then have a natural double complex

Cp,q = Γ(Xp,F qp ),

with p-differential induced by the face maps from the simplical structure, and
q-differential by the maps F q• → F q+1

• of simplicial sheaves. The associated
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total complex computes the cohomology groups Hn(X•,F•), in such a way that,
filtering by columns (i.e., by the total complexes of the sub double complexes
F iC•,• = C•≥i,•), the resulting spectral sequence becomes the component spectral
sequence (5.5).

One way such a resolution arises is from the Godement resolutions of the
sheaves Fp; functoriality properties of this resolution imply that the terms Gq(Fp)
determine a simplicial sheaf Gq•, for each q, and thus a resolution of F• by these
simplicial sheaves.

The above discussion extends to defining, and computing, the hypercohomol-
ogy of a bounded-below complex of simplicial sheaves. Thus, for a simplicial
complex manifold X• (a simplicial object in the categroy of complex manifolds),
the hypercohomology group Hn(X•,Ω

•
X•) of the de Rham complex is naturally

identified with Hn(X•,CX•), which in turn may be identified with the singular

cohomology group Hn(|X|,C).
An interesting (though simple) example of a simplicial space is obtained from

an open covering U = {Ui}i∈I of a space X, by the “Čech construction”. Let
X0 =

∐
i Ui, with the obvious map X0 → X, and take Xn = (X0/X)n+1 =

X0 ×X X0 ×X · · · ×X X0 to be the n + 1-fold self fibre product of X0 over X.
Then X• is a simplicial space in a natural way, with faces given by projections,
and degeneracies by diagonals. Here we have a more concrete description

Xn =
∐

(i0,...,in)∈In+1

Ui0 ∩ · · · ∩ Uin .

Now the face maps are given by inclusions of open sets on each piece of the
above decomposition, and degeneracies are similarly interpreted via redundant
intersections. If F is any sheaf on X, we obtain a simplicial sheaf F• by defining
Fn to be the pull-back of F under the structure map Xn → X. Conversely, gven
a simplicial sheaf on X•, we obtain a sheaf on X by patching the given sheaves
F0 | Ui via the isomorphisms determined by the “face maps” Ui ∩ Uj → Ui and
Ui ∩ Uj → Uj (the existence of degeneracies forces the corresponding sheaf maps
to be sheaf isomorphisms!). The condition that F• is a simplicial sheaf means
that the local F0 |Ui do patch together in a consistent way. Hence F• is obtained
from a sheaf on X as before, i.e., the category of simplicial sheaves on X• is
equivalent to the category of sheaves on X, in this case. Now one sees that
there is a canonical isomorphism Γ(X,F) = Γ(X•,F•), from the sheaf axioms.
This identifies Hn(X•,F•) with Hn(X,F) and the component spectral sequence
becomes the Čech spectral sequence

Ep,q
1 =

∐
(i0,...,ip)∈Ip+1

Hq(Ui0 ∩ · · · ∩ Uip ,F) =⇒ Hp+q(X,F).

This leads to the ideas of a hypercovering, and of cohomological descent, where
one interprets sheaf cohomology Hn(X,F) via cohomology of the “pull-back”
simplicial sheaf F• on “suitable” simplicial spaces X•. We first consider simplicial
spaces (or schemes) X• which are augmented over X, i.e., such that X• is a
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simplicial object in the category of spaces (or schemes) over X (which is a space,
or scheme, as the case may be).

Suppose given partial data defining a simplicial space Xi for 0 ≤ i ≤ n aug-
mented over X, in that we are given the necessary face and degeneracy maps
involving only these Xi, and they satisfy the required identities (expressible in-
volving only these maps).

To “extend” the data to define Xn+1, we need to define a map from a space
Xn+1 to a certain subspace Zn of a product of n + 2 copies of Xn (we also need
to define suitable degeneracy maps). In the example corresponding to an open
covering of the space X, Xn+1 is in fact a disjoint union of open subsets giving
an open covering of the space Zn. In general, we instead assume Xn+1 → Zn
is a “covering” is a suitable sense (perhaps generalizing the notion of an “open
covering”); a simplicial space X• augmented over X such that X0 → X, and each
of the maps Xn+1 → Zn, are “coverings”, is called a “hypercovering” (associated
to the given notion of “covering”) of X.

