
TOPOLOGICAL AND ALGEBRAIC K-THEORY: AN
INTRODUCTION

V. SRINIVAS

These lectures give a brief introduction to two related topics: topological (com-
plex) K-theory and algebraic K-theory1.

1. Topological K-Theory

Basic references for this section are:

(1) M. F. Atiyah, K-Theory, Benjamin (1967).
(2) D. Husemoller, Fibre Bundles (Second Ed.), Grad. Texts in Math. 20,

Springer-Verlag (1966).

For simplicity, we will restrict the category of topological spaces considered to
the category of finite CW complexes, unless stated otherwise; in particular, these
are compact Hausdorff spaces. Recall that for such spaces, we have the following
results from point-set topology:

Theorem 1.1. (a) (Tietze extension theorem) If X is a compact Hausdorff
space, A ⊂ X a closed subset, and f : A → Rn a continuous function,

then f can be extended to a continuous function f̃ : X → Rn.
(b) (Partititons of unity) Let {Ui}ni=1 be an open cover of X. Then there exist

continuous functions ui : X → [0, 1] with the following properties: (i)
¯{ui(x) 6= 0} ⊂ Ui for each i = 1, . . . , n (ii) u1(x) + · · ·+ un(x) = 1 for all

x ∈ X.

A collection of functions {ui} as in (b) above is called a continuous partition of
unity on X subordinate to the open covering {Ui}. If Vi = {x ∈ X | ui(x) > 0},
then {Vi} is also an open covering of X, such that V̄i ⊂ Ui; we call such an open
cover {Vi} a shrinking of {Ui}.

1.1. Vector bundles.

Definition 1.2. Let k = R or C. A k-vector bundle of rank r on a connected2

topological space X is a space E, together with a continuous map p : E → X,
such that “locally on X, E is the product space X × kr”, i.e., there is an open
cover {Ui} of X and homeomorphisms ϕ : p−1(Ui)→ Ui × kn such that

(i) ϕi is compatible with projection to Ui, i.e., ϕi(x) = (p(x), ϕ̃i(x)) for all
x ∈ p−1(Ui) for some (continuous) function ϕ̃i : p−1(Ui)→ kn

Lectures at an Instructional Workshop on Cyclic Homomolgy, Panjab University, Chandi-
garh, April, 1995.

1However, the algebraic K-theory notes were not typeset in the end.
2A vector bundle on a non-connected space may have a varying, but locally constant, rank.
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2 V. SRINIVAS

(ii) for each x ∈ Ui ∩ Uj, the composite homeomorphism

Aij(x) : kn
ϕ̃−1
i−→ p−1(x)

ϕ̃j−→ kn

is a linear isomorphism kn → kn, i.e., Aij(x) ∈ GL n(k).

Here another such collection of data {(Vj, ψj)} defines the same vector bundle
structure on E if {(Ui, ϕi)} ∪ {(Vj, ψj)} defines a vector bundle structure on E.
Note that for any x ∈ Ui, the homeomorphism ϕ̃i : p−1(x) → kn may be used
to give p−1(x) the structure of a k-vector space of dimension r. Since Aij are
linear isomorphisms, we see that for x ∈ Ui ∩ Uj, the vector space structures on
p−1(x) induced by ϕ̃i and ϕ̃j agree. We call the k-vector space p−1(x) the fibre of
p : E → X over x, and may also denote it by Ex.

Since ϕi are all homeomorphisms, the matrix valued functions Aij : Ui ∩ Uj →
GL n(k) are continuous, and from the definitions, we verify that they satisfy the
condtitions

(a) for all x ∈ Ui, Aii(x) is the identity
(b) for all x ∈ Ui ∩ Uj, we have Aji(x) = gij(x)−1, the matrix inverse
(b) for all x ∈ Ui ∩Uj ∩Uk, we have a matrix identity Aik(x) = Ajk(x)Aij(x),

where the expression on the right denotes the product of matrices.

Conversely, given an open cover {Ui} of X and a collection of continuous matrix-
valued functions Aij : Ui ∩ Uj → GL r(k) satisfying (a), (b), (c) one can define a
vector bundle E as follows: let ∼ be the equivalence relation on the disjoint union∐

i Ui × kn generated by (x, v) ∼ (x,Aij(x)v) for all x ∈ Ui ∩ Uj; let p : E → X
be induced by the projections Ui×kn → Ui. One verifies at once that the natural
map Ui × kn → E is a homeomorphism onto its image p−1(Ui), whose inverse
may be taken as ϕi.

Definition 1.3. If p : E → X, q : F → X are vector bundles on X, a morphism
of vector bundles f : E → F is a continuous map f such that (i) p = q ◦
f : E → X, and (ii) for each x, the induced map on fibres Ex → Fx is a k-
linear transformation. If f is also a homeomorphism, then we say that it is an
isomorphism of vector bundles.

Example 1.4. (The trivial bundle) E = X × kn, p : E → X is the projection.

Thus, in the definition of a vector bundle, the map ϕi (or ϕ̃i) is called a
trivializations of the bundle p : E → X over the open set Ui.

Example 1.5. (Möbius band) Let k = R, X = S1 (the unit circle in R2), M =
Möbius band , p : M → S1 is the projection onto the “equator” of M . We

may regard S1 as the identification space of the unit interval [0, 1] modulo the
identification of its end points 0, 1; the identification map [0, 1]−−→→ S1 can be
taken to be t 7→ (cos 2πt, sin 2πt). Then M is the identification space of [0, 1]×R,
modulo the identification of {0}×R with {1}×R given by (0, s) ∼ (1,−s). Since
this identification is via a linear isomorphism R → R, we see that p : M → S1

(induced by the second projection [0, 1]× R→ R) is an R-vector bundle of rank
1.
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The Möbius band p : M → S1 of Example 1.5 can be seen to be not isomorphic
to the trivial bundle S1 × R. Indeed, for any k-vector bundle p : E → X, there
is a continuous mapping 0E : X → E given by 0E(x) = 0Ex , where 0Ex ∈ Ex
is the 0-element of the fibre vector space Ex. This map satisfies p ◦ 0E = 1X ,
the identity map of X. Now if f : S1 × R → M is an isomorphism of vector
bundles, it maps the image of 0S1×R homeomorphically to the image of 0M . Hence
it induces a homeomorphism between the complements of these images. But
S1 × R − im(0S1×R) = S1 × (R − {0}) is disconnected, while M − im(0M) is
connected (verify!).

Example 1.6. Let M ⊂ RN be an n-dimensional C∞ differentiable submanifold.
For each x ∈M , we have

TxM = tangent space to M at x
= {v ∈ RN | the line {x+ tv | t ∈ R} is tangent to M},

TM = {(x, v) ∈M × RN | v ∈ TxM}.
Then we have the following facts:

(i) TxM is a real vector subspace of RN of dimension n, for each x ∈M
(ii) p : TM → M , p(x, v) = x, gives TM the structure of a vector bundle of

rank n on M , such that the vector space structure on the fibre (TM)x =
{x} × TxM is that given on TxM ⊂ RN .

The idea of the proof is as follows. For each x ∈ M , there is a neighbourhood
U of x in RN , and C∞ functions f1, . . . , fN−n on U such that (a) U ∩M = {y ∈
U | f1(y) = · · · = fN−n(y) = 0}, and (b) for any x ∈ M ∩ U , the Jacobian

matrix J(f)(x) =
[
∂fj
∂xi

(x)
]

has maximal rank N − n. Then one sees that TxM =

ker J(f)(x).
Now after permuting the coordinates, if we write J(f)(x) = [A,B] where

the submatrix A =
[
∂fj
∂xi

(x)
]

1≤i,j≤N−n
has rank N − n, then Rn → ker J(f)(x),

v 7→
(
A−1Bv
v

)
is a linear isomorphism; the inverse isomorphism gives a trivi-

alization of TM over U ∩M .

Remark 1.7. In the above example, one sees that for an open cover {Ui} of M by
open sets of the type described, the transition functions Aij : Ui ∩Uj → GL n(R)
are C∞ functions. We express this by saying that p : TM → M is a C∞ vector
bundle.

Definition 1.8. A section of a k-vector bundle p : E → X is a continuous map
s : X → E such that p ◦ s : X → X is the identity map. Let Γ(X,E) denote the
set of sections of E.

For example, the map 0E : X → E described earlier, given by 0E(x)0Ex , is
a section, called the zero section (or 0-section) of p : E → X. A section of the
trivial bundle s : X × kr → X is essentially just a vector valued continuous
function f : X → kr; here f corresponds to the section x 7→ (x, f(x)). Thus a
section of an arbirary vector bundle may be viewed, locally on X, as a vector
valued function.
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The vector space structures on the fibres Ex of a vector bundle p : E → X
determine on Γ(X,E) a natural structure of a module over the ring Ck(X) of
k-valued continuous functions on X, given by (a · s)(x) = a(x) · s(x) for any
a ∈ Ck(X), s ∈ Γ(X,E); here f(x) ∈ k, and f(x) · s(x) denotes the scalar
multiplication for the k-vector space structure on Ex. If p : E → X, q : F → X
are k-vector bundles, and f : E → F is a morphism of vector bundles, then
s 7→ f ◦ s induces a homomorphism of Ck(X)-modules f∗ : Γ(X,E)→ Γ(X,F ).

Theorem 1.9. (Swan) There is an equivalence of categories between k-vector
bundles on a “good” topological space X and finitely generated projective modules
over the ring Ck(X), given by (p : E → X) 7→ Γ(X,E). (Here “good” includes
the case when X is a compact Hausdorff space.)

