
Some lectures on Algebraic Geometry∗

V. Srinivas

1 Affine varieties

Let k be an algebraically closed field. We define the affine n-space over k
to be just the set kn of ordered n-tuples in k, and we denote it by An

k (by
convention we define A0

k to be a point). If x1, . . . , xn are the n coordinate
functions on An

k , any polynomial f(x1, . . . , xn) in x1, . . . , xn with coefficients
in k yields a k-valued function An

k → k, which we also denote by f . Let
A(An

k) denote the ring of such functions; we call it the coordinate ring of
An
k . Since k is algebraically closed, and in particular is infinite, we easily see

that x1, . . . , xn are algebraically independent over k, and A(An
k) is hence a

polynomial ring over k in n variables. The coordinate ring of A0
k is just k.

Let S ⊂ A(An
k) be a collection of polynomials. We can associate to it

an algebraic set (or affine variety) in An
k defined by

V (S) := {x ∈ An
k | f(x) = 0 ∀ f ∈ S}.

This is called the variety defined by the collection S. If

I =< S >:= ideal in k[x1, . . . , xn] generated by elements of S,

then we clearly have V (S) = V (I). Also, if f is a polynomial such that some
power fm vanishes at a point P , then so does f itself; hence if

√
I := {f ∈ k[x1, . . . , xn] | fm ∈ I for some m > 0}

is the radical of I, then V (I) = V (
√
I).

Conversely, let X ⊂ An
k be an algebraic set. Then we can associate to it

(i) the ideal I(X) of polynomials vanishing on X, and
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(ii) the ring A(X) ∼= k[x1, . . . , xn]/I(X) of polynomial functions on X, the
coordinate ring of X.

Clearly I(X) =
√
I(X), and A(X) is a reduced ring (has no non-zero nilpo-

tents).

Theorem 1 (Hilbert’s Nullstellensatz) Let I =
√
I be a radical ideal in the

polynomial ring k[x1, . . . , xn]. Then I(V (I)) = I.

Corollary 1 There is a one-one correspondence between three sets of ob-
jects:

(i) algebraic sets in An
k

(ii) radical ideals in k[x1, . . . , xn]

(iii) pairs (A, (t1, . . . , tn)) where A is a reduced k-algebra, and t1, . . . , tn
are n elements of A which generate A as a k-algebra.

In particular, if m ⊂ k[x1, . . . , xn] is a maximal ideal, it is a non-trivial
radical ideal, so that V (m) 6= φ; if P = (a1, . . . , an) ∈ An

k lies in V (m),
then m ⊂ I(P ) =< x1 − a1, . . . , xn − an >. Since m is maximal, we
must have equality. Thus all maximal ideals in k[x1, . . . , xn] are of the form
< x1−a1, . . . , xn−an > for suitable a1, . . . , an ∈ k. If m is a maximal ideal,
the natural map k → S(X)/m is an isomorphism; identifying S(X)/m with
k, if Xi ∈ S has image ai in S(X)/m, the corresponding point P is clearly
(a1, . . . , an).

Another conclusion is that any radical ideal I ⊂ k[x1, . . . , xn] is the
intersection of all maximal ideals containing it; this just restates that a
variety in An

k is determined by its points. The points on an affine variety
X are naturally in bijection with the maximal ideals of A(X), i.e., with
the maximal ideals of k[x1, . . . , xn] containing I(X). We can the associate
to a point P ∈ X the local ring of X at P , as follows: if m ⊂ A(X) is
the corresponding maximal ideal, then the local ring is OP,X := A(X)m is
defined to be the localization of A(X) at m.

The set of varieties in a given affine space An
k is closed under finite unions

and arbitrary intersections, with the following properties:

(i) if I ⊂ J are ideals, then V (J) ⊂ V (I),

(ii) V (I) ∪ V (J) = V (IJ) = V (I ∩ J) for any pair of ideals I, J , and
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(iii) ∩αV (Iα) = V (
∑
α

Iα) for any family of ideals {Iα} of k[x1, . . . , xn].

The proofs are easy. To prove the second property, for example, note that
V (I) ∪ V (J) ⊂ V (I ∩ J) ⊂ V (IJ), since (use the first property) we have
IJ ⊂ I∩J and I∩J ⊂ I, I∩J ⊂ J . If x ∈ An

k−V (I)∪V (J), then there exist
f ∈ I, g ∈ J with f(x) 6= 0 and g(x) 6= 0; now fg ∈ IJ with fg(x) 6= 0. Thus
the varieties in An

k satisfy the axioms for the closed subsets in a topology;
the resulting topology on An

k (and the induced subspace topology on any
affine variety in An

k) is called its Zariski topology. A closed subset of a variety
is referred to as a subvariety; subvarieties of X are clearly in bijection with
radical ideals in A(X) (i.e., with radical ideals in k[x1, . . . , xn] which contain
I(X)).

We can define a suitable notion of morphisms between affine varieties.
First consider the case of morphisms f = (f1, . . . , fm) : An

k → Am
k ; we

define these to be mappings whose component functions fi are polynomial
functions. Let x1, . . . , xn and y1, . . . , ym be the coordinates on An

k and Am
k

respectively. For any polynomial function g(y1, . . . , ym), the function

f∗(g) := g ◦ f

is then a polynomial function on An
k . If yi ◦ f = fi(x1, . . . , xn) are the

component functions of the mapping f , then clearly

f∗(g) = g(f1(x1, . . . , xn), f2(x1, . . . , xn), . . . , fm(x1, . . . , xn)).

Thus f∗ : k[y1, . . . , ym] → k[x1, . . . , xn] is a homomorphism of k-algebras.
Conversely, given a k-algebra homomorphism ϕ : k[y1, . . . , ym]→ k[x1, . . . , xn],
let ϕ(yi) = fi(x1, . . . , xn); then f = (f1, . . . , fm) : An

k → Am
k is a morphism,

and f∗ = ϕ. Note that a morphism is clearly continuous for the Zariski
topology.

If X ⊂ An
k , Y ⊂ Am

k are affine varieties, a mapping f : X → Y is
called a morphism if it is the restriction of a morphism f̃ : An

k → Am
k (the

morphism f̃ need not be unique). Since f̃ extends f , we have f̃(X) ⊂ Y ,
and so f̃∗I(Y ) ⊂ I(X), and we have an induced k-algebra homomorphism
f∗ : A(Y )→ A(X). Conversely, let ϕ : A(Y )→ A(X) be a k-algebra homo-
morphism. Let a1, . . . , an ∈ A(X), b1, . . . , bm ∈ A(Y ) be (the restrictions to
X and Y ) of the coordinate functions. Then ϕ(bi) = fi(a1, . . . , an) for some
polynomials fi in n variables over k. If

f̃ = (f1, . . . , fm) : An
k → Am

k ,
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and f is its restriction to X, then one checks that f(X) ⊂ Y , and f∗ = ϕ.
Thus morphisms between affine varieties correspond precisely to k-algebra
homomorphisms (in the opposite direction) between their coordinate rings.
Since we have defined a notion of morphisms, in particular, we have the
notion of an isomorphism.

Morphisms f : X → A1
k are also called regular functions on X. These

correspond to k-algebra homomorphisms k[x1]→ A(X), i.e., to elements of
A(X) (a homomorphism k[x1]→ A(X) is determined by the image of x1).

Some of the subtleties in the definition of a morphism become apparent
from the following examples.

Example 1.1: Let x, y be coordinates on A2
k. Let X = A1

k, Y = V (y2 −
x3) ⊂ A2

k, and let f : X → Y , f(a) = (a2, a3) for all a ∈ A1
k. If t is

the coordinate on A1
k, then f∗(x) = t2, f∗(y) = t3. Hence the component

functions of f are polynomials, and so f is a morphism. One sees easily
that f is bijective, which amounts to the statement that Y = {(a2, a3) | a ∈
k} ⊂ A2

k. Now A(X) = k[t] is the polynomial ring, and f∗A(Y ) is the k-
subalgebra generated by t2, t3. In particular the subalgebra does not contain
t, so that f is not an isomorphism, though it induces an isomorphism of the
quotient fields of A(Y ) and A(X). This situation occurs because the variety
Y has a singularity at the origin.

Example 1.2: Let f : A2
k → A2

k be given by f(a, b) = (a, ab). If x, y are
the coordinates on the target space, then (i) the fibres of f over the Zariski
open set {x 6= 0} consist of exactly 1 point (ii) the map f∗ : A(A2

k)→ A(A2
k)

induces an isomorphism on quotient fields (iii) the only point of the y-axis
{x = 0} in the image of f is the origin (0, 0), whose preimage is the y-axis.
This is called an affine blow up of the origin, since we have ‘replaced’ the
origin of the target A2 by its preimage, a line, while (more or less) leaving
the rest of A2

k unchanged.
Note that the image of f contains a non-empty (dense) open subset of

A2
k, but is neither open nor closed. Thus the open mapping theorem is not

valid here.

Example 1.3: Let k have characteristic p > 0. Then F : An
k → An

k given
by F (a1, a2, . . . , an) = (ap1, a

p
2, . . . , a

p
n) is a morphism which is bijective, but

not an isomorphism (the map F ∗ identifies A(An
k) with its subring consisting

of pth powers). This is called the (k-linear) Frobenius morphism on An
k .

Now k[x1, . . . , xn] is a Noetherian ring. Hence any affine variety is the
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zero set of a finite collection of polynomials. Next, any radical ideal I ⊂
k[x1, . . . , xn] is uniquely expressible as an irredundant intersection I = P1 ∩
P2 ∩ · · · ∩ Pr of a finite collection of prime ideals (‘irredundant’ means no
Pi is contained in any Pj , or even in the union of the remaining Pj). This
is a particular case of the notion of primary decomposition for ideals in
Noetherian rings.

Define an affine variety X to be irreducible if it is impossible to write
X = X1 ∪ X2 for subvarieties X1, X2 with X 6= X1 and X 6= X2. If such
a decomposition exists, we say X is reducible. We claim X is irreducible
precisely when its ideal I(X) is prime, or equivalently, when A(X) is an
integral domain. Indeed, if I(X) is not prime, let f, g 6∈ I(X) with fg ∈
I(X). Let I1 = I+ < f >, I2 = I+ < g >, and set Xj = V (Ij). By the
Nullstellensatz, Xj⊆/X, since I⊆/Ij and I is radical. Then X = X1 ∪ X2,
since I(X)2 ⊂ I1I2 ⊂ I(X). Hence X is reducible. Conversely, suppose
X = X1∪X2 is a non-trivial decomposition. Let x1 ∈ X2−X1, x2 ∈ X1−X2.
By the Nullstellensatz, there exist f ∈ I(X1), g ∈ I(X2) with f(x1) 6= 0 and
g(x2) 6= 0. In particular neither f nor g is in I(X). But clearly fg vanishes
on X.

We deduce also that the irreducible subvarieties of X correspond to the
prime ideals in A(X) (i.e., to the prime ideals in k[x1, . . . , xn] containing
I(X)). Another useful property of irreducible varieties is the following: if
X is irreducible, then any non-empty Zariski open subset of X is dense; in
particular the intersection of any finite number of non-empty Zariski open
subsets of X is non-empty. Thus if X is irreducible, and Y is a proper
subvariety, then X − Y has infinitely many points.

Now consider a general affine variety X. If I(X) = P1 ∩ · · · ∩ Pr is its
primary decomposition, and Xi = V (Pi), then X = X1 ∪ · · · ∪ Xr, such
that (i) each Xi is irreducible, and (ii) the decomposition is irredundant. It
is easy to see that the decomposition is characterized by these properties.
The Xi are called the irreducible components of X. The coordinate rings
of the irreducible components A(Xi) are just the quotients of A(X) by its
minimal primes. For many purposes in algebraic geometry, one reduces the
study of general affine varieties to that of irreducible ones; on the level of
algebra, this corresponds to reducing the study of finitely generated reduced
k-algebras to that of such integral domains.

We may now define the dimension of an affine variety. This can be
done in several equivalent ways. First, we define the (Krull) dimension of
a variety X to be the largest d such that there exists a chain X0 ⊂ X1 ⊂
· · · ⊂ Xd of subvarieties of X with Xi irreducible, where all the inclusions
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are strict. Since irreducible subvarieties in X correspond to prime ideals in
the coordinate ring A(X), the dimension of X is just the Krull dimension
of A(X), in the sense of commutative algebra. With this definition, it is a
standard algebraic fact that An

k has dimension n, i.e., the Krull dimension
of the polynomial algebra k[x1, . . . , xn] is n.

From the definition, one sees at once that dimX = sup dimXi where Xi

are the irreducible components of X. If X is irreducible, so that A(X) is a
finitely generated k-algebra which is an integral domain, then the quotient
field k(X) of A(X) has finite transcendence degree over k; from dimension
theory in commutative algebra, this equals the Krull dimension of A(X), i.e.,
equals the dimension of X. We define a variety X to be equidimensional if
all its irreducible components have the same dimension.

