Kleiman’s boundedness results*(SGA 6, Exp.
XIII)

1 Regularity and (b)-sheaves'

Let X be a projective scheme over an algebraically closed field k, and let
Ox(1) be an ample invertible sheaf on X.

Definition 1.1: A coherent sheaf F on X is called m-regular (with respect
to Ox (1)) if

(i) the global sections of Ox (1) generate it at all points of supp (F)

(i) HI(X,F(m —q)) =0 for all ¢ > 0.

Lemma 1.2 [f0 — F(—1) - F — G — 0 is an exact sequence of coherent
Ox-modules such that F is m-reqular, then G is m-reqular.

Proof:  This follows trivially from the definitions, and the long exact se-
quence in cohomology. a

Proposition 1.3 Let F be an m-regqular sheaf on X. Then for alln > m,

(1) F is n-reqular

*A loose translation from French of parts of SGA 6,Exp. XIII, Lect. Notes in Math.
225, Springer, 1970.
!The numbering in this section agrees with that in Exp. XIIL.



(ii) H°(F(n)) ® H(Ox(1)) = H°(F(n+1)) is surjective
(iii) F(n) is generated by H°(F(n)).

Proof: By induction on s = dimsupp (F); the result is trivial for s = 0. If
o € H°(Ox(1)) generates it at each associated point of F, then multiplication
by o gives an exact sequence

0— F(-1) -5 F—=G—0,

where dim supp (G) < dimsupp (F). By induction, the Proposition holds for
g, since by lemma 1.2, G is also m-regular. From the long exact sequence in
cohomology, we get an exact sequence

HY(F(n—q—1)) = H(F(n—q) — H(G(n - q)).

Taking n > m, ¢ > 1, we get that HY(F(n—q—1))—=>H%(F(n—q)). Hence
for n —1 > m, we see that if F is (n — 1)-regular, then F is n-regular. Hence
F is n-regular for all n > m, giving (i).

For (ii), consider the diagram

HY(F(n)) ® H'(Ox(1)) — H°(G(n)) ® H(Ox(1)) —0
1®Ro /‘ \Lan \I/Bn
0— HF(n) — HY(F(n+1)) RN — H(G(n +1))

Here for n > m, 3, is surjective, and from the diagram,
(ker ) C (Im avy,).

Hence a,, is surjective.
For (iii), consider the diagram (where Ax denotes the sheaf A ®; Ox)
H(F(n)x ® HY(Ox(1)x % HY(F(n+1))x
1 4

Yn®

H°(F(n))x @ Ox(1) — F(n+1)

—

From (ii), d,, is surjective; hence
(Vnt1 1s surjective)=-(, is surjective).

But 7, is surjective for n >> 0 (Serre). Hence , is surjective for n > m. O
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Proposition 1.4 Let 0 — F(—-1) - F — G — 0 be exact, and let G be
m-reqular. Then:

(i) HU(X,F(n)=0forq>2n>m—q

(i) h'(F(n—1)) = h'(F(n)) forn>m—1

(iii) hY(F(n)) =0 forn>m—1+ h'(F(m—1)).
In particular F is (m + h'(F(m — 1)))-regular.

Proof: Wehave HY(F(n)) = HY(F(n+1)) for alln > m—q, ¢ > 2. Hence
(i) holds by Serre vanishing. For n > m — 1, consider the exact sequence

0— H(F(n—1)) = H(F(n)) == H(G(n)) — H' (F(n—1)) = H'(F(n)) = 0

(the last map is surjective since G is m-regular). This gives (ii). Also, consider
the diagram

) BUOX(D) G0 & HOx()
HY(Fn+1)  “8 HGm+1)

Note that (3, is surjective by Proposition 1.4. Hence
(o, is surjective)=-(au, 11 is surjective).
Hence

(H'(F(n = 1)) = h'(F(n)))=
(H'(F(n)) =h'(F(n+1)) =---=0 (Serre)).
Hence h!'(F(n —1)) # 0 =h'(F(n — 1)) > h'(F(n)). Hence for n > m — 1,
in at most h'(F(m — 1)) steps, h*(F(n)) becomes 0. O
Definition 1.5: Let F be a coherent sheaf on X, r > dimsupp (F) an
integer, and let (b) = (bo, ..., b,) € Z¥ ™. We say that F is a (b)-sheaf if:
(i) Ox(1) is generated by global sections at all points of supp (F)

(i) RY(F(=1)) < by



(iii) (if » > 1) there exists 0 € H°(Ox(1)) giving an exact sequence
0—F(-1) - F—=G—0
such that G is a (V')-sheaf, with (0') = (by,...,b,) € Z°".