Proof. (Sketch) Let {Ui}ni=1 be an open cover on which there are trivializations
ϕi : p−1(Ui)→ Ui× kr. Let sij : Ui → p−1(Ui) be such that ϕi ◦ sij : Ui → Ui× kr
corresponds to the j-th coordinate function on kr. Choose a partition of unity
(see Theorem 1.1(b)) ui subordinate to the open cover {Ui}. Define

s̃ij(x) =

{
ui(x)sij(x) if x ∈ Ui

0Ex if x 6∈ Ui
One checks at once that s̃ij is continuous, so that s̃ij ∈ Γ(X,E) for all i, j. Now
define a morphism of vector bundles

Φ : X × krn → E,

Φ(x, {aij}1≤i≤n,1≤j≤r) =
∑

aij s̃ij(x).

If Vi = {x ∈ X | ui(x) > 0}, so then {Vi} is also an open covering of X,
shrinking {Ui}; for x ∈ Vi, the map kr → Ex, (a1, . . . , ar) 7→

∑r
j=1 aj s̃ij(x) =

ui(x)
∑

j ajsij(x), which is an isomorphism of k-vector spaces, since sij(x) is a

basis for Ex, and ui(x) ∈ k is a non-zero scalar. Hence Φ : X × krn → E is a
surjection.

We claim the surjective bundle morphism Φ is split. Equivalently, there is
an injective bundle map Ψ : E → X × krn such that the composition Φ ◦ Ψ :
E → E is the identity. We prove this as follows. If k = R, let < , > denote
a positive definite inner product on krn; if k = C, let < , > denote a positive
definite Hermitian inner product on krn. For each x ∈ X, the k-linear surjection

Φx : krn ∼= {x} × krn−−→→ Ex induces an isomorphism αx : ker(Φx)
⊥ ∼=−→ Ex. Let

Ψx : Ex → {x}×krn be the inverse isomorphism α−1
x , composed with the inclusion

ker(Φx)
⊥ ↪→ {x}× krn. We leave it to the reader to check that Ψ : E → X × krn,

Ψ(y) = Ψp(y)(y) is continuous, and defines the desired splitting of Φ.
This implies that Γ(X,E) is a direct summand of Γ(X,X × krn) = Ck(X)rn as

a Ck(X)-module. �

1.2. Operations on vector bundles. The usual operations on finite dimen-
sional vector spaces which are familiar from linear algebra carry over to similar
operations on vector bundles. Examples are given by the direct sum, tensor prod-
uct, dual, Hom, and the exterior and symmetric powers. These are defined on the
trivial bundle X × kn through the standard operation on kn, and may be defined
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for an arbitrary bundle using local trivializations. We then recover the standard
operations on the fibres. Equivalently, applying the equivalence Γ(X,−), these
correspond to the standard operations on finitely generated projective Ck(X)-
modules.

Example 1.10. (i) If E → X, F → X are vector bundles, then (E ⊕F )x =
Ex ⊕ Fx, where the right side denotes the vector space direct sum of the
k-vector spaces Ex and Fx.

(ii) Hom(E,F )x = Homk(Ex, Fx), and Hom(E,F ) is the vector bundle whose
module of sections Γ(X,Hom(E,F )) is the Ck(X)-module of Ck(X)-module
homomorphisms Γ(X,E) → Γ(X,F ). If E∨ is the dual k-vector bundle,
so that (E∨)x = (Ex)

∨, then for any vector bundle F , we have a natural
isomorphism of vector bundles E∨ ⊗ F ∼= Hom(E,F ).

(iii) (E∨)∨ ∼= E for any vector bundle E.

(iv)
n
∨ E = 0 for n > rankE.

Definition 1.11. An inner product on E is a symmetric bundle morphism E ⊗
E → X × k. If k = R, the inner product is called positive definite if the induced
inner product Ex ⊗R Ex → R on each fibre is positive definite. In a similar way,
we can define the notion of a Hermitian inner product on a C-vector bundle.

Remark 1.12. As part of the proof of Theorem 1.9, it has been shown that every
k-vector bundle on a compact Hausdorff space is a subbundle of a trivial bundle
of finite rank; thus every real vector bundle on such a space carries a positive
definite inner product. Similarly every complex vector bundle carries a positive
definite Hermitian inner product. Hence any injective bundle morphism E → F
on such a space X is split.

Definition 1.13. If f : Y → X is a continuous map, and p : E → X is a k-vector
bundle of rank r, then the pullback f ∗E = Y ×X E → Y is also a k-vector bundle
of rank r. Here Y ×X E = {(y, z) ∈ Y × E | f(y) = p(z)}.

Remark 1.14. The operation of pullback preserves the above operations on
vector bundles (direct sums, Hom, duals, tensor, exterior and symmetric prod-
ucts, etc.). On the level of modules, there is a corresponding homomorphism
f ∗ : Γ(X,E) → Γ(Y, f ∗E); if f ∗ : Ck(X) → Ck(Y ) is the ring homomorphism
given by g 7→ g ◦ f , then Γ(X,E) → Γ(Y,E) is Ck(X)-linear, and the induced
Ck(Y )-linear map Γ(X,E)⊗Ck(X)Ck(Y )→ Γ(Y, f ∗E) is an isomorphism. Notice
that if f : Y ↪→ X is the inclusion of a subset, then f ∗E ∼= p−1(Y ); the homo-
morphism f ∗ : Γ(X,E)→ Γ(Y, f ∗E) is then given by restriction of functions.

Proposition 1.15. If f, g : Y → X are homotopic maps, then for any bundle
p : E → X, the bundles f ∗E → Y and g∗E → Y are isomorphic.

Proof. We make use of a simple lemma.

Lemma 1.16. Let i : A → X be the inclusion of a closed subset. Then for
any vector bundle p : E → X, the restriction map i∗ : Γ(X,E) → Γ(A, i∗E) is
surjective.
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Proof. For the trivial bundle, this follows from the Tietze extension theorem
(Theorem 1.1(a)). Since any vector bundle is a direct summand of a trivial
bundle, we reduce immediately to the special case. �

Now let H : Y × I → X be a homotopy between f and g, where I = [0, 1] is
the unit interval. Let p1 : Y ×I → Y be the projection. For t ∈ I, let ft : Y → X
be the map ft(y) = H(y, t); then f0 = f , and f1 = g.

We claim that for each t ∈ I, there is a neighbourhood Vt of t ∈ I such that
for all t′ ∈ T , we have an isomorphism of vector bundles f ∗t E

∼= f ∗t′E. If we
grant the claim, a finite number of these open subsets cover I, and it is then
clearly possible to find a sequence t0 = 0 < t1 < · · · < tn = 1 in I such that
we have isomorphisms f ∗tiE

∼= f ∗ti+1
E for 0 ≤ i < n; the comnposition of these

isomorphisms is the desired one.
To prove the claim, consider the vector bundle F = Hom(H∗E, p∗1f

∗
t E) on

Y × I. If it : Y ∼= Y ×{t} ↪→ Y × I is the inclusion, then i∗tF
∼= Hom(f ∗t E, f

∗
t E).

By lemma 1.16, the identity endomorphism of f ∗t E extends to a global sec-
tion s ∈ Γ(Y, F ). The subset Iso (H∗E, p∗1f

∗
t E) ⊂ Hom(H∗E, p∗1f

∗
t E) = F is

an open subset, where the fibre over z ∈ Y × I of Iso (H∗E, p∗1f
∗
t E) is the set

Iso (H∗E, p∗1f
∗
t E)z of vector space isomorphisms of (H∗E)z with (p∗1f

∗
t E)z. Hence

s−1(Iso (H∗E, p∗1f
∗
t E)) is an open subset of Y × I containing Y × {t}; hence it

also contains an open subset of the form Y ×Vt for some (relatively) open interval
Vt ⊂ I containing t. Now for t′ ∈ Vt, the restriction of s to Y × {t′} gives the
desired isomorphism, proving the claim. �

1.3. Classifying maps to Grassmannians. For n ≤ m, let Gk(n,m) denote
the Grassmannian of n-dimensional subspaces of km. For k = R, fix the standard
Euclidean inner product on Rm; for k = C, fix the standard positive definite
Hermitian inner product on Cm. In each case, the standard basis vectors form
an orthonormal basis. We can then make identifications

GR(n,m) = O(m)/O(n)×O(m− n), GC(n,m) = U(m)/U(n)× U(m− n)

as homogeneous spaces for the orthogonal group O(m) and the unitray group
U(m), respectively. We have a tautological k-vector bundle νn,m → Gk(n,m),
whose fibre (νn,m)x is {x}×V , where V ⊂ km is the subspace of dimension n cor-
responding to the point x ∈ Gk(n,m). The orthogonal projection of Gk(n,m)×km
onto the subbundle νn,m gives us m tautological sections s1, . . . , sm of νn,m.

If p : E → X is a vector bundle of rank n, and s1, . . . , sm are sections which
give rise to a surjective bundle morphism ψ : X × km → E, we say that the
sections sj generate E. In this situation, the map fψ : X → Gk(n,m), given by
x 7→ [ker(ψx)

⊥], is easily seen to be continuous. Further, by construction, we see
that there is a natural identification f ∗ψνn,m

∼= E with f ∗ψ(si) = si.
Let Gk(n) = lim

−→
m

Gk(n,m), induced by in,m : Gk(n,m) ↪→ Gk(n,m + 1), given

by km ↪→ km ⊥ k = km+1, v 7→ (v, 0).

Lemma 1.17. Let p : E → X, ψ are as above, s ∈ Γ(X,E). Suppose ψ′ :
X × km+1 → E is given by {s1, . . . , sm, s}. Then ψ′ is homotopic to in,m ◦ ψ :
X → Gk(n,m+ 1).
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Proof. If pX : X×I → X is the projection, then p∗XE has sections p∗X(s1), . . . , p∗X(sm), tp∗X(s)
which yield a bundle surjection (X×I)×km+1−−→→ p∗XE. The corresponding map
H : X × I → Gk(n,m+ 1) yields the desired homotopy. �

Theorem 1.18. The homotopy class of the map f̃ψ : X
ψ−→ Gk(n,m) ↪→ Gk(n)

depends only on the vector bundle E; the association E 7→ [f̃ψ] gives a bijection
between the sets

Vect n(X) = isomorphism classes of (k-)vector bundles of rank n on X

and

[X,Gk(n)] = homotopy classes of maps X → Gk(n).