If X is a variety, Y a subvariety, we define the codimension of Y in X to
be codim (Y,X) = dimX − dimY . If Y is irreducible, this also equals the
largest n such that there is a strictly increasing chain of subvarieties of X

Y ⊂ X1 ⊂ · · · ⊂ Xn;

This translates into an algebraic fact: for any prime ideal P ⊂ A, we have

heightP + dimA/P = dimA,

for any finitely generated1 k-algebra A.
In this context, we have the following corollary of Krull’s Principal Ideal

theorem: if A is a Noetherian ring, and I =< f1, . . . , fr >⊂ A a proper
ideal, then every minimal prime of I has height ≤ r. Hence if X is an
irreducible variety and A = A(X), and Y = V (I) 6= φ, then every irreducible
component of Y has codimension ≤ r. In particular, if X ⊂ An

k is a non-
empty subvariety which is the zero set of a collection of r polynomials, then
every irreducible component of X has dimension ≥ n− r.

We say X ⊂ An
k is a complete intersection if I(X) is generated by n −

dimX elements. We say X is a set theoretc complete intersection if there
exists a set of n − dimX polynomials whose zero set is precisely X, i.e.,
there is an ideal I generated by n−dimX elements with

√
I = I(X). From

Krull’s theorem, a set theoretic complete intersection is equidimensional,
i.e., all its irreducible components have the same dimension. As we see
in the example below, there are equidimensional varieties which are not
complete intersections. It is in general very hard to decide if an affine variety

1This does not hold for arbitrary Noetherian rings A, however.

6



is a set theoretic complete intersection. For example, a famous conjecture
asserts that every curve (purely 1-dimensional variety) in A3

k is s set theoretic
complete intersection; the celebrated theorem of Cowsik and Nori asserts
that this is true if k has characteristic p > 0.

Example 1.4: Let X ⊂ A3
k be the image of the morphism f : A1

k → A3
k,

f(t) = (t3, t4, t5). If x, y, z are the coordinates on A3
k, the ideal I(X) = (y2−

xz, x3−yz, z2−x2y), and I(X) cannot be generated by 2 elements. However
(exercise for the reader!) there exist f, g ∈ I(X) such that

√
< f, g > =

I(X), i.e., X is a set theoretic complete intersection.

There is another way in which we may understand the dimension of an
affine variety. This is through the Noether normalization theorem.

Theorem 2 (Noether normalization) Let A be a finitely generated k-algebra
of dimension d. Then there exist d elements y1, . . . , yd ∈ A such that

(i) y1, . . . , yd are homogeneous linear polynomials in the xi, and are
algebraically independent over k

(ii) if B is the k-subalgebra of A generated by the yj, then A is a finite
B-module; in particular, A is integral over B

(iii) if A is an integral domain, then its quotient field K is a fintie
separable extension of L, the quotient field of B; if [K : L] = r, then
there is a non-zero element b ∈ B such that A[1/b] is a free B[1/b]-
module of rank r, and for any maximal ideal m ⊂ B[1/b], the ideal
mA[1/b] is an intersection of r distinct maximal ideals.

Proof: (Sketch) We first show that B can be chosen so that A is a finite
B-module, and if A is an integral domain, then the extension of quotient
fields is separable.

Let x1, . . . , xn be generators for A as a k-algebra. If they are algebraically
independent, then A is a polynomial ring, and so (as noted earlier) d = n and
we are done. If not, there is a non-trivial polynomial relation f(x1, . . . , xn) =
0 with coefficients in k. If A is an integral domain, we may assume that the
polynomial f is irreducible; in particular, since k is algebraically closed, we
may assume f is separable in at least 1 of the variables.

One shows that there is a non-empty, Zariski open subset U ⊂ Mn(k),
the n× n matrices, such that

(i) U ⊂ GL n(k);
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(ii) for σ ∈ U , if we set ti = σ−1(xi), so that xi = σ(ti), then the poly-
nomial f(x1, . . . , xn) = f(σ(t1), . . . , σ(tn)) = g(t1, . . . , tn) is monic in
tn

(iii) in (ii), if A is a domain, then tn is also separable over the quotient
field of the subalgebra k[t1, . . . , tn−1].

To prove that such an open set U exists, one takes σ to be a matrix of
indeterminates, and if deg f = m, one computes the coefficient of tmn of g.
This is shown to be a non-zero polynomial h in the entries of σ, so that
the condition that the product hdet(σ) is non-zero defines a non-empty
Zariski open set U0 in Mn(k). In a similar way, the separability condition
also determines a non-empty Zariski open subset U1 ⊂ Mn(k) — if k has
characteristic p > 0, and f has a non-zero coefficient of the monomial xriM

′,
where M ′ involves only the other n − 1 variables, and p does not divide r,
then the open set U1 can be defined by the condition that in

g = tmn + a1(t1, . . . , tn−1)tm−1
n + · · · ,

the polynomial ar(t1, . . . , tn−1) (the coefficient of trn) is not identically 0.
Now take U = U0 ∩ U1.

Now replace A by the k-subalgebra A′ generated by t1, . . . , tn−1; by
induction on n, the result holds for A′. By construction, A = A′[tn] where
tn is integral over A′, so A is a finite A′-module. Further, if A is a domain,
then tn is separable over the quotient field of A′. If B ⊂ A′ is a polynomial
subalgebra over which A′ is a finite module, then clearly A is also a finite
B-module; if also the quotient field of A′ is separable over that of B, then
so is the quotient field of A.

Now assume A is a domain, and fix B ⊂ A such that A is a finite B-
module, and the quotient field K of A is separable over L, the quotient field
of B. By the primitive element theorem, K = L(t) for some element t ∈ A.
Since A is a finite B-module, we can find a non-zero element b1 ∈ B such that
A[1/b1] = B[1/b1][t]. Now t is a root of a monic polynomial with coefficients
in B; since B is a unique factorization domain (it is a polynomial ring over a
field), the Gauss lemma implies that the monic irreducible polynomial p(T )
of degree r = [K : L] for t over L satisfies p(T ) ∈ B[T ]. In particular,
A[1/b1] is a free B[1/b1]-module with basis 1, t, . . . , tr−1. Since K = L(t)
is separable over L, p(T ) is a separable polynomial, and so NK/L(p′(t)) is
a non-zero element b2 ∈ B. Now take b = b1b2. Then A[1/b] = B[1/b][t]
where t is a root of the monic irreducible separable polynomial p(T ) over
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B[1/b] (separability means the norm of p′(t) is a unit in B[1/b]). Hence for
any maximal ideal m of B[1/b], the algebra C = A[1/b]/mA[1/b] over the
field B[1/b]/m = k has a presentation C = k[T ]/(p(T )), where p(T ) ∈ k[T ]
is a separable monic polynomial of degree r. Since k is algebraically closed,
this means p(T ) is a product of r distinct monic linear factors, i.e., mA[1/b]
is the intersection of r distinct maximal ideals. 2

The category of affine varieties has a direct product. First, we identify
An
k ×Am

k with An+m
k in the obvious way (both are identified with km+n).

Let x1, . . . , xn be the coordinates on An
k , and y1, . . . , ym those on Am

k . Then
the m + n functions x1, . . . , xn, y1, . . . , ym are the coordinates on An+m

k . If
X ⊂ An

k and Y ⊂ Am
k are subvarietes, with ideals I(X) ⊂ k[x1, . . . , xn] and

I(Y ) ⊂ k[y1, . . . , ym], then X × Y is the subset V (I(X) ∪ I(Y )) ⊂ An+m
k ,

where I(X), I(Y ) are both regarded as subsets of k[x1, . . . , xn, y1, . . . , ym].
With this identification, one can show that in fact < I(X), I(Y ) > is a

radical ideal in k[x1, . . . , xn, y1, . . . , ym], and so A(X)⊗kA(Y )
∼=−→ A(X×Y )

as k-algebras (the isomorphism is induced by xi ⊗ 1 7→ xi, 1 ⊗ yj 7→ yj).
Now X × Y is indeed the direct product in the category of affine varieties,
i.e., to give a morphism from an affine variety Z to X × Y is precisely to
give a pair of morphisms Z → X and Z → Y .

There is one subtlety in the definition of the product: the Zariski topol-
ogy on X×Y is in general not the product topology; it is usually finer (i.e.,
open sets in the product topology are also Zariski open, but there are usu-
ally more Zariski open sets in X×Y ). A simple example to illustrate this is
the variety A2

k = A1
k ×A1

k; the basic open sets in the product topology are
complements of finite unions of vertical and horizontal lines, and the Zariski
open set A2

k − V (xy − 1) (the complement of the hyperbola with equation
xy = 1) is not a union of such sets, i.e., is not open in the product topology.
Since the product variety is indeed the direct product in the category of
affine varieties, this ‘strange’ topology on the product does not cause any
difficulties, and is in fact forced on us.

We next discuss the important notion of non-singularity. We do this
using the Zariski tangent space. This is defined as follows. If X ⊂ An

k is an
affine variety, and P a point of X, let m ⊂ k[x1, . . . , xn] be its maximal ideal
in the polynomial ring, and m ⊂ A(X) its image in A(X). There is then
a surjective k-linear map m/m2 → m/m2. If W ⊂ m is the vector space
of linear polynomials in k[x1, . . . , xn] vanishing at P , then the natural map
W → m/m2 is an isomorphism. Let W0 = ker(W → m/m2). Thus W0

consists of the linear polynomials vanishing at P ‘to order at least 2 along
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X’; geometrically, we should then expect that for any non-zero f ∈W0, the
hyperplane {f = 0} in An

k should be tangent to X along P .
With this as motivation, we define the Zariski tangent space TP,X to X

at P to be the linear subvariety of An
k defined by

TP,X = V (W0) = {x ∈ An
k | f(x) = 0∀ f ∈W0}.

This is clearly an affine linear subspace (a coset of a vector subspace) of An
k

which passes through P .
We may regard k[x1, . . . , xn] as the symmetric algebra over k of W ,

i.e., a basis y1, . . . , yn for W gives a new set of variables in the polynomial
ring, related to the old ones by an affine linear transformation (i.e., we
have yi =

∑
aijxj + cj with [aij ] ∈ GL n(k) and cj ∈ k). Now TP,X has

coordinate ring isomorphic to the symmetric algebra of W/W0, i.e., to the
symmetric algebra of m/m2. Thus points of TP,X are naturally in bijection
with elements of the dual vector space

(m/m2)∗ = Hom k(m/m2, k).

Hence this dual space is also known as the Zariski tangent space (this is
an intrinsic definition which depends only on the coordinate ring and the
maximal ideal, and not the chosen set of n generators of A(X), i.e., the
given ‘embedding’ of X in An

k).
From the discussion above, we see that

dimTP,X = dimk m/m2.

From commutative algebra,

dimk m/m2 ≥ (Krull) dimA(X)m = dimOP,X .

We define a point P in X to be non-singular if equality holds, or equivalently,
if the local ring OP,X is a regular local ring in the sense of commutative alg
bra. A third equivalent characterization is that the completion

ÔP,X = lim
←−
s

OP,X/ms

of OP,X is isomorphic to the ring k[[x1, . . . , xd]] of formal power series over
k in d = dimOP,X variables. In particular, since a regular local ring is an
integral domain, P must lie on a unique irreducible component of X.
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Now

m/m2 ∼= m/(m2 + I(X)) = coker (I(X)→m/m2).

Let P = (a1, . . . , an), so that m =< x1 − a1, . . . , xn − an >. Identifying
m/m2 with V , which has a basis x1−a1, . . . , xn−an, the map I(X)→m/m2

is identified with the map (given by Taylor expansion to order 1)

f 7→
(
∂f

∂x1
(a1, . . . , an), . . . ,

∂f

∂xn
(a1, . . . , an)

)
.

Hence if f1, . . . , fm are generators for I, then

dimTP,X = n− rank

[
∂fj
∂xi

(P )

]
.

This leads to the Jacobian criterion for non-singularity: if X is irreducible
and dimX = d, then P ∈ X is a non-singular point if and only if there exist
n− d elements f1, . . . , fn−d in I(X) such that[

∂fj
∂xi

(P )

]
has maximal rank (equal to n−d). One immediate consequence of the above
analysis is that the set of nonsingular points in X is Zariski open (it is a
finite union of sets defined by the non-vanishing of determinants of matrices
of polynomials).

