Kleiman's boundedness results[∗] (SGA 6, Exp. XIII)

1 Regularity and (b) -sheaves¹

Let X be a projective scheme over an algebraically closed field k , and let $\mathcal{O}_X(1)$ be an ample invertible sheaf on X.

Definition 1.1: A coherent sheaf $\mathcal F$ on X is called m-regular (with respect to $\mathcal{O}_X(1)$ if

- (i) the global sections of $\mathcal{O}_X(1)$ generate it at all points of supp (\mathcal{F})
- (ii) $H^q(X, \mathcal{F}(m-q)) = 0$ for all $q > 0$.

Lemma 1.2 If $0 \to \mathcal{F}(-1) \to \mathcal{F} \to \mathcal{G} \to 0$ is an exact sequence of coherent \mathcal{O}_X -modules such that F is m-regular, then G is m-regular.

Proof: This follows trivially from the definitions, and the long exact sequence in cohomology. \Box

Proposition 1.3 Let F be an m-regular sheaf on X. Then for all $n \geq m$,

(i) F is n-regular

[∗]A loose translation from French of parts of SGA 6,Exp. XIII, Lect. Notes in Math. 225, Springer, 1970.

¹The numbering in this section agrees with that in Exp. XIII.

- (ii) $H^0(\mathcal{F}(n)) \otimes H^0(\mathcal{O}_X(1)) \to H^0(\mathcal{F}(n+1))$ is surjective
- (iii) $\mathcal{F}(n)$ is generated by $H^0(\mathcal{F}(n))$.

Proof: By induction on $s = \dim \text{supp } (\mathcal{F})$; the result is trivial for $s = 0$. If $\sigma \in H^0(\mathcal{O}_X(1))$ generates it at each associated point of F, then multiplication by σ gives an exact sequence

$$
0 \to \mathcal{F}(-1) \xrightarrow{\cdot \sigma} \mathcal{F} \to \mathcal{G} \to 0,
$$

where dim supp (\mathcal{G}) < dim supp (\mathcal{F}) . By induction, the Proposition holds for \mathcal{G} , since by lemma 1.2, \mathcal{G} is also m-regular. From the long exact sequence in cohomology, we get an exact sequence

$$
H^q(\mathcal{F}(n-q-1)) \to H^q(\mathcal{F}(n-q)) \to H^q(\mathcal{G}(n-q)).
$$

Taking $n \geq m, q \geq 1$, we get that $H^q(\mathcal{F}(n-q-1)) \to H^q(\mathcal{F}(n-q))$. Hence for $n-1 \geq m$, we see that if $\mathcal F$ is $(n-1)$ -regular, then $\mathcal F$ is n-regular. Hence F is *n*-regular for all $n \geq m$, giving (i).

For (ii), consider the diagram

$$
H^{0}(\mathcal{F}(n)) \otimes H^{0}(\mathcal{O}_{X}(1)) \rightarrow H^{0}(\mathcal{G}(n)) \otimes H^{0}(\mathcal{O}_{X}(1)) \rightarrow 0
$$

\n
$$
0 \rightarrow H^{0}(\mathcal{F}(n)) \rightarrow H^{0}(\mathcal{F}(n+1)) \xrightarrow{\varphi_{n}} H^{0}(\mathcal{G}(n+1))
$$

Here for $n \geq m$, β_n is surjective, and from the diagram,

$$
(\ker \varphi_n) \subset (\operatorname{im} \alpha_n).
$$

Hence α_n is surjective.

For (iii), consider the diagram (where A_X denotes the sheaf $A \otimes_k O_X$)

$$
H^{0}(\mathcal{F}(n))_{X} \otimes H^{0}(\mathcal{O}_{X}(1))_{X} \xrightarrow{\delta_{n}} H^{0}(\mathcal{F}(n+1))_{X} \downarrow \gamma_{n+1} H^{0}(\mathcal{F}(n))_{X} \otimes \mathcal{O}_{X}(1) \xrightarrow{\gamma_{n} \otimes 1} \mathcal{F}(n+1)
$$

From (ii), δ_n is surjective; hence

$$
(\gamma_{n+1}
$$
 is surjective $) \Rightarrow (\gamma_n$ is surjective).

But γ_n is surjective for $n >> 0$ (Serre). Hence γ_n is surjective for $n \geq m$. \Box

Proposition 1.4 Let $0 \rightarrow \mathcal{F}(-1) \rightarrow \mathcal{F} \rightarrow \mathcal{G} \rightarrow 0$ be exact, and let G be m-regular. Then:

(i)
$$
H^q(X, \mathcal{F}(n)) = 0
$$
 for $q \geq 2$, $n \geq m - q$

$$
(ii) \quad h^1(\mathcal{F}(n-1)) \ge h^1(\mathcal{F}(n)) \text{ for } n \ge m-1
$$

(iii) $h^1(\mathcal{F}(n)) = 0$ for $n \ge m - 1 + h^1(\mathcal{F}(m - 1)).$

In particular $\mathcal F$ is $(m+h^1(\mathcal F(m-1)))$ -regular.

Proof: We have $H^q(\mathcal{F}(n)) \cong H^q(\mathcal{F}(n+1))$ for all $n \geq m-q$, $q \geq 2$. Hence (i) holds by Serre vanishing. For $n \geq m-1$, consider the exact sequence

$$
0 \to H^0(\mathcal{F}(n-1)) \to H^0(\mathcal{F}(n)) \xrightarrow{\alpha_n} H^0(\mathcal{G}(n)) \to H^1(\mathcal{F}(n-1)) \to H^1(\mathcal{F}(n)) \to 0
$$

(the last map is surjective since $\mathcal G$ is m-regular). This gives (ii). Also, consider the diagram

$$
H^{0}(\mathcal{F}(n)) \otimes H^{0}(\mathcal{O}_{X}(1)) \stackrel{\alpha_{n} \otimes 1}{\longrightarrow} H^{0}(\mathcal{G}(n)) \otimes H^{0}(\mathcal{O}_{X}(1))
$$

\n
$$
\downarrow \beta_{n}
$$

\n
$$
H^{0}(\mathcal{F}(n+1)) \stackrel{\alpha_{n+1}}{\longrightarrow} H^{0}(\mathcal{G}(n+1))
$$

Note that β_n is surjective by Proposition 1.4. Hence

 $(\alpha_n$ is surjective)⇒ $(\alpha_{n+1}$ is surjective).