Proof. If s1, . . . , sl and t1, . . . , tm are two sets of sections generating E, then the
corresponding maps f : X → Gk(n, l), g : X → Gk(n,m) yield homotopic maps

into Gk(n, l+m+1). Indeed, first consider the the maps f̃ : X → Gk(n, l+m), g̃ :
X → Gk(n, l+m) arising (respectively) from the sets of sections s1, . . . , sl, 0, . . . , 0
(with m zeroes) and t1, . . . , tm, 0, . . . , 0 (with l zeroes); the first map is induced
by f , and the second by g. By the above lemma and induction, these two maps
X → Gk(n, l+m) are respectively homotopic to the maps F : X → Gk(n, l+m),
G : X → Gk(n, l+m) corresponding to the sets of sections s1, . . . , sl, t1, . . . , tm and
t1, . . . , tm, s1, . . . , sl. Now F and G are related by translation by a permutation
matrix in GL l+m(k), for the natural action of GL l+m(k) on Gk(n, l + m). For
k = C, this permutation matrix is in U(l + m), which is path connected; a path
in U(l + m) from the identity element to this permutation yields a homotopy
between F and G. If k = R, then the permutation is an element of O(l + m),
which need not be connected. But then the linear map kl+m+1 → kl+m+1 which is
the given permutation on the first l +m cordinates, and is multiplication by the
sign of the permutation on the l+m+1-st coordinate, is an element in the identity
component of O(l+m+ 1), hence again can be joined to the identity element by
a path in O(l + m + 1). Thus the maps X → Gk(n, l + m + 1) induced by f , g
are homotopic. Hence there is a well-defined map α : Vect n(X)→ [X,Gk(n)].

Conversely, assume given a continuous map ψ : X → Gk(n). Since X is
compact, we have ψ(X) ⊂ Gk(n,m) for some m. Then E = ψ∗νn,m is generated
by the sections ψ∗(s1), . . . , ψ∗(sm), and the corresponding map X → Gk(n,m) is
just ψ itself. Two homotopic maps yield isomorphic bundles on X, by lemma 1.15.
This gives a well-defined map β : [X,Gk(n)] → Vect n(X). It is clear from the
definitions that the two maps α, β are inverse to each other. �

Remark 1.19. The bijections α and β are natural (functorial), in the sense that
if f : Y → X is a continuous map, the map f ∗ : Vect n(X)→ Vect n(Y ), [E] 7→
[f ∗E], corresponds to the map [X,Gk(n)] → [Y,Gk(n)], (ψ : Y → Gk(n)) 7→
(ψ ◦ f : X → Gk(n)). In more abstract language, we say that the space Gk(n)
represents the functor Vect n(−) (on the category of compact Hausdorff spaces).
This is actually a slight abuse of terminology, since the “representing object”,
namely Gk(n), is not itself a compact Hausdorff space.
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Thus if E is any k-vector bundle of rank n on X, so that we have an element
[E] ∈ Vect n(X), then we get an associated ring homomorphism

[E]∗ : H∗(Gk(n), A)→ H∗(X,A)

on cohomology rings, for any coefficient ring A; images inH∗(X,A) of cohomology
classes in H∗(Gk(n), A) are called the characteristic classes of E in H∗(X,A).
From the above remark 1.19, it follows that if θ(E) ∈ H∗(X,A) is a characteristic
class for a vector bundle E on X, and if f : Y → X is a continuous map,
then θ(f ∗E) = f ∗θ(E), where on the right, f ∗ denotes the ring homomorphism
H∗(X,A)→ H∗(Y,A).

In view of the above, it is interesting to compute the cohomology ringH∗(Gk(n), A)
for various rings A; each such computation leads to a “theory of characteristic
classes” for vector bundles.

1.4. Cohomology rings of Grassmannians, and characteristic classes.
We first state a result giving a computation of the cohomology ring of Gk(n) in
the most important cases. Other results can be deduced from these, using the
universal coefficient theorem.

Theorem 1.20. (a) H1(GC(n),Z) = Z[c1, c2, . . . , cn] is a graded polynomial
algebra in n variables, where ci ∈ H2i(Gk(n),Z) is homogeneous of degree
2i. For any C-vector bundle E of rank n, we call ci(E) := [E]∗(ci) the
i-th Chern class of E.

(b) H∗(GR(n),Z[1
2
]) = Z[1

2
][p1, . . . ,p[n

2
]] is a graded polynomial algebra, where

pi is homogeneous of degree 4i. For any R-vector bundle of rank n, we
call pi(E) := [E]∗(pi) the i-th Pontryagin class of E.

(c) H∗(GR(n),Z/2Z) = (Z/2Z)[w1, . . . ,wn] is a graded polynomial algebra,
where wi is homogeneous of degree i. For any R-vector bundle E of rank
n, we call wi(E) := [E]∗(wi) the i-th Stiefel-Whitney class of E.

We now sketch a proof of parts (a) and (c) of this theorem. We begin with the
following result; recall that Pnk = Gk(1, n+1) is the projective space of dimension
n over k, parametrizing the set of lines in the vector space kn+1.

Theorem 1.21. (1) For n ≥ 1, we have H∗(PnC,Z) = Z[x]/(xn+1), where x is
a homogeneous element of degree 2. Further, H∗(P∞C ,Z) = H∗(GC(1),Z) =
Z[x] is a graded polynomial algebra in 1 variable x of degree 2.

(2) For n ≥ 1, we have H∗(PnR,Z/2Z) = (Z/2Z)[y]/(yn+1), where y is a
homogeneous element of degree 1. Further, H∗(P∞R ,Z/2Z) = (Z/2Z)[y] is
a graded polynomial algebra in 1 variable, with deg y = 1.

Proof. (Sketch) In both cases, the results for the finite dimensional projective
spaces Pn, and the compatibility with natural inclusions Pn−1 ↪→ Pn, will imply
the result for the infinite projective spaces. So we will only discuss the finite
dimensional cases.

Proof of (1): We may consider PnC as the quotient space of Cn+1−{0}modulo
the diagonal action of the multiplicative C∗, or equivalently, as the quotient of
the unit sphere S2n+1 ⊂ Cn+1 modulo the action of the unit circle S1 ⊂ C∗.
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The inclusion Cn ↪→ Cn+1, as the subspace with vanishing last coordinate,
induces an inclusion Pn−1

C ↪→ PnC; the complement is the homeomorphic image
of Cn × {1} ⊂ Cn+1 − {0} under the quotient map Cn+1 − {0} → PnC. This
implies that the quotient space PnC/P

n−1
C (obtained by collapsing Pn−1

C to a point)
is homeomorphic to the one-point compactification of Cn, which is S2n. By
induction and the long exact sequence for the cohomology of the pair (PnC,P

n−1
C ),

we deduce that

H i(PnC,Z) =

{
Z if i = 2j with 0 ≤ j ≤ n,
0 otherwise.

It remains to show that if x is a generator of H2(PnC,Z), then xj is a generator
of H2j(PnC,Z) for 2 ≤ j ≤ n (that x satisfies the relation xn+1 = 0 is clear, since
xn+1 ∈ H2n+2(PnC,Z) = 0). This can be deduced by induction on n, and the
Poincaré duality theorem, as follows. For n = 1 there is nothing to prove. If
i : Pn−1

C → PnC is the inclusion, then the exact sequence for the pair (PnC,P
n−1
C )

actually implies that i∗ : Hj(PnCZ)→ Hj(Pn−1
C ,Z) is an isomorphism for j < 2n.

Thus i∗x generates H2(Pn−1
C ,Z), and if (i∗x)j = i∗(xj) generates H2j(Pn−1

C ,Z),
then xj generates H2j(PnC,Z) for 1 ≤ j ≤ n − 1. If we choose a generator
y ∈ H2n(PnC,Z) ∼= Z (corresponding to an orientation on the compact manifold
PnC), then since xn−1 is a generator of H2n−2(PnC,Z) ∼= Z, Poincaré duality implies
that there exists an element z ∈ H2(PnC,Z) = Zx such that z ∪ xn−1 = y. Since
z = m · x for some integer m, we have that m · xn = y. Since y is a generator of
H2n(PnC,Z) ∼= Z, we must have m = ±1, and xn is also a generator of H2n(PnC,Z).

Proof of (2): This is along similar lines, using the description of PnR as the
quotient Rn+1 − {0}/R∗ = Sn/(Z/2Z), where the generator of Z/2Z acts on
Sn by the antipodal map x 7→ −x. Again Pn−1

R ↪→ PnR with quotient space
PnR/P

n−1
R homeomorphic to the 1-point compactification of Rn, namely Sn. This

gives H i(PnR,Z/2Z) = 0 for i > n. Further, Sn is simply connected, and the
quotient map Sn → PnR is a covering space; hence PnR has fundamental group
Z/2Z. The long exact sequence of cohomology groups with Z/2Z-coefficients
for the pair (PnR,P

n−1
R ) implies that if i : Pn−1

R → PnR is the inclusion, then i∗ :
Hj(PnR,Z/2Z) → Hj(Pn−1

R ,Z) is an isomorphism for j < n − 1, and yields an
exact sequence

0→ Hn−1(PnR,Z/2Z)
i∗−→ Hn−1(Pn−1

R ,Z/2Z)→ Hn(Sn,Z/2Z)→ Hn(PnR,Z/2Z)→ 0.

