Kleiman's boundedness results*(SGA 6, Exp. XIII)

1 Regularity and (b)-sheaves¹

Let X be a projective scheme over an algebraically closed field k, and let $\mathcal{O}_X(1)$ be an ample invertible sheaf on X.

Definition 1.1: A coherent sheaf \mathcal{F} on X is called *m*-regular (with respect to $\mathcal{O}_X(1)$) if

- (i) the global sections of $\mathcal{O}_X(1)$ generate it at all points of supp (\mathcal{F})
- (ii) $H^q(X, \mathcal{F}(m-q)) = 0$ for all q > 0.

Lemma 1.2 If $0 \to \mathcal{F}(-1) \to \mathcal{F} \to \mathcal{G} \to 0$ is an exact sequence of coherent \mathcal{O}_X -modules such that \mathcal{F} is m-regular, then \mathcal{G} is m-regular.

Proof: This follows trivially from the definitions, and the long exact sequence in cohomology. \Box

Proposition 1.3 Let \mathcal{F} be an *m*-regular sheaf on X. Then for all $n \geq m$,

(i) \mathcal{F} is n-regular

^{*}A loose translation from French of parts of SGA 6,Exp. XIII, Lect. Notes in Math. 225, Springer, 1970.

¹The numbering in this section agrees with that in Exp. XIII.

- (ii) $H^0(\mathcal{F}(n)) \otimes H^0(\mathcal{O}_X(1)) \to H^0(\mathcal{F}(n+1))$ is surjective
- (iii) $\mathcal{F}(n)$ is generated by $H^0(\mathcal{F}(n))$.

Proof: By induction on $s = \dim \operatorname{supp}(\mathcal{F})$; the result is trivial for s = 0. If $\sigma \in H^0(\mathcal{O}_X(1))$ generates it at each associated point of \mathcal{F} , then multiplication by σ gives an exact sequence

$$0 \to \mathcal{F}(-1) \xrightarrow{\cdot \sigma} \mathcal{F} \to \mathcal{G} \to 0,$$

where dim supp $(\mathcal{G}) < \dim \text{supp}(\mathcal{F})$. By induction, the Proposition holds for \mathcal{G} , since by lemma 1.2, \mathcal{G} is also *m*-regular. From the long exact sequence in cohomology, we get an exact sequence

$$H^q(\mathcal{F}(n-q-1)) \to H^q(\mathcal{F}(n-q)) \to H^q(\mathcal{G}(n-q)).$$

Taking $n \ge m, q \ge 1$, we get that $H^q(\mathcal{F}(n-q-1)) \longrightarrow H^q(\mathcal{F}(n-q))$. Hence for $n-1 \ge m$, we see that if \mathcal{F} is (n-1)-regular, then \mathcal{F} is *n*-regular. Hence \mathcal{F} is *n*-regular for all $n \ge m$, giving (i).

For (ii), consider the diagram

$$\begin{array}{ccccc} H^{0}(\mathcal{F}(n)) \otimes H^{0}(\mathcal{O}_{X}(1)) & \to & H^{0}(\mathcal{G}(n)) \otimes H^{0}(\mathcal{O}_{X}(1)) & \to 0 \\ 1 \otimes \sigma & \nearrow & \downarrow \alpha_{n} & & \downarrow \beta_{n} \\ 0 \to & H^{0}(\mathcal{F}(n)) & \to & H^{0}(\mathcal{F}(n+1)) & \xrightarrow{\varphi_{n}} & \to H^{0}(\mathcal{G}(n+1)) \end{array}$$

Here for $n \ge m$, β_n is surjective, and from the diagram,

$$(\ker \varphi_n) \subset (\operatorname{im} \alpha_n).$$

Hence α_n is surjective.

For (iii), consider the diagram (where A_X denotes the sheaf $A \otimes_k \mathcal{O}_X$)

$$\begin{array}{cccc} H^{0}(\mathcal{F}(n))_{X} \otimes H^{0}(\mathcal{O}_{X}(1))_{X} & \stackrel{\delta_{n}}{\longrightarrow} & H^{0}(\mathcal{F}(n+1))_{X} \\ \downarrow & & \downarrow \gamma_{n+1} \\ H^{0}(\mathcal{F}(n))_{X} \otimes \mathcal{O}_{X}(1) & \stackrel{\gamma_{n} \otimes 1}{\longrightarrow} & \mathcal{F}(n+1) \end{array}$$

From (ii), δ_n is surjective; hence

$$(\gamma_{n+1} \text{ is surjective}) \Rightarrow (\gamma_n \text{ is surjective}).$$

But γ_n is surjective for n >> 0 (Serre). Hence γ_n is surjective for $n \ge m$. \Box

Proposition 1.4 Let $0 \to \mathcal{F}(-1) \to \mathcal{F} \to \mathcal{G} \to 0$ be exact, and let \mathcal{G} be *m*-regular. Then:

(i)
$$H^q(X, \mathcal{F}(n)) = 0$$
 for $q \ge 2, n \ge m - q$

(ii)
$$h^1(\mathcal{F}(n-1)) \ge h^1(\mathcal{F}(n))$$
 for $n \ge m-1$

(*iii*) $h^1(\mathcal{F}(n)) = 0$ for $n \ge m - 1 + h^1(\mathcal{F}(m-1))$.

In particular \mathcal{F} is $(m + h^1(\mathcal{F}(m-1)))$ -regular.