Now affine space of any dimension is non-singular. From Noether nor-
malization as proved above, applied to A = A(X), the points of an irre-
ducible affine variety X corresponding to maximal ideals of A[1/b] are non-
singular points of X. This is because for any maximal ideal m of B[1/b], if
mA[1/b] = m1 ∩ · · · ∩mr, then (with d = dimA = dimX)

rd = dimk m/m2 = dimk mA[1/b]/m2A[1/b] =
∑

dimk mi/m
2
i

where each term on the right is at least d; hence all the terms in the sum
equal d. In particular Ami is a regular local ring of dimension d for each
i. Thus the set of non-singular points of an irreducible affine variety is a
non-empty Zariski open set.

Non-singular affine varieties have several good properties which distin-
guish them in the class of all varieties. For example, if X is connected and
non-singular, then it is irreducible. Further, if f : X → Y is a bijective
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morphism between irreducible affine varieties, such that Y is non-singular,
and f∗ induces an isomorphism of the quotient fields of A(Y ) and A(X),
then it is in fact an isomorphism. This result is, however, not so easy to
prove; it is a (relatively simple) form of ‘Zariski’s Main Theorem’.

Another subtle propert of non-singular varieties is that their local rings
OP,X are all unique factorization domains (UFDs). This follows from the
theorem of Auslander-Buchsbaum in commutative algebra, that a regular
local ring is a unique factorization domain. In particular, one can deduce
that the local rings OP,X , and hence (if X is irreducible) the coordinate
ring A(X), is integrally closed in its quotient field. Finally, if k = C, the
field of complex numbers, then a non-singular subvariety X ⊂ An

C can also
be regarded as a complex submanifold of Cn, so that techniques from the
theories of differential and complex manifolds can be applied to the study
of X; sometimes analogous algebraic notions can be defined, which would
then make sense for arbitrary non-singular affine varieties. One such notion
we will encounter later is that of an algebraic differential form.

We can also associate to X its tangent variety

TX := {(x, y) ∈ An
k ×An

k | y ∈ Tx,X}.

If x1, . . . , xn ands y1, . . . , yn are the coordinates on the two factors An
k , then

TX is the subvariety of An
k ×An

k = A2n
k defined by V (I(X) ∪ S), where

S = {
n∑
i=1

(yi − xi)
∂f(x1, . . . , xn)

∂xi
| f ∈ I(X)}.

Hence TX is an affine variety in A2n
k = An

k×An
k , such that the first projection

gives a surjective morphism πX : TX → X. The fibre π−1
X (P ) is identified

with TP,X , and the diagonal embedding of X in An
k ×An

k gives an algebraic
section of the morphism πX . If X is non-singular, then πX is an example of
an algebraic vector bundle, the tangent bundle of X.

We end this section with the notions of rational functions and rational
maps. First note that there is a basis of open sets for the Zariski topology
on An

k consisting of the open sets

D(f) := An
k − V (f) = {x ∈ An

k | f(x) 6= 0}. (1)

Consider the variety Xf ⊂ An+1
k defined by f(x1, . . . , xn)xn+1− 1 = 0 (i.e.,

Xf = V (f(x1, . . . , xn)xn+1 − 1)). The coordinate ring of Xf is isomorphic
to the localization of A(X) with respect to powers of f . Then projection

12



onto the first n coordinates yields a morphism ϕ : Xf → An
k , which is gives

a homeomorphism of Xf with D(f), such that

(i) ϕ∗ : A(An
k)→ A(Xf ) is identified with the localisation map k[x1, . . . , xn]→

k[x1, . . . , xn, f
−1]

(ii) for any P ∈ Xf with image Q ∈ D(f), the local rings OP,Xf and OP,An

are isomorphic, via ϕ∗.

Thus we may regard D(f) as an affine variety in its own right, by identifying
it with Xf . Hence it also makes sense to consider regular functions on D(f);
now restrictions of regular functions from D(f) to D(fg) are regular on
D(fg).

Now let X be an irreducible affine variety. A rational map from X to
an affine variety Y is a morphism f : U → Y , for some non-empty affine
open subset U ⊂ X, such that (U, f) and (V, g) determine the same rational
map if f − g vanishes on a non-empty open set in U ∩ V (more formally, a
rational map is an equivalence class of pairs (U, f) as above). In particular,
a rational function on X is a rational map X → A1

k. One sees easily that
rational functions are identified with elements of the quotient field of A(X).

A rational map (or rational function) is said to be regular at a point P if
there is a morphism (U, f) representing it, with P ∈ U . The local ring OP,X
acquires the following more function theoretic interpretation: it is the ring of
germs of rational functions on X which are regular at P (recall that a germ
of a function at P is a pair (U, f) consisting of an open set U containing P ,
and a function f on U ; again (U, f) is equivalent to (V, g) if f and g agree
on a neighbourhood of P in U ∩ V ).

The interpretation of local rings in terms of germs of regular func-
tions allows us to reexamine the notion of a morphism between affine vari-
eties. Clearly if f : X → Y is a morphism between affine varieties, then
f∗ (i.e., composition with f) induces homomorphisms f∗ : Of(P ),Y →
OP,X for all P ∈ X. Conversely, suppose given a continuous map (for
the Zariski topology) f : X → Y , such that for each P ∈ X, the associa-
tion (g, V ) 7→ (g ◦ f, f−1(V )) on germs of functions yields a homomorphism
f∗ : Of(P ),Y → OP,X . Then one can prove that f is in fact a morphism (see
[H], Theorem 3.2). This boils down to the following statement in commuta-
tive algebra: let A be a finitely generated reduced k-algebra; then A is the
intersection (in its total quotient ring) of its localizations at all its maximal
ideals.
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2 Projective and quasi-projective varieties

We begin by defining projective n-space over the (algebraically closed) field
k to be a quotient of kn+1 − {0} by an equivalence relation,

Pn
k := (kn+1 − {0})/ ∼,

where (a0, . . . , an) ∼ (λa0, λa1, . . . , λan) for all λ ∈ k∗ = k − {0}. We
denote the equivalence class of (a0, a1, . . . , an) by (a0 : a1 : · · · : an). If
P = (a0 : a1 : · · · : an) is a point of Pn

k , then the aj are called homogeneous
coordinates for P .

Let S = k[X0, . . . , Xn] be the polynomial ring in n + 1 variables. We
consider this as a graded k-algebra such that each variable Xi is homoge-
neous of degree 1. Thus S = ⊕d≥0Sd, where Sd denotes the k-vector space
of homogeneous polynomials of degree d. If f ∈ S is homogeneous of de-
gree d, then for any P = (a0 : a1 : · · · : an) ∈ Pn

k , the condition that
f(a0, a1, . . . , an) = 0 depends only on the point P , and not on the specific
set of homogenous coordinates chosen to represent P . We express this by
writing ‘f(P ) = 0’. With this convention, if T is a set of homogeneous poly-
nomials in k[X0, . . . , Xn], we define the associated projective variety X in
Pn
k to be

X = V (T ) = {P ∈ Pn
k | f(P ) = 0∀P ∈ T}.

The same set T also defines a subvariety C(X) of An+1
k , which is conical

(i.e., if x lies in the subvariety, so does λx, for all λ ∈ k). We call C(X) the
affine cone over X ⊂ Pn

k .
Recall that an ideal I ⊂ k[X0, . . . , Xn] is called a homogeneous ideal if

I is generated by homogeneous elements; equivalently, I ⊂ S is a graded
submodule of S. The Hilbert basis theorem then implies that I is gener-
ated by a finite set of homogeneous elements. For any set T of homoge-
neous polynomials, the ideal < T > generated by them is homogeneous,
and V (T ) = V (< T >) ⊂ Pn

k . Also, the radical of a homogeneous ideal is
homogeneous, so that we again have V (I) = V (

√
I) for any homogeneous

ideal I.
Note that the ideal S+ = ⊕d>0Sd generated by all homogeneous elements

of positive degree defines the empty set in Pn
k , even though S+ is a non-trivial

maximal ideal; we call it the irrelevant maximal ideal of S. Further, for any
homogeneous ideal I, we have either I = S or I ⊂ S+, and

V (I) = φ ⇔ either
√
I = S or

√
I = S+ = ⊕d>0Sd.
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As in the case of affine varieties in An
k , the projective varieties in Pn

k are
closed under finite unions and arbitrary intersections, and so form the closed
subsets for a topology on Pn

k (giving rise to a topology on any projective
variety in Pn

k). We call this the Zariski topology on Pn
k . We also define the

notion of a quasi-projective variety in Pn
k ; this is a subset of the form X−Y

where X,Y ⊂ Pn
k are projective varieties. From now on ‘variety’ will mean

‘quasi-projective variety’, unless specified otherwise.
If X ⊂ Pn

k is a projective variety, then its ideal I(X) ⊂ S is the homoge-
neous ideal generated by all homogeneous polynomials vanishing on X. The
homogeneous coordinate ring S(X) of X is defined to be the quotient graded
ring S/I(X). The Nullstellensatz takes on the following form: for any ho-
mogeneous ideal I, if f ∈ Sd with d > 0 and f ∈ I(V (I)), then f ∈

√
I.

This can be deduced from the usual Nullstellensatz applied to the affine
cone C(X). The homogeneous Nullstellensatz implies that if I =

√
I is a

graded radical ideal in S with V (I) 6= φ, then I(V (I)) = I. We obtain a 1-1
correspondence between non-empty projective varieties in Pn

k and radical
homogeneous ideals I ⊂ S+ with I 6= S+. Further, for any set Y ⊂ Pn

k , its
Zariski closure (i.e., closure in the Zariski topology) is V (I(Y )), where I(Y )
is the ideal generated by homogeneous polynomials vanishing on Y . Finally,
there is a 1-1 correspondence between closed subsets of a projective variety
X and radical homogeneous ideals I⊆/S(X)+, where S(X)+ = ⊕d>0S(X)d
is the ideal generated by homogeneous elements of positive degree in S(X).

Projective space Pn
k , and hence any quasi-projective variety, is a Noethe-

rian topological space, i.e., any strictly descending chain of closed subsets
stops after a finite number of steps. This follows from the ascending chain
condition for graded ideals. A Noetherian space may also be characterized
by the property that any collection of closed subsets has a minimal ele-
ment. In a formal way, this implies that any Noetherian topological space
X can be uniquely written as an irredundant union X = X1 ∪X2 ∪ · · · ∪Xn

where Xi ⊂ X are irreducible, closed subsets, as follows. The collection
of all closed subsets of X which do not have a finite decomposition into
irreducible closed subsets has a minimal element X0, which must clearly
be reducible; if X0 = X ′ ∪ X ′′, where X ′, X ′′ are proper closed subsets of
X0, then minimality of X0 implies that X and X ′ are each finite unions of
irreducible closed subsets; but then so is X0 = X ′ ∪X ′′. So X does admit a
finite decomposition into irreducible closed subsets, hence also an irredun-
dant one. Uniqueness is easily proved by induction on the number of sets in
a given decomposition.

In particular, any quasi-projective variety X is uniquely expressed as a
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finite, irredundant unions X = X1 ∪X2 ∪ · · · ∪Xr of irreducible varietes of
the same type, which we call the irreducible components of X.

In algebraic terms, if I(X) is the homogeneous ideal of a projective vari-
ety, then in its primary decomposition I(X) = P1∩P2∩· · ·∩Pr, the primes Pi
are also homogeneous, and determine projective subvarieties X1, . . . , Xr of
X; then X = X1∪X2∪· · ·Xr is the decomposition of X into irreducible com-
ponents; in particular, X is irreducible ⇔ I(X) is a (homogeneous) prime
ideal. Thus points in X correspond to homogeneous prime ideals m⊆/S(X)+,
which are maximal among such prime ideals. Note that S(X)/m must then
be a graded integral domain of Krull dimension 1, generated as a k-algebra
by its homogeneous elements of degree 1; this forces S(X)/m = k[t], a poly-
nomial ring, where t is any non-zero homogeneous element of degree 1. Now
under the composite

S→→S/I(X) = S(X)→→S(X)/m,

if Xi maps to ait, then one verifies easily that P = (a0 : a1 : · · · : an).
Conversely, if ϕ : S(X)→→k[t] is a graded surjection of k-algebras, then
ϕ(Xi) = ait, so that kerϕ is the graded ideal corresponding to the point
P = (a0 : · · · : an). Hence there is a 1-1 correspondence between points of X
and equivalence classes of graded surrjective homomorphisms S(X)→ k[t],
where the equivalence is upto composition with an automorphism t 7→ ct
with c ∈ k∗.

For X = Pn
k , such graded homomorphisms are of course equivalent to

linear functionals on S1, vector space of homogeneous elements of degree 1 in
S; the homomorphism corresponding to a functional is the induced map on
symmetric algebras. This gives a ‘coordinate free’ description of the points
of Pn

k as non-zero linear functionals on S1 upto scalar multiples.
The dimension of a quasi-projective variety X is now defined as for affine

varieties: it is the largest d such that there is a strictly increasing chain of
irreducible closed subsets X0⊆/X1⊆/ · · · ⊆/Xd of X. One can show using a
little commutative algebra that for any quasi-projective variety Y , we have
dimY = dimY , where Y is the projective closure of Y (see [H], Prop. 1.10
and Exercise 2.10).