Proposition 1.6 Let F be a (b)-sheaf on X. Then:

(i) For each “sufficiently general” sequence (o) = (o1,...,0,) of sec-

tions of Ox (1), if

Foi = restriction of F to the zero scheme of 01 = -+ = 0; =0,
then hO(F,;) < b; for all0 < i <r.
(11) Any coherent subsheaf G C F is a (b)-sheaf.

Proof: Let S = A} be the affine space whose k-points correspond to se-
quences (o), and let T be the open? subset of S corresponding to F-regular se-
quences. For fixed 7, the sheaves F, ;(—1) corresponding to k-points of 1" are
contained in a flat family® over T', and by hypothesis, T' is non-empty. Now
(i) follows from the upper semicontinuity of the function (o) — h°(F,;(—1)),
for each 1.

Since any “sufficiently general” (o) is also a G-regular sequence, such that
Gsi — Fo.i is an inclusion, for each i, we see that (i)=-(ii). O

Lemma 1.7 Let 0 — F(—1) = F — G — 0 be exact, and let

o =>a(" )

1=0

be the Hilbert polynomial of F. Then

—_

r—

WG =S a ("),

1=

2Why is T open?
3Presumably because they all have the same Hilbert-Samuel polynomial.
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Proposition 1.8 Let F be a (b)-sheaf on X, with s = dimsupp (F), and

Hilbert polynomial
) n-+1
) =3 (" )

Then

(i) formn > —1, we have

RO (F(n)) < 80 b, (” j Z)

(ii) as <bs, and F is also a (bo, . ..,bs_1,as)-sheaf.

Proof: Induction on s. For s = 0, we have ag = h°(F) = h°(F(-1)) < bo.
If s > 1, there exists an exact sequence

0—>F(-1)—>F—=>G—0

where G is a (by, ..., b,)-sheaf with dimsupp (G) = s — 1. Further,

)~ 10(Fn = 1) < 10() < Xt ("),

where the last inequality is by the induction hypothesis. Since h°(F(—1)) <
by, we deduce (i) by induction on n. Further, ay < byand Gisa (by,...,bs 1, as)-
sheaf, also by the induction hypothesis. Hence (ii) holds. a

Definition 1.9: The (b)-polynomials are defined inductively by

Remark 1.10 Note that P.(xq,...,240,0,...,0) = P(xq,...,x;).



Theorem 1.11 Let F be a (b)-sheaf on X, with Hilbert polynomial

(F) = (")

i=0
Let (¢) = (co,...,¢r) be a sequence of integers such that ¢; > b; — a;. Let
m = P.(cy,...,c.). Then m > 0, and F is m-reqular. In particular, if

s = dimsupp (F), then F is Ps_1(co, ..., cs_1)-regular.

Proof: Induction on r. If r = 0, then m = 0, and F is certainly O-regular
(since s <r). If r > 1, and

0—>F(-1)>F—=>G—0

is exact, then G is a (by, ..., b.)-sheaf. Hence by induction, if n = P,_(¢q, ..., ¢,),
then n > 0, and G is n-regular. Then F is [n + h'(F(n — 1))]-regular, and
hi(F(n —1)) =0 for ¢ > 2. Now

r

P(F (= 1) = KF(n = 1)) = x(Fln = 1) < 300~ @) (”“f‘ 1),

1

where the last inequality follows from Proposition 1.8(i), and because b; > 0.
Hence F is also [n +> G (”Jrf*l)]—regular.

The final assertion results from Proposition 1.8(ii) (which implies that we
may take ¢ = 0), and Remark 1.10. a

2 Boundedness

Let S be a Noetherian scheme, X an S-scheme of finite type. Let [ be a
family of classes of coherent sheaves on the fibres of X /S, that is to say, for
each point s € S and each extension K of k(s), we are given a coherent
sheaf Fx on Xg, where Fix and Fg determine the same class if there exist
k(s)-homomorphisms of K, K’ into some extension K" of k(s) such that
Frrn = Frg Qi K" and F., = Frr Qi K" are isomorphic on X .