Proof: We have $H^q(\mathcal{F}(n)) \cong H^q(\mathcal{F}(n+1))$ for all $n \ge m-q, q \ge 2$. Hence (i) holds by Serre vanishing. For $n \ge m-1$, consider the exact sequence

$$0 \to H^0(\mathcal{F}(n-1)) \to H^0(\mathcal{F}(n)) \xrightarrow{\alpha_n} H^0(\mathcal{G}(n)) \to H^1(\mathcal{F}(n-1)) \to H^1(\mathcal{F}(n)) \to 0$$

(the last map is surjective since \mathcal{G} is *m*-regular). This gives (ii). Also, consider the diagram

$$\begin{array}{cccc} H^{0}(\mathcal{F}(n)) \otimes H^{0}(\mathcal{O}_{X}(1)) & \stackrel{\alpha_{n} \otimes 1}{\longrightarrow} & H^{0}(\mathcal{G}(n)) \otimes H^{0}(\mathcal{O}_{X}(1)) \\ \downarrow & & \downarrow \beta_{n} \\ H^{0}(\mathcal{F}(n+1)) & \stackrel{\alpha_{n+1}}{\longrightarrow} & H^{0}(\mathcal{G}(n+1)) \end{array}$$

Note that β_n is surjective by Proposition 1.4. Hence

 $(\alpha_n \text{ is surjective}) \Rightarrow (\alpha_{n+1} \text{ is surjective}).$

Hence

$$(H^1(\mathcal{F}(n-1)) = h^1(\mathcal{F}(n))) \Rightarrow$$
$$(H^1(\mathcal{F}(n)) = h^1(\mathcal{F}(n+1)) = \dots = 0 \text{ (Serre)}).$$

Hence $h^1(\mathcal{F}(n-1)) \neq 0 \Rightarrow h^1(\mathcal{F}(n-1)) > h^1(\mathcal{F}(n))$. Hence for $n \geq m-1$, in at most $h^1(\mathcal{F}(m-1))$ steps, $h^1(\mathcal{F}(n))$ becomes 0. \Box

Definition 1.5: Let \mathcal{F} be a coherent sheaf on $X, r \geq \dim \operatorname{supp}(\mathcal{F})$ an integer, and let $(b) = (b_0, \ldots, b_r) \in \mathbb{Z}^{\oplus r+1}$. We say that \mathcal{F} is a (b)-sheaf if:

- (i) $\mathcal{O}_X(1)$ is generated by global sections at all points of supp (\mathcal{F})
- (ii) $h^0(\mathcal{F}(-1)) \leq b_0$

(iii) (if $r \ge 1$) there exists $\sigma \in H^0(\mathcal{O}_X(1))$ giving an exact sequence

$$0 \to \mathcal{F}(-1) \xrightarrow{\cdot \sigma} \mathcal{F} \to \mathcal{G} \to 0$$

such that \mathcal{G} is a (b')-sheaf, with $(b') = (b_1, \ldots, b_r) \in \mathbb{Z}^{\oplus r}$.

Proposition 1.6 Let \mathcal{F} be a (b)-sheaf on X. Then:

(i) For each "sufficiently general" sequence $(\sigma) = (\sigma_1, \ldots, \sigma_r)$ of sections of $\mathcal{O}_X(1)$, if

 $\mathcal{F}_{\sigma,i} = restriction \text{ of } \mathcal{F} \text{ to the zero scheme of } \sigma_1 = \cdots = \sigma_i = 0,$

then $h^0(\mathcal{F}_{\sigma,i}) \leq b_i$ for all $0 \leq i \leq r$.

(ii) Any coherent subsheaf $\mathcal{G} \subset \mathcal{F}$ is a (b)-sheaf.

Proof: Let $S = \mathbb{A}_k^N$ be the affine space whose k-points correspond to sequences (σ) , and let T be the open² subset of S corresponding to \mathcal{F} -regular sequences. For fixed i, the sheaves $\mathcal{F}_{\sigma,i}(-1)$ corresponding to k-points of T are contained in a flat family³ over T, and by hypothesis, T is non-empty. Now (i) follows from the upper semicontinuity of the function $(\sigma) \mapsto h^0(\mathcal{F}_{\sigma,i}(-1))$, for each i.

Since any "sufficiently general" (σ) is also a \mathcal{G} -regular sequence, such that $\mathcal{G}_{\sigma,i} \to \mathcal{F}_{\sigma,i}$ is an inclusion, for each *i*, we see that (i) \Rightarrow (ii). \Box

Lemma 1.7 Let $0 \to \mathcal{F}(-1) \to \mathcal{F} \to \mathcal{G} \to 0$ be exact, and let

$$\chi(\mathcal{F}(n)) = \sum_{i=0}^{r} a_i \binom{n+i}{i}$$

be the Hilbert polynomial of \mathcal{F} . Then

$$\chi(\mathcal{G}(n)) = \sum_{i=0}^{r-1} a_{i+1} \binom{n+i}{i}.$$

²Why is T open?

³Presumably because they all have the same Hilbert-Samuel polynomial.

Proposition 1.8 Let \mathcal{F} be a (b)-sheaf on X, with $s = \dim \operatorname{supp}(\mathcal{F})$, and Hilbert polynomial

$$\chi(\mathcal{F}(n)) = \sum_{i=0}^{r} a_i \binom{n+i}{i}.$$

Then

(i) for $n \ge -1$, we have

$$h^0(\mathcal{F}(n)) \le \sum_{i=0}^s b_i \binom{n+i}{i}.$$

(ii) $a_s \leq b_s$, and \mathcal{F} is also a $(b_0, \ldots, b_{s-1}, a_s)$ -sheaf.

Proof: Induction on s. For s = 0, we have $a_0 = h^0(\mathcal{F}) = h^0(\mathcal{F}(-1)) \le b_0$. If $s \ge 1$, there exists an exact sequence

$$0 \to \mathcal{F}(-1) \to \mathcal{F} \to \mathcal{G} \to 0$$

where \mathcal{G} is a (b_1, \ldots, b_r) -sheaf with dim supp $(\mathcal{G}) = s - 1$. Further,

$$h^{0}(\mathcal{F}(n)) - h^{0}(\mathcal{F}(n-1)) \le h^{0}(\mathcal{G}(n)) \le \sum_{i=0}^{s-1} b_{i+1} \binom{n+i}{i},$$

where the last inequality is by the induction hypothesis. Since $h^0(\mathcal{F}(-1)) \leq b_0$, we deduce (i) by induction on n. Further, $a_s \leq b_s$ and \mathcal{G} is a $(b_1, \ldots, b_{s-1}, a_s)$ -sheaf, also by the induction hypothesis. Hence (ii) holds. \Box

Definition 1.9: The (b)-polynomials are defined inductively by

$$\begin{cases} P_{-1} = 0 \\ P_{r}(x_{0}, \dots, x_{r}) = P_{r-1}(x_{1}, \dots, x_{r}) + \sum_{i=0}^{r} x_{i} \binom{P_{r-1}(x_{1}, \dots, x_{r}) + i - 1}{i} \\ i \end{cases}$$

Remark 1.10 Note that $P_r(x_0, ..., x_t, 0, 0, ..., 0) = P_t(x_0, ..., x_t)$.