Hence

$$
(H^1(\mathcal{F}(n-1))) = h^1(\mathcal{F}(n))) \Rightarrow
$$

$$
(H^1(\mathcal{F}(n)) = h^1(\mathcal{F}(n+1)) = \dots = 0 \text{ (Serre)}.
$$

Hence $h^1(\mathcal{F}(n-1)) \neq 0 \Rightarrow h^1(\mathcal{F}(n-1)) > h^1(\mathcal{F}(n))$. Hence for $n \geq m-1$, in at most $h^1(\mathcal{F}(m-1))$ steps, $h^1(\mathcal{F}(n))$ becomes 0.

Definition 1.5: Let F be a coherent sheaf on X, $r \geq \dim \text{supp}(\mathcal{F})$ and integer, and let $(b) = (b_0, \ldots, b_r) \in \mathbb{Z}^{\oplus r+1}$. We say that $\mathcal F$ is a (b) -sheaf if:

- (i) $\mathcal{O}_X(1)$ is generated by global sections at all points of supp (\mathcal{F})
- (ii) $h^0(\mathcal{F}(-1)) \leq b_0$

(iii) (if $r \geq 1$) there exists $\sigma \in H^0(\mathcal{O}_X(1))$ giving an exact sequence

$$
0 \to \mathcal{F}(-1) \xrightarrow{\cdot \sigma} \mathcal{F} \to \mathcal{G} \to 0
$$

such that $\mathcal G$ is a (b') -sheaf, with $(b') = (b_1, \ldots, b_r) \in \mathbb Z^{\oplus r}$.

Proposition 1.6 Let $\mathcal F$ be a (b)-sheaf on X . Then:

(i) For each "sufficiently general" sequence $(\sigma) = (\sigma_1, \ldots, \sigma_r)$ of sections of $\mathcal{O}_X(1)$, if

 $\mathcal{F}_{\sigma,i}$ = restriction of F to the zero scheme of $\sigma_1 = \cdots = \sigma_i = 0$,

then $h^0(\mathcal{F}_{\sigma,i}) \leq b_i$ for all $0 \leq i \leq r$.

(ii) Any coherent subsheaf $\mathcal{G} \subset \mathcal{F}$ is a (b)-sheaf.

Proof: Let $S = \mathbb{A}_k^N$ be the affine space whose k-points correspond to sequences (σ) , and let T be the open² subset of S corresponding to F-regular sequences. For fixed i, the sheaves $\mathcal{F}_{\sigma,i}(-1)$ corresponding to k-points of T are contained in a flat family³ over T , and by hypothesis, T is non-empty. Now (i) follows from the upper semicontinuity of the function $(\sigma) \mapsto h^0(\mathcal{F}_{\sigma,i}(-1)),$ for each i.

Since any "sufficiently general" (σ) is also a G-regular sequence, such that $\mathcal{G}_{\sigma,i} \to \mathcal{F}_{\sigma,i}$ is an inclusion, for each *i*, we see that (i)⇒(ii). \Box

Lemma 1.7 Let $0 \to \mathcal{F}(-1) \to \mathcal{F} \to \mathcal{G} \to 0$ be exact, and let

$$
\chi(\mathcal{F}(n)) = \sum_{i=0}^{r} a_i \binom{n+i}{i}
$$

be the Hilbert polynomial of F. Then

$$
\chi(\mathcal{G}(n)) = \sum_{i=0}^{r-1} a_{i+1} {n+i \choose i}.
$$

 \Box

²Why is T open?

³Presumably because they all have the same Hilbert-Samuel polynomial.

Proposition 1.8 Let F be a (b)-sheaf on X, with $s = \dim \text{supp } (\mathcal{F})$, and Hilbert polynomial

$$
\chi(\mathcal{F}(n)) = \sum_{i=0}^{r} a_i {n+i \choose i}.
$$

Then

(i) for $n \ge -1$, we have

$$
h^{0}(\mathcal{F}(n)) \leq \sum_{i=0}^{s} b_{i} {n+i \choose i}.
$$

(ii) $a_s \leq b_s$, and F is also a $(b_0, \ldots, b_{s-1}, a_s)$ -sheaf.

Proof: Induction on s. For $s = 0$, we have $a_0 = h^0(\mathcal{F}) = h^0(\mathcal{F}(-1)) \le b_0$. If $s \geq 1$, there exists an exact sequence

$$
0 \to \mathcal{F}(-1) \to \mathcal{F} \to \mathcal{G} \to 0
$$

where G is a (b_1, \ldots, b_r) -sheaf with dim supp $(\mathcal{G}) = s - 1$. Further,

$$
h^{0}(\mathcal{F}(n)) - h^{0}(\mathcal{F}(n-1)) \leq h^{0}(\mathcal{G}(n)) \leq \sum_{i=0}^{s-1} b_{i+1} {n+i \choose i},
$$

where the last inequality is by the induction hypothesis. Since $h^0(\mathcal{F}(-1)) \le$ b_0 , we deduce (i) by induction on n. Further, $a_s \leq b_s$ and \mathcal{G} is a $(b_1, \ldots, b_{s-1}, a_s)$ sheaf, also by the induction hypothesis. Hence (ii) holds. \Box

Definition 1.9: The (b)-polynomials are defined inductively by

$$
\begin{cases}\n P_{-1} = 0 \\
 P_r(x_0, \dots, x_r) = P_{r-1}(x_1, \dots, x_r) + \sum_{i=0}^r x_i \binom{P_{r-1}(x_1, \dots, x_r) + i - 1}{i}\n\end{cases}
$$

Remark 1.10 Note that $P_r(x_0, ..., x_t, 0, 0, ..., 0) = P_t(x_0, ..., x_t)$.