Here Hn(Sn,Z/2Z) ∼= Z/2Z and Hn(PnR,Z/2Z) ∼= Z/2Z since Sn and PnR are com-
pact connected n-manifolds; this implies that i∗ : Hn−1(PnR,Z/2Z)→ Hn−1(Pn−1

R ,Z/2Z)
is an isomorphism. Now Poincaré duality and induction imply as before that if
x ∈ H1(PnR,Z/2Z) ∼= Z/2Z is a generator, then xj is a generator of Hj(PnR,Z/2Z)
for each 1 ≤ j ≤ n.

�

Remark 1.22. As a consequence, we may define the following characteristic
classes associated to line bundles (i.e., vector bundles of rank 1), as follows. If
p : L → X is a complex line bundle, and [L] : X → P∞C is a classifying map,
then define [L]∗(x) = c1(L), where x ∈ H2(P∞C ,Z) is the following generator: the
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inclusion i : P1
C ↪→ P∞C induces an isomorphism i∗ : H2(P∞C ,Z)→ H2(P1

C,Z); now
P1
C is homeomorphic to the 2-sphere S2, and H2(S2,Z) has a standard generator y

(corresponding to te standard orientation of S2), and we take x to be the generator
of H2(P∞C ,Z) to be the generator such that i∗x = y. Similarly, H1(P∞R ,Z/2Z) =
Z/2Z has a unique generator z; for any real line bundle L→ X, define w1(L) =
[L]∗(z) for a classifying map [L] : X → P∞R .

We claim that for any two complex line bundles L1, L2, we have c1(L1⊗L2) =
c1(L1) + c1(L2). Using suitable classifying maps for L1 and L2, we reduce to
proving this in the following special case: X = PmC × PnC, L1 = p∗1ν1,m+1, L2 =
ν1,n+1 where pi, i = 1, 2 are the two projections, and ν1,r+1 → PrC = GC(1, r + 1)
denotes the tautological line bundle, for any r. Now the natural map

H2(PmC ,Z)⊕H2(PnC,Z)
p∗1+p∗2−→ H2(PmC × PnC,Z)

is an isomorphism, from the Künneth formula. For any point (P,Q) ∈ PmC × PnC,
if iQ : PmC → PmC × PnC is given by t 7→ (t, Q), and if iP : PnC → PmC × PnC is given
by s 7→ (P, s), then iP , iQ are inclusions such that p1 ◦ iQ = 1Pm , p2 ◦ iP = 1Pn ,
while the other two composites p1 ◦ iP and p2 ◦ iQ are constant maps, and hence
induce 0 on cohomology. Thus

i∗P : H2(PmC × PnC,Z)→ H2(PnC,Z),

i∗Q : H2(PmC × PnC,Z)→ H2(PmC ,Z)

are the two projections corresponding to the isomorphism p∗1 + p∗2 considered
above. Now i∗Q(L1 ⊗L2) ∼= ν1,m+1 and i∗P (L1 ⊗L2) ∼= ν1,n+1; hence c1(L1 ⊗L2) is

the unique element of H2(PmC ×PnC,Z) which projects to c1(ν1,m+1) and c1(ν1,n+1);
this element is clearly p∗1(c1(ν1,m+1))+p∗2(c1(ν1,n+1)), which is just c1(L1)+c1(L2).

By an analogous argument, we also have w1(L1 ⊗ L2) = w1(L1) + w1(L2) for
any real line bundles L1, L2 on X.

Recall that if p : E → X is a k-vector bundle of rank r, then we may form
the associated projective bundle π : P(E)→ X, where P(E) is the quotient space
(E−0E(X))/k∗ for the action of k∗ by scalar multiplication on each fibre Ex. Thus
the fibre over x ∈ X of P(E)→ X is the projective space P(Ex) ∼= Pr−1

k , which is
the space of lines (1-dimensional k-vector subspaces) in Ex. There is an associated
tautological line bundle on P(E), which restricts on each fibre P(Ex) ∼= Pr−1

k to the
tautological line bundle ν1,r; it is a subbundle of π∗E. Following the notation in
algebraic geometry, we denote the tautological line bundle on P(E) by OP(E)(−1).

In the next theorem, the reader should keep in mind that (i) though the graded
cohomology rings with Z-coefficients may be non-commutative, homogeneous ele-
ments of even degree are central (ii) cohomology rings with Z/2Z are always com-
mutative. This follows from the general commutation formula x∪y = (−1)pqy∪x,
for homogeneous elements x, y of degrees p, q respectively.

Theorem 1.23. (Leray-Hirsch)

1) Let p : E → X be a complex vector bundle of rank n, and π : P(E)→ X
the associated Pn−1

C -bundle, with tautological line subbundle OP(E)(−1) ↪→
π∗E. Let ξ = c1(OP(E)(−1)) ∈ H2(P(E),Z). Then the homomorphism on
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cohomology rings π∗ : H∗(X,Z) → H∗(P(E),Z) makes H∗(P(E),Z) into
a free module over H∗(X,Z) with basis 1, ξ, . . . , ξn−1.

2) Let p : E → X be a real vector bundle of rank n, and π : P(E) → X
the associated Pn−1

R -bundle, with tautological line subbundle OP(E)(−1) ↪→
π∗E. Let ξ = w1(OP(E)(−1)) ∈ H1(P(E),Z/2Z). Then the homomor-
phism on cohomology rings π∗ : H∗(X,Z/2Z) → H∗(P(E),Z/2Z) makes
H∗(P(E),Z/2Z) into a free module over H∗(X,Z) with basis 1, ξ, . . . , ξn−1.

Proof. (Sketch) We consider below the case of a complex vector bundle; the real
case is similar.

If E → X is the trivial bundle, then the result is true by the Künneth formula
for the cohomology of a product space, and from the formula for the cohomology
of a complex projective space (Theorem 1.21).

For any open subset W ⊂ X, we have maps

⊕n−1
i=0 H

j−2i(W,Z)
Φj

W−→ Hj(P(E |W ,Z),

(α0, . . . αn−1) 7→
n−1∑
i=0

π∗W (αi) ∪ (ξW )i,

where pW : E |W→ W is the restriction of the vector bundle E to the open
set W , and πW : P(W |E) → W is the corresponding projective bundle; ξW ∈
H2(P(W |E),Z) is c1 of the corresponding tautological bundle, and is hence just
the restriction to P(E |W ) ⊂ P(E) of ξ.

From the Mayer-Vietoris exact sequence in cohomology and the 5-lemma, we
see that if U, V are open subsets of X such that Φj

U , Φj
V and Φj

U∩V are isomor-

phisms for all j, then Φj
U∪V is also an isomorphism for all j. Now cover X by open

subsets V1, . . . , Vr such that E |Vi is trivial for all i, and set Ui = V1∪V2∪· · ·∪Vi.
By induction on i, we then see that Φj

Ui
is an isomorphism for all i, j; in particular,

taking i = r, so that Ui = X, we have the theorem. �

Corollary 1.24. 1) For any complex vector bundle E of rank n on X, there
is a unique relation

ξn + π∗(α1)ξn−1 + π∗(α2)ξn−2 + · · ·+ π∗(αn) = 0

in H∗(P(E),Z), with αi ∈ H2i(X,Z).
2) For any real vector bundle E of rank n on X, there is a unique relation

ξn + π∗(α1)ξn−1 + π∗(α2)ξn−2 + · · ·+ π∗(αn) = 0

in H∗(P(E),Z/2Z), with αi ∈ H i(X,Z/2Z).

Remark 1.25. Though theorem 1.23 and corollary 1.24 are proved above when
X is compact, they are valid without this hypothesis; a proof can be given using
the Leray-Serre spectral sequence, for example.

Definition 1.26. 1) For any complex vector bundle E of rank n onX, define
its i-th Chern class to be ci(E) = αi, where αi is as in 1) of the above
corollary 1.24.
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2) For any real vector bundle E of rank n on X, define its i-th Stiefel-Whitney
class to be wi(E) = αi, where αi is as in 2) of the above corollary.

Remark 1.27. (a) The new definition of c1 of a complex line bundle agrees with
the old one, since for a line bundle L, we have P(L) = X, and the tautological
line bundle on P(L) is L itself. Similarly there is no ambiguity in defining w1(L)
for a real line bundle L.
(b) Since, as noted earlier (remark 1.25), the Leray-Hirsch theorem is valid more
generally, the definitons of the Chern classes and Stiefel-Whitney classes make
sense for bundles on more general base spaces X, for example, on arbitrary CW
complexes.
(c) If E is a complex vector bundle of rank n on X, and f : Y → X is a splitting
map for E, with f ∗E = L1 ⊕ · · · ⊕ Ln, then xi = c1(Li) ∈ H2(Y,Z) are called
Chern roots for E.

Another corollary of the Leray-Hirsch theroem is the following.

Corollary 1.28. (Splitting principle)

1) Let p : E → X be a complex vector bundle. Then there exists a continuous
map f : P → X such that (a) f ∗E is a direct sum of complex line bundles
on P (b) f ∗ : H∗(X,Z)→ H∗(P,Z) is injective.

2) Let p : E → X be a real vector bundle. Then there exists a continuous
map f : P → X such that (a) f ∗E is a direct sum of real line bundles on
P (b) f ∗ : H∗(X,Z/2Z)→ H∗(P,Z/2Z) is injective.