Theorem 1.11 Let \mathcal{F} be a (b)-sheaf on X, with Hilbert polynomial

$$\chi(\mathcal{F}(n)) = \sum_{i=0}^{r} a_i \binom{n+i}{i}.$$

Let $(c) = (c_0, \ldots, c_r)$ be a sequence of integers such that $c_i \ge b_i - a_i$. Let $m = P_r(c_0, \ldots, c_r)$. Then $m \ge 0$, and \mathcal{F} is m-regular. In particular, if $s = \dim \operatorname{supp}(\mathcal{F})$, then \mathcal{F} is $P_{s-1}(c_0, \ldots, c_{s-1})$ -regular.

Proof: Induction on r. If r = 0, then m = 0, and \mathcal{F} is certainly 0-regular (since $s \leq r$). If $r \geq 1$, and

$$0 \to \mathcal{F}(-1) \to \mathcal{F} \to \mathcal{G} \to 0$$

is exact, then \mathcal{G} is a (b_1, \ldots, b_r) -sheaf. Hence by induction, if $n = P_{r-1}(c_1, \ldots, c_r)$, then $n \ge 0$, and \mathcal{G} is *n*-regular. Then \mathcal{F} is $[n + h^1(\mathcal{F}(n-1))]$ -regular, and $h^q(\mathcal{F}(n-1)) = 0$ for $q \ge 2$. Now

$$h^{1}(\mathcal{F}(n-1)) = h^{0}(\mathcal{F}(n-1)) - \chi(\mathcal{F}(n-1)) \le \sum_{i=0}^{r} (b_{i} - a_{i}) \binom{n+i-1}{i},$$

where the last inequality follows from Proposition 1.8(i), and because $b_i \ge 0$. Hence \mathcal{F} is also $\left[n + \sum_{i=0}^{r} c_i \binom{n+i-1}{i}\right]$ -regular.

The final assertion results from Proposition 1.8(ii) (which implies that we may take $c_s = 0$), and Remark 1.10.

2 Boundedness

Let S be a Noetherian scheme, X an S-scheme of finite type. Let \mathbb{F} be a family of classes of coherent sheaves on the fibres of X/S, that is to say, for each point $s \in S$ and each extension K of k(s), we are given a coherent sheaf \mathcal{F}_K on X_K , where \mathcal{F}_K and $\mathcal{F}_{K'}$ determine the same class if there exist k(s)-homomorphisms of K, K' into some extension K'' of k(s) such that $\mathcal{F}_{K''} = \mathcal{F}_K \otimes_K K''$ and $\mathcal{F}'_{K''} = \mathcal{F}_{K'} \otimes_{K'} K''$ are isomorphic on $X_{K''}$.

We say that the family \mathbb{F} is bounded (or limited) by a coherent sheaf \mathcal{F} on $X_T = X \times_S T$, where T is of finite type over S, if \mathbb{F} is contained in the family of classes of coherent sheaves $\mathcal{F}_{k(t)}$ with $t \in T$. We say that \mathbb{F} is bounded if there exists such a pair T, \mathcal{F} .

Suppose X/S is also projective with a (relatively) ample invertible sheaf $\mathcal{O}_X(1)$. We call \mathbb{F} a (b)-family for a sequence of integers $(b) = (b_0, \ldots, b_r)$ if each class in \mathbb{F} is representable by an \mathcal{F}_K , with K algebraically closed, which is a (b)-sheaf.

Theorem 2.1 Let S be a Noetherian scheme, X a projective S-scheme with an ample invertible sheaf $\mathcal{O}_X(1)$, such that for any $s \in S$, the induced invertible sheaf $\mathcal{O}_{X_s}(1)$ is generated by $H^0(X_s, \mathcal{O}_{X_s}(1))$. Let \mathbb{F} be a family of classes of coherent sheaves on fibres of X/S. Then the following conditions are equivalent.

(i) \mathbb{F} is bounded. If in addition, each $\mathcal{F}_K \in \mathbb{F}$ is locally free of rank p, then \mathbb{F} is bounded by a locally free sheaf \mathcal{F} of rank p on X_T , for some T.

(ii) The set of Hilbert polynomials $\chi(\mathcal{F}_K(n))$, for $\mathcal{F}_K \in \mathbb{F}$, is finite, and there exists a sequence of integers (b) such that \mathbb{F} is a (b)-family.

(iii) The set of Hilbert polynomials $\chi(\mathcal{F}_K(n))$, for $\mathcal{F}_K \in \mathbb{F}$, is finite, and there exists an integer m such that each $\mathcal{F}_K \in \mathbb{F}$ is m-regular.

(iv) The set of Hilbert polynomials $\chi(\mathcal{F}_K(n))$, for $\mathcal{F}_K \in \mathbb{F}$, is finite, and \mathbb{F} is contained in the family of quotents of sheaves of the form \mathcal{E}_K , where \mathcal{E} is a coherent sheaf on some X_T . Further, one may take T = Sand $\mathcal{E} = \mathcal{O}_X(-m)^{\oplus M}$, for some $m, M \geq 0$.

(v) \mathbb{F} is contained in the family of classes of cokernels of homomorphisms $\mathcal{E}'_K \to \mathcal{E}_K$, where $\mathcal{E}, \mathcal{E}'$ are coherent sheaves on some X_T . Further, one may take T = S and $\mathcal{E}, \mathcal{E}'$ of the form $\mathcal{O}_X(-m)^{\oplus M}$, $\mathcal{O}_X(-m')^{\oplus M'}$.