Theorem 1.11 Let $\mathcal F$ be a (b)-sheaf on X , with Hilbert polynomial

$$
\chi(\mathcal{F}(n)) = \sum_{i=0}^{r} a_i {n+i \choose i}.
$$

Let $(c) = (c_0, \ldots, c_r)$ be a sequence of integers such that $c_i \geq b_i - a_i$. Let $m = P_r(c_0, \ldots, c_r)$. Then $m \geq 0$, and F is m-regular. In particular, if s = dim supp (\mathcal{F}) , then \mathcal{F} is $P_{s-1}(c_0, \ldots, c_{s-1})$ -regular.

Proof: Induction on r. If $r = 0$, then $m = 0$, and $\mathcal F$ is certainly 0-regular (since $s \leq r$). If $r \geq 1$, and

$$
0 \to \mathcal{F}(-1) \to \mathcal{F} \to \mathcal{G} \to 0
$$

is exact, then G is a (b_1, \ldots, b_r) -sheaf. Hence by induction, if $n = P_{r-1}(c_1, \ldots, c_r)$, then $n \geq 0$, and G is n-regular. Then F is $[n + h^{1}(\mathcal{F}(n-1))]$ -regular, and $h^q(\mathcal{F}(n-1)) = 0$ for $q \geq 2$. Now

$$
h^{1}(\mathcal{F}(n-1)) = h^{0}(\mathcal{F}(n-1)) - \chi(\mathcal{F}(n-1)) \leq \sum_{i=0}^{r} (b_{i} - a_{i}) {n+i-1 \choose i},
$$

where the last inequality follows from Proposition 1.8(i), and because $b_i \geq 0$. Hence $\mathcal F$ is also $\left[n + \sum_{i=0}^r c_i \binom{n+i-1}{i} \right]$ $\binom{i-1}{i}$ -regular.

The final assertion results from Proposition 1.8(ii) (which implies that we may take $c_s = 0$, and Remark 1.10.

2 Boundedness

Let S be a Noetherian scheme, X an S-scheme of finite type. Let $\mathbb F$ be a family of classes of coherent sheaves on the fibres of X/S , that is to say, for each point $s \in S$ and each extension K of $k(s)$, we are given a coherent sheaf \mathcal{F}_K on X_K , where \mathcal{F}_K and $\mathcal{F}_{K'}$ determine the same class if there exist $k(s)$ -homomorphisms of K, K' into some extension K'' of $k(s)$ such that $\mathcal{F}_{K''} = \mathcal{F}_K \otimes_K K''$ and $\mathcal{F}'_{K''} = \mathcal{F}_{K'} \otimes_{K'} K''$ are isomorphic on $X_{K''}$.

We say that the family $\mathbb F$ is bounded (or limited) by a coherent sheaf $\mathcal F$ on $X_T = X \times_S T$, where T is of finite type over S, if F is contained in the family of classes of coherent sheaves $\mathcal{F}_{k(t)}$ with $t \in T$. We say that F is *bounded* if there exists such a pair T, \mathcal{F} .

Suppose X/S is also projective with a (relatively) ample invertible sheaf $\mathcal{O}_X(1)$. We call $\mathbb F$ a (b)-family for a sequence of integers $(b) = (b_0, \ldots, b_r)$ if each class in $\mathbb F$ is representable by an $\mathcal F_K$, with K algebraically closed, which is a (b) -sheaf.

Theorem 2.1 Let S be a Noetherian scheme, X a projective S-scheme with an ample invertible sheaf $\mathcal{O}_X(1)$, such that for any $s \in S$, the induced invertible sheaf $\mathcal{O}_{X_s}(1)$ is generated by $H^0(X_s, \mathcal{O}_{X_s}(1))$. Let $\mathbb F$ be a family of classes of coherent sheaves on fibres of X/S . Then the following conditions are equivalent.

(i) $\mathbb F$ is bounded. If in addition, each $\mathcal F_K \in \mathbb F$ is locally free of rank p, then $\mathbb F$ is bounded by a locally free sheaf $\mathcal F$ of rank p on X_T , for some T.

(ii) The set of Hilbert polynomials $\chi(\mathcal{F}_K(n))$, for $\mathcal{F}_K \in \mathbb{F}$, is finite, and there exists a sequence of integers (b) such that $\mathbb F$ is a (b)-family.

(iii) The set of Hilbert polynomials $\chi(\mathcal{F}_K(n))$, for $\mathcal{F}_K \in \mathbb{F}$, is finite, and there exists an integer m such that each $\mathcal{F}_K \in \mathbb{F}$ is m-regular.

(iv) The set of Hilbert polynomials $\chi(\mathcal{F}_K(n))$, for $\mathcal{F}_K \in \mathbb{F}$, is finite, and $\mathbb F$ is contained in the family of quotents of sheaves of the form \mathcal{E}_K , where $\mathcal E$ is a coherent sheaf on some X_T . Further, one may take $T = S$ and $\mathcal{E} = \mathcal{O}_X(-m)^{\oplus M}$, for some $m, M \geq 0$.

 (v) $\mathbb F$ is contained in the family of classes of cokernels of homomorphisms $\mathcal{E}'_K \to \mathcal{E}_K$, where $\mathcal{E}, \mathcal{E}'$ are coherent sheaves on some X_T . Further, one may take $T = S$ and $\mathcal{E}, \mathcal{E}'$ of the form $\mathcal{O}_X(-m)^{\oplus M}, \mathcal{O}_X(-m')^{\oplus M'}.$

(Exp. XIII, 1.13)

Proof: (i)⇒(ii): suppose F is bounded by a sheaf F on X_T . Applying the theorem of generic flatness, and replacing T by a finite disjoint union of locally closed subschemes, we may assume that $\mathcal F$ is flat over T. Then the number of Hilbert polynomials $\chi(\mathcal{F}_{k(t)}(n))$ is at most the number of connected components of T. It is an easy lemma that if $t \in T$, and $\mathcal{F}_{k(t)}$ is locally free of rank p, then the same is true of $\mathcal F$ over a neighbourhood of $t \in T$; thus, further subdividing T, we may assume that F is locally free of rank p, if we are given that each \mathcal{F}_K is locally free of rank p.

Now by further subdividing T , one may assume that there is a sequence (σ) of sections $\sigma_1, \ldots, \sigma_r \in H^0(X_T, \mathcal{O}_{X_T}(1))$ which is a regular sequence on F. Now (ii) follows from the semicontinuity of the function $t \mapsto h^0(\mathcal{F}_{t,i}(-1)),$ for $t \in T$, for each $0 \leq i \leq r$ (here $\mathcal{F}_{t,i}$ denotes the restriction of \mathcal{F}_t to the common zero-scheme of $\sigma_1, \ldots, \sigma_i$).