We say that the family F is bounded (or limited) by a coherent sheaf F on
X1 =X xgT, where T is of finite type over S, if [F is contained in the family
of classes of coherent sheaves Fj ) with t € T. We say that F is bounded if
there exists such a pair T, F.



Suppose X/S is also projective with a (relatively) ample invertible sheaf
Ox(1). We call F a (b)-family for a sequence of integers (b) = (by, ...,b,) if
each class in F is representable by an Fx, with K algebraically closed, which
is a (b)-sheatf.

Theorem 2.1 Let S be a Noetherian scheme, X a projective S-scheme with
an ample invertible sheaf Ox (1), such that for any s € S, the induced in-
vertible sheaf Ox (1) is generated by H°(X,,Ox,(1)). Let F be a family of
classes of coherent sheaves on fibres of X/S. Then the following conditions
are equivalent.

(i) T is bounded. If in addition, each Fy € F is locally free of rank p,
then F s bounded by a locally free sheaf F of rank p on Xr, for some
T.

(1) The set of Hilbert polynomials x(Fk(n)), for Fx € I, is finite, and
there exists a sequence of integers (b) such that F is a (b)-family.

(111) The set of Hilbert polynomials x(Fk(n)), for Fx € F, is finite,
and there exists an integer m such that each Fi € F is m-reqular.

(iv) The set of Hilbert polynomials x(Fk(n)), for Fx € F, is finite,
and [F 1s contained in the family of quotents of sheaves of the form E,
where £ is a coherent sheaf on some Xp. Further, one may take T'= S
and & = Ox(—m)®M | for some m, M > 0.

(v) F is contained in the family of classes of cokernels of homomor-
phisms Ej; — Ex, where E,E" are coherent sheaves on some Xp. Fur-
ther, one may take T = S and €, &' of the form Ox(—m)®M Ox(—m/)®M",

(Exp. XIII, 1.13)

Proof:  (i)=(ii): suppose F is bounded by a sheaf F on Xp. Applying
the theorem of generic flatness, and replacing T by a finite disjoint union
of locally closed subschemes, we may assume that F is flat over T. Then
the number of Hilbert polynomials x(Fiw)(n)) is at most the number of
connected components of T". It is an easy lemma that if ¢ € T', and Fy ) is
locally free of rank p, then the same is true of F over a neighbourhood of



t € T'; thus, further subdividing 7', we may assume that F is locally free of
rank p, if we are given that each Fy is locally free of rank p.

Now by further subdividing 7', one may assume that there is a sequence
(o) of sections oy, ...,0, € H'(X7,Ox, (1)) which is a regular sequence on
F. Now (ii) follows from the semicontinuity of the function ¢ — h%(F,;(—1)),
for t € T, for each 0 < i < r (here F;; denotes the restriction of F; to the
common zero-scheme of oy, ..., 0;).

The implication (ii)=>(iii) follows immediately from Theorem 1.11. The
implication (iii)=(iv) follows from Proposition 1.3(iii), if we take M =
max x(Fx(m)) and € = Ox(—m)®M,

Suppose F satisfies (iv); then for each Fx € F, there exists an exact
sequence

0— Fr — Ex — Fr — 0,

and the set of Hilbert polynomials x(Fg(n)) is finite. By hypothesis, the
family of classes £k is bounded; hence by (i)=-(ii), the set of Hilbert polyno-
mials x(Ex(n)) is finite, and there exists a sequence of integers (b) such that
each & (with K algebraically closed) is a (b)-sheaf. Hence the set of Hilbert
polynomials x(Fj(n)) is finite, and by Proposition 1.6, each Fj, (with K al-
gebraically closed) is a (b)-sheaf. Applying (ii)=-(iv) to the family of classes
Fi yields (v).