Krull’s principal ideal theorem has the following consequence for sub-
varieties of Pn

k — if F1, . . . , Fr are homogeneous polynomials of positive
degree, then each irreducible component of V (< F1, . . . , Fr >) has dimen-
sion ≥ n− r. Unlike in the case of affine varieties, this variety X is always
non-empty, provided r ≤ n, since we may apply the affine Krull theorem
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to the cone C(X) in An+1
k (note that C(X) is always non-empty, since it

contains the origin 0 ∈ kn+1 = An+1
k ).

If
Ui = {(a0 : · · · : an) | ai 6= 0},

then there is a natural bijection ϕi : kn → Ui given by

(b1, . . . , bnw) 7→ (b1 : · · · : bi : 1 : bi+1 : · · · : bn).

In fact this is easily seen to be a homeomorphism with respect to the re-
spective Zariski topologies ([H], Prop. 2.2). This amounts to the assertion
that if Y ⊂ An

k , then Y = ϕ−1(ϕ(Y )), where ϕ(Y ) is the Zariski closure in
Pn
k of ϕ(Y ). This is true because if f(x1, . . . , xn) is a polynomial of degree

d, so that
f =

∑
ν1+···+νn≤d

aν1ν2···νnx
ν1
1 x

ν2
2 · · ·x

νn
n ,

and if

F (X0, X1, . . . , Xn) = Xd
i f(X0/Xi, X1/Xi, . . . , Xi−1/Xi, Xi+1/Xi, . . . , Xn/Xi) =∑

ν1+···+νn≤d
aν1ν2···νnX

ν1
0 Xν2

1 · · ·X
νi
i−1X

d−ν1−ν2−...−νn
i X

νi+1

i+1 · · ·X
νn
n

is the (unique) homogeneous polynomial of degree d with

F (x1, x2, . . . , xi−1, 1, xi, . . . , xn) = f(x1, . . . , xn),

then

(i) V (F ) = ϕ(V (f)) is the Zariski closure of ϕ(V (f))

(ii) ϕ−1(V (F )) = V (f).

We may thus identify Ui with the affine space An
k . Hence Pn

k , and hence
also any quasi-projective variety, has a basis of Zariski open sets consisting
of affine varieties. This is because (as seen in §1) any affine variety has a
basis of Zariski open sets which are each affine varieties in a natural way.

This local structure of quasi-projective varieties allows us to transfer
‘locally defined’ notions for affine varieties to quasi-projective varieties. The
first important one is that of morphisms. A continuous map f : X → Y
between quasi-projective varieties is called a morphism if for any affine open
subsets U ⊂ X and V ⊂ Y such that f(U) ⊂ V , the restriction f : U → V is
a morphism of affine varieties. Morphisms to A1

k are called regular functions
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on X, and form a k-algebra in a natural way under pointwise addition
and multiplication. We denote this k-algebra by O(X). If f ∈ O(X), let
D(f) = X − V (f).

Similarly, a rational map X → Y from an irreducible quasi-projective
variety X is an equivalence class of pairs (U, f) where U is a non-empty
open set in X, and f : U → Y is a regular function on U ; here (U, f) and
(V, g) are equivalent if f = g on U ∩ V .

A rational map f : X → A1
k is called a rationa function on X. The

rational functions on X form a field, denoted K(X), which we refer to as
the (rational) function field of X. Examples of rational functions are given
by (the restriction to X of) ratios F/G of homogeneous polynomials of the
same degree, where G 6∈ I(X). If U ⊂ X is a non-empty open subset, clearly
K(U) = K(X); since K(An

k) is just the quotient field of the polynomial
ring in n variables, we deduce that K(Pn

k) is also isomorphic to the field of
rational functions over k in n variables.

In general, for any irreducible variety X, the dimension of X equals
the transcendence degree over k of its rational function field K(X). To
prove this, we may replace X by an affine open subset, without changing
the function field; for an irreducible affine variety X, the function field is
the quotient field of its coordinate ring A(X). Now dimension theory in
commutative algebra implies that the transcendence degree of the quotient
field of A(X) equals its Krull dimension.

We mention one good property of morphisms between quasi-projective
varieties. Let f : X → Y be a morphism between irreducible varieties with
Zariski dense image (for example, f may be onto); we say f is a dominant
morphism. Then there is a non-empty Zariski open set U ⊂ Y such that for
any P ∈ U , we have dim f−1(P ) = dimX−dimY . A proof is sketched in [H],
II, Ex. 3.22. The idea is to first reduce to the case when X and Y are affine,
and then consider a factorization f = g ◦ h, where (i) g : X → Y × Ar

k,
with r = dimX − dimY , (ii) the morphism g is dominant, and (iii) h is
the projection to Y ; further, (iv) K(X) is a finite algebraic extension of
K(Y ×Ar

k).
We do this on the level of algebra — if A(X) = A, A(Y ) = B, then

f∗ : B → A is injective, since f is dominant. The quotient fields K(X)
of A and K(Y ) of B respectively have transcendence degrees dimX and
dimY over k; hence K(X) has transcendence degree r over K(Y ), and
we can find a polynomial subalgebra B[T1, . . . , Tr] of A such that [K(X) :
K(Y )(T1, . . . , Tr)] <∞.

Hence it suffices to prove that if f : X → Y is dominant, and dimX =
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dimY , then for a non-empty Zariski open set U ⊂ Y , and any P ∈ U , the
fibre f−1(P ) is finite. Since K(X) is finite algebraic over K(Y ), and A(X) is
a finitely generated A(Y )-algebra, we can find a non-zero b ∈ A(Y ) such that
A(X)[1/b] is integral and finitely generated over A(Y )[1/b], i.e., A(X)[1/b] is
a finite A(Y )[1/b]-module. Then for any maximal ideal m ⊂ A(Y )[1/b], the
A(Y )[1/b]/m = k vector space A(X)[1/b]/mA(X)[1/b] is finite dimensional,
so that there are only finitely many maximal ideals of A(X)[1/b] lying over
m. Thus if P ∈ D(b) ⊂ Y , the fibre f−1(P ) is finite.

We can define the local ring OP,X at a point P of a quasi-projective
variety X as the ring of germs of regular functions at P (such a germ is,
as before, an equivalence class (U, f) where U is an open neighbourhood of
P , and f is a regular function on U). Since this is true for affine varieties,
we see that the notion of a morphism f : X → Y is local on X: in fact f
is a morphism ⇔ f is continuous, and composition of germs with f yields
homomorphisms f∗Of(P ),Y → OP,X for all P ∈ X.

We can read off some invariants of a projective variety directly from
its homogeneous coordinate ring, as follows. We make use of the following
notations. Let A be a graded ring, and T ⊂ A a multiplicative set consisting
only of homogeneous elements. The localized ring T−1A has a natural Z-
grading, whose homogeneous elements are of the form f/g, where f ∈ A,
g ∈ T are homogeneous elements; we define deg f/g = deg f−deg g. Now let
A(T ) denote the elements of degree 0 in the Z-graded localized ring T−1A.
If I is a homogeneous prime ideal of A, let A(I) = A(T ) where T is the set of
homogeneous elements of A− I (this is indeed a multiplicatively closed set
of homogeneeous elements in A). If T is the multiplicative set of powers of
a homogeneous element f , we write A(f) for A(T ). Note that if T contains a
homogeneous element of degree 1, or even a power of such an element, then

T−1A = A(T )[t, t
−1]

is a Laurent polynomial ring in 1 variable, as a graded ring. Here t is the
image of any homogeneous element of degree 1 of A such that a power of t
lies in T .

Theorem 3 Let X ⊂ Pn
k be a projective variety, with homogeneous coordi-

nate ring S(X).

(i) For any point P ∈ X, let m ⊂ S(X)+ be the homogeneous prime
ideal corresponding to P . Then OP,X is naturally isomorphic to S(X)(m).
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(ii) Let f ∈ S(X) be homogeneous of degree > 0, and let Y = V (f) ⊂
X be the closed subvariety defined by the vanishing of f (i.e., Y cor-
responds to the graded radical ideal

√
fS(X)). Then X − Y is affine,

with coordinate ring naturally isomorphic to S(X)(T ).

(iii) dimS(X) = dimX+1; if X 6= φ, then the irreducible components
of X are in bijection with the minimal primes of S(X) (which are
homogeneous).

Suppose further that X is irreducible. Then

(iv) O(X) = k, i.e., any regular function on X is constant, and

(v) K(X) = S(X)((0)), the elements of degree 0 in the localization of
S(X) with respect to the multiplicative set of homogeneous elements of
S(X)− (0).

This is contained in [H] (I, Theorem 3.4 and Ex. 2.10), except for (ii), which
is proved in the special case when f is one of the variables. The general case
of (ii) is proved (in a more general form, in the context of schemes) in [H],
II, Prop. 2.5. The idea is as follows. If f has degree d, then S(X)(f) consists
of all elements g/f r where g ∈ S(X)rd, for some r ≥ 0. Let P = (a0 :
a1 : · · · : an) ∈ X − Y . Since deg g = deg f r, the ratio g/fd(a0, a1, . . . , an)

depends only on P , and yields a well defined function g̃/fd : X − Y →
k. One checks that this is a regular function, and that the resulting map
S(X)(f) → O(X − Y ) is an isomorphism. This can be done by covering X
by the opens sets X ∩ Ui, which are affine (by the special case of (ii) for
linear f); now one appeals to the analogous result for affine varieties (seen
in §1, (1)).

In particular, we see that for any homogeneous polynomial f ∈ S, the
Zariski open set in Pn

k defined by

D+(f) := Pn
k − V (f) = {P ∈ Pn

k | f(P ) 6= 0} (2)

is affine, with coordinate ring S(f), the subring of homogeneous elements of
degree 0 in the localization Sf = k[X0, . . . , Xn, 1/f ].

The set Pn
k × Pm

k has a natural structure as a projective subvariety in
Pnm+n+m
k , given by the image of the mapping

((a0 : a1 : · · · : an), (b0 : b1 : · · · : bm)) 7→
(a0b0 : a0b1 : · · · : aibj : · · · : anbm) ∈ Pnm+n+m
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(the dimension of the target projective space is (n + 1)(m + 1) − 1). This
is called the Segre embedding of Pn

k × Pm
k . Its image is indeed a projective

subvariety; if we let Zij , 0 ≤ i ≤ n, 0 ≤ j ≤ m be the variables correspond-
ing to homogeneous coordinates on Pmn+m+n

k , then the image of the Segre
embedding is the variety defined by the homogeneous polynomial equations

XijXkl −XilXkj = 0, ∀ 0 ≤ i, k ≤ n, 0 ≤ j, l ≤ m.

These are equivalent to the assertion that the matrix [Xij ] has rank ≤ 1.
Clearly, the homogeneous coordinates of any point P in the image of the
Segre embedding do satisfy these quadratic equations. Conversely, given any
non-zero solution [cij ] of these equations, the assertion that the rank of [cij ]
equals 1 implies that there exist (unique upto scalars) (a0, . . . , an) ∈ kn+1,
(b0, . . . , bm) ∈ km+1 in k such that cij = aibj . Then P is the image of the
(unique) point ((a0 : · · · : an), (b0 : · · · : bm)) under the Segre embedding.
If S = ⊕d≥0Sd and S′ = ⊕d≥0S

′
d are the (graded) homogeneous coordinate

rings of Pn
k and Pm

k respectively, then there is a natural identification of the
homogeneous coordinate ring

S(Pn
k ×Pm

k ) = k[Zij ]i,j/ < XijXkl −XilXkj | ∀i, j, k, l >

with the graded k-algebra

⊕d≥0Sd ⊗k S′d.

Here the image of the variable Zij is Xi ⊗X ′j , where Xi ∈ S1 and X ′j ∈ S′1
give the homogeneous coordinates on Pn

k , Pm
k respectively.

Note that though we call this the Segre embedding, in our treatment, it
is only a bijection, which we then use to put the structure of a variety on
Pn
k ×Pm

k . In the theories of ‘abstract varieties’ (which we do not discuss in
this course) or schemes (which are discussed later, and in principle include
‘abstract varieties’), there is a direct product, so that Pn

k ×Pm
k has a struc-

ture as a variety; in either of these contexts, one has to show that the Segre
embedding is in fact an isomorphism, in the appropriate category. This is
true, and will be discussed later for schemes.