Even where “covering” means “disjoint union of open subsets in an open cov-
ering” we obtain a notion more general than the Čech construction. This special
case is useful: for example, any smooth variety over C has a basis for the Zariski
topology consisting of open subsets U whose underlying topological spaces are
Eilenberg-MacLane K(πU , 1)-spaces associated to free groups πU (these are some-
times called Artin’s “good neighbourhoods”). So we can, in principle, “reduce”
the computation of singular cohomology to computing group cohomology of free
groups, and a spectral sequence. This is one route to proving the comparison
theorem between étale and singular cohomology with finite coefficients, for ex-
ample (the same spectral sequence will compute both of them). One can also use
this procedure to define (following Artin and Mazur) the étale homotopy type of
a scheme, where we now let “covering” mean “étale covering”.

For the application to Hodge theory, we instead need to assume “covering” to
mean “proper, surjective map”; the corresponding hyercoverings X• → X are
called proper hypercoverings of X. Let f : U → X be a “covering” in this sense.
We have induced projections pi : U ×X U → U , i = 1, 2 and a structure map
g : U ×X U → X, all of which are “coverings”. Choose any proper surjective map
h : V → U ×X U (again this is a “covering”). Then one observes that for any
sheaf F on X, the sequence

0→ F → f∗f
−1F

h∗p∗2−h∗p∗1−→ g∗h∗h
−1g−1F

is exact. This means that the sheaf axioms are also satisfied for such “coverings”.
One can show further, using the proper base change theorem, that if U → X is any
proper surjective map, and U• is the X-augmented simplicial space determined
by the Čech construction, i.e., with Un = (U/X)n+1, then for any sheaf F on
X, the natural map H i(X,F) → H i(U•,F•) are isomorphisms, where F• is the
pull-back to U• of F (this is expressed by saying that “proper surjective maps
have universal cohomological descent”). In a formal way, this implies that for
any proper hypercovering X• → X, and any sheaf F on X, with pull-back F• on
X•, the natural map H i(X,F)→ H i(X•,F•) is an isomorphism.
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Now we are ready to return to Hodge theory. If X is a proper variety over
C, let X0 → X be a proper surjective map from a smooth C-variety X0 (e.g.,
take X0 to be a resolution of singularities). Next, let X1 = X0

∐
Y1, where Y1 →

(X0 ×X X0)red is a resolution of singularities; then there is an obvious inclusion
X0 ↪→ X1 (a “degeneracy map”) are two “face maps” X1 → X0, which are
the identity on the component X0, and are induced on Y1 by the two projections
X0×XX0 → X0. This gives us a “1-truncated” part of a smooth proper simplicial
C-scheme. In a similar fashion, one can use a disjoint union trick to extend this to
a smooth proper simplicial scheme X• (i.e., where each Xn is proper and smooth
over C), augmented over X, where by construction, we would have arranged also
that the proper hypercovering condition is satisfied: the maps Xn+1 → Zn are
all proper and surjective (see [2], Section 6.2 for more details). Then we have a
chain of isomorphisms

Hn(X,C) ∼= Hn(X•,CX•) ∼= Hn(X•,Ω
•
X•).

Using this, we may define a Hodge filtration

F pHn(X,C) = imageHn(X•,Ω
•≥p
X• )→ Hn(X,C).

The component spectral sequence

Ep,q
1 = Hq(Xp,C) =⇒ Hp+q(X•,CX•) ∼= Hp+q(X,C)

induces a filtration {LiHn(X,C)}i≥0 such that

Ep,q
∞ = gr pLH

p+q(X,C).

DefineWiH
n(X,C) = Ln−iHn(X,C) (thusWnH

n(X,C) = Hn(X,C), andW−1H
n(X,C) =

0, and grWi H
n(X,C) = gr n−iL Hn(X,C)).

Let us compute

Hn(X,C) = Hn(X•,Ω
•
X•)

using a double complex, as follows. First consider the total complex associated to
the double complex of Godement resolutions of the sheaves Ωp

Xq
, for a given q, as

p varies. This gives a complex G•q of flasque sheaves on Xq, quasi-isomorphic to

the de Rham complex Ω•
Xq

. The filtration Ω
•≥p
Xq

naturally determines a filtration

F pG•q by subcomplexes, induced by suitable sub double complexes, such that Ω
•≥p
Xq

is quasi-isomorphic to F pG•q . These filtered complexes G•q , as q varies, determine

a filtered complex of simplicial sheaves G•• , whose “terms” are all flasque sheaves.