The implication (ii) \Rightarrow (iii) follows immediately from Theorem 1.11. The implication (iii)⇒(iv) follows from Proposition 1.3(iii), if we take $M =$ $\max \chi(\mathcal{F}_K(m))$ and $\mathcal{E} = \mathcal{O}_X(-m)^{\oplus M}$.

Suppose F satisfies (iv); then for each $\mathcal{F}_K \in \mathbb{F}$, there exists an exact sequence

$$
0 \to \mathcal{F}_K' \to \mathcal{E}_K \to \mathcal{F}_K \to 0,
$$

and the set of Hilbert polynomials $\chi(\mathcal{F}_K(n))$ is finite. By hypothesis, the family of classes \mathcal{E}_K is bounded; hence by (i)⇒(ii), the set of Hilbert polynomials $\chi(\mathcal{E}_K(n))$ is finite, and there exists a sequence of integers (b) such that each \mathcal{E}_K (with K algebraically closed) is a (b)-sheaf. Hence the set of Hilbert polynomials $\chi(\mathcal{F}_K'(n))$ is finite, and by Proposition 1.6, each \mathcal{F}_K' (with K algebraically closed) is a (b)-sheaf. Applying (ii) \Rightarrow (iv) to the family of classes \mathcal{F}_K' yields (v).

Now suppose $\mathbb F$ satisfies (v); we prove $\mathbb F$ is bounded. First, we reduce to the case when $\mathcal E$ (respectively $\mathcal E'$) is of the form $\mathcal O_X(-m)^{\oplus M}$. Indeed, by (i) \Rightarrow (iv), we can find a surjection $\mathcal{L} = \mathcal{O}_{X_T}(-m)^{\oplus M} \rightarrow \mathcal{E}$. Subdividing T, we may assume $\mathcal E$ is flat over T, and the formation of

$$
0 \to \mathcal{I} \xrightarrow{u} \mathcal{L} \to \mathcal{E} \to 0
$$

commutes with restriction to the fibres. By (i)⇒(iii) and (i)⇒(iv), we can find $m_1 >> 0$ such that $Ext^1(\mathcal{O}_{X_K}(-m_1), \mathcal{I}_K) = H^1(\mathcal{I}_K(m_1))$ vanishes, and there exist surjections

$$
\mathcal{L}_1=\mathcal{O}_{X_T}(-m_1)^{\oplus M_1} {\rightarrow} \mathcal{E}',\quad \mathcal{L}_2=\mathcal{O}_{X_T}(-m_1)^{\oplus M_2} {\rightarrow} \mathcal{I}.
$$

Then the maps

$$
\mathrm{Hom}\left(\mathcal{L}_{1,K},\mathcal{L}_{K}\right)\to \mathrm{Hom}\left(\mathcal{L}_{1,K},\mathcal{E}_{K}\right)
$$

are surjective. Let $\beta : \mathcal{E}'_K \to \mathcal{E}_K$ be a homomorphism, and let γ be the composition $\mathcal{L}_{1,K} \to \mathcal{E}'_K \to \mathcal{E}_K$; then γ lifts to a homomorphism $\delta : \mathcal{L}_{1,K} \to$ \mathcal{L}_K , such that

$$
(\delta, u_K \circ \alpha) : \mathcal{L}_{1,K} \oplus \mathcal{L}_{2,K} \to \mathcal{L}_K, \quad \beta : \mathcal{E}'_K \to \mathcal{E}_K
$$

have the same cokernel. Hence $\mathbb F$ is contained in the family of classes of cokernels of homomorphisms of the form

$$
\mathcal{O}_{X_K}(-m_1)^{\oplus (M_1+M_2)} \to \mathcal{O}_{X_K}(-m)^{\oplus M}.
$$

Subdividing T again, we may suppose that

- (a) $f_T: X_T \to T$ is flat
- (b) $\mathcal{H}om_{\mathcal{O}_{X_T}}(\mathcal{E}', \mathcal{E})$ is flat over T
- (c) each of the sheaves $R^q(f_T)_* \mathcal{H}om_{\mathcal{O}_{X_T}}(\mathcal{E}', \mathcal{E})$ is flat over T
- (d) the formation of $\mathcal{G} = (f_T)_*\mathcal{H}om_{\mathcal{O}_{X_T}}(\mathcal{E}', \mathcal{E})$ commutes with arbitrary base changes $T' \to T$.

Now taking $R = \mathbb{V}(\mathcal{G}^{\vee})$, the scheme X_R supports a canonically defined "universal" exact sequence

$$
\mathcal{E}'_R \to \mathcal{E}_R \to \mathcal{F} \to 0,
$$

and F bounds the family \mathbb{F} .

3 (b)-sheaves on $P = \mathbb{P}_k^N$ k

Let k be an algebraically closed field, and $P = \mathbb{P}_k^N$ \int_k^N . Let F be a coherent sheaf on P, with Hilbert polynomial

$$
\chi(\mathcal{F}(n)) = \sum_{i=0}^{r} a_i \binom{n+i}{i},
$$

and let $(c) = (c_0, \ldots, c_r)$ be a sequence of integers with $c_i \geq a_i$ for all i. Let

$$
a_{m,i} = \sum_{j=0}^{r-i} a_{j+i} {m-1+j \choose j}, \ \ c_{m,i} = \sum_{j=0}^{r-i} c_{j+i} {m-1+j \choose j}.
$$

We see easily by induction on m that there is an identity between polynomials in x

$$
\sum_{i=0}^{r} a_{m,i} {x+i \choose i} = \sum_{j=0}^{r} a_j {x+m+j \choose j}.
$$
 (1)

Lemma 3.1 Under the above conditions, suppose there exists an exact sequence

$$
0 \to \mathcal{I} \to \mathcal{O}_{P}^{\oplus M} \to \mathcal{F}(m) \to 0,
$$

with $m \geq 0$. Then $\mathcal I$ is p-regular with $p = P_r(c_{m,0}, \ldots, c_{m,r})$, where P_r is the $r-th (b)$ -polynomial (definition 1.5). $(Exp XIII, (6.2))$