One very important property which characterizes projective varieties
among arbitrary ones is that they are complete. This is an algebraic ana-
logue of the compactness (with respect to the Euclidean topology) of projec-
tive varieties over the complex number field. A variety X is called complete
if for any variety Y , the projection X × Y → Y is a closed map (i.e., the
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image of a closed subset of X×Y is closed in Y ). If X is complete, the image
of any morphism f : X → Z is closed, since it is the image of the graph of
f under the projection X × Z → Z. This imples that any regular function
on a connected complete variety X is constant: if f : X → A1

k is a regular
function, and i : A1

k → P1
k is the inclusion, then f and i ◦ f each must have

closed image, which is possible only if this image is a single point. Next, if
X is a complete quasi-projective variety in Pn

k , the inclusion X ↪→ Pn
k has

closed image, so X is in fact projective. Clearly a closed subvariety of a
complete variety is complete. So it remains to prove Pn

k is complete. To do
this, it suffices to show that for any m, the projection Pn

k × Pm
k → Pm

k is
closed. This can be proved via elimination theory; see [H], Theorem 5.7 A
for the statement needed. Another proof will be given later in this course
via valuation theory, in the context of schemes.

Example 2.1: The simplest non-trivial example of a Segre embedding
is that of P1

k × P1
k. The matrix [Zij ] reduces to a 2 × 2 matrix, and the

system of quadratic equations reduces to a single equation. Renaming the
coordinates on P3

k as x, y, z, w, the map may be described by the formulas

x = X0X
′
0, y = X0X

′
1, z = X1X

′
0, w = X1X

′
1.

The quadratic relation becomes xw = yz, i.e., P1
k×P1

k is identified with the
quadric surface in P3

k defined by xw − yz = 0.

As in the case of affine varieties, the Segre embedding now allows us to
define a product for arbitrary quasi-projective varieties. Again, the Zariski
topology on the product is finer than the product topology, but the prod-
uct variety is indeed the direct product in the category of quasi-projective
varieties (and morphisms between these). If X and Y are affine, then the
product defined earlier agrees with the present one.

We next define the notion of a non-singular point of a quasi-projective
variety X; it is most convenient to define P to be non-singular if OP,X is a
regular local ring. This is consistent with the definition for affine varieties
given earlier. If X is irreducible and projective of dimension d in Pn

k , then
there is a ‘homogeneous’ Jacobian criterion for a point P to be non-singular:
there must exist homogeneous polynomials F1, . . . , Fn−d in I(X) such that
the Jacobian matrix

J =

[
∂Fj
∂Xi

(a0, a1, . . . , an)

]
has (maximal) rank n− d, where P = (a0 : a1 : a2 : · · · : an). This condition
does not depend on the particular homogeneous coordinates chosen for P .
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The homogeneous Jacobian criterion can be deduced from the one for affine
varieties (see [H], I, Ex. 5.8), using the Euler relation∑

i

Xi
∂F

∂Xi
= (degF )F

for a homogeneous polynomial F .
One can define the projective tangent space TP,X to a projective variety

X at a point P = (a0 : a1 : · · · : an) as the linear projective subvariety of
Pn
k defined by

n∑
i=0

∂Fj
∂Xi

(a0, . . . , an)Xi = 0, ∀ 1 ≤ j ≤ r,

where F1, . . . , Fr are homogeneous generators for the ideal I(X). This is
easily seen to be independent of the choice of generators, and if P ∈ Ui =
D+(Xi) ∼= An

k , then TP,X is the closure in Pn
k of the Zariski tangent space

TP,X∩Ui ⊂ Ui. Thus the projective tangent space has the same dimension as
the Zariski tangent space; if X is irreducible and non-singular of dimension
d, then this also equals the dimension of either tangent space. Finally, we
can define the projective tangent variety TX of X as a subvariety of Pn

k×Pn
k ,

just as in the affine case; it is the subvariety of Pn
k ×Pn

k whose image under
the first projection is X, and whose fibre over P ∈ X is the projective
tangent space to X at P . If X is non-singular of dimension d, this gives an
example of a projective bundle of fibre dimension d (i.e., a Pd-bundle) over
X.

We now examine in some more detail the structure of morphisms. A
first simplifying remark is the following. Let X, Y be varieties, with X
irreducible, and i : Z ↪→ Y the inclusion of an irreducible locally closed
subset (hence Z is an irreducible variety also, in a natural way). Let f :
X → Z be a mapping of sets. Then f is a morphism ⇔ the induced map
i ◦ f : X → Y is a morphism. Thus the important case to consider is of
morphisms f : X → Pm

k , where X ⊂ Pn
k is locally closed. One way to

describe such morphisms is via linear systems.
There are several ways of thinking about linear systems. We give here a

concrete description, though a fuller understanding of linear systems comes
from the formulation in terms of invertible sheaves. The idea is that if
X0, . . . , Xn give homogeneous coordinates on Pn

k and if F0, . . . , Fm are ho-
mogeneous polynomials of a fixed degree d, then for any point P = (a0 : a1 :
· · · : an) ∈ Pn

k , we have two possibilities:
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(i) either F0(P ) = F1(P ) = · · · = Fm(P ) = 0, or

(ii) the point (F0(a0, . . . , an) : F1(a0, . . . , an) : · · · : Fm(a0, . . . , an)) ∈ Pm
k

depends only on P .

Hence there is a well defined map

ϕ : Pn
k − V (< F0, . . . , Fm >)→ Pm

k .

It is easy to see that this is a morphism, by restricting to the affine open sets
D+(Fj) for 0 ≤ j ≤ m — if Y0, . . . , Ym give the homogeneous coordinates
on Pm

k , then ϕ : D+(Fj))→ D+(Yj) ∼= Am
k is the map

P 7→ (
F0

Fj
(P ), . . . ,

Fj−1

Fj
(P ),

Fj+1

Fj
(P ), . . . ,

Fm
Fj

(P ));

the component functions Fi/Fj are regular functions on D+(Fj). Now for
any subvariety X ⊂ Pn

k , we may restrict ϕ to X−V (< F0, . . . , Fm >), which
is a non-empty (=dense) open subset of X provided some Fj 6∈ I(X), i.e.,
X 6⊂ V (< F0, . . . , Fm >). In this case, ϕ |X : X → Pm

k is a well-defined
rational map.

However, it may happen that the rational map may extend (uniquely)
to a morphism on a larger open subset of X than the ‘obvious’ one

X − V (< F0, . . . , Fm >);

it may even extend to all of X. For instance, for any non-zero homogeneous
polynomial F , the rational maps Pn

k → Pm
k given by (F0 : F1 : · · · : Fm) and

(FF0 : FF1 : · · · : FFm) are clearly the same, though the latter is apparently
defined only on the open set

Pn
k − (V (F ) ∪ V (< F0, . . . , Fm >)).

In general, the same phenomenon can occur locally on X: one may cancel
common factors ‘defined locally on X’ (the ‘invariant’ way to view this is
in terms of invertible sheaves, as mentioned earlier; these will be dealt with
later in the course). Here we just give some examples of this phenomenon.

Example 2.2: Let n > 1, and let O = (0 : 0 : · · · : 0 : 1) ∈ Pn
k . Then we

have a well defined morphism Pn
k −O → Pn−1

k , given by

(a0 : a1 : · · · : an−1 : an) 7→ (a0 : a1 : · · · : an−1),
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called projection from the point O. More generally, the assignment

(a0 : · · · : an) 7→ (a0 : · · · : an−r)

is a morphism Pn
k−L→ Pn−r

k ; it is called projection from the linear subspace
L ∼= Pr−1

k defined by X0 = · · · = Xn−r = 0.
Projection from a linear subspace L has the following geometric descrip-

tion. Choose a linear subspace M ⊂ Pn
k which is disjoint from L, such

that dimL + dimM = n − 1 (on the level of cones, C(L) and C(M) form
complementary linear subspaces of kn+1). Then the projection from L is
an isomorphism restricted to M , so we may consider projection form L as a
morphism Pn

k−L→M . The image of a point P is determined geometrically
as follows: the smallest linear subspace containing P and L (the linear span
of P and L) intersects M in a unique point, which is defined to be the image
of P under the projection.

For any pair of linear subspaces L,M as above (L∩M = φ, and dimL+
dimM = n − 1)) we also call the resulting morphism Pn

k − L → M a
projection. Note that the geometric description of a projection is ‘coordinate
free’, since we do not need to fix homogeneous coordinates on L, M to define
the projection.

Example 2.3: Suppose X = V (x2 − yz) ⊂ P2
k is a conic, and O = (0 :

0 : 1); then O ∈ X. The projection (a : b : c) 7→ (a : b) gives a morphism
f : X − {O} → P1

k. Now consider the projection (a : b : c) → (c : a). This
is defined on P2

k − {O′}, where O′ = (0 : 1 : 0) 6= O. Thus we have a well
defined morphism g : X − {O′} → P1

k. But both f and g agree with the
rational map h : X → P1

k given by (a : b : c) 7→ (ac : bc), since along X, we
have a2 = bc. Hence f = g = h is a morphism on all of X.

Example 2.4: LetX ⊂ P3
k be the quadric surfaceX = V (xy−zw), where

x, y, z, w give homogeneous coordinates on P3
k. As seen earlier, X ∼= P1

k×P1
k

is the image of the Segre embedding. Consider the rational map f : X → P1
k

given by f(a : b : c : d) = (a : c). This is a morphism on the complement
of x = z = 0. Since ab = cd for P = (a : b : c : d) ∈ X, we have equalities
between rational maps

(a : c) = (ab : bc) = (cd : bc) = (d : b).

Now (a : b : c : d) 7→ (d : b) is obviously a morphism on the complement of
y = w = 0. Hence f is a morphism on the complement in X of x = y =
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z = w = 0, i.e., f : X → P1
k is a morphism. In fact, if we trace through

the definitons, we see that under the identification of X with P1
k ×P1

k, the
morphism f is just projection onto one of the factors of P1

k.

Example 2.5: (d-tuple embedding, or Veronese embedding)
Let M0, . . . ,MN be a listing of the distinct monomials of degree d in

n+ 1 variables X0, . . . , Xn. Then

P 7→ (M0(P ) : M1(P ) : · · · : MN (P ))

is a well defined morphism Pn
k → PN

k , called the d-tuple (or Veronese)
embedding. We will show that this is an isomorphism from Pn

k onto a pro-
jective variety in PN

k , i.e., is indeed an embedding. In particular, if n = 2,
d = 2, then we compute that N = 5; the resulting surface in P5

k is called
the Veronese surface.

The dimension of the k-vector space of homogeneous polynomials over
k of degree d in the variables X0, . . . , Xn is the binomial coefficient

(n+d
d

)
.

Let Y0, . . . , YN give the homogeneous coordinates on PN
k , so that the d-tuple

embedding of ϕn,d : Pn
k → PN

k (where N =
(n+d
d

)
− 1) is given by

P = (a0 : a1 : · · · : an) 7→
(M0(a0, a1, . . . , an) : M1(a0, a1, . . . , an) : · · · : MN (a0, a1, . . . , an)).

Let R ⊂ S(Pn
k) = k[X0, X1, . . . , Xn] be the k-subalgebra generated by

all monomials of degree d. Thus R = ⊕s≥0S(Pn
k)sd, the subalgebra of poly-

nomials all of whose terms have degree divisible by d. We may redefine
the grading in the ring R by defining Rs = S(Pn

k)sd; then R is generated
by its homogeneous elements of degree 1. The graded k-algebra R is natu-
rally expressed as a graded quotient of k[Y0, . . . , YN ], by mapping Yi to the
corresponding monomial Mi. Let ψ : k[Y0, . . . , YN ]→→R. The kernel of ψ is
clearly a homogeneous prime ideal, defining an irreducible projective variety
Z ⊂ PN

k . We claim that the d-tuple embedding ϕn,d gives an isomorphism
Pn
k → Z.

First note that if P = (a0 : a1 : · · · : an) ∈ Pn
k , then the corresponding

homogeneous prime ideal in S(Pn
k) is

I(P ) =< aiXj − ajXi | 0 ≤ i < j ≤ n > .

Consider the surjective, graded k-algebra homomorphism θP : S(Pn
k) →

k[t] given by Xi 7→ ait. We see at once that its kernel is I(P ). Re-
striction to R, and composing with ψ, yields a graded k-linear surjection
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k[Y0, . . . , YN ]→→k[td], provided we redefine the grading in k[td] so that td now
has degree 1. The kernel is the homogeneous ideal of a point Q ∈ Z. Since
θP (Yi) = Mi(a0, . . . , an)td, by construction, clearly we have Q = ϕn,d(P ).
In particular ϕn,d factors through Z.