Now suppose F satisfies (v); we prove F is bounded. First, we reduce
to the case when & (respectively &) is of the form Ox(—m)®*. Indeed, by
(i)=(iv), we can find a surjection £ = Ox,.(—m)®”—+€. Subdividing T,
we may assume & is flat over 7', and the formation of

07T -S5L—>E=0

commutes with restriction to the fibres. By (i)=-(iii) and (i)=(iv), we can
find m; >> 0 such that Ext'(Ox, (—m1),Zx) = H*(Zx(m;)) vanishes, and
there exist surjections

ﬁl = (’)XT(—ml)@Ml%S’, £2 = OXT(—ml)GBMz%—)I.

Then the maps
Hom (£1,K, EK) — Hom (ACLK, 5}{)

are surjective. Let 5 : & — &k be a homomorphism, and let v be the
composition £y x — & — Ek; then v lifts to a homomorphism 6 : £y x —
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L, such that
(bug o) : L1x ® Lok — L, [:Ek = Ek

have the same cokernel. Hence F is contained in the family of classes of
cokernels of homomorphisms of the form

Ox e (=my)ZMHM) 5 O, (—m)®M.
Subdividing 7" again, we may suppose that
(a) fr: Xy — T is flat
(b) Hom oy (£',€) is flat over T
(c) each of the sheaves R!(fr).Hom o (', €) is flat over T
)

(d) the formation of G = (fr).Hom o, (€',€) commutes with arbitrary
base changes 7" — T.

Now taking R = V(G"), the scheme Xy supports a canonically defined “uni-
versal” exact sequence
Er = Er — F =0,

and F bounds the family F. a

3 (b)-sheaves on P =P}

Let k be an algebraically closed field, and P = P)'. Let F be a coherent
sheaf on P, with Hilbert polynomial

=3 a (")

1=0

and let (¢) = (co, ..., c.) be a sequence of integers with ¢; > a; for all 7. Let
— m—1+j < (m—1+4]
Am,i = Z Clj+7;( . >, Cmi = Z Cj—i—i( . .
=0 J =0 J



We see easily by induction on m that there is an identity between polynomials

in ;amﬂ(x?i):i:aj(ermﬂLj)_ (1)

j=0 J

Lemma 3.1 Under the above conditions, suppose there exists an exract se-
quence
0—=7Z— O™ = F(m) — 0,

with m > 0. Then Z is p-reqular with p = P.(Cm.o, - - -, Cmy), where P, is the
r-th (b)-polynomial (definition 1.5).
(Exp XIIL,(6.2))

Proof: Op is a (0,0,...,0,1)-sheaf, so Z is a (0,...,0, M)-sheaf (since
7 is a subsheaf of such a sheaf — apply Proposition 1.6). Also, we have a
formula

() = Mx(Op(o) ~x(FOom-t ) = 21 (") =3 ()

where the last equality is using the formula (1). The lemma now follows from
Theorem 1.11. O

Proposition 3.2 Suppose F is a coherent (b)-sheaf on P = Py (k alge-
braically closed), with Hilbert polynomial

oy =3a (")

Then there exist universal polynomaials in a;, b; and N bounding m, M, m;
and My such that there exist exact sequences

Op(—m)®M — Op(—m)®M — F — 0.

Further, the polynomial bounding* M, does not involve N.
(Exp. XIII, (6.3))

4This seems to be a typo, it should presumably be m;.
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Proof: Let m = P._q1(co,...,¢—1) with ¢; = b; — a;, and let M =
doia <m + Z). Then from Theorem 1.11 and Proposition 1.3, there is an
i

exact sequence
0—=Z— O™ = F(m) — 0.

Now take my = m + p with p = P.(amy,- - -, @m,) and
. p+ N my 41 -
= (T - (M) =,
O

Theorem 3.3 Let F be a coherent (b)-sheaf on P = Py (k algebraically
closed) with Hilbert polynomial

: n+1
Wy =Y a(" 7).
i=0
Suppose F is a quotient of Op(—m)®M for somem > 0. Letb; = Pr_i(Cimiiy - - - Cimr)
fori=0,...,r, where Py is the s-th (b)-polynomial, and (c¢) = (co, ..., ) is

a sequence of integers with ¢; > a;. Letb=by+m—1, and B=3 . _, a; (b;’“)
Then:

(1) F is b-regular

(ii)) —B < ag=h"(F(b)) — B

(111) F is a (by,...,b)-sheaf.
(Exp. XIIL, (6.4))