Proof: \mathcal{O}_P is a $(0, 0, \ldots, 0, 1)$ -sheaf, so $\mathcal I$ is a $(0, \ldots, 0, M)$ -sheaf (since $\mathcal I$ is a subsheaf of such a sheaf — apply Proposition 1.6). Also, we have a formula

$$
\chi(\mathcal{I}(n)) = M\chi(\mathcal{O}_P(n)) - \chi(\mathcal{F}(m+n)) = M\binom{n+N}{N} - \sum_{i=0}^r a_{m,i} \binom{n+i}{i},
$$

where the last equality is using the formula (1). The lemma now follows from Theorem 1.11. \Box

Proposition 3.2 Suppose F is a coherent (b)-sheaf on $P = \mathbb{P}_k^N$ $\begin{array}{c} \n _{k}^{N} \n _{k}$ braically closed), with Hilbert polynomial

$$
\chi(\mathcal{F}(n)) = \sum_{i=0}^{r} a_i \binom{n+i}{i}.
$$

Then there exist universal polynomials in a_i , b_i and N bounding m, M, m_1 and M_1 such that there exist exact sequences

$$
\mathcal{O}_P(-m_1)^{\oplus M_1} \to \mathcal{O}_P(-m)^{\oplus M} \to \mathcal{F} \to 0.
$$

Further, the polynomial bounding M_1 does not involve N. (Exp. XIII, (6.3))

⁴This seems to be a typo, it should presumably be m_1 .

Proof: Let $m = P_{r-1}(c_0, \ldots, c_{r-1})$ with $c_i = b_i - a_i$, and let $M =$ $\sum_i a_i$ $\left(m+i\right)$ i \setminus . Then from Theorem 1.11 and Proposition 1.3, there is an exact sequence

$$
0 \to \mathcal{I} \to \mathcal{O}_P^{\oplus M} \to \mathcal{F}(m) \to 0.
$$

Now take $m_1 = m + p$ with $p = P_r(a_{m,0}, \ldots, a_{m,r})$ and

$$
M_1 = M \binom{p+N}{N} - \sum a_i \binom{m_1+i}{i} \left(= \chi(\mathcal{I}(p)) \right).
$$

Theorem 3.3 Let F be a coherent (b)-sheaf on $P = \mathbb{P}_k^N$ $\begin{array}{c} \n k \n \end{array}$ (k algebraically closed) with Hilbert polynomial

$$
\chi(\mathcal{F}(n)) = \sum_{i=0}^{r} a_i \binom{n+i}{i}.
$$

Suppose F is a quotient of $\mathcal{O}_P(-m)^{\oplus M}$ for some $m > 0$. Let $b_i = P_{r-i}(c_{m,i}, \ldots, c_{m,r})$ for $i = 0, \ldots, r$, where P_s is the s-th (b)-polynomial, and $(c) = (c_0, \ldots, c_r)$ is a sequence of integers with $c_i \ge a_i$. Let $b = b_1 + m - 1$, and $B = \sum_{i=1}^r a_i {b + i \choose i}$ $\binom{+i}{i}$. Then:

(i) F is b-regular

$$
(ii) \quad -B \le a_0 = h^0(\mathcal{F}(b)) - B
$$

(iii)
$$
F
$$
 is a (b_0, \ldots, b_r) -sheaf.

(Exp. XIII, (6.4))

Proof: Choosing a general section of $\mathcal{O}_P(1)$, one obtains a commutative diagram with exact rows and columns (with $Y \cong \mathbb{P}_{k}^{N-1}$ $\binom{N-1}{k}$

$$
\begin{array}{ccccccc}\n & & & & & 0 & & 0 & & 0 \\
 & & & & & \downarrow & & \downarrow & & \downarrow \\
0 \to \mathcal{I}(-1) \to & & \mathcal{I} & & \to \mathcal{J} \to 0 \\
 & & & & \downarrow & & \downarrow & & \downarrow \\
0 \to \mathcal{O}_P(-1)^{\oplus M} \to & & \mathcal{O}_P^{\oplus M} & & \to \mathcal{O}_Y^{\oplus M} \to 0 \\
 & & & & \downarrow & & \downarrow & & \downarrow \\
0 \to \mathcal{F}(m-1) \to & & \mathcal{F}(m) & & \to \mathcal{G}(m) \to 0 \\
 & & & & \downarrow & & \downarrow & & \downarrow \\
0 & & & 0 & & 0 & & \n\end{array}
$$

Since (lemma 1.7)

$$
\chi(\mathcal{G}(n)) = \sum_{i=0}^{r-1} a_{i+1} {n+i \choose i},
$$

 $\mathcal J$ is b_1 -regular, by lemma 3.1; hence $H^q(\mathcal I(p))=0$ for $q\geq 2$ and $p\geq b_1-q$ (Proposition 1.4). The exact sequence

$$
H^q(\mathcal{O}_P(p)^{\oplus M}) \to H^q(\mathcal{F}(m+p)) \to H^{q+1}(\mathcal{I}(p))
$$

implies that $\mathcal{F}(m)$ is $(b_1 - 1)$ -regular. This gives (i).

Now (i) implies that

$$
0 \leq h^{0}(\mathcal{F}(b)) = \chi(\mathcal{F}(b)) = \sum_{i=0}^{r} a_{i} \binom{b+i}{i}.
$$

This implies (ii). Then by the formula (1),

$$
\chi(\mathcal{F}(b)) = \sum_{i=0}^{r} a_{m,i} {b_1 - 1 + i \choose i} \le b_1 + \sum_{i=0}^{r} c_{m,i} {b_1 - 1 + i \choose i}
$$

= $P_{r-1}(c_{m,1}, \dots, c_{m,r}) + \sum_{i=0}^{r} c_{m,i} {P_{r-1}(c_{m,1}, \dots, c_{m,r}) + i - 1 \choose i}$
= $P_r(c_{m,0}, c_{m,1}, \dots, c_{m,r})$ by (1.5)
= b_0 (by definition of b_0).