Conversely, any point of Z determines a graded k-linear surjection η :
R → k[td]. If we know that this is the restriction of a unique k-algebra
surjection θ : S(Pn

k) → k[t], then we would have shown ϕn,d is bijective.
Now there is some monomial M of degree d (an element of degree 1 in R)
such that η(M) 6= 0 in k[td]; then η(Md) 6= 0, so η(Xd

i ) 6= 0 for some i.
After composing with an automorphism of k[td] of the form td 7→ ctd for
some c ∈ k∗, we may assume η(Xd

i ) = td. Now if η(Xd−1
i Xj) = ajt

d, define
θ : k[X0, . . . , Xn] → k[t] by θ(Xj) = ajt

d (set ai = 1). For any monomial
Xν0

0 Xν1
1 · · ·Xνn

n with
∑
νj = d, we have a relation in R

(Xν0
0 Xν1

1 · · ·X
νn
n )(Xd

i )d−1 =
n∏
j=0

(XjX
d−1
i )νj ,

so that

θ(Xν0
0 Xν1

1 · · ·Xνn
n ) =

∏n
j=0 θ(XjX

d−1
i )νj

θ(Xd
i )

=

∏n
j=0 η(XjX

d−1
i )νj

η(Xd
i )

= η(Xν0
0 Xν1

1 · · ·Xνn
n ).

Hence θ restricts to η, as desired.
To complete the proof that ϕn,d is an isomorphism onto Z, it suffices to

check that for a covering of Z by affine open sets Vj , the set ϕ−1
n,d(Vj) = V ′j is

affine, and ϕn,d : V ′j → Vj is an isomorphism of affine varieties. In fact, let

M0, . . . ,Mn be the monomials Mj = Xd
j , and Y0, . . . , Yn the corresponding

variables. Then Z is covered by the open sets Vj = D+(Yj) ∩ Z = D+(Mj),
since the radical in R of the ideal < M0, . . . ,Mn > is just R+ = ⊕s>0Rs —
in fact for any monomial M of degree d in the Xi, we have that

Md ∈< M0, . . . ,Mn >⊂ R.

The sets Vj are affine open subvarieties of Z, from Theorem 3, and the
coordinate ring of Vj is A(Vj) = R(Mj). Now ϕ−1

n,d(Vj) = D+(Xj) = Uj
is the standard affine open cover of Pn

k , and its coordinate ring is A(Uj) =
S(Pn

k)(Xj) = k[X0/Xj , . . . , Xj−1/Xj , Xj+1/Xj , . . . , Xn/Xj ], which is a poly-
nomial ring. The inclusion R ↪→ S(Pn

k) induces a homomorphism of local-
izations A(Vj) = R(Mj) → S(Pn

k)(Xj) = A(Uj), since inverting Xj in the
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polynomial ring S(Pn
k) = k[X0, . . . , Xn] is equivalent to inverting Mj = Xd

j .
The corresponding morphism Uj → Vj is just ϕn,d (exercise for the reader!).
So it suffices to show that R(Mj) → S(Pn

k)(Xj) is an isomorphism. This
is clear, since it is an inclusion (both are subrings of the quotient field of
k[X0, . . . , Xn]) and is surjective, since for F homogeneous of degree r, if we
choose s with sd ≥ r, then F/Xr

j = FXsd−r
j /(Xd

j )s, and FXsd−r
j ∈ R.

One important property of the d-tuple embedding is the following: the
hyperplane sections (intersections with hyperplanes) of ϕn,d(P

n
k) are pre-

cisely the hypersurfaces of degree d in Pn
k (i.e., the subvarieties V (F ) ⊂ Pn

k ,
where F is a homogeneous polynomial of degree d).

Example 2.6: (d-tuple embedding of a projective variety)
Let X ⊂ Pn

k be a projective variety, and d > 1. Then ϕn,d(X) is an

isomorphic copy of X in PN
k , where N =

(n+d
d

)
− 1. The homogeneous

coordinate ring of X in this new projective embedding is ⊕s≥0S(X)sd, where
S(X) is the homogeneous coordinate ring for the original embedding.

Now suppose X ⊂ Pn
k , and let F0, . . . , Fm be homogeneous polynomials

of degree d > 1 in k[X0, . . . , Xn] = S(Pn
k). If V (< F0, . . . , Fm >) ∩X = φ,

then the Fi certainly determine a morphism X → Pm
k . However this mor-

phism does not in general correspond to a homomorphism of graded rings
S(Pn

k) → S(X), as seen for the d-tuple embedding. So unlike the case of
affine varieties, the homogeneous coordinate rings do not directly determine
the structure of morphisms between projective varieties. However, again as
in the case of the d-tuple embedding, the morphism f : X → Pm

k defined by
the Fi does correspond to a graded homomorphism S(Pm

k )→ ⊕s≥0S(X)sd.
In geometric language, the morphisms which correspond to graded homo-
morphisms between homogeneous coordinate rings are those defined by lin-
ear functions, i.e., are essentially projections from linear subspaces composed
with linear embeddings; more general morphisms are composites of such ‘lin-
ear’ morphisms with a suitable d-tuple embedding. Again, this situation will
be more clearly understood later in terms of invertible sheaves.

As with the d-tuple embedding of Pn
k , we see that the hyperplane sections

(intersections with hyperplanes) in the d-tuple embedding of X are precisely
the hypersurface sections of degree d of X in the original embedding (i.e.,
the subvarieties V (F ), where F ∈ S(X)d is homogeneous of degree d). Thus
any general result (for example, Bertini’s theorem, discussed in §3) which
is valid for hyperplane sections of any projective variety (or any projective
variety in some class, like irreducible, non-singular varieties) is automatically
valid also for hypersurface sections of arbitrary degree.
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Example 2.7:
If f : Pn

k → Pm
k is a non-constant morphism, then m ≥ n and f has finite

fibres. See [H], II, Ex. 7.3; this is an easy consequence of the description of
linear systems in terms of invertible sheaves.

Instead of describing linear systems on an irreducible projective variety
as ordered m + 1-tuples of homogeneous polynomials of the same degree,
we can consider them as m + 1-tuples of rational functions (f0, . . . , fm); if
U is a non-empty open set where all the fi are regular, and not all 0, then
P 7→ (f0(P ) : f1(P ) : · · · : fm(P )) is a morphism U → Pm

k . If F0, . . . , Fm are
homogeneous of the same degree, and Fj 6∈ I(X), then let fi = Fi/Fj ; now
the rational maps determined by (f0, . . . , fm) and (F0, . . . , Fm) are the same.
Further, we may replace (f0, . . . , fm) by (ff0, . . . , ffm), where f ∈ k(X)∗

is a non-zero rational function on X, without changing the rational map
X → Pm

k .
To complete the discussion, one can prove that for any irreducible variety

X ⊂ Pn
k , every morphism X → Pm

k is obtained by extending to all of X
the rational map determined by m + 1 homogeneous polynomials of the
same degree; in particular, it is described by a linear system in either sense
mentioned above. This is an easy consequence of Theorem 3 above. Indeed,
let f : X → Pn

k be a morphism, whose image intersects Uj = D+(Yj) (where
Y0, . . . , Ym give the homogeneous coordinates in Pm

k ). Then f−1(Uj) = U is
a non-empty open subset of X, and f : U → Uj ∼= Am

k is a morphism. Thus
f |U= (f1, . . . , fm) where fi ∈ O(U) ⊂ k(X). Clearly f is then equal to the
rational map X → Pm

k given by P 7→ (f1(P ) : · · · : fj−1(P ) : 1 : fj(P ) :
· · · : fm(P )). Since k(X) = S(X)((0)), we can find homogeneous elements
F0, . . . , Fm ∈ S(X)d, for some d > 0, such that

fi =

{
Fi+1/Fj for all i ≤ j,
Fi/Fj for all i > j

(that is, Fj is a ‘common denominator’ for f1, . . . , fm). Now clearly f =
(F0 : F1 : · · · : Fm).

We conclude this section with a discussion of the degree of a projective
variety. If X ⊂ P2

k is a curve (i.e., all irreducible components of X have
dimension 1), then I(X) = (F ) for a homogeneous polynomial F (x, y, z),
unique upto a constant factor. If this polynomial has degree d, and is not
divisible by z, then for ‘general’ a, b ∈ k, the equation F (x, ax+ b, 1) = 0 in
x has d distinct roots. We may interpret this to mean that a ‘general’ line
intersects X in d points. This property of X gives an interpretation of the
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integer d without directly refer to the defining polynomial F .
In general, there is no single defining polynomial, nor even any preferred

set of defining polynomials, for a projective variety. However, we can still
associate a certain positive integer, which we call its degree, to any projective
variety X. Geometrically, the degree is thought of as follows: if X ⊂ Pn

k

has dimension m, then

(i) a ‘general’ linear subspace L ∼= Pn−m
k should intersect X ‘transver-

sally’ in a finite set of points

(ii) the number of points in such a general linear intersection is indepen-
dent of the ‘general’ L chosen, and is an invariant of the embedding
of X.

This directly generalizes the example of curves in P2
k. However, one then

needs to make precise the notions of ‘general’ and ‘transversal intersection’,
and to prove the property (ii). This can be done. More generally, the
degree should be a special case of the ‘intersection number’ of two projective
varieties of complementary dimension in a given projective space. This
should have several ‘intuitively obvious’ properties. For example, if Xt is
a ‘continuously varying’ family of projective varieties of a given dimension
r in Pn

k , and Y is a given variety of complementary dimension n − r, the
intersection number (Xt · Y ) of Xt and Y should be independent of t. The
theory of intersection multiplicities arises out of these ideas, but there are
formidable technical difficulties in carrying this out with full rigour.

For technical reasons, it turns out to be better to define the degree in
another way (similarly, the desired intersection theory is also set up in an
indirect way; this is pursued later in this course).

IfR = ⊕s≥0Rs is a graded k-algebra, withR0 = k, such that dimk R1 = n
is finite, and R = R0[R1] (i.e., R is generated as a k-algebra by elements of
degree 1), then R is a graded quotient of a polynomial ring k[X0, . . . , Xn].
Hence

H(R, s) := dimk Rs

is finite, for each s ≥ 0; in fact

0 ≤ H(R, s) ≤ H(k[X0, . . . , Xn], s) =

(
n+ s

s

)
.

The function H(R, s) is called the Hilbert-Samuel function of the graded
k-algebra R. Similarly, if M is a finitely generated graded R-module, then
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we can define its Hilbert-Samuel function to be

H(M, s) := dimkMs,

where M = ⊕s∈ZMs (we allow M to be non-zero in negative degrees, but
Ms = 0 for all sufficiently negative s, since M is finitely generated). Clearly
it suffices to discuss Hilbert-Samuel functions of finitely generated graded
modules over a polynomial ring, since in the above situation, we may regard
M as a k[X0, . . . , Xn]-module.

Now one has the following general result on Hilbert-Samuel functions.

Lemma 1 Let M be a finitely generated graded module over the polynomial
ring k[X0, . . . , Xn]. Let

r + 1 = dimM := dim k[X0, . . . , Xn]/Ann (M)

(so that r = dimV (Ann (M)) ⊂ Pn
k). Then there exist (unique) integers

c0, c1, . . . , cr with c0 > 0, such that

H(M, s) = c0

(
s

r

)
+ c1

(
s

r − 1

)
+ · · ·+ cr

(
s

0

)
∀ s >> 0.

In particular, for all sufficiently large s, H(M, s) equals a polynomial in s
with rational coefficients, which is called the Hilbert-Samuel polynomial of
M .

A proof is given in [H], I, Theorem 7.5. It is by induction on r, and relies
on the facts that

(i) the primary decomposition of a finitely generated graded k[X0, . . . , Xn]-
module is given by graded submodules

(ii) any finitely generated graded k[X0, . . . , Xn]-module has a finite filtra-
tion by modules of the form (k[X0, . . . , Xn]/P )(t), where P is a graded
prime ideal, and (t) indicates that the grading is shifted by the integer
t (thus

M(t)s := Ms+t,

for any graded module M)

(iii) if 0 → M ′ → M → M ′′ → 0 is an exact sequence of finitely gener-
ated graded modules over k[X0, . . . , Xn], then H(M, s) = H(M ′, s) +
H(M ′′, s). .
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Applying the above lemma to M = S(X) for a projective variety X ⊂ Pn
k

of dimension r, we get that

H(S(X), s) = d(X)
sr

r!
+ lower degree terms in s,

where d(X) is a positive integer. We define d(X) to be the degree of X in
Pn
k .

Since the d-tuple embedding of a projective variety X has coordinate ring
⊕s≥0S(X)sd, the above lemma implies that the degree of X in its d-tuple
embedding is drd(X), where d(X) is the degree in the original embedding.
This is consistent with our idea of intersection numbers, since we can find
a continuously varying family of varieties in Pn

k , one member of which is
a given hypersurface of degree d, and another member of which consists of
d general hyperplanes (if F , G = G1G2 · · ·Gd are the respective equations,
consider the family in Pn × A1 given by tF + (1 − t)G = 0, where t is
the coordinate on A1

k). Now intersection (in the d-tuple embedding) with a
linear space of codimension r is the intersection (in the original space) with
r hypersurfaces of degree d, each of which we ‘replace’ by d hyperplanes,
all mutually in general position. This leads us to intersecting X with dr

different linear spaces in Pn
k , each of codimension r. Each such intersection

should contribute d(X) points, so all of them should contribute drd(X)
points. As the reader can imagine, it seems difficult to make such reasoning
rigorous, though it seems plausible. The statement about degrees defined
via Hilbert-Samuel functions is, however, easy to prove, as we have seen.