(Exp. XIII, 1.13)

Proof: (i) \Rightarrow (ii): suppose \mathbb{F} is bounded by a sheaf \mathcal{F} on X_T . Applying the theorem of generic flatness, and replacing T by a finite disjoint union of locally closed subschemes, we may assume that \mathcal{F} is flat over T. Then the number of Hilbert polynomials $\chi(\mathcal{F}_{k(t)}(n))$ is at most the number of connected components of T. It is an easy lemma that if $t \in T$, and $\mathcal{F}_{k(t)}$ is locally free of rank p, then the same is true of \mathcal{F} over a neighbourhood of $t \in T$; thus, further subdividing T, we may assume that \mathcal{F} is locally free of rank p, if we are given that each \mathcal{F}_K is locally free of rank p.

Now by further subdividing T, one may assume that there is a sequence (σ) of sections $\sigma_1, \ldots, \sigma_r \in H^0(X_T, \mathcal{O}_{X_T}(1))$ which is a regular sequence on \mathcal{F} . Now (ii) follows from the semicontinuity of the function $t \mapsto h^0(\mathcal{F}_{t,i}(-1))$, for $t \in T$, for each $0 \leq i \leq r$ (here $\mathcal{F}_{t,i}$ denotes the restriction of \mathcal{F}_t to the common zero-scheme of $\sigma_1, \ldots, \sigma_i$).

The implication (ii) \Rightarrow (iii) follows immediately from Theorem 1.11. The implication (iii) \Rightarrow (iv) follows from Proposition 1.3(iii), if we take $M = \max \chi(\mathcal{F}_K(m))$ and $\mathcal{E} = \mathcal{O}_X(-m)^{\oplus M}$.

Suppose \mathbb{F} satisfies (iv); then for each $\mathcal{F}_K \in \mathbb{F}$, there exists an exact sequence

$$0 \to \mathcal{F}'_K \to \mathcal{E}_K \to \mathcal{F}_K \to 0,$$

and the set of Hilbert polynomials $\chi(\mathcal{F}_K(n))$ is finite. By hypothesis, the family of classes \mathcal{E}_K is bounded; hence by (i) \Rightarrow (ii), the set of Hilbert polynomials $\chi(\mathcal{E}_K(n))$ is finite, and there exists a sequence of integers (b) such that each \mathcal{E}_K (with K algebraically closed) is a (b)-sheaf. Hence the set of Hilbert polynomials $\chi(\mathcal{F}'_K(n))$ is finite, and by Proposition 1.6, each \mathcal{F}'_K (with K algebraically closed) is a (b)-sheaf. Applying (ii) \Rightarrow (iv) to the family of classes \mathcal{F}'_K yields (v).

Now suppose \mathbb{F} satisfies (v); we prove \mathbb{F} is bounded. First, we reduce to the case when \mathcal{E} (respectively \mathcal{E}') is of the form $\mathcal{O}_X(-m)^{\oplus M}$. Indeed, by (i) \Rightarrow (iv), we can find a surjection $\mathcal{L} = \mathcal{O}_{X_T}(-m)^{\oplus M} \rightarrow \mathcal{E}$. Subdividing T, we may assume \mathcal{E} is flat over T, and the formation of

$$0 \to \mathcal{I} \xrightarrow{u} \mathcal{L} \to \mathcal{E} \to 0$$

commutes with restriction to the fibres. By (i) \Rightarrow (iii) and (i) \Rightarrow (iv), we can find $m_1 >> 0$ such that Ext¹($\mathcal{O}_{X_K}(-m_1), \mathcal{I}_K$) = $H^1(\mathcal{I}_K(m_1))$ vanishes, and there exist surjections

$$\mathcal{L}_1 = \mathcal{O}_{X_T}(-m_1)^{\oplus M_1} \longrightarrow \mathcal{E}', \quad \mathcal{L}_2 = \mathcal{O}_{X_T}(-m_1)^{\oplus M_2} \longrightarrow \mathcal{I}.$$

Then the maps

$$\operatorname{Hom}\left(\mathcal{L}_{1,K},\mathcal{L}_{K}\right)\to\operatorname{Hom}\left(\mathcal{L}_{1,K},\mathcal{E}_{K}\right)$$

are surjective. Let $\beta : \mathcal{E}'_K \to \mathcal{E}_K$ be a homomorphism, and let γ be the composition $\mathcal{L}_{1,K} \to \mathcal{E}'_K \to \mathcal{E}_K$; then γ lifts to a homomorphism $\delta : \mathcal{L}_{1,K} \to$

 \mathcal{L}_K , such that

$$(\delta, u_K \circ \alpha) : \mathcal{L}_{1,K} \oplus \mathcal{L}_{2,K} \to \mathcal{L}_K, \quad \beta : \mathcal{E}'_K \to \mathcal{E}_K$$

have the same cokernel. Hence $\mathbb F$ is contained in the family of classes of cokernels of homomorphisms of the form

$$\mathcal{O}_{X_K}(-m_1)^{\oplus (M_1+M_2)} \to \mathcal{O}_{X_K}(-m)^{\oplus M}.$$

Subdividing T again, we may suppose that

- (a) $f_T: X_T \to T$ is flat
- (b) $\mathcal{H}om_{\mathcal{O}_{X_T}}(\mathcal{E}', \mathcal{E})$ is flat over T
- (c) each of the sheaves $R^q(f_T)_* \mathcal{H}om_{\mathcal{O}_{X_T}}(\mathcal{E}', \mathcal{E})$ is flat over T
- (d) the formation of $\mathcal{G} = (f_T)_* \mathcal{H}om_{\mathcal{O}_{X_T}}(\mathcal{E}', \mathcal{E})$ commutes with arbitrary base changes $T' \to T$.