Proof:  Choosing a general section of Op(1), one obtains a commutative
diagram with exact rows and columns (with Y = PN 1)

0 0 0
1 . \
0—Z(-1) — 7z —-J =0
1 \ 1
0— Op(-1)%M — O™ - 0¢M =0
1 { \
0—=Fm-1)— F(m) —G(m)—0
1 \ \
0 0 0

11



Since (lemma 1.7)

v =S o ("),

i=0
J is by-regular, by lemma 3.1; hence H%(Z(p)) =0 for ¢ > 2 and p > by — ¢
(Proposition 1.4). The exact sequence

H(Op(p)®™) — HI(F(m +p)) - H™(Z(p))

implies that F(m) is (by — 1)-regular. This gives (i).
Now (i) implies that

0 HFD) = X(FB) = Do (“ )

This implies (ii). Then by the formula (1),

s T

) - ; . (b1 —i1 + z) b e, (b1 —i1 - z)

1=0

]

- P sy r b — 1
= Prfl(Cm’l, ... 7Cm,r) + Z Cm,i( I(Cm,l . Cm, ) +1 )
=0

= r(cm,Oa Cm,1s - - - acm,r)by (15)
= by (by definition of by).

Hence h°(F(—1)) < h°(F(b)) < by. By induction on r, we may assume G is
a (by,...,b,)-sheaf. Hence F is a (by, ..., b,)-sheaf. O

Lemma 3.4 Suppose F is a coherent sheaf on P, and has no subsheaf sup-
ported at closed points.

(i) If h°(F) > 1, then h®(F(—1)) < h%(F) — 1.
(ii) H°(F(—n)) =0 for n > h(F).
(111) Suppose there exists an exact sequence
0—>F(-1)>F—=-G—0
and an integer ng > 0 such that H*(G(—ng)) = 0. Then h°(F(—ng)) =
0, and h°(F) < noh®(G).
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(Exp. XIII, (6.5))
Proof:  Suppose 0 # o € H(F). Then 0 - Ox = F' < F is a subsheaf

with s = dimsupp (F’) > 1. This gives rise to a a diagram with exact rows
and columns

0 0 0
\J 2 }

0— F(-1) % F =G —0 (for asuitable z € H°(Ox(1)))
\J ) \J

0= F(-1)% F =G0
Since s > 1, G’ # 0. Hence F' ¢ F(—1), and so 0 & H(F(-1)) C H°(F).

This proves (i); now (ii) follows immediately. For (iii), note that
0 < h'(F(n)) = h°(F(n — 1)) < h*(G(n)) (2)

If n > ng, we get that h®(F(—ng)) = h°(F(—n)), since h°(G(—ng)) = 0. But
by (ii), h°(F(—n)) = 0 for n >> 0. Hence h°(F(—n)) = 0 for all n > ny.
Also, for p > 1, we get from (2) that

hO(F(p —1n0)) < B(G(1 —no)) + -+~ + B (G(p — o)) < ph°(G(p — no))-
This gives (iii). O
Let F be a coherent sheaf on P. For each integer ¢ > 1, let A, be the
largest subsheaf of F with dim supp (N,) < ¢, and set F, = F/N,.

Proposition 3.5 If F is a coherent (b)-sheaf on P, then F, is a

(b2 1, b1, . b2, b1, by, . .., by)-sheaf.

(Exp. XIII, (6.6)

Proof: A “general” section of Ox(1) gives rise to a commutative diagram

with exact rows and columns

0 0 0

\ 3 1
0->N,(-1)—» N, —G —0

] 1 1
0—-F(-1)—» F —G—=0

\ 1 1
0— F,(-1)— F, —G =0

\ \ 1

0 0 0

—_
w



where G is a (b, ..., b,)-sheaf, and G” = G, (this is “a question of depth”).
Suppose ¢ = 1. Then dimsupp (N;) = 0, so that H'(N,(—1)) = 0 and

G' = 0. Thus h°(F,(—1)) < h%(F(-1)) < by, and G = G". Hence F is a

(bo, . .., b,)-sheaf (since G"” is a (by, ..., b,)-sheaf). Further, h°(F;(—by)) = 0.
If ¢ > 2, we may suppose by induction that G,_; is a

b2y, b2, b1, .., b)-sheaf, and that H°(G, 1(—b,_1)) = 0. Then by

lemma 3.4, it follows that H°(F,(—bs—1)) = 0, and hO(F,(-1)) < bl ,. O

Theorem 3.6 There exist 2 sequences of polynomials { A;(xo, ..., z;;y)} and

{qu) (%o, ..., x4 y)} with the following properties. Let F be a coherent sheaf
on P = IP’]kv with Hilbert polynomial

X(F() = Z (")

and let (¢) = (co, ..., c.) be a sequence of integers with a; < ¢;. Assume F is
a quotient of Op(—m)®M with m > 0.