In a similar fashion, we would expect that ifX = X1∪X2 where dimX1 =
dimX2 > dimX1 ∩X2, then d(X) = d(X1) + d(X2). This is easily deduced
from the exact sequence of graded S = k[X0, . . . , Xn]-modules

0→ S/I(X)→ S/I(X1)⊕ S/I(X2)→ S/(I(X1) + I(X2))→ 0,

after noting that dimS/(I(X1) + I(X2)) = dimS/
√

(I(X1) + I(X2)) = 1 +
dim(X1 ∩ X2) (thus H(S/(I(X1) + I(X2)), s) is a polynomial of degree <
dimX = dimXi, for all s >> 0).

Example 2.8: Let X ⊂ Pn
k with I(X) =< F >, where F ∈ k[X0, . . . , Xn]

is homogeneous of degree d. Then d(X) = d.
To prove this, consider the exact sequence of graded S = k[X0, . . . , Xn]-

modules
0→ S(−d)

·F−→ S → S(X)→ 0,
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where S(−d) is S with its grading shifted (so that S(−d)t = St−d), and ·F
denotes multiplication by F . Hence

H(S(X), s) =

(
n+ s

n

)
−
(
n+ s− d

n

)
∀ s ≥ d.

The right side is of the form(
sn

n!
+ an−1s

n−1 + lower degree terms in s

)
−(

(s− d)n

n!
+ an−1(s− d)n−1 + lower degree terms in (s− d)

)
,

where an−1 is a rational constant. Thus

H(S(X), s) = d
sn−1

(n− 1)!
+ lower degree terms in s.

The degree of a projective variety X has another interpretation, in terms
of projections.

Theorem 4 (Projective Noether normalization) Let X ⊂ Pn
k be an irre-

ducible projective variety with dimX = r. Then we can find a linear sub-
space L ⊂ Pn

k of dimension n− r − 1 such that

(i) L∩X = φ, and the projection Pn
k−L→ Pr

k restricts to a morphism
f : X → Pr

k with finite fibres

(ii) the field extension k(X)/f∗k(Pr
k) is separable algebraic, and [k(X) :

f∗k(Pr
k)] = d(X)

(iii) there is a non-empty Zariski open subset U ⊂ Pr
k such that for

all Q ∈ U , the fibre f−1(Q) ⊂ X has d(X) points.

(In fact the ‘general’ linear subvariety L ∼= Pn−r−1
k ⊂ Pn

k will have the stated
properties).

Proof: We first use the affine version of Noether normalization, proved
in §1. We have dimS(X) = r + 1; let xi ∈ S(X) be the image of the
variable Xi. Then according to affine Noether normalization, we can find
r + 1 homogeneous linear polynomials y0, . . . , yr in the xi such that if B =
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k[y0, . . . , yr], then B is a polynomial ring, and A = S(X) is a finite B-
module, and the quotient field of A is separable algebraic over that of B.
Then A is in fact a finite graded B-module, where we give the polynomial ring
the usual grading (yj are homogeneous of degree 1). Thus we can consider B
to be the homogeneous coordinate ring of Pr

k. For each 0 ≤ j ≤ r, choose a
linear homogeneous polynomial Yj in X0, . . . , Xn such that Yj 7→ yj ∈ S(X).
Then the homomorphism B → A can be considered as induced by the
rational map f = (Y0 : Y1 : · · · : Yr) : X → Pr

k. By construction f is a
morphism on X − V (< Y0, . . . , Yr >).

In particular, if B+ = ⊕s>0Bs is the irrelevant maximal ideal of B, then

S(X)/B+S(X) = S(X)/ < y0, . . . , yr >

is a finite dimensional graded B/B+ = k vector space. Hence
√
B+S(X) =

S(X)+, and so V (< Y0, . . . , Yr >) ∩ X = φ. Hence f : X → Pr
k is a

morphism on all of X.
Next, consider the field extension K(X) of K(Pr

k). From Theorem 3, we
have K(X) = A((0)), and K(Pr

k) = B((0)). The localization of B with respect
to the set of homogeneous elements of B+ is clearly just B((0))[t, t

−1] =
K(Pr

k)[t, t
−1], where t ∈ B1 is any non-zero homogeneous element of degree

1 (if F ∈ Bs is homogeneous of degree s, then F = (F/ts)ts with (F/ts) ∈
B((0))).

Now the localization of A with respect to the homogeneous elements of
A+ equals the localization with respect to the homogeneous elements of B+,
since

√
B+A = A+, and B is a finite A-module. This localization of A is

thus equal to A((0))[t, t
−1], where t ∈ B1 is the element chosen earlier.

Hence the quotient field of B is K(Pr
k)(t), while that of A is K(X)(t); the

degree of the quotient field of A over that of B is thus [K(X) : K(Pr
k)] = d,

say. We will show below that d = d(X). Assuming this, the affine Noether
normalization lemma will then imply that (i) K(X)(t) is separable over
K(Pr

k)(t), i.e., K(X) is separable over K(Pr
k), (ii) all fibres of f are finite

(since A is a finite B-module), and (iii) the ‘general’ fibre of f has cardinality
d(X).

Since A is a finite graded B-module, we can define the Hilbert-Samuel
function of A as a B-module, which equals that of its Hilbert-Samuel func-
tion as a gradedA-module. Since [K(X) : K(Pr

k)] = [K(X)(t) : K(Pr
k)(t)] =

d, the K(Pr
k)[t, t

−1]-module K(X)[t, t−1] is Z-graded and free of rank d,
generated by the images of homogeneous elments of A. Hence there is a
K(Pr

k)-basis consisting of elements F1, . . . , Fd ∈ Am, for some m. The Fi
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determine a map of graded B-modules

B(−m)⊕d
ψ−→ A,

where B(−m)s = Bm−s is B with its grading shifetd, and ψ(b1, . . . , bd) =∑
i biFi. Since ψ is an isomorphism when tensored with K(Pr

k), the kernel
and cokernel of ψ are annihilated by some non-zero homogeneous element
of B+. We have a formula relating Hilbert functions

H(S(X), s) = H(A, s) = H(B(−m)⊕d, s)−H(kerψ, s) +H(cokerψ, s).

From lemma 1, all the Hilbert functions equal polynomials in s for s >> 0;
H(S(X), s) and H(B(−m)⊕d, s) = dH(B, s − m) are polynomials in s of
degree r, while H(kerψ, s) and H(cokerψ, s) are each of strictly samller
degree in s (the precise degrees depend on the dimensions of the subvarieties
of Pr

k defined by the annihilators of kerψ and cokerψ in B). In particular,
the leading coefficients of H(S(X), s) and H(B(−m)⊕d, s) are equal, i.e.,
d(X) = d. 2

æ

3 Geometry of projective varieties-I

In this section we discuss some aspects of the extrinsic geometry of projective
varieties. We begin with projective plane curves.

A curve is a variety all of whose irreducible components have dimension
1. A projective plane curve is a curve which is a projective variety in P2

k.
In this section, ‘curve’ will mean ‘projective plane curve’ unless specified
otherwise.

Let X,Y, Z be variables giving the homogeneous coordinates on P2
k. If

C ⊂ P2
k is a curve, then I(C) ⊂ k[X,Y, Z] is a radical homogeneous ideal

which is purely of height 1, hence is a principal ideal generated by a homo-
geneous polynomial F (X,Y, Z), unique upto a constant. The degree of C is
defined to be the degree of the polynomial F ; as seen in §2, Example 2.8,
this agrees with the definition in terms of Hilbert-Samuel polynomials.

A line is a projective plane curve of degree 1, i.e., is defined by a ho-
mogeneous linear polynomial. Any two lines in P2

k are isomorphic, via an
automorphism of P2

k given by a homogeneous linear change of variables (in
fact these are the only automorphisms of P2

k, as we will see later). A conic
is a curve of degree 2. It can either be irreducible, or a union of two distinct
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(intersecting) lines. Two conics are isomorphic via an automorphism of P2
k

if either both are reducible, or both are irreducible. The classification of
curves of degree ≥ 3, however, gets progressively more complicated as the
degree increases. For example, there are infinitely many isomorphism classes
of irreducible non-singular curves of any degree d ≥ 3.

From the Jacobian criterion, a point P = (a : b : c) on a curve C = {F =
0} in P2

k is a non-singular point precisely when one of

∂F

∂X
(a, b, c),

∂F

∂Y
(a, b, c),

∂F

∂Z
(a, b, c)

is non-zero. In this case the projective tangent variety to C at P is a line in
P2
k, with equation

X
∂F

∂X
(a, b, c) + Y

∂F

∂Y
(a, b, c) + Z

∂F

∂Z
(a, b, c) = 0.

We denote the projective tangent line to C at P by TP,C . At a singular
point, the projective tangent space is of course the whole plane.

For any point P on a curve C, we have a surjection OP,P2→→OP,C ,
whose kernel (which we denote IP,C) is a radical ideal which is purely of
height 1, and is hence principal, say generated by f . If m is the maximal
ideal of OP,P2 , then there is a unique r > 0 such that f ∈mr −mr+1 (this
is because ∩r>0m

r = 0); the integer r does not depend on the choice of f .
This integer r is called the multiplicity of P on C, and is denoted by mP (C).
This is computed in practice as follows: after a linear change of variables,
we may assume P = (0 : 0 : 1). Then we can uniquely write

F (x, y, 1) = Fr(x, y) + Fr+1(x, y) + · · ·

where Fs is homogeneous of degree s, and Fr 6= 0. Now P ∈ U2 = D+(Z) ⊂
P2
k, and OP,P2 = k[x, y](x,y), where we have affine coordinates x = X/Z, y =

Y/Z on U2. Now m = (x, y), so mr/mr+1 is identified with the space of
homogeneous polynomials in x, y of degree r. Also, the coordinate ring of
the affine curve C ∩ U2 is

A(C ∩ U2) = k[x, y]/ < F (x, y, 1) > .

Hence we may take f = F (x, y, 1). Thus F (x, y, 1) ∈ mr −mr+1, where
Fr(x, y) is the first non-zero homogeneous term in the expansion of F . If m
is the maximal ideal of OP,C , then

m/m2 ∼= m/(m2 + fOP,P2).
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Hence P is a non-singular point precisely when mP (C) = 1. The terms
Fi(x, y) are the terms in the Taylor expansion of F (x, y, 1) at P . So the
multiplicity is the order (number of derivatives) of the first non-vanishing
term of the Taylor expansion of F (x, y, 1) at P . The multiplicity is a first
measure of how singular a curve is at a point; for example, proofs of the
theorem of resolution of singularities2 for curves usually work by induction
on the maximum multiplicity of the singular points.

A basic fact about projective plane curves is that any two of them must
intersect, unlike the case of affine curves in A2

k; thus there are no parallel
lines in P2

k. In fact a stronger result is true: if C and D are non-singular
curves of degrees m and n respectively which meet transversally (i.e., with
distinct tangent lines at each point of intersection), then Bezout’s theorem
states that C ∩ D consists of exactly mn points. More generally, Bezout’s
theorem states that if C and D have no common irreducible components
(equivalently C ∩ D is finite), then ‘counted properly’ there are again mn
points of intersection. This is made precise via the notion of intersection
multiplicity, which we now introduce.

Suppose C,D are curves with no common irreducible component passing
through P ∈ C∩D. Let f, g ∈ OP,P2 generate the ideals of C,D respectively.
Since OP,P2 is a UFD, the elements f, g are relatively prime, and form a

regular sequence in OP,P2 , such that
√
< f, g > is the maximal ideal of

OP,P2 . Define
I(P ;C,D) = dimkOP,P2/ < f, g >

to be the intersection multiplicity of C and D at P . Note that

(i) I(P ;C,D) > 0, and

(ii) I(P ;C,D) = 1 ⇔ < f, g >= m, the maximal ideal of OP,P2 .

But < f, g >= m ⇔ f, g are linearly independent modulo m2, i.e., OP,C
andOP,D are regular, and C,D have distinct tangents at P . Thus a transver-
sal intersection of non-singular curves has intersection multiplicity 1.

Theorem 5 (Bezout) Let C,D be projective plane curves such that C ∩D
is a finite set (i.e., C,D have no common irreducible components). Then∑

P∈C∩D
I(P ;C,D) = (degC)(degD).