Proof. The proof in the real and complex cases is similar, so we consider the
latter. We first reduce easily to the case when X is connected. Then we work
by induction on the rank of E, where we may take P = X if E has rank 1.
In general, if rankE = n > 1, note that π : P(E) → X satisfies the condition
that π∗ : H∗(X,Z) → H(P(E),Z) is injective, and there is a line subbundle
OP(E)(−1) ⊂ π∗E. Choosing a Hermitian metric on E, we may write π∗E =
OP(E)(−1) ⊕ F , where q : F → P(E) has rank n − 1. Now by induction, there
is a map g : P → P(E) such that g∗F is a direct sum of complex line bundles,
and g∗ is injective on cohomology rings. Hence f = g ◦ π satisfies the desired
conditions. �

We call a map f : P → X as in corollary 1.28 a splitting map for the vector
bundle E. It is easy to see that if E1, . . . , Er are vector bundles, then there exists
a continuous map f : P → X which is simultaneously a splitting map for each
of the bundles Ei (for example, if f1 : P1 → X is a splitting map for E1, and
f2 : P2 → P1 is a splitting map for f ∗1E2, then f2 ◦ f1 : P2 → X is simultaneously
a splitting map for E1 as well as E2).
Lemma 1.29.

1) Let L1, . . . , Ln be C-line bundles, such that there exists a nowhere-vanishing
section s ∈ Γ(X,L1 ⊕ · · · ⊕ Ln) (i.e., s(x) 6= 0Ex for any x ∈ X, where
E = L1 ⊕ · · · ⊕ Ln). Then

c1(L1) ∪ · · · ∪ c1(Ln) = 0
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in H∗(X,Z).
2) Let L1, . . . , Ln be R-line bundles, such that there exists a nowhere-vanishing

section s ∈ Γ(X,L1 ⊕ · · · ⊕ Ln) (i.e., s(x) 6= 0Ex for any x ∈ X, where
E = L1 ⊕ · · · ⊕ Ln)). Then

w1(L1) ∪ · · · ∪ w1(Ln) = 0

in H∗(X,Z/2Z).

Proof. We consider the complex case, since the real case is similar. Let si ∈
Γ(X,Li) be the component of s in Li, and Ui = {x ∈ X | si(x) 6= 0(Li)x} be the
locus where si does not vanish. Then we are given that {Ui}ni=1 is an open cover
of X. Now for each i, we have that c1(Li) 7→ 0 under H2(X,Z) → H2(Ui,Z),
since we have a trivialization Li |Ui

∼= Ui × C (using the section si), and c1 of
the trivial line bundle vanishes3. Hence we can find relative cohomology classes
c̃1(Li) ∈ H2(X,Ui;Z) such that c̃1(Li) 7→ c1(Li). Then the cup product

c̃1(L1) ∪ · · · ∪ c̃1(Ln) ∈ H2n(X,U1 . . . , Un;Z)

maps to c1(L) ∪ · · · ∪ c1(Ln) under the natural map

H2n(X,U1 . . . , Un;Z)→ H2n(X,Z).

But U1 ∪ · · · ∪ Un = X, so that H2n(X,U1 . . . , Un;Z) = 0. �

Corollary 1.30. 1) If p : E → X is a complex vector bundle of rank n, and
f : P → X a splitting map for E, with f ∗E = L1 ⊕ · · · ⊕ Ln, then

f ∗(ci(E)) = i-th elementary symmetric function in c1(L1), . . . , c1(Ln).

2) If p : E → X is a real vector bundle of rank n, and f : P → X a splitting
map for E, with f ∗E = L1 ⊕ · · · ⊕ Ln, then

f ∗(wi(E)) = i-th elementary symmetric function in w1(L1), . . . , w1(Ln).

Proof. As usual, we consider the case of complex vector bundles, and leave the
(very similar) case of real bundles to the reader.

Let Q be the fibre product

Q = P ×X P(E)
g−→ P(E)

η ↓ ↓ π
P

f−→ X

Then the inclusion of the tautological line subbundle L = OP(E)(−1) ⊂ π∗E
induces an inclusion of a line subbundle

g∗L ↪→ g∗π∗E = η∗f ∗E = η∗(L1 ⊕ · · · ⊕ Ln).

Thus we have an inclusion of a trivial line subbundle

Q× C ↪→ (η∗(L1)⊗ g∗(L∨))⊕ · · · ⊕ (η∗(Ln)⊗ g∗(L∨)),

3A constant classifying map induces 0 on cohomology in positive degrees.
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where L∨ denotes the dual line bundle. The inclusion of a trivial line bundle
is equivalent to giving a section which does not vanish anywhere, and so by
lemma 1.29, we have an identity in H∗(Q,Z)

n∏
i=1

(η∗(c1(Li)) + g∗ξ) = 0.

Thus we have a relation

g∗(ξn)+η∗s1(c1(L1), . . . , c1(Ln))g∗(ξn−1)+η∗s2(c1(L1), . . . , c1(Ln))g∗(ξn−2)+· · ·+
η∗sn(c1(L1), . . . , c1(Ln)) = 0,

where si denotes the i-th elementary symmetric polynomial (note that the classes
c1(Li) are in the centre of the cohomology ring, and so it makes sense to evaluate
a polynomial on the c1(Li)). We also have a relation

g∗(ξn) + g∗π∗(c1(E))g∗(ξn−1) + g∗π∗(c2(E))g∗(ξn−2) + · · ·+ g∗π∗(cn(E)) = 0,

which we may rewrite as

g∗(ξn) + η∗f ∗(c1(E))g∗(ξn−1) + η∗f ∗(c2(E))g∗(ξn−2) + · · ·+ η∗f ∗(cn(E)) = 0.

SinceQ = P(f ∗E) is a projective bundle over P , the elements g∗(ξj), 0 ≤ j ≤ n−1
are linearly independent over H∗(P,Z), and so the above two monic relations
satisfied by g∗(ξn) must coincide. Thus, comparing coefficients, and using the
injectivity on cohomology of η∗, we get that

f ∗ci(E) = si(c1(L1), . . . , c1(Ln)).

�

Corollary 1.31. (Whitney sum formula)

1) Let E → X, F → X be two complex vector bundles. Then we have a
formula ∑

i≥0

ci(E ⊕ F ) = (
∑
i≥0

ci(E))(
∑
i≥0

ci(F ))

in H∗(X,Z).
2) Let E → X, F → X be two real vector bundles. Then we have a formula∑

i≥0

wi(E ⊕ F ) = (
∑
i≥0

wi(E))(
∑
i≥0

wi(F ))

in H∗(X,Z/2Z).

Proof. Notice that if E is a complex vector bundle which is a direct sum of line
bundles, E ∼= L1 ⊕ · · · ⊕ Ln, then from corollary 1.30, we have an expression∑

i≥0

ci(E) =
n∏
i=1

(1 + c1(Li)).

We now prove 1): we reduce first easily to the case when X is connected; then, by
the splitting principle, we reduce to considering the case when E and F are both
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direct sums of complex line bundles, say E ∼= L1 ⊕ · · · ⊕Lr, F ∼= M1 ⊕ · · · ⊕Ms;
then we have that

E ⊕ F ∼= L1 ⊕⊕Lr ⊕M1 ⊕ · · ·Ms

is also a direct sum of line bundles, and so we have formulas∑
i≥0

ci(E) =
r∏
i=1

(1 + c1(Li)),

∑
i≥0

ci(F ) =
s∏
j=1

(1 + c1(Mj)),

∑
i≥0

ci(E ⊕ F ) =

(
r∏
i=1

(1 + c1(Li))

)(
s∏
j=1

(1 + c− 1(Mj))

)
;

from these formulas, the desired formula in 1) is obvious. The proof of 2) is very
similar. �

Example 1.32. Show that the Chern classes of a tensor product E ⊗ F of
two complex vector bundles are given by ‘universal’ polynomials with integer
coefficients in the Chern classes of E and F .

We now give a proof of Theorem 1.20(a), assuming that the classification of
vector bundles via homotopy classes of maps to an infinite Grassmannian, the
formula for the cohomology ring of a projective bundle, the resulting formalism
of Chern classes, and the splitting principle, are all valid even when the base space
X is a “sufficiently good” non-compact Hausdorff space; this can be rigorously
justified, but we do not do this here. We will need that the above results hold
even when X is an infinite dimensional CW-complex, with finitely many cells of
any given dimension. The idea is that if X is such a space, and Xn is its n-
skeleton, then Xn is a compact Hausdorff space, ∪n≥0Xn = X, and any compact
subset of X lies in some Xn; further, a map X → Y is continuous if and only if
its restriction to each Xn is continuous. Thus, using the theory developed above,
applied to each of the “finite dimensional approximations” Xn, one can extend
its validity to such spaces X as well.

Another way to make our arguments rigorous is to use the fact that for any
i ≥ 0, the natural maps

H i(Xn+1, A)→ H i(Xn, A),

and hence also
H i(X,A)→ H i(Xn, A),

are isomorphisms for n > i. Thus, any conclusions regarding cohomology of any
infinite dimensional CW complex X as above can be obtained by considering the
cohomology groups of the finite dimensional approximations Xn. This approach
avoids the need for constructing classifying maps for vector bundles on such an
infinite dimensional space X.

Consider the space X = (P∞C )n = P∞C × P∞C × · · · × P∞C . If pi : X → P∞C is the
i-th projection, then there is a vector bundle E = p∗1ν1,∞ ⊕ p∗2ν1,∞ ⊕ · · · ⊕ p∗nν1,∞
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on X of rank n. Let f : X → GC(n) be a classifying map for this bundle. We
claim that if νn,∞ is the tautological bundle on GC(n), and g : P → GC(n) is
a splitting map for νn,∞, then there is a continuous map h : P → X giving a
diagram (commutative up to homotopy)

P
h−→ X
↘ g ↓ f

GC(n)

(This is from the universal properties of GC(n) and P∞C = GC(1).) Hence the nat-
ural map on cohomology f : H∗(GC(n),Z)→ H∗(X,Z) is injective. If σ : X → X
is any permutation of the factors, then there is a natural isomorphism σ∗E ∼= E;
hence f ◦ σ must be homotopic to f , and so f ∗ = σ∗ ◦ f ∗ on H∗(GC(n),Z). This
means that the subring

f ∗(H∗(GC(n),Z)) ⊂ H∗(X,Z) ∼= ⊗ni=1H
∗(P∞C ,Z)) = Z[t1, . . . , tn]

(where ti = p∗i (x), for the generator x ∈ H2(P∞C ,Z)) is contained in the ring
of invariants for the permutation group Sn on n symbols, acting by permuting
the variables ti. Hence if si(t1, . . . , tn) denotes the i-th elementary symmetric
polynomial, then

f ∗(H∗(GC(n),Z)) ⊂ Z[s1(t1, . . . , tn), . . . , sn(t1, . . . , tn)].