Now taking $R = \mathbb{V}(\mathcal{G}^{\vee})$, the scheme X_R supports a canonically defined "universal" exact sequence

$$\mathcal{E}'_R \to \mathcal{E}_R \to \mathcal{F} \to 0,$$

and \mathcal{F} bounds the family \mathbb{F} .

3 (b)-sheaves on $P = \mathbb{P}_k^N$

Let k be an algebraically closed field, and $P = \mathbb{P}_k^N$. Let \mathcal{F} be a coherent sheaf on P, with Hilbert polynomial

$$\chi(\mathcal{F}(n)) = \sum_{i=0}^{r} a_i \binom{n+i}{i},$$

and let $(c) = (c_0, \ldots, c_r)$ be a sequence of integers with $c_i \ge a_i$ for all *i*. Let

$$a_{m,i} = \sum_{j=0}^{r-i} a_{j+i} \binom{m-1+j}{j}, \quad c_{m,i} = \sum_{j=0}^{r-i} c_{j+i} \binom{m-1+j}{j}.$$

We see easily by induction on m that there is an identity between polynomials in x

$$\sum_{i=0}^{r} a_{m,i} \binom{x+i}{i} = \sum_{j=0}^{r} a_j \binom{x+m+j}{j}.$$
 (1)

Lemma 3.1 Under the above conditions, suppose there exists an exact sequence

$$0 \to \mathcal{I} \to \mathcal{O}_P^{\oplus M} \to \mathcal{F}(m) \to 0,$$

with $m \ge 0$. Then \mathcal{I} is p-regular with $p = P_r(c_{m,0}, \ldots, c_{m,r})$, where P_r is the r-th (b)-polynomial (definition 1.5). (Exp XIII,(6.2))

Proof: \mathcal{O}_P is a $(0, 0, \ldots, 0, 1)$ -sheaf, so \mathcal{I} is a $(0, \ldots, 0, M)$ -sheaf (since \mathcal{I} is a subsheaf of such a sheaf — apply Proposition 1.6). Also, we have a formula

$$\chi(\mathcal{I}(n)) = M\chi(\mathcal{O}_P(n)) - \chi(\mathcal{F}(m+n)) = M\binom{n+N}{N} - \sum_{i=0}^r a_{m,i}\binom{n+i}{i},$$

where the last equality is using the formula (1). The lemma now follows from Theorem 1.11. $\hfill \Box$

Proposition 3.2 Suppose \mathcal{F} is a coherent (b)-sheaf on $P = \mathbb{P}_k^N$ (k algebraically closed), with Hilbert polynomial

$$\chi(\mathcal{F}(n)) = \sum_{i=0}^{r} a_i \binom{n+i}{i}.$$

Then there exist universal polynomials in a_i , b_i and N bounding m, M, m_1 and M_1 such that there exist exact sequences

$$\mathcal{O}_P(-m_1)^{\oplus M_1} \to \mathcal{O}_P(-m)^{\oplus M} \to \mathcal{F} \to 0.$$

Further, the polynomial bounding⁴ M_1 does not involve N. (Exp. XIII, (6.3))

⁴This seems to be a typo, it should presumably be m_1 .

Proof: Let $m = P_{r-1}(c_0, \ldots, c_{r-1})$ with $c_i = b_i - a_i$, and let $M = \sum_i a_i \binom{m+i}{i}$. Then from Theorem 1.11 and Proposition 1.3, there is an exact sequence

$$0 \to \mathcal{I} \to \mathcal{O}_P^{\oplus M} \to \mathcal{F}(m) \to 0.$$

Now take $m_1 = m + p$ with $p = P_r(a_{m,0}, \ldots, a_{m,r})$ and

$$M_1 = M\binom{p+N}{N} - \sum a_i \binom{m_1+i}{i} \ (=\chi(\mathcal{I}(p))).$$

Theorem 3.3 Let \mathcal{F} be a coherent (b)-sheaf on $P = \mathbb{P}_k^N$ (k algebraically closed) with Hilbert polynomial

$$\chi(\mathcal{F}(n)) = \sum_{i=0}^{r} a_i \binom{n+i}{i}.$$

Suppose \mathcal{F} is a quotient of $\mathcal{O}_P(-m)^{\oplus M}$ for some m > 0. Let $b_i = P_{r-i}(c_{m,i}, \ldots, c_{m,r})$ for $i = 0, \ldots, r$, where P_s is the s-th (b)-polynomial, and $(c) = (c_0, \ldots, c_r)$ is a sequence of integers with $c_i \ge a_i$. Let $b = b_1 + m - 1$, and $B = \sum_{i=1}^r a_i {b+i \choose i}$. Then:

(i) \mathcal{F} is b-regular

(*ii*)
$$-B \le a_0 = h^0(\mathcal{F}(b)) - B$$

(iii)
$$\mathcal{F}$$
 is a (b_0,\ldots,b_r) -sheaf.

(Exp. XIII, (6.4))

Proof: Choosing a general section of $\mathcal{O}_P(1)$, one obtains a commutative diagram with exact rows and columns (with $Y \cong \mathbb{P}_k^{N-1}$)

Since (lemma 1.7)

$$\chi(\mathcal{G}(n)) = \sum_{i=0}^{r-1} a_{i+1} \binom{n+i}{i},$$

 \mathcal{J} is b_1 -regular, by lemma 3.1; hence $H^q(\mathcal{I}(p)) = 0$ for $q \ge 2$ and $p \ge b_1 - q$ (Proposition 1.4). The exact sequence

$$H^q(\mathcal{O}_P(p)^{\oplus M}) \to H^q(\mathcal{F}(m+p)) \to H^{q+1}(\mathcal{I}(p))$$

implies that $\mathcal{F}(m)$ is $(b_1 - 1)$ -regular. This gives (i).