Hence $h^0(\mathcal{F}(-1)) \leq h^0(\mathcal{F}(b)) \leq b_0$. By induction on r, we may assume \mathcal{G} is a (b_1, \ldots, b_r) -sheaf. Hence F is a (b_0, \ldots, b_r) -sheaf. \Box

Lemma 3.4 Suppose $\mathcal F$ is a coherent sheaf on P , and has no subsheaf supported at closed points.

- (i) If $h^0(\mathcal{F}) \geq 1$, then $h^0(\mathcal{F}(-1)) \leq h^0(\mathcal{F}) 1$.
- (ii) $H^0(\mathcal{F}(-n)) = 0$ for $n \geq h^0(\mathcal{F})$.
- (iii) Suppose there exists an exact sequence

$$
0 \to \mathcal{F}(-1) \to \mathcal{F} \to \mathcal{G} \to 0
$$

and an integer $n_0 \geq 0$ such that $H^0(\mathcal{G}(-n_0)) = 0$. Then $h^0(\mathcal{F}(-n_0)) =$ 0, and $h^0(\mathcal{F}) \leq n_0 h^0(\mathcal{G})$.

(Exp. XIII, (6.5))

Proof: Suppose $0 \neq \sigma \in H^0(\mathcal{F})$. Then $\sigma \cdot \mathcal{O}_X = \mathcal{F}' \hookrightarrow \mathcal{F}$ is a subsheaf with $s = \dim \operatorname{supp} (\mathcal{F}') \geq 1$. This gives rise to a a diagram with exact rows and columns

$$
\begin{array}{cccc}\n0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow \\
0 \to \mathcal{F}'(-1) \xrightarrow{\cdot x} & \mathcal{F}' & \to \mathcal{G}' \to 0 \text{ (for a suitable } x \in H^0(\mathcal{O}_X(1))) \\
\downarrow & \downarrow & \downarrow \\
0 \to \mathcal{F}(-1) \xrightarrow{\cdot x} & \mathcal{F} & \to \mathcal{G} \to 0\n\end{array}
$$

Since $s \geq 1$, $\mathcal{G}' \neq 0$. Hence $\mathcal{F}' \not\subset \mathcal{F}(-1)$, and so $\sigma \notin H^0(\mathcal{F}(-1)) \subset H^0(\mathcal{F})$. This proves (i); now (ii) follows immediately. For (iii), note that

$$
0 \le h^0(\mathcal{F}(n)) - h^0(\mathcal{F}(n-1)) \le h^0(\mathcal{G}(n))
$$
\n(2)

If $n \geq n_0$, we get that $h^0(\mathcal{F}(-n_0)) = h^0(\mathcal{F}(-n))$, since $h^0(\mathcal{G}(-n_0)) = 0$. But by (ii), $h^0(\mathcal{F}(-n)) = 0$ for $n >> 0$. Hence $h^0(\mathcal{F}(-n)) = 0$ for all $n \geq n_0$. Also, for $p \geq 1$, we get from (2) that

$$
h^{0}(\mathcal{F}(p - n_{0})) \leq h^{0}(\mathcal{G}(1 - n_{0})) + \dots + h^{0}(\mathcal{G}(p - n_{0})) \leq ph^{0}(\mathcal{G}(p - n_{0})).
$$

This gives (iii).

Let F be a coherent sheaf on P. For each integer $q \geq 1$, let \mathcal{N}_q be the largest subsheaf of F with dim supp $(\mathcal{N}_q) < q$, and set $\mathcal{F}_q = \mathcal{F}/\mathcal{N}_q$.

Proposition 3.5 If F is a coherent (b)-sheaf on \mathbb{P} , then \mathcal{F}_q is a $(b_a^q$ $a_{q-1}^q, b_{q-1}^{q-1}, \ldots, b_{q-1}^2, b_{q-1}, b_q, \ldots, b_r$)-sheaf. (Exp. XIII, (6.6)

Proof: A "general" section of $\mathcal{O}_X(1)$ gives rise to a commutative diagram with exact rows and columns

$$
\begin{array}{ccccccc}\n & & & 0 & & 0 & & 0 \\
 & & \downarrow & & \downarrow & & \downarrow \\
0 \to \mathcal{N}_q(-1) \to & \mathcal{N}_q & \to \mathcal{G}' \to 0 \\
 & \downarrow & & \downarrow & & \downarrow \\
0 \to \mathcal{F}(-1) \to & \mathcal{F} & \to \mathcal{G} \to 0 \\
 & \downarrow & & \downarrow & & \downarrow \\
0 \to \mathcal{F}_q(-1) \to & \mathcal{F}_q & \to \mathcal{G}'' \to 0 \\
 & \downarrow & & \downarrow & & \downarrow \\
 & & 0 & & 0 & & 0\n\end{array}
$$

where G is a (b_1, \ldots, b_r) -sheaf, and $\mathcal{G}'' = \mathcal{G}_{q-1}$ (this is "a question of depth").

Suppose $q = 1$. Then dim supp $(\mathcal{N}_q) = 0$, so that $H^1(\mathcal{N}_q(-1)) = 0$ and $\mathcal{G}' = 0$. Thus $h^0(\mathcal{F}_q(-1)) \leq h^0(\mathcal{F}(-1)) \leq b_0$, and $\mathcal{G} \cong \mathcal{G}''$. Hence \mathcal{F}_1 is a (b_0, \ldots, b_r) -sheaf (since \mathcal{G}'' is a (b_1, \ldots, b_r) -sheaf). Further, $h^0(\mathcal{F}_1(-b_0)) = 0$. If $q \geq 2$, we may suppose by induction that \mathcal{G}_{q-1} is a

 (b_{a-1}^{q-1}) $q_{q-1}^{q-1}, \ldots, b_{q-1}^2, b_{q-1}, \ldots, b_r$)-sheaf, and that $H^0(\mathcal{G}_{q-1}(-b_{q-1})) = 0$. Then by lemma 3.4, it follows that $H^0(\mathcal{F}_q(-b_{q-1})) = 0$, and $h^0(\mathcal{F}_q(-1)) \leq b_q^0$ $q-1$ \Box

Theorem 3.6 There exist 2 sequences of polynomials $\{A_i(x_0, \ldots, x_i; y)\}$ and ${A_i^{(q)}}$ $\{u^{(q)}(x_0, \ldots, x_q; y)\}\$ with the following properties. Let ${\mathcal F}$ be a coherent sheaf on $P = \mathbb{P}_k^N$ with Hilbert polynomial

$$
\chi(\mathcal{F}(n)) = \sum_{i=0}^{r} a_i \binom{n+i}{i},
$$

and let $(c) = (c_0, \ldots, c_r)$ be a sequence of integers with $a_i \leq c_i$. Assume F is a quotient of $\mathcal{O}_P(-m)^{\oplus M}$ with $m \geq 0$.