But by corollary 1.30, si(t1, . . . , tn) = ci(E) = f ∗(ci(νn,∞)). Since f ∗ is injective,
we deduce that H∗(GC(n),Z) is the polynomial algebra in the n (algebraically
independent) elements c1(νn,∞), . . . , cn(νn,∞).

In a similar way, we may formally deduce the structure of H∗(GR(n),Z/2Z)
(i.e., theorem 1.20(c)) from the theory of Steifel-Whitney classes applied to an
analogous bundle on X = (P∞R )n, and the splitting principle applied to the uni-
versal bundle on the infinite Grassmanian GR(n).

1.5. The Grothendieck group of vector bundles. Let

Vect (X) =
∐
n≥0

Vect n(X),

where Vect n(X) is the set of isomorphism classes of complex vector bundles
of rank n. The direct sum and tensor product of vector bundles makes this
a “commutative semi-ring”, i.e., there are two commutative, associative binary
operations + and ·, with identity elements, such that · is distributive over +,
a · (b+ c) = (a · b) + (a · c). Thus (Vect (X),+) is a commutative monoid.

From the Whitney sum formula (corollary 1.31), the assignment [E] 7→ c(E) =
1 + c1(E) + c2(E) + · · · gives a homomorphism from the monoid (Vect (X),+)
to the group of units of the commutative ring

Heven(X,Z) = ⊕i≥0H
2i(X,Z).

This motivates the Grothendieck construction of K(X).

Definition 1.33. If M is a commutative monoid, the Grothendieck group is an
abelian groupK(M), together with a homomorphism of monoids u : M → K(M),
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such that for any homomorphism of monoids f : M → A, for an abelian group A,

there exists a unique group homomorphism f̃ : K(M)→ A such that f = f̃ ◦ u.

Such a pair (K(M), u) is unique up to unique isomorphism, since it is specified
by a universal mapping property; an explicit construction is given by

K(M) =
Free abelian group on elements of M

Subgroup generated by classes (a+ b)− (a)− (b), for all a, b ∈M

with u : M → K(M) being given by a 7→ [a]; here (a) denotes the class of a
in the free abelian group and [a] its image in the quotient group. The universal
property is trivially verified. Note further that if M is a commutative semiring,
then K(M) is a commutative ring, with multiplication induced by [a][b] = [a · b].

Definition 1.34. For any topological space, define its Grothendieck ring K(X)
to be K(Vect (X)). If Vect R(X) is the semiring of isomorphism classes of real
vector bundles, define KO(X) to be K(Vect R(X)).

We will not comment further about KO(X), except to remark that part of the
theory of K(X) has a parallel for KO(X), but certain specific key results (like
Bott Periodicity) take rather different forms for the two theories, so that the final
conclusions are different. As such, from now onwards, “vector bundle” will mean
“complex vector bundle” unless specified otherwise.

For compact Hausdorff spaces X, it is easy to see from the definition that
for 2 complex vector bundles E, F , we have [E] = [F ] in K(X) if and only if
E⊕ (X×Cn) ∼= F ⊕ (X×Cn) for some n ≥ 0, where X×Cn is the trivial bundle
of rank n. In a similar fashion, if E, F are real vector bundles, then [E] = [F ] in
KO(X) if and only if E⊕ (X×Rn) ∼= F ⊕ (X×Rn). We express either condition
by saying that E and F are stably equivalent.

Example 1.35. Consider the n−1-sphere Sn−1 as a submanifold of Rn. Then its
tangent bundle TSn−1 is a subbundle of Sn−1 ×Rn = εnSn−1 , the trivial bundle of
rank n, where the fibre TxS

n−1 consists of the orthogonal complement of Rx ⊂ Rn.
We may also regard the trival bundle Sn−1 ×R = εSn−1 as a sub-bundle of εnSn−1

via the mapping (x, t) 7→ (x, tx). Then clearly the induced map

TSn−1 ⊕ εSn−1 → εnSn−1

is an isomorphism. Hence [TSn−1] = (n − 1)[εSn−1 ] in KO(Sn−1). However, for
n odd, it is known that Sn−1 has no non-vanishing vector fields, i.e., TSn−1 has
no subbundle isomorphic to εSn−1 . Thus TSn−1 and εn−1

Sn−1 are stably isomorphic,
but non-isomorphic.

Similarly there are examples of stably trivial non-trivial complex vector bun-
dles, but their construction (and proof of non-triviality) is a little more involved.

Theorem 1.36. (The Chern character) There is a unique functorial ring homo-
morphism

chX : K(X)→ Heven(X,Q),
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where X is a finite CW complex, such that for any line bundle L,

chX([L]) = ec1(L) =
∑
n≥0

c1(L)n

n!
.

For arbitrary X, the homomorphism makes sense provided we define

Heven(X,Q) =
∏
n≥0

H2n(X,Q).

Proof. First notice that if X is finite CW, then H i(X,Q) = 0 for i > dimX, so
the formula for chX(L) makes sense.

If E = L1 ⊕ · · · ⊕ Ln, and c1(Li) = xi ∈ H2(X,Q), then since chX is to be a
ring homomorphism, we must have

chX(E) =
n∑
i=1

chX(Li) =
n∑
i=1

exi

= n+ (
∑
i

xi) +

∑
i x

2
i

2!
+ · · ·+

∑
i x

m
i

m!
+ · · · ,

where we observe that ∑
i x

m
i

m!
is uniquely expressible as a polynomial with rational coefficient in the elementary
symmeric polynomials in x1, . . . , xn, i.e., is a polynomial with rational coefficients
in the Chern classes of E. By the splitting principle, we must now have

chX(E) = (rankE) + c1(E) +
c1(E)2 − c2(E)

2!
+ · · ·+ Pm(c1(E), . . . , cm(E)) + · · ·

for a certain polynomial in c1(E), . . . , cn(E) which is ‘isobaric’ (or ‘weighted ho-
mogeneous’), i.e., , is homogeneous of degree m, where we define ci(E) to have
degree i. In fact Pm(t1, . . . , tn) is the unique polynomial in n variables such that if
s1, . . . , sn are the elementary symmetric polynomials in variables x1, . . . , xn, then

Pm(s1, . . . , sn) =
xm1 + · · ·+ xmn

m!
.

If we now take this formula as the definition of chX(E), it is easy to check using
the splitting principle that if E, F are vector bundles with Chern roots x1, . . . , xn
and y1, . . . , ym, then E⊕F has Chern roots x1, . . . , xn, y1, . . . , ym, and E⊗F has
Chern roots x1 + y1, x1 + y2, . . . , xn + ym. Hence

chX(E) =
∑
i

exi , chX(F ) =
∑
j

eyj ,

chX(E ⊕ F ) =
∑
i

exi +
∑
j

eyj = chX(E) + cX(F ),

chX(E ⊗ F ) =
∑
i,j

exi+yj = (
∑
i

exi)(
∑
j

eyj) = chX(E)chX(F ).

Hence chX is a ring homomorphism. �
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Theorem 1.37. If X is a finite CW complex, the induced map

chX : K(X)⊗Q→ Heven(X,Q)

is an isomorphism.

We will later sketch a proof of this important result using the Atiyah-Hirzebruch
spectral sequence.

1.6. Relative K-groups. If X is a space with a base point x ∈ X, define the

reduced K-group group K̃(X) = ker(K(X) → K({x}) = Z. It is a ring without
identity, whose elements have the form [E]−n[εX ], where n = dimEx is the rank
of E at x; here

[E]− n[εX ] = [F ]−m[εX ] ⇐⇒ E ⊕ εn+N
X
∼= F ⊕ εm+N

X

for some N ≥ 0.
Consider the map an(X) : Vect n(X) → Vect n+1(X) given by E 7→ E ⊕

εX . This corresponds to the inclusion αn : GC(n) ↪→ GC(n + 1) induced by
GC(n,m) ↪→ GC(n + 1,m + 1), which in turn is induced by U(m) ↪→ U(m + 1)
given by

A 7→
[
A 0
0 1

]
.

There are commutative diagrams

Vect n(X)
an(X)−→ Vect n+1(X)

∼=↓ ↓∼=
[X,GC(n)]

αn−→ [X,GC(n+ 1)]

and

Vect n(X)
an(X)→ Vect n+1(X)

bn ↘ ↙ bn+1

K̃(X)

where bn(E) = [E]− n[εX ], which identifies lim
−→
n

Vect n(X) with K̃(X).

Hence if GC = lim
−→
n

GC(n), then there exists a natural bijection

K̃(X) ∼= [X,GC].

The following alternative description of a “classifying space” for K-theory is
proved in an appendix to Atiyah’s book.

Theorem 1.38. Let H be a separable complex Hilbert space, A(H) the Banach
algebra of bounded linear operators on H, and F ⊂ A(H) the subset of Fredholm
operators (these are elements T ∈ A(H) with kerT and cokerT finite dimen-
sional). Then for any compact Hausdorff space X, there is a natural bijection

K(X) ∼= [X,F ].

Lemma 1.39. Let A ⊂ X be a closed subcomplex of a finite CW complex.
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(a) There exists an exact sequence

K̃(X/A)→ K(X)→ K(A).