(i) If F is a (bo,...,b)-sheaf, then for i =0,...,r we have

| a; ‘ S Ar—i(bia s 7b7“;m)‘

(i) If

is the Hilbert polynomial of F,, then for i =0,...,q — 1 we have

|al? | < A@i(cq,l, Ce G,
ote that a,” < a,_1, and ag’ = Qg ..., 0y = Q.
N h éq)1 < a, d éq) . (@)

(Exp. XIIL, (6.7))
Proof: Let 0 - F(-1) - F — G — 0 be an exact sequence such

that G is a (by,...,b,)-sheaf. We reason by induction on r, and suppose
that Ag, ..., A,_1 have already been defined with the above properties, by
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lemma 1.7. Now Proposition 1.8 and Theorem 3.3(ii) imply the existence of
a polynomial A, with

‘ Qo ‘ S Ar(bo,...,br;m).

This proves (i).
Now (ii) follows from Theorem 3.3(iii), Proposition 3.5 and the above
assertion (i) applied with F, in place of F. O

Corollary 3.7 (Grothendieck) Let X be projective over a Noetherian scheme
S, and Ox (1) very ample for X/S. Let F be a family of classes of coherent
sheaves on the fibres of X/S. Suppose:

(a) there exists a coherent sheaf € on X such that F is contained in the
family of classes of quotients of Ex (notation as in §2).

(b)q for the Hilbert polynomials x(Fk(n)) of the Fx € F, the coefficients in
degrees > q — 1 are bounded.

Then the Fp € F form a bounded family. In addition, the coefficients of
X(Fk(n)) in degrees > q — 2 are bounded below.
(Exp. XIII, (6.8))

Proof: We may evidently suppose X = PY, £ = Ox(—m)®M. The first
assertion results from Theorem 3.6(ii) and Theorem 2.1; the second follows
by induction using an exact sequence

0—>F(-1)—>F—-G—0

and Theorem 3.6(ii). O

Definition 3.8: Let k be a field. A special positive k-cycle of dimension
r is a projective k-scheme X, with a very ample invertible sheaf Ox (1),
which is a union of closed subschemes X, each of dimension r, where Xj is
obtained by a base-change Speck — Spec k; from an integral kj-scheme X7,
together with OXJ/_(l). We call the coefficient a, of the Hilbert polynomial

T

X(Ox(n)) = Z a; (n j— Z) the degree of X.
i=0

(Exp. XIII, (6.9))
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Lemma 3.9 Let k be an algebraically closed field and X a special positive
k-cycle of dimension r and degree d. Then Ox is a (0,0,...,0,d)-sheaf.
(Exp. XIII, (6.10))

Proof: Let X C Py (using the invertible sheaf Ox(1)). Replacing k by
the algebraic closure of a pure transcendental extension, we may assume that
there exist (/N + 1) elements of k£ which are algebraically independent over
each of the subfields kj C k (involved in the definition 3.8). Then intersection
with the corresponding r “generic” hyperplanes yields special positive k-
cycles of degree d (and dimensions ranging from r to 0). We now reason by
induction; it suffices to note that for 7 = 0, we have h°(Ox(—1)) = d, and
for r > 1, we have H°(Ox(—1)) = 0 (for the latter point, use the inclusion
Ox = []O x, to reduce to the case when X is an integral scheme, in which
case H(Ox) is a field). O

Corollary 3.10 (i) Let r,d be integers, ¢; = A,—;(0,...,0,d;0) for
i =0,...,7 (notation as in Theorem 3.6(i)), and let p = P.(cq,...,cr)
(c.f. definition 1.5). Let k be an algebraically closed field, and X a
special positive k-cycle of dimension < r and degree < d, with Hilbert

T

polynomial x(Ox(n)) = Z a; <n ;F Z). Then for 0 <i <r, we have

i=0

| a; | <.
Further, X can be embedded in PY with N = d(r +1) — 1, and defined
there by (at most) (N;p) equations of degree p.