(i) If F is a (b_0, \ldots, b_r) -sheaf, then for $i = 0, \ldots, r$ we have $| a_i | \leq A_{r-i}(b_i, \ldots, b_r; m).$

 (ii) If

$$
\chi(\mathcal{F}_q(n)) = \sum_{i=0}^r a_i^{(q)} \binom{n+i}{i}
$$

is the Hilbert polynomial of \mathcal{F}_q , then for $i = 0, \ldots, q - 1$ we have

 $| a_i^{(q)}$ $\binom{q}{i} \leq A_{r-1}^{(q)}$ $c_{r-i}^{(q)}(c_{q-1},\ldots,c_r;m).$

(Note that
$$
a_{q-1}^{(q)} \le a_{q-1}
$$
, and $a_q^{(q)} = a_q, ..., a_r^{(q)} = a_r$.)

(Exp. XIII, (6.7))

Proof: Let $0 \to \mathcal{F}(-1) \to \mathcal{F} \to \mathcal{G} \to 0$ be an exact sequence such that G is a (b_1, \ldots, b_r) -sheaf. We reason by induction on r, and suppose that A_0, \ldots, A_{r-1} have already been defined with the above properties, by lemma 1.7. Now Proposition 1.8 and Theorem 3.3(ii) imply the existence of a polynomial A_r with

$$
|a_0| \leq A_r(b_0,\ldots,b_r;m).
$$

This proves (i).

Now (ii) follows from Theorem 3.3(iii), Proposition 3.5 and the above assertion (i) applied with \mathcal{F}_q in place of \mathcal{F} .

Corollary 3.7 (Grothendieck) Let X be projective over a Noetherian scheme S, and $\mathcal{O}_X(1)$ very ample for X/S . Let $\mathbb F$ be a family of classes of coherent sheaves on the fibres of X/S . Suppose:

- (a) there exists a coherent sheaf $\mathcal E$ on X such that $\mathcal F$ is contained in the family of classes of quotients of \mathcal{E}_K (notation as in §2).
- $(b)_q$ for the Hilbert polynomials $\chi(\mathcal{F}_K(n))$ of the $\mathcal{F}_K \in \mathbb{F}$, the coefficients in $degrees \geq q-1$ are bounded.

Then the $\mathcal{F}_F \in \mathbb{F}$ form a bounded family. In addition, the coefficients of $\chi(\mathcal{F}_K(n))$ in degrees $\geq q-2$ are bounded below. (Exp. XIII, (6.8))

Proof: We may evidently suppose $X = \mathbb{P}_S^N$ S^N , $\mathcal{E} = \mathcal{O}_X(-m)^{\oplus M}$. The first assertion results from Theorem 3.6(ii) and Theorem 2.1; the second follows by induction using an exact sequence

$$
0 \to \mathcal{F}(-1) \to \mathcal{F} \to \mathcal{G} \to 0
$$

and Theorem 3.6(ii). \Box

Definition 3.8: Let k be a field. A special positive k -cycle of dimension r is a projective k-scheme X, with a very ample invertible sheaf $\mathcal{O}_X(1)$, which is a union of closed subschemes X_j , each of dimension r, where X_j is obtained by a base-change $\text{Spec } k \to \text{Spec } k_j$ from an integral k_j -scheme X'_j , together with $\mathcal{O}_{X'_{j}}(1)$. We call the coefficient a_{r} of the Hilbert polynomial

$$
\chi(\mathcal{O}_X(n)) = \sum_{i=0}^r a_i \binom{n+i}{i}
$$
 the degree of X.
(Exp. XIII, (6.9))

Lemma 3.9 Let k be an algebraically closed field and X a special positive k-cycle of dimension r and degree d. Then \mathcal{O}_X is a $(0,0,\ldots,0,d)$ -sheaf. (Exp. XIII, (6.10))

Proof: Let $X \subset \mathbb{P}_k^N$ κ_k^N (using the invertible sheaf $\mathcal{O}_X(1)$). Replacing k by the algebraic closure of a pure transcendental extension, we may assume that there exist $r(N + 1)$ elements of k which are algebraically independent over each of the subfields $kj \subset k$ (involved in the definition 3.8). Then intersection with the corresponding r "generic" hyperplanes yields special positive k cycles of degree d (and dimensions ranging from r to 0). We now reason by induction; it suffices to note that for $r = 0$, we have $h^0(\mathcal{O}_X(-1)) = d$, and for $r \geq 1$, we have $H^0(\mathcal{O}_X(-1)) = 0$ (for the latter point, use the inclusion $\mathcal{O}_X \hookrightarrow \prod \mathcal{O}_{X_j}$ to reduce to the case when X is an integral scheme, in which case $H^0(\mathcal{O}_X)$ is a field).

Corollary 3.10 (i) Let r, d be integers, $c_i = A_{r-i}(0, \ldots, 0, d; 0)$ for $i = 0, \ldots, r$ (notation as in Theorem 3.6(i)), and let $p = P_r(c_0, \ldots, c_r)$ (c.f. definition 1.5). Let k be an algebraically closed field, and X a special positive k-cycle of dimension $\leq r$ and degree $\leq d$, with Hilbert

polynomial $\chi(\mathcal{O}_X(n)) = \sum_{r}^{r}$ $i=0$ a_i $(n+i)$ i). . Then for $0 \leq i \leq r$, we have $|a_i| \leq c_i.$

Further, X can be embedded in \mathbb{P}_k^N with $N = d(r + 1) - 1$, and defined there by (at most) $\binom{N+p}{P}$ p \setminus equations of degree p.