Now (i) implies that

$$0 \le h^0(\mathcal{F}(b)) = \chi(\mathcal{F}(b)) = \sum_{i=0}^r a_i \binom{b+i}{i}.$$

This implies (ii). Then by the formula (1),

$$\chi(\mathcal{F}(b)) = \sum_{i=0}^{r} a_{m,i} {\binom{b_1 - 1 + i}{i}} \le b_1 + \sum_{i=0}^{r} c_{m,i} {\binom{b_1 - 1 + i}{i}}$$
$$= P_{r-1}(c_{m,1}, \dots, c_{m,r}) + \sum_{i=0}^{r} c_{m,i} {\binom{P_{r-1}(c_{m,1}, \dots, c_{m,r}) + i - 1}{i}}$$
$$= P_r(c_{m,0}, c_{m,1}, \dots, c_{m,r}) \text{by (1.5)}$$
$$= b_0 \text{ (by definition of } b_0).$$

Hence $h^0(\mathcal{F}(-1)) \leq h^0(\mathcal{F}(b)) \leq b_0$. By induction on r, we may assume \mathcal{G} is a (b_1, \ldots, b_r) -sheaf. Hence \mathcal{F} is a (b_0, \ldots, b_r) -sheaf. \Box

Lemma 3.4 Suppose \mathcal{F} is a coherent sheaf on P, and has no subsheaf supported at closed points.

- (i) If $h^0(\mathcal{F}) \ge 1$, then $h^0(\mathcal{F}(-1)) \le h^0(\mathcal{F}) 1$.
- (ii) $H^0(\mathcal{F}(-n)) = 0$ for $n \ge h^0(\mathcal{F})$.
- (iii) Suppose there exists an exact sequence

$$0 \to \mathcal{F}(-1) \to \mathcal{F} \to \mathcal{G} \to 0$$

and an integer $n_0 \geq 0$ such that $H^0(\mathcal{G}(-n_0)) = 0$. Then $h^0(\mathcal{F}(-n_0)) = 0$, and $h^0(\mathcal{F}) \leq n_0 h^0(\mathcal{G})$.

(Exp. XIII, (6.5))

Suppose $0 \neq \sigma \in H^0(\mathcal{F})$. Then $\sigma \cdot \mathcal{O}_X = \mathcal{F}' \hookrightarrow \mathcal{F}$ is a subsheaf Proof: with $s = \dim \operatorname{supp}(\mathcal{F}') \geq 1$. This gives rise to a diagram with exact rows and columns

$$\begin{array}{cccccccc} 0 & 0 & 0 \\ \downarrow & \downarrow & \downarrow \\ 0 \to \mathcal{F}'(-1) \xrightarrow{\cdot x} & \mathcal{F}' & \to \mathcal{G}' \to 0 \text{ (for a suitable } x \in H^0(\mathcal{O}_X(1))) \\ \downarrow & \downarrow & \downarrow \\ 0 \to \mathcal{F}(-1) \xrightarrow{\cdot x} & \mathcal{F} & \to \mathcal{G} \to 0 \end{array}$$

Since $s \ge 1$, $\mathcal{G}' \ne 0$. Hence $\mathcal{F}' \not\subset \mathcal{F}(-1)$, and so $\sigma \not\in H^0(\mathcal{F}(-1)) \subset H^0(\mathcal{F})$. This proves (i); now (ii) follows immediately. For (iii), note that

$$0 \le h^0(\mathcal{F}(n)) - h^0(\mathcal{F}(n-1)) \le h^0(\mathcal{G}(n))$$
(2)

If $n \ge n_0$, we get that $h^0(\mathcal{F}(-n_0)) = h^0(\mathcal{F}(-n))$, since $h^0(\mathcal{G}(-n_0)) = 0$. But by (ii), $h^0(\mathcal{F}(-n)) = 0$ for n >> 0. Hence $h^0(\mathcal{F}(-n)) = 0$ for all $n \ge n_0$. Also, for $p \ge 1$, we get from (2) that

$$h^{0}(\mathcal{F}(p-n_{0})) \leq h^{0}(\mathcal{G}(1-n_{0})) + \dots + h^{0}(\mathcal{G}(p-n_{0})) \leq ph^{0}(\mathcal{G}(p-n_{0})).$$

nis gives (iii).

This gives (iii).

Let \mathcal{F} be a coherent sheaf on P. For each integer $q \geq 1$, let \mathcal{N}_q be the largest subsheaf of \mathcal{F} with dim supp $(\mathcal{N}_q) < q$, and set $\mathcal{F}_q = \mathcal{F}/\mathcal{N}_q$.

Proposition 3.5 If \mathcal{F} is a coherent (b)-sheaf on \mathbb{P} , then \mathcal{F}_q is a $(b_{q-1}^{q}, b_{q-1}^{q-1}, \dots, b_{q-1}^{2}, b_{q-1}, b_{q}, \dots, b_{r})$ -sheaf. (Exp. XIII, (6.6)

A "general" section of $\mathcal{O}_X(1)$ gives rise to a commutative diagram Proof: with exact rows and columns

where \mathcal{G} is a (b_1, \ldots, b_r) -sheaf, and $\mathcal{G}'' = \mathcal{G}_{q-1}$ (this is "a question of depth").

Suppose q = 1. Then dim supp $(\mathcal{N}_q) = 0$, so that $H^1(\mathcal{N}_q(-1)) = 0$ and $\mathcal{G}' = 0$. Thus $h^0(\mathcal{F}_q(-1)) \leq h^0(\mathcal{F}(-1)) \leq b_0$, and $\mathcal{G} \cong \mathcal{G}''$. Hence \mathcal{F}_1 is a (b_0, \ldots, b_r) -sheaf (since \mathcal{G}'' is a (b_1, \ldots, b_r) -sheaf). Further, $h^0(\mathcal{F}_1(-b_0)) = 0$. If $q \geq 2$, we may suppose by induction that \mathcal{G}_{q-1} is a

 $(b_{q-1}^{q-1}, \dots, b_{q-1}^{2}, b_{q-1}, \dots, b_{r})$ -sheaf, and that $H^{0}(\mathcal{G}_{q-1}(-b_{q-1})) = 0$. Then by lemma 3.4, it follows that $H^{0}(\mathcal{F}_{q}(-b_{q-1})) = 0$, and $h^{0}(\mathcal{F}_{q}(-1)) \leq b_{q-1}^{q}$. \Box