(b) If we define K̃−n(X) = K̃(ΣnX), Kn(X,A) = K̃(Σn(X/A)), then there
is a functorial long exact sequence

· · ·K−n(X,A)→ K−n(X)→ K−n(A)→ K1− n(X,A)→ · · ·
→ K0(X,A)→ K0(X)→ K0(A).

If we define K−n(X) = K̃−n(X+), where X+ is the disjoint union of X
with a base point (denoted +), then we obtain a similar exact sequence

with K−n in place of K̃−n.

Proof. Since K̃(X) = [X,GC], the lemma follows from the Puppe (co)exact se-
quence (see Spanier, Algebraic Topology)

A
f→ X → C(f)→ ΣA

Σf→ ΣX → Σ(C(f))→ Σ2A→ · · ·

and the homotopy equivalence C(f) ' X/A. �

1.7. Bott Periodicity and the Atiyah-Hirzebruch spectral sequence. If
X and Y are spaces with base points x, y respectively, let X ∨Y be the subspace
X ×{y} ∪ {x}× Y ⊂ X × Y . Define the smash product of X and Y by X ∧ Y =
X × Y/X ∨ Y (with the evident base point).

Example 1.40. For any pointed pair (X, x), we have

X ∧ S1 = (reduced suspension of X)
∼= ΣX/Σ{x} = ΣX/I,

so that K̃(X ∧ S1) = K̃(ΣX).

Example 1.41. Sn ∧ S1 ∼= Sn+1.

Lemma 1.42. The sequence

0→ K̃(X ∧ Y ) → K̃(X × Y )→ K̃(X ∨ Y )→ 0
↓∼=

K̃(X)⊕ K̃(Y )

is split exact.

Proof. Since X × {y} is a retract of X × Y , the sequence

0→ K̃(X × Y/X × {y})→ K̃(X × Y )→ K̃(X)→ 0

is split exact. Next, {x} × Y , regarded as a (closed) subset of X × Y/X × {y},
is a retract, and so the sequence

0→ K̃(X ∧ Y )→ K̃(X × Y/X × {y})→ K̃(Y )→ 0

is split exact. Combining these two sequences we obtain the lemma. �
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Note that the composition

K(X)⊗K(Y )→ K(X × Y )→ K(X ∨ Y ) ∼= K(X)⊕K(Y ),

[E]⊗ [F ] 7→ [p∗1E ⊗ p∗2F ],

induced by tensor product of pullbacks of bundles from the two factors, is trivial

on K̃(X)⊗ K̃(Y ). Hence from the above lemma, we have a well-defined pairing

K̃(X)⊗ K̃(Y )→ K̃(X ∧ Y ).

Taking Y = S2, we have a pairing

βX : K̃(X)⊗ K̃(S2)→ K̃(Σ2X) = K̃−2(X),

for any X.

Theorem 1.43. (Bott Periodicity) βX is an isomorphism for any X.

Now K̃(S2) ∼= lim
−→
n

π1(GL n(C)) = Z, since V ectn(S2) ∼= π1(GL n(C)) (write S2

as the union of its upper and lower hemispheres, which are contractible). Hence
we obtain:

Corollary 1.44. K̃(X) ∼= K̃−2(X).

Motivated by the above corollary, define

Kn(X) =

{
K̃(X+) if n is even

K̃(Σ(X+)) if n is odd,

and for any pair of spaces (X,A),

Kn(X,A) =

{
K̃(X/A) if n is even

K̃(Σ(X/A)) if n is odd,

Then there exists a functorial, doubly infinite long exact sequence for pairs

· · · → Kn(X,A)→ Kn(X)→ Kn(A)→ Kn+1(X,A)→ · · ·

Theorem 1.45. (Atiyah-Hirzebruch Spectral Sequence) For any finite CW com-
plex X, there is a spectral sequence, which is functorial in X,

Ep,q
2 = Hp(X,Z)⊗Z K

q(point) =⇒ Kp+q(X).

Proof. (Sketch) Filter X by skeleta Xn; notice that

Ki(Xn, Xn−1) ∼= Cn(X)⊗Z K̃
i(Sn),

where Cn(X) is the group of cellular n-cochains on X. We may rewrite this
as Cn(X) ⊗Z K

i−n(point). The collection of long exact sequences for the pairs
(Xn, Xn−1) yield an exact couple, and hence a spectral sequence

Ep,q
1 = Kp+q(Xp, Xp−1) =⇒ Kp+q(X),

which we may rewrite as

Ep,q
1 = Cp(X)⊗Z K

q(point) =⇒ Kp+q(X).
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The E1 differentials are thus maps

Ep,q
1 → Ep+1,q

1 ,

Kq(point)⊗ Cp(X)→ Kq(point)⊗ Cp+1(X),

which we claim to be of the form 1 ⊗ dp, where dp : Cp(X) → Cp+1(X) is the
cellular differential; this reduces to showing that if f : Sq → Sq has degree d,

then the induced map f ∗ : K̃(Sq) → K̃(Sq) is multiplication by d. The claim
implies the formula for the E2 terms. �

Note that the construction of the Atiyah-Hirzebruch spectral sequence is in
fact formal, and works to give a similar spectral sequence for any “generalized
cohomology theory”, determined by a sequence of functors on CW-pairs, and
homotopy classes of maps between them, satisfying all of the Eilenberg-Steenrod
axioms, except the dimesnion axiom, which specifies the cohomology of a point.

One somewhat artifical example of such a cohomology theory is as follows.
Define

Ĥ i(X,A) =

{
Heven(X,A;Q), if i is even
Hodd(X,A;Q), if i is odd.

The usual exact sequence of a pair gives an exact sequence

· · · → Ĥ i(X,A)→ Ĥ i(X)→ Ĥ i(A)→ Ĥ i+1(X,A)→ · · ·
The other desired properties (functoriality, homotopy invariance, etc.) follow
from the corresponding properties of usual cohomology. From the definition of
the cohomology theory Ĥ∗, it is clear that the corresponding spectral sequence

Ep,q
2 = Hp(X,Z)⊗ Ĥq(point) =⇒ Ĥp+q(X)

degenerates at E2.
One verifies that the Chern character yields natural transformations Ki(X)⊗

Q→ Ĥ i(X) and Ki(X,A)→ Ĥ i(X,A), for all i, compatible with the respective
long exact sequences of pairs. This leads to a morphism of spectral sequences

Ep,q
r (K∗ ⊗Q) = Ep,q

r (K∗)⊗Q→ Ep,q
r (Ĥ∗).

One can show that this is an isomorphism on E2-terms, since

ch : K(Sn)⊗Q→ Heven(Sn,Q)

is an isomorphism, for all n (use Bott periodicity to reduce to the cases n =
1, 2, where it is clear). Hence the above morphism of spectral sequences is an
isomorphism. In particular,

(i) the Atiyah-Hirzebruch spectral sequence degenerates at E2 after ⊗Q
(ii) we obtain isomorphisms Kn(X)⊗Q ∼= Ĥn(X), and hence also Kn(X,A)⊗

Q ∼= Ĥn(X,A), for all CW pairs (X,A).

Now suppose X is a finite CW complex whose cohomology groups H i(X,Z)
are torsion-free abelain groups. Then we claim the Atiyah-Hirzebruch spectral
sequence degeneates at E2, even without ⊗Q. Indeed, there is a natural trans-
formation of spectral sequences

Ep,q
r (K)→ Ep,q

r (K ⊗Q),
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compatible with the natural map Kn(X)→ Kn(X)⊗Q. The map on E2 terms
is injective, since they are torsion-free abelian groups, by hypothesis, and the E2

differentials vanish ⊗Q, as seen above. Hence the E2 differentials of the Atiyah-
Hirzebruch spectral sequence vanish, and its E3 terms (being isomorphic to the
corresponding E2 terms) are torsion-free as well. Now argue inductively, showing
that the Er terms are torsion-free, and the Er differentials vanish, for all r.

We deduce that if H∗(X,Z) is torsion-free, then the Atiyah-Hirzebruch spec-
tral sequence degenerates at E2. Thus there is a finite, decreasing filtration
{F iK(X)}i≥0 on K(X) such that F iK(X)/F i+1K(X) ∼= H2i(X,Z). In particu-
lar, K(X) is also torsion-free.

1.8. Adams operations. Let K(X)[[t]] denote the formal power series ring in
the indeterminate t over the commutative coefficient ring K(X). Define a homo-
morphism

λt : K(X)→ K(X)[[t]]∗,

λt[E] =
∑
i≥0

[
i∧
E]ti,

where K(X)[[t]]∗ denotes the multiplicative group of units of K(X)[[t]]. Here∧iE denotes the i-th exterior power of the vector bundle E; from the formula

n∧
(E ⊕ F ) ∼= ⊕i+j=n(

i∧
E)⊗ (

j∧
F ),

we see that λt(E ⊕ F ) = λt(E)λt(F ), and so the above formula for λt on vector
bundles does induce a well-defined homomorphism on K(X). For each i ≥ 0, we
let λi : K(X)→ K(X) denote the coefficient of ti in λt : K(X)→ K(X)[[t]]∗; it
is a map of sets.

Note that λt takes values in the subgroup of units of the form 1 + tα(t), where
α(t) ∈ K(X)[[t]]. Hence we can define another formal series

ψt(x) = −t d
dt

log λ−t(x) ∈ K[[t]]

for all x ∈ K(X); here λ−t(x) has the obvious meaning. Now ψt : K(X) →
K(X)[[t]] is an additive homomorphism. Let ψi : K(X)→ K(X) be the additive
homomorphism determined by the coefficient of ti in ψt, for each i ≥ 1; the map
ψi is called the i-th Adams operation on K(X).

Proposition 1.46. The Adams operations have the following properties.