(11) (Chow) Let S be a Noetherian scheme. For K varying over the
algebraically closed extension fields of k(s), s € S, the special positive
K-cycles of bounded dimension and degree form a “bounded family”
(where the cycles X are considered as subschemes of a fized IP’]SV, mn an
“evident abstract sense”).

(Exp. XIII, (6.11))

Proof: In (i), the first assertion follows from Theorem 3.6(i); the sec-
ond assertion follows from lemma 3.9 and Proposition 1.8(i), together with
lemma 3.1 and Proposition 1.3, applied to the exact sequence

0—-Z—0p—0Ox—0, P=P
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(ii) follows from (i) and Theorem 2.1. O

Remark 3.11  (Exp. XIII, (6.12))
Let k be an algebraically closed field, X a projective k-scheme of dimen-
sion r, with no embedded associated prime cycle. If one admits nilpotent

elements in an arbitrary fashion, one cannot bound the coefficients of the
T

Hilbert polynomial x(Ox(n)) = Z a; (n + Z) solely in terms of a,.
i
=0
For example, let Z be a smooth projective curve of degree d in ]Pﬁ. For
each n >> 0, there exists a smooth surface Y of degree n in P} with Z C Y.
Then Z is a Cartier divisor on Y; let Ox, = Oy /Oy (—2%). From the exact
sequence

0— OXH(—Z) — OXn — OZ — O,

and the formula (7 - Z)y = 2p,(Z) — 2 — (n — 4)d, we have that ay =
X(Ox,(—1)) = o0 as n — oo, while a; = 2d.

Corollary 3.12 Let F be a coherent sheaf on P = P,iv, where k is an alge-
braically closed field, such that there exists an exact sequence

OP(—m1)®M1 — Op(—TTL)GBM i> F =0
with my > m > 0. Let

=Y a(" )

- 1
=0

be the Hilbert polynomial of F. Then for 0 < i < N, we have

m

(Exp. XIII, (6.13))

Proof: If Z = kera, then Z is a (0,...,0,m)-sheaf (being a subsheaf of
one), and has Hilbert polynomial

=S - (1)

17



-m—1
The corollary follows from Theorem 3.6(i) and the identity ( m 0 + Q) =

() D

Corollary 3.13 (Hermann) For each N > 0, there exists a polynomial
Rn(x) such that for any field ko, an any ideal I C ko[Ty,...,Tn] in the
polynomial ring such that I is generated by elements of degree < m, the rad-
ical /T is generated by elements of degree < Ry (m).

(Exp. XIII, (6.14))

Proof:  Let k be the algebraic closure of k. Introduce an auxilliary variable
Ty, and consider the subscheme Y (respectively X) of P = PY defined by
the homogenization of I (respectively v/T). Then for the Hilbert polynomial

Al n+1
vorm =3 (")
we have | b; | < Ax_;(0,...,0,1;m), by corollary 3.12.

Let X = UXY? be the decomposition according to dimension (i.e., X1
is the union of the g-dimensional irreducible components). Then we claim
deg(X?) < e, = Pn_4(cq,-..,cn). Indeed, intersecting X (respectively V')
by a “general” linear subspace of codimension ¢, we may assume ¢ = 0. Then

evidently
deg(X?) = h*(Oxa) < h°(Oya) < ey,

where the last inequality is by Theorem 3.3(iii).
Consequently, Oxq is a (0,...,0,e,)-sheaf, by lemma 3.9. From the in-
jection Ox — [[ Oxa, it follows that Ox is an (e, ..., e,)-sheaf. Hence the

coefficients of the Hilbert polynomial x(Ox(n)) = E a; (n + l) satisfy the
i
i=0
estimate

|a’i ‘ Sfi:ANfi(eiu"weN;O)’

by Theorem 3.6. Then the ideal v/T of X is Ry(m)-regular, with Ry (m) =
Pn(fo, ..., fn); now we are done, by Proposition 1.3. O
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