Theorem 3.6 There exist 2 sequences of polynomials $\{A_i(x_0, \ldots, x_i; y)\}$ and $\{A_i^{(q)}(x_0, \ldots, x_q; y)\}$ with the following properties. Let \mathcal{F} be a coherent sheaf on $P = \mathbb{P}_k^N$ with Hilbert polynomial

$$\chi(\mathcal{F}(n)) = \sum_{i=0}^{r} a_i \binom{n+i}{i},$$

and let $(c) = (c_0, \ldots, c_r)$ be a sequence of integers with $a_i \leq c_i$. Assume \mathcal{F} is a quotient of $\mathcal{O}_P(-m)^{\oplus M}$ with $m \geq 0$.

(i) If \mathcal{F} is a (b_0, \ldots, b_r) -sheaf, then for $i = 0, \ldots, r$ we have $|a_i| \le A_{r-i}(b_i, \ldots, b_r; m).$

(ii) If

$$\chi(\mathcal{F}_q(n)) = \sum_{i=0}^r a_i^{(q)} \binom{n+i}{i}$$

is the Hilbert polynomial of \mathcal{F}_q , then for $i = 0, \ldots, q-1$ we have

 $|a_i^{(q)}| \le A_{r-i}^{(q)}(c_{q-1},\ldots,c_r;m).$

(Note that
$$a_{q-1}^{(q)} \le a_{q-1}$$
, and $a_q^{(q)} = a_q, \dots, a_r^{(q)} = a_r$.)

(Exp. XIII, (6.7))

Proof: Let $0 \to \mathcal{F}(-1) \to \mathcal{F} \to \mathcal{G} \to 0$ be an exact sequence such that \mathcal{G} is a (b_1, \ldots, b_r) -sheaf. We reason by induction on r, and suppose that A_0, \ldots, A_{r-1} have already been defined with the above properties, by

lemma 1.7. Now Proposition 1.8 and Theorem 3.3(ii) imply the existence of a polynomial A_r with

$$|a_0| \le A_r(b_0, \ldots, b_r; m).$$

This proves (i).

Now (ii) follows from Theorem 3.3(iii), Proposition 3.5 and the above assertion (i) applied with \mathcal{F}_q in place of \mathcal{F} .

Corollary 3.7 (Grothendieck) Let X be projective over a Noetherian scheme S, and $\mathcal{O}_X(1)$ very ample for X/S. Let \mathbb{F} be a family of classes of coherent sheaves on the fibres of X/S. Suppose:

- (a) there exists a coherent sheaf \mathcal{E} on X such that \mathcal{F} is contained in the family of classes of quotients of \mathcal{E}_K (notation as in §2).
- $(b)_q$ for the Hilbert polynomials $\chi(\mathcal{F}_K(n))$ of the $\mathcal{F}_K \in \mathbb{F}$, the coefficients in degrees $\geq q-1$ are bounded.

Then the $\mathcal{F}_F \in \mathbb{F}$ form a bounded family. In addition, the coefficients of $\chi(\mathcal{F}_K(n))$ in degrees $\geq q-2$ are bounded below. (Exp. XIII, (6.8))

Proof: We may evidently suppose $X = \mathbb{P}_S^N$, $\mathcal{E} = \mathcal{O}_X(-m)^{\oplus M}$. The first assertion results from Theorem 3.6(ii) and Theorem 2.1; the second follows by induction using an exact sequence

$$0 \to \mathcal{F}(-1) \to \mathcal{F} \to \mathcal{G} \to 0$$

and Theorem 3.6(ii).

Definition 3.8: Let k be a field. A special positive k-cycle of dimension r is a projective k-scheme X, with a very ample invertible sheaf $\mathcal{O}_X(1)$, which is a union of closed subschemes X_j , each of dimension r, where X_j is obtained by a base-change Spec $k \to \text{Spec } k_j$ from an integral k_j -scheme X'_j , together with $\mathcal{O}_{X'_j}(1)$. We call the coefficient a_r of the Hilbert polynomial

$$\chi(\mathcal{O}_X(n)) = \sum_{i=0}^r a_i \binom{n+i}{i} \text{ the degree of } X.$$

(Exp. XIII, (6.9))

Lemma 3.9 Let k be an algebraically closed field and X a special positive k-cycle of dimension r and degree d. Then \mathcal{O}_X is a $(0, 0, \ldots, 0, d)$ -sheaf. (Exp. XIII, (6.10))

Proof: Let $X \subset \mathbb{P}_k^N$ (using the invertible sheaf $\mathcal{O}_X(1)$). Replacing k by the algebraic closure of a pure transcendental extension, we may assume that there exist r(N+1) elements of k which are algebraically independent over each of the subfields $kj \subset k$ (involved in the definition 3.8). Then intersection with the corresponding r "generic" hyperplanes yields special positive kcycles of degree d (and dimensions ranging from r to 0). We now reason by induction; it suffices to note that for r = 0, we have $h^0(\mathcal{O}_X(-1)) = d$, and for $r \geq 1$, we have $H^0(\mathcal{O}_X(-1)) = 0$ (for the latter point, use the inclusion $\mathcal{O}_X \hookrightarrow \prod \mathcal{O}_{X_j}$ to reduce to the case when X is an integral scheme, in which case $H^0(\mathcal{O}_X)$ is a field).

Corollary 3.10 (i) Let r, d be integers, $c_i = A_{r-i}(0, \ldots, 0, d; 0)$ for $i = 0, \ldots, r$ (notation as in Theorem 3.6(i)), and let $p = P_r(c_0, \ldots, c_r)$ (c.f. definition 1.5). Let k be an algebraically closed field, and X a special positive k-cycle of dimension $\leq r$ and degree $\leq d$, with Hilbert

polynomial $\chi(\mathcal{O}_X(n)) = \sum_{i=0}^r a_i \binom{n+i}{i}$. Then for $0 \le i \le r$, we have $|a_i| \le c_i$.