(1) ψi : K(X)→ K(X) is a ring homomorphism, for each i ≥ 1.
(2) ψi(x) = xi if x = [L] is the class of a line bundle.
(3) ψi ◦ ψj = ψij = ψj ◦ ψi.
(4) ψi(x) = si(λ

1(x), . . . , λi(x)) for a certain universal polynomial si(t1, . . . , ti) ∈
Z[t1, . . . , ti].

(5) If p is a prime number, then ψp : K(X) ⊗ Z/pZ → K(X) ⊗ Z/pZ is
x 7→ xp.

(6) If the image of x ∈ K(X) under the Chern character is chX(x) = x0 +
x2 +x4 + · · · with xi ∈ H i(X,Q), then chX(ψk(x)) = x0 +kx2 +k2x4 + · · · .
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(7) ψk is diagonalizable on K(X)⊗Q, with eigenvalues ki; the ki-eigenspace
is independent of k ≥ 2, and is identified with H2i(X,Q).

Proof. First note that if x = [L] is the class of a line bundle, then λi(x) = 0 for
i > 1. Hence λ−t(x) = 1− xt, and so

ψt(x) = −t d
dt

log(1− xt) =
∑
i≥1

xiti.

This gives (2) above. Now (1) and (3) follow from the special case of line bundles,
by the splitting principle.

For (4), note that if x = [L1 ⊕ · · · ⊕ Ln] for line bundles Li, then ψi(x) =
[L1]i + · · · + [Ln]i. On the other hand, λi(x) is the i-th elementary symmetric
polynomial in x1 = [L1], . . . , xn = [Ln]. Let X1, . . . , XN be indeterminates, with
N ≥ i, and let σi(X1, . . . , XN) denote the j-th elementary symmetric polynomial
in X1, . . . , XN . Let si(t1, . . . , ti) ∈ Z[t1, . . . , ti] be the unique polynomial such
that si(σ1(X1, . . . , XN), . . . , σi(X1, . . . , XN)) = X i

1 + · · · + X i
N , the i-th Newton

symmetric polynomial. This polynomial si is in fact independent of N ≥ i.
Clearly we have si(λ

1(x), . . . , λi(x)) = ψi(x), for x as above. By the splitting
principle, the formula holds for x = [E], for any vector bundle E.

The formula (5) follows from (4), for example, since sp(σ1, . . . , σp) ∼= σp1(mod p).
For (6), note that for x = [L], we have chX(x) = ec1(x), and chX(ψk(x)) =

chX(xk) = ec1(xk) = ekc1(x). Hence (6) holds for x = [L]. The splitting principle
implies (6) in general. Clearly (7) follows from (6). �

1.9. The Hopf Invariant. Let α ∈ π4n−1(S2n), and let X be the CW complex

X = S2n ∪α D4n

obtained by attaching ∂D4n = S4n−1 to S2n using α. Then

H0(X,Z) ∼= H2n(X,Z) ∼= H4n(X,Z) ∼= Z.
Let a ∈ H2n(X,Z) and b ∈ H4n(X,Z) be the generators corresponding to the
standard orientations of S2n and S4n. Then a2 = a∪ a = H(α)b for some integer
H(α) ∈ Z, called the Hopf invariant of α. This construction in fact gives rise to
a homomorphism H : π4n−1(S2n) → Z. The Hopf invariant of α is ±1 ⇐⇒ the
cohomology ring H∗(X,Z) = Z[a]/(a3), where a ∈ H2n(X,Z) is a generator.

Note that if we make a similar construction with an element α ∈ π2n−1(Sn)
with n odd, then with the earlier notation, we have a ∪ a = 0 for any generator
a ∈ Hn(X,Z), since a ∪ a = (−1)na ∪ a. Hence the “Hopf invariant” of any
α ∈ π2n−1(Sn) vanishes, if n is odd.

Example 1.47. For the Hopf fibrations S3 → S2 = CP1, S7 → S4 = HP1 and
S15 → S8 = OP1, one computes that the Hopf invariant is 1, i.e., for n = 1, 2, 4.

Question: Are there any other values of n for which there exists α ∈ π4n−1(S2n)
with H(α) = ±1?

This question has a negative answer. Suppose X is the space obtained form
α ∈ π4n−1(S2n). Since the integral cohomology of X is torsion-free, the Atiyah-
Hirzebruch spectral sequence degenerates atE2. Thus we have a filtrationK(X) ⊃
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K̃(X) = F nK(X) ⊃ F 2nK(X), where the Chern character induces isomorphisms

chX : F nK(X)/F 2nK(X)
∼=−→ H2n(X,Z) = Z · · · a ⊂ H2n(X,Q),

chX : F 2nK(X)
∼=−→ H4n(X,Z) = Za2 ⊂ H4n(X,Q).

Let a′ ∈ F nK(X), b′ ∈ F 2nK(X) such that chX(a′) = a + λa2 with λ ∈ Q, and
chX(b′) = b = a2. Since chX(a′2) = (a + λa2)2 = a2, we have chX(b′ − a′2) = 0,
and so b′ = a′2.

Now chX(ψ2(a′)) = 2na+λ22na2. Hence ψ2(a′) = 2na′+λ2a
′2 for some λ2 ∈ Z.

Since ψ2(a′) ≡ a′2 (mod 2K(X)), the integer λ2 must be odd. Similarly, we see
that ψ3(a′) = 3na′ + λ3a

′2 for some λ3 ∈ Z. Since ψ2ψ3 = ψ3ψ2, we get

ψ3(2na′ + λ2a
′2) = ψ2(3na′ + λ3a

′2),

i .e., 2n(3na′ + λ3a
′2) + 32nλ2a

′2 = 3n(2na′ + λ2a
′2) + 22nλ3a

′2

=⇒ (22n − 2n)λ− 3 = (32 − 3n)λ2.

It is an easy number theoretic exercise to show that if 2n | (3n− 1), then n = 1, 2
or 4.

Example 1.48. Let f : Sn−1 × Sn−1 → Sn−1 be such that f |Sn−1×{x0} and
f |{x0}×Sn−1 each have degree ±1, for any base point x0 (i.e., f | Sn−1 ∨ Sn−1 has
bidegree (±1,±1)). Such a map arises, for example, if there exists a continuous
non-singular product µ : Rn ×Rn → Rn (“non-singular” means that the induced
maps µ : {x} × Rn → Rn, µ : Rn × {x} → Rn are homeomorphisms preserving
the origin, for any non-zero x ∈ Rn). The map f is obtained by restricting µ
to the product of the unit spheres, and composing with the obvious retraction
Rn − {0} → Sn−1.

Extend f to continuous maps f+ : Dn × Sn−1 → Dn
+, f− : Sn−1 ×Dn → Dn

−,
which preserve the respective boundaries, where Dn

± are the two hemispheres in
Sn, and such that both maps f± restrict to f on the respective boundaries. We
may then glue these maps to obtain a map

f̃ : ∂(Dn ×Dn) = (Dn × Sn−1) ∪Sn−1×Sn−1 (Sn−1 ×Dn)→ Dn
+ ∪Sn−1 Dn

− = Sn.

Identifying ∂Dn × Dn ∼= ∂D2n = S2n−1, we may view f̃ as a map S2n−1 → Sn.

One can show that n must necessarily be even, and H(f̃) = ±1 (see Steenrod and
Epstein, Cohomology Operations, Princeton Univ. Press, Chapter 1, Lemma 5.3).
Hence n = 2, 4 or 8.

Example 1.49. Sn is parallelizable ⇐⇒ n = 1, 3 or 7.
In fact if Sn is parallelizable, there exist n continous functions Vi : Sn → Rn+1,

i = 1, . . . , n such that x, V1(x), . . . , Vn(x) are linearly independent, for each x,
and Vi(x) is orthogonal to x for each i. Using the Gram-Schmidt process, we
may assume x, V1(x), . . . , Vn(x) is an orthonormal basis of Rn+1 for each x. Let
M(x) ∈ O(n+1) be the corresponding orthogonal transformation on Rn+1. Then
Sn × Sn → Sn, (x, y) 7→M(x) · y is a map of bidegree (±1,±1).
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Example 1.50. Suppose Rn has a (non-zero) vector product (or “cross prod-
uct”), i.e., there is a continuous map ν : Rn × Rn → Rn such that (i) ν(x, y)
is orthogonal to both x and y (ii) ‖ ν(x, y) ‖2 = ‖ x ‖2‖ y ‖2− < x, y >2, where
< x, y > is the standard scalar product in Rn, and ‖ ‖ is the corresponding
Euclidean norm. Then n = 3 or 7.

Indeed, let ν : Rn×Rn → Rn be such a vector product. Write Rn+1 = R×Rn,
and define a product

µ : Rn+1 × Rn+1 → Rn+1,

µ((a, x), (b, y)) = (ab− < x, y >, ay + bx+ ν(x, y)).

One checks that
‖ µ(X, Y ) ‖2 = ‖ X ‖2‖ Y ‖2.

Hence µ is a non-singular multiplication on Rn+1. Hence n + 1 = 1, 2, 4 or 8.
However one cannot have n = 0 or 1.

Note that for n = 3, one has the standard cross product in R3, while for n = 7
there is a similar cross product defined using multiplication of Cayley numbers.

Example 1.51. Suppose Sn has an almost complex structure. Then n = 2 or 6.
Indeed, if TSn ⊂ Sn×Rn+1 is the tangent bundle, consisting of pairs (x, y) with

< x, y >= 0, then an almost complex structure is a continuous map J : TSn →
TSn such that J(x, y) = (x, Jx(y)), for some linear transformation (Rx)⊥ →
(Rx)⊥, with J2

x = −(identity). One can further assume Jx to be an orthogonal
transformation (after modifying the original choice, if necessary). In particular,
Jx(y) is orthogonal to both x and y, and has the same length (Euclidean norm) as
y. Using this, it is easy to define a non-trivial vector product ν : Rn+1×Rn+1 →
Rn+1, with Jx(y) = ν(x, y).