(ii) (Chow) Let S be a Noetherian scheme. For K varying over the algebraically closed extension fields of $k(s)$, $s \in S$, the special positive K-cycles of bounded dimension and degree form a "bounded family" (where the cycles X are considered as subschemes of a fixed \mathbb{P}_S^N $\frac{N}{S}$, in an "evident abstract sense").

 $(Exp. XIII, (6.11))$

Proof: In (i), the first assertion follows from Theorem 3.6(i); the second assertion follows from lemma 3.9 and Proposition 1.8(i), together with lemma 3.1 and Proposition 1.3, applied to the exact sequence

$$
0 \to \mathcal{I} \to \mathcal{O}_P \to \mathcal{O}_X \to 0, \ \ P = \mathbb{P}_k^N.
$$

(ii) follows from (i) and Theorem 2.1. \Box

Remark 3.11 (Exp. XIII, (6.12))

Let k be an algebraically closed field, X a projective k -scheme of dimension r , with no embedded associated prime cycle. If one admits nilpotent elements in an arbitrary fashion, one cannot bound the coefficients of the Hilbert polynomial $\chi(\mathcal{O}_X(n)) = \sum_{r=1}^{r}$ $(n+i)$

Hilbert polynomial
$$
\chi(\mathcal{O}_X(n)) = \sum_{i=0} a_i \binom{n+i}{i}
$$
 solely in terms of a_r .

For example, let Z be a smooth projective curve of degree d in \mathbb{P}_k^3 . For For example, let Z be a smooth projective curve of degree a in \mathbb{P}_k^3 . For each $n >> 0$, there exists a smooth surface Y of degree n in \mathbb{P}_k^3 with $Z \subset Y$. Then Z is a Cartier divisor on Y; let $\mathcal{O}_{X_n} = \mathcal{O}_Y / \mathcal{O}_Y(-2Z)$. From the exact sequence

$$
0 \to \mathcal{O}_{X_n}(-Z) \to \mathcal{O}_{X_n} \to \mathcal{O}_Z \to 0,
$$

and the formula $(Z \cdot Z)_Y = 2p_a(Z) - 2 - (n-4)d$, we have that $a_0 =$ $\chi(\mathcal{O}_{X_n}(-1)) \to \infty$ as $n \to \infty$, while $a_1 = 2d$.

Corollary 3.12 Let F be a coherent sheaf on $P = \mathbb{P}_k^N$ $k \atop k$, where k is an algebraically closed field, such that there exists an exact sequence

$$
\mathcal{O}_P(-m_1)^{\oplus M_1} \to \mathcal{O}_P(-m)^{\oplus M} \stackrel{\alpha}{\longrightarrow} \mathcal{F} \to 0
$$

with $m_1 \geq m \geq 0$. Let

$$
\chi(\mathcal{F}(n)) = \sum_{i=0}^{r} a_i \binom{n+i}{i}
$$

be the Hilbert polynomial of F. Then for $0 \le i \le N$, we have

$$
|a_i| \leq A_{N-i}(0,\ldots,0,M;m_1) + M {m \choose N-i}.
$$

(Exp. XIII, (6.13))

Proof: If $\mathcal{I} = \ker \alpha$, then \mathcal{I} is a $(0, \ldots, 0, m)$ -sheaf (being a subsheaf of one), and has Hilbert polynomial

$$
\chi(\mathcal{I}(n)) = \sum_{i=0}^{N} \left[M \binom{-m-1+N-i}{N-i} - a_i \right] \cdot \binom{n+i}{i}.
$$

The corollary follows from Theorem 3.6(i) and the identity $\begin{pmatrix} -m-1+Q \\ 0 \end{pmatrix}$ $\,Q$ \setminus = $(-1)^{Q} \binom{m}{Q}$ \overline{Q} \setminus . The contract of the contract of the contract of the contract of \Box

Corollary 3.13 (Hermann) For each $N \geq 0$, there exists a polynomial $R_N(x)$ such that for any field k_0 , an any ideal $I \subset k_0[T_1,\ldots,T_N]$ in the polynomial ring such that I is generated by elements of degree $\leq m$, the radpolynomial ring such that I is generated by elements
ical \sqrt{I} is generated by elements of degree $\leq R_N(m)$. (Exp. XIII, (6.14))

Proof: Let k be the algebraic closure of k_0 . Introduce an auxilliary variable T_0 , and consider the subscheme Y (respectively X) of $P = \mathbb{P}_k^N$ defined by t_0 , and consider the subscheme *Y* (respectively Λ) or $P = \mathbb{F}_k$ defined by the homogenization of *I* (respectively \sqrt{I}). Then for the Hilbert polynomial

$$
\chi(\mathcal{O}_Y(n)) = \sum_{i=0}^N b_i \binom{n+i}{i},
$$

we have $|b_i| \leq A_{N-i}(0,\ldots,0,1;m)$, by corollary 3.12.

Let $X = \bigcup X^q$ be the decomposition according to dimension (*i.e.*, X^q) is the union of the q -dimensional irreducible components). Then we claim $deg(X^q) \le e_q = P_{N-q}(c_q, \ldots, c_N)$. Indeed, intersecting X (respectively Y) by a "general" linear subspace of codimension q, we may assume $q = 0$. Then evidently

$$
\deg(X^q) = h^0(\mathcal{O}_{X^q}) \le h^0(\mathcal{O}_{Y^q}) \le e_q,
$$

where the last inequality is by Theorem 3.3(iii).

Consequently, \mathcal{O}_{X^q} is a $(0, \ldots, 0, e_q)$ -sheaf, by lemma 3.9. From the injection $\mathcal{O}_X \to \prod \mathcal{O}_{X^q}$, it follows that \mathcal{O}_X is an (e_0, \ldots, e_q) -sheaf. Hence the coefficients of the Hilbert polynomial $\chi(\mathcal{O}_X(n)) = \sum_{r=1}^{r}$ $i=0$ a_i $(n+i)$ i \setminus satisfy the estimate

$$
|a_i| \leq f_i = A_{N-i}(e_i,\ldots,e_N;0),
$$

by Theorem 3.6. Then the ideal \sqrt{I} of X is $R_N(m)$ -regular, with $R_N(m)$ = $P_N(f_0,\ldots,f_N)$; now we are done, by Proposition 1.3.