Further, X can be embedded in \mathbb{P}_k^N with N = d(r+1) - 1, and defined there by (at most) $\binom{N+p}{p}$ equations of degree p.

(ii) (Chow) Let S be a Noetherian scheme. For K varying over the algebraically closed extension fields of k(s), $s \in S$, the special positive K-cycles of bounded dimension and degree form a "bounded family" (where the cycles X are considered as subschemes of a fixed \mathbb{P}_S^N , in an "evident abstract sense").

(Exp. XIII, (6.11))

Proof: In (i), the first assertion follows from Theorem 3.6(i); the second assertion follows from lemma 3.9 and Proposition 1.8(i), together with lemma 3.1 and Proposition 1.3, applied to the exact sequence

$$0 \to \mathcal{I} \to \mathcal{O}_P \to \mathcal{O}_X \to 0, \ P = \mathbb{P}_k^N$$

(ii) follows from (i) and Theorem 2.1.

Remark 3.11 (Exp. XIII, (6.12))

Let k be an algebraically closed field, X a projective k-scheme of dimension r, with no embedded associated prime cycle. If one admits nilpotent elements in an arbitrary fashion, one cannot bound the coefficients of the $\sum_{i=1}^{r} (n+i)$

Hilbert polynomial
$$\chi(\mathcal{O}_X(n)) = \sum_{i=0}^{n} a_i \binom{n+i}{i}$$
 solely in terms of a_r .

For example, let Z be a smooth projective curve of degree d in \mathbb{P}^3_k . For each n >> 0, there exists a smooth surface Y of degree n in \mathbb{P}^3_k with $Z \subset Y$. Then Z is a Cartier divisor on Y; let $\mathcal{O}_{X_n} = \mathcal{O}_Y/\mathcal{O}_Y(-2Z)$. From the exact sequence

$$0 \to \mathcal{O}_{X_n}(-Z) \to \mathcal{O}_{X_n} \to \mathcal{O}_Z \to 0,$$

and the formula $(Z \cdot Z)_Y = 2p_a(Z) - 2 - (n-4)d$, we have that $a_0 = \chi(\mathcal{O}_{X_n}(-1)) \to \infty$ as $n \to \infty$, while $a_1 = 2d$.

Corollary 3.12 Let \mathcal{F} be a coherent sheaf on $P = \mathbb{P}_k^N$, where k is an algebraically closed field, such that there exists an exact sequence

$$\mathcal{O}_P(-m_1)^{\oplus M_1} \to \mathcal{O}_P(-m)^{\oplus M} \xrightarrow{\alpha} \mathcal{F} \to 0$$

with $m_1 \ge m \ge 0$. Let

$$\chi(\mathcal{F}(n)) = \sum_{i=0}^{r} a_i \binom{n+i}{i}$$

be the Hilbert polynomial of \mathcal{F} . Then for $0 \leq i \leq N$, we have

$$|a_i| \le A_{N-i}(0, \dots, 0, M; m_1) + M\binom{m}{N-i}.$$

(Exp. XIII, (6.13))

Proof: If $\mathcal{I} = \ker \alpha$, then \mathcal{I} is a $(0, \ldots, 0, m)$ -sheaf (being a subsheaf of one), and has Hilbert polynomial

$$\chi(\mathcal{I}(n)) = \sum_{i=0}^{N} \left[M \binom{-m-1+N-i}{N-i} - a_i \right] \cdot \binom{n+i}{i}.$$

The corollary follows from Theorem 3.6(i) and the identity $\binom{-m-1+Q}{Q} = (-1)^Q \binom{m}{Q}$.

Corollary 3.13 (Hermann) For each $N \ge 0$, there exists a polynomial $R_N(x)$ such that for any field k_0 , an any ideal $I \subset k_0[T_1, \ldots, T_N]$ in the polynomial ring such that I is generated by elements of degree $\le m$, the radical \sqrt{I} is generated by elements of degree $\le R_N(m)$. (Exp. XIII, (6.14))

Proof: Let k be the algebraic closure of k_0 . Introduce an auxilliary variable T_0 , and consider the subscheme Y (respectively X) of $P = \mathbb{P}_k^N$ defined by the homogenization of I (respectively \sqrt{I}). Then for the Hilbert polynomial

$$\chi(\mathcal{O}_Y(n)) = \sum_{i=0}^N b_i \binom{n+i}{i},$$

we have $|b_i| \le A_{N-i}(0, ..., 0, 1; m)$, by corollary 3.12.

Let $X = \bigcup X^q$ be the decomposition according to dimension (*i.e.*, X^q is the union of the q-dimensional irreducible components). Then we claim $\deg(X^q) \leq e_q = P_{N-q}(c_q, \ldots, c_N)$. Indeed, intersecting X (respectively Y) by a "general" linear subspace of codimension q, we may assume q = 0. Then evidently

$$\deg(X^q) = h^0(\mathcal{O}_{X^q}) \le h^0(\mathcal{O}_{Y^q}) \le e_q,$$

where the last inequality is by Theorem 3.3(iii).

Consequently, \mathcal{O}_{X^q} is a $(0, \ldots, 0, e_q)$ -sheaf, by lemma 3.9. From the injection $\mathcal{O}_X \to \prod \mathcal{O}_{X^q}$, it follows that \mathcal{O}_X is an (e_0, \ldots, e_q) -sheaf. Hence the coefficients of the Hilbert polynomial $\chi(\mathcal{O}_X(n)) = \sum_{i=0}^r a_i \binom{n+i}{i}$ satisfy the estimate

$$|a_i| \le f_i = A_{N-i}(e_i, \dots, e_N; 0),$$

by Theorem 3.6. Then the ideal \sqrt{I} of X is $R_N(m)$ -regular, with $R_N(m) = P_N(f_0, \ldots, f_N)$; now we are done, by Proposition 1.3.