Hence we obtain a double complex of global sections, whose total complex K•

computes Hn(X,C). The component spectral sequence corresponds to one filtra-
tion of this total complex by subcomplexes, LiK•, determining the Li filtration
on cohomology Hn(X,C), while F pG•• determines another filtration on C• by

subcomplexes F pC•, corresponding to the Hodge filtration on the cohomology
Hn(X,C), as defined above.
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The E1 terms of the component spectral sequence support pure Hodge struc-
tures, Ep,q

1 = Hq(Xp,C). The E1 differentials are homomorphisms

Hq(Xp,C) ∼= Ep,q
1 = Hp+qgr pLC

• → gr p+1
L C

•
= Ep+1,q

1 = Hq(Xp+1,C)

which are alternating sums of maps induced by the face maps, i.e., correspond to
morphisms of pure Hodge structures of weight q, determined by the F -filtrations
on gr ∗LC

•, with ∗ = p, p + 1. Thus Ep,q
2 carries a natural pure Hodge structure

of weight q, which by construction comes from the F -filtration on C•. Now, if
we assume that the E2-differentials are strictly compatible with F , then these
differentials must vanish, since they are maps between Hodge structures of dif-
ferent wieghts, and so the E3 terms carry pure Hodge structures, etc., leading
ultimately to the degeneration of the compnent spectral sequence at E2, as well
as the assertion that F and W do define a MHS on Hn(X•,ZX•) = Hn(X,Z).
This MHS would then be independent of choices, since one can show that any
two proper smooth hypercoverings of X are dominated by a third one, and that
an X-morphism f : X• → X ′• between two proper smooth hypercoverings of X
induces an isomorphism f ∗ : Hn(X•,C) → Hn(X ′•,C) which is compatible with
the respective F and L (and so also W ) filtrations (for the F -filtration, this is
because there is a morphism between simplicial holomorphic de Rham complexes,
compatible with truncations; on the other hand, for any morphism of complexes of

sheaves f−1F ′•
• → F••, the induced map Hn(X ′,F ′•

•
)→ Hn(X,F•

•
) is compati-

ble with a morphism between component spectral sequences, and L-filtrations).
Again, Deligne’s “lemma of two filtrations” provides a proof that this degenera-

tion does indeed take place, and in fact this works to put a MHS on Hn(X•,ZX•)
for an arbitrary smooth and proper simplicial C-scheme X•, not necessarily ob-
tained as a hypercovering of some given proper C-variety X. If X• → X ′• is
any prophism between smooth proper simplicial C-schemes, the induced map
Hn(X ′•,C) → Hn(X,C) is compatible with F and L filtrations, and so is a
morphism of MHS. In particular, if X → X ′ is a morphism between proper C-
schemes, it is possible to find a compatible morphism X• → X ′• between suitably
chosen smooth proper hypercoverings X• → X and X ′• → X ′; this implies that
f ∗ : Hn(X ′,Z)→ Hn(X,Z) is a morphism of MHS.

As earlier in the case of the MHS on the cohomology of a smooth variety, we
can deduce also (from the proofs) that

(i) the “Hodge to de Rham spectral sequence”

Ep,q
1 = Hq(X•,Ω

p
X•) =⇒ Hp+q(X•,C)

degenerates at E1

(ii) the component spectral sequences

Ep,q
1 = Hq(Xp,Ω

i
Xp) =⇒ Hp+q(X•,Ωi

X•)

degenerate at E2, for all i.

We can now also put a (functorial) MHS on the cohomology of a pair (X, Y ),
where X is proper over C, and Y is a closed (reduced) subscheme. This is because
it is possible to find smooth proper hypercoverings X• → X and Y• → Y , such
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that there is a compatible morphism of simplicial X-schemes f : Y• → X•. It
is then possible (see [2], Section 6.3) to define a new simplicial scheme, the cone
over f , denoted C(f), with

C(f)n = Xn

∐
Yn−1

∐
· · ·
∐

Y0
∐
{0}

(where {0} is a point, regarded as a final object in C-schemes), with suitable face
and degeneracy maps. In particular, this is also a smooth proper simplicial C-
scheme, so that its cohomology carries a MHS. One can then identify Hn(C(f), A)
with Hn(X, Y,A) for any abelian group A, in a natural way. The long exact
sequence in cohomology of the pair (X, Y ) is also identified with an exact sequence
constructed from the simplicial schemes X•, Y•, C(f) and Σ(Y•). Here Σ(Y•)
denotes the simplicial suspension, which is the cone of the map Y• → {0}•, where
{0}• is the final object in simplicial schemes, i.e., {0}n = {0} is a singleton set for
each n, with all face and degeneracy maps equal to the identity (the geometric
realization of the corresponding simplicial space is a point). The sequence of
morphisms of simplicial schemes

Y• → X• → C(f)→ Σ(Y•)

gives a sequence of MHS

Hn(Σ(Y•),Z)→ Hn(C(f),Z)→ Hn(X•,Z)→ Hn(Y•,Z)

which is identified with

Hn+1(Y,Z)→ Hn(X, Y,Z)→ Hn(X,Z)→ Hn(Y,Z).

Thus the long exact sequence in cohomology of the pair (X, Y ) is an exact se-
quence of MHS.

To put a MHS on Hn(X,Z) for an arbitrary C-scheme X, or for pairs, there
is an extra technical point. We’ll very briefly discuss the case of a single scheme
X, noting that pairs are dealt with by a variation of the above remarks on cones.
If X• is a smooth proper simplicial C-scheme, define a normal crossing divisor
D• in X• to be a sequence of normal crossing divisors Dn on Xn, such that if
Un = Xn \Dn, then Un determine a simplicial “open subscheme” U• of X•, i.e.,
the face and degeneracy operations for X• restrict suitably to define a simplicial
structure on U•. Under these conditions, one can define a simplicial log de Rham
complex Ω•

X•(log Y•). Now we may find (X•, Y•) so that U• is augmented to our

given C-scheme X, and is a smooth proper hypercovering of X. Then we obtain
isomorphims

Hn(X,C) = Hn(U•,C) = Hn(X•,Ω
•
X•(log Y•)).

The filtration by subcomplexes Ω
•≥p
X• (log Y•)) defines a Hodge filtration F pHn(X,C).

The definition of the weight filtration is a bit more tricky, since it has to simul-
taneously “take into account” the component spectral sequence filtration, as well
as the “weight filtrations” on the log de Rham complex W•Ω

•
Xq

(log Yq) of the
components Xq, for each q.

One proceeds as follows. First use Godement resolutions to construct a com-
plex of vector spaces C•

q for each q, which computes the hypercohomology groups
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H∗(Xq,Ω
•
Xq

(log Yq)), such that there are filtrations F pC•
q and WiC

•
q which corre-

spond to the filtrations of Ω•
Xq

(log Yq) by Ω
•≥p
Xq

(log Yq) and WiΩ
•
Xq

(log Yq), which

are used to define the MHS on Hn(Xq,Z) in Theorem 5.3. The face maps of the

simplicial scheme determine maps of complexes C•
q → C•

q+1 which are compati-
ble with both the F p and Wi filtrations. Taking alternating sums of face maps,
we obtain a double complex, whose total complex C• computes the cohomology
groups H∗(U•,C), that is to say, the groups H∗(X,C). This total complex has
terms

Cn = ⊕nq=0C
n−q
q .

Define
W̃iC

n = ⊕nq=0Wi+n−qC
n−q
q .

One verifies that this does define a filtration of C• by subcomplxes, and hence in-

duces a filtration W̃iH
n(X,C) on cohomology. DefineWiH

n(X,C) = W̃i−nH
n(X,C).

Deligne shows (see [2], Théorème (8.1.15) and Proposition (8.1.20)) that this
choice of weight filtration, together with the Hodge filtration as defined above,
does indeed determine a MHS on Hn(U•,Z) = Hn(X,Z), such that the compo-
nent spectral sequence

Ep,q
1 = Hq(Up,Z) =⇒ Hp+q(U•,Z) = Hp+q(X,Z)

becomes a spectral sequence of MHS. One also obtains the degeneration at E1 of
the “Hodge to de Rham” spectral sequence

Ep,q
1 = Hq(X•,Ω

p
X•(log Y•)) =⇒ Hp+q(X,C).
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