2This states that for any curve C, there is a morphism f : C̃ → C from a non-singular
projective curve C̃, such that (i) f is surjective with finite fibres, and (ii) if U ⊂ C is the
open set of non-singular points, then f−1(U)→ U is an isomorphism.
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Proof: Let I(C) =< F >, I(D) =< G > where F,G are homogeneous
polynomials of degrees m = degC and n = degD respectively. If S =
k[X,Y, Z], then there is an exact sequence of graded S-modules

0→ S(−mn)
α−→ S(−m)⊕ S(−n)

β−→ S → S/ < F,G >→ 0.

Here β(A,B) = AF + BG, and α(A) = (−AG,AF ). The exactness is
equivalent to the statement that F,G form a regular sequence in S, which
holds because S is a UFD, and F,G have no common prime factor (since
C,D have no common irredcuible component). Since the Hilbert-Samuel
function of S is known, we can use the exact sequence to compute the
Hilbert-Samuel function of the graded ring R = S/ < F,G >; carrying out
the computation, we find that

H(R, s) = mn ∀ s >> 0.

After a linear change of variable, we may assume without loss of gen-
erality that C ∩ D ∩ V (Z) = φ (i.e., no point of intersection of C,D lies
on the line Z = 0). Then the image z of Z in R satisfies

√
zR = R+ by

the homogeneous Nullstellensatz, since V (Z) ∩ C ∩D = φ. We claim that
multiplication by z yields an isomorphism Rs → Rs+1 for all s >> 0. One
way to prove this is as follows: since Rs, Rs+1 are both k-vector spaces of
the same dimension mn, it suffices to show multiplication by z is surjective;
but R/zR is an Artinian graded ring, so is 0 in large enough degrees. This
implies that the localized ring R[1/z] = R(z)[z, z

−1] is a Laurent polynomial
ring over the Artinian ring R(z), with dimk R(z) = mn (in fact Rs → R(z)z

s

is an isomorphism of k-vector spaces, for all large s).
Now

R[1/z] = S[1/Z]/ < F,G >
= S(Z)[Z,Z

−1]/ < F (X/Z, Y/Z, 1), G(X/Z, Y/Z, 1) >

= (k[x, y]/ < f, g >)[z, z−1],

where x = X/Z, y = Y/Z give the affine coordinates on D+(Z) ∼= A2
k, and

f = F (x, y, 1), g = G(x, y, 1). Thus R(z) = k[x, y]/ < f, g >.

If P1, . . . , Pr ∈ A2
k are the points of intersection of C and D, with max-

imal ideals m1, . . . ,mr ⊂ k[x, y], then < f, g >= J1 ∩ J2 ∩ · · · ∩ Jr, where

Jν = k[x, y] ∩ (< f, g > k[x, y]mν

38



is the primary component of < f, g > for the prime ideal mν . Since the
ideals Jν are pairwise co-maximal, the Chinese remainder theorem gives

R(z) = (k[x, y]/J1)× · · · × (k[x, y]/Jr). (3)

Also, from the definition of intersection multiplicity,

dimk k[x, y]/Jν = I(Pν ;C,D),

since k[x, y]/Jν is local, and so is unchanged upon localization at m. Hence
Bezout’s theorem follows from (3) and the formula dimk R(z) = mn. 2

The conclusion of Bezout’s theorem may be restated in the language of
zero-cycles. We define a zero-cycle on a variety X to be an element of the
free abelian group on the points of X; we write a zero-cycle as a formal
linear combination of points

∑
i niPi, where Pi are points. The degree of a

zero-cycle δ =
∑
i niPi is defined to be the integer

∑
i ni, and is denoted by

deg δ. We define the intersection cycle of two curves C,D with no common
component by

(C ·D) =
∑

P∈C∩D
I(P ;C,D)P.

Then Bezout’s theorem states that

deg(C ·D) = (degC)(degD).

Later we will interpret this equation in terms of the multiplication in the
Chow ring of algebraic cycles on P2

k.
In the proof of Bezout’s theorem, we saw that multiplication by z on

R is an isomorphism in sufficiently large degrees. In fact S = k[X,Y, Z]
is Cohen-Macaulay and graded, and F,G,Z are homogeneous such that√
< F,G,Z > = S+, i.e., they form a homogeneous system of parameters;

hence F,G,Z form a regular sequence on S, i.e., z is a non zero-divisor on R.
Another way to see this is as follows (see [F], page 113 ). Since F (X,Y, 0) and
G(X,Y, 0) are homogeneous, each factorizes into homogeneous linear factors,
which correspond to points of C∩{Z = 0} and D∩{Z = 0}, respectively; in
particular, F (X,Y, 0) and G(X,Y, 0) are relatively prime in k[X,Y ]. Now if
ZH = AF +BY , then A(X,Y, 0)F (X,Y, 0) = −B(X,Y, 0)G(X,Y, 0); hence
A(X,Y, 0) = E(X,Y )G(X,Y, 0) and B(X,Y, 0) = −E(X,Y )F (X,Y, 0), so
that A− E(X,Y )G = ZA′ and B + E(X,Y )F = ZB′. Then

ZH = AF +BG = (A−E(X,Y )G)F +(B+E(X,Y )F )G = Z(A′F +B′G),
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so that H = A′F + B′G. Hence the image h of H in R is annihilated by z
⇔ h = 0 in R, i.e., z is a non zero-divisor in R.

We use this to prove another interesting result on plane curves, Max
Noether’s theorem. Loosely speaking, it states that if C = {F = 0}, D =
{G = 0} are curves with no common component, and C0 = {H = 0} is
a curve passing through all points of C ∩D (including the ‘infinitely near’
ones’), then H = AF + BG for some homogeneous polynomials A,B. If
C,D intersect transversally at non-singular points, the condition is just that
C ∩D ⊂ C0. If some intersections have intersection multiplicity > 1, a more
subtle condition is needed at P . One way of stating Noether’s theorem is
as follows; the hypothesis (4) is clearly necessary for the conclusion of the
theorem to hold.

Theorem 6 (Noether’s AF +BG theorem) Let C, D be plane curves with
no common component, and I(C) =< F >, I(D) =< G >. Suppose C0 is
a plane curve, with I(C0) =< H >, such that for each point P ∈ C ∩D, we
have

IP,C0 ⊂ IP,C + IP,D ⊂ OP,P2 . (4)

Then H = AF +BG for some homogeneous polynomials A,B.

Proof: Assume without loss of generality that C ∩ D ∩ {Z = 0} = φ.
Then as seen above, z ∈ R = S/ < F,G > is a non zero-divisor. Let
f, g, h respectively denote the images of F (x, y, 1), G(x, y, 1), H(x, y, 1) in
S(Z) = k[x, y]. Since z is a non-zero-divisor on R, to check if H maps to 0
in R, it is sufficient to check that h maps to 0 in k[x, y]/ < f, g >. From
(3), with the notation as there, we see that h ∈< f, g > ⇔ h ∈ Jν for each
ν = 1, 2, . . . , r. But

(h ∈ Jν = k[x, y] ∩ (< f, g > k[x, y]mν ) ⇔ (h ∈< f, g > k[x, y]mν ) ,

and the last condition is just (4). 2

Corollary 2 Suppose each point of intersection of C and D is non-singular
on D. Then H = AF +BG ⇔ I(P ;C0, D) ≥ I(P ;C,D) for all P ∈ C ∩D.

Proof: OP,C is a regular local ring of dimension 1, i.e., a discrete valuation
ring (d.v.r.). Hence for any curve C0 through P , if f0 is a generator for the
ideal of C ′ in OP,P2 , and f0 is its image in OP,C , we see that I(P ;C,C ′)

is the valuation of f0. In a d.v.r., an ideal I =< a > is contained in
J =< b > precisely when the valuation of b is ≤ that of a. Hence the
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Noether conditions (4) are equivalent to an inequality between valuations,
i.e., between intersection multiplicities. 2

Some applications (taken from [F]) are the following.

Example 3.1: A non-singular point P on a curve C is called an inflection
point (or just flex), if I(P ; TP,C , C) ≥ 3. Here we assume C is not a line,
so that TP,C is not a component of C. Let I(C) =< F >⊂ S = k[X,Y, Z].
One can show that if k has characteristic 0, then P is a flex ⇔ H(P ) = 0,
where H is the determinant

H =

∣∣∣∣∣∣∣
∂2F
∂X2

∂2F
∂X∂Y

∂2F
∂X∂Z

∂2F
∂Y ∂X

∂2F
∂Y 2

∂2F
∂Y ∂Z

∂2F
∂Z∂X

∂2F
∂Z∂Y

∂2F
∂Z2

∣∣∣∣∣∣∣
is the Hessian of F . This follows from a local calculation in affine coordi-
nates. Clearly degH = (d − 2)3, where d = degC. Now Bezout’s theorem
implies that C has d(d − 2)3 flexes, ‘counted with multiplicity’. See [F],
Ex. 5.23.

Example 3.2: Let C,D be cubics with (C ·C ′) = P1+· · ·+P9 (where some
Pi may be repeated). Suppose D is a conic, such that (C ·D) = P1 + · · ·+P6,
where Pi ∈ C are distinct and non-singular. Then P7, P8, P9 lie on a line.
Indeed, I(Pi;C

′, C) ≥ I(Pi;D,C) for 1 ≤ i ≤ 6, so if I(C) =< F >,
I(D) =< G > and I(C ′) =< H >, then H = AF + BG, where we must
have degB = 1. Now V (B) is the desired line.

We deduce Pascal’s theorem: if a hexagon is inscribed in a conic, the
opposite sides intersect in collinear points. Take C to be three of the sides,
C ′ the other three sides (so that the intersections of opposite sides are in-
terpreted as some of the intersections of C and C ′). Take D to be the
conic.

A particular case is Pappus theorem: if L,M are two lines, P1, P2, P3 ∈
L−M and Q1, Q2, Q3 ∈M − L distinct points, and Lij the line though Pi
and Qj , then the points L12∩L21, L13∩L31andL23∩L32 are collinear. Here
we interpret L ∪M as a conic, and the union of the Lij as a hexagon.

Example 3.3: We first obtain one more corollary of the AF + BG the-
orem. Let C be an irreducible non-singular cubic, and D another cubic,
with (C · D) = P1 + · · · + P9. Suppose C ′ is another cubic such that
(C · C ′) = P1 + · · ·+ P8 + P . Then P = P9.
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Indeed, suppose L is a line through P9 which does not contain P . Let
(L ·C) = P9 +Q+R. Then ((L∪C ′) ·C) = (D ·C) + P +Q+R. Hence if
I(L∪C ′) =< H >, I(C) =< F >, I < D >= G, then H = AF +BG. Since
degH = 4, A and B are homogeneous linear. If M is the line {B = 0}, then
(M ·C) = P +Q+R. Hence L = M (both pass though Q,R, if Q 6= R, and
both are tangent to C at the same point Q = R, otherwise). This implies
P = P9.

This can be used to put a group law on the points of a non-singular
cubic curve C. Fix a point O ∈ C, which will be the additive identity. For
any pair P,Q ∈ C, let ϕ(P,Q) be the point R such that P + Q + R is the
intersection cycle of C with the line through P and Q. If P = Q, we take
the line through P and Q to mean the tangent line.

Now define P ∗Q = ϕ(O,ϕ(P,Q)). It is fairly easy to check that ∗ is a
commutative binary operation, such that O is a 2-sided identity, and ∗ has
a 2-sided inverse. The tricky point is to check that ∗ is associative. This
will use the above corollary to the AF +BG theorem.

Suppose P,Q,R ∈ C. Let L1,M1, L2 be lines such that (L1 · C) =
P + Q + S′, (M1 · C) = O + S′ + S, and (L2 · C) = S + R + T ′. Then the
line through T ′ and O determines (P ∗Q) ∗R.

Let M2, L3,M3 be lines such that (M2 · C) = Q + R + U ′, (L3 · C) =
O + U + U ′ and (M3 · C) = P + U + T ′′. Then the line through T ′′ and
O determines P ∗ (Q ∗ R). So we need to prove T ′ = T ′′. This follows by
taking L1 ∪ L2 ∪ L3 = D, and M1 ∪M2 ∪M3 = C ′, in the above corollary
of the AF +BG theorem.

We next introduce the dual curve of a projective plane curve. To do this,
we first note that the set of hyperplanes in Pn

k is itself a projective space of
dimension n. The identification is as follows: if H ⊂ Pn

k is a hyperplane,
the ideal I(H) =< F > for some linear homogeneous polynomial F , which
is unique upto a constant multiple.

Let V denote the vector space kn+1. Then Pn
k = V − {0}/ ∼, where

v ∼ w ⇔ v = λw for some λ ∈ k∗. Of course this construction makes sense
for any finite dimensional k-vector space V ; the corresponding quotient space
is denoted by P(V ), the projective space associated to V . If dimk V = n+1,
and we choose a basis of V , then we obtain a bijection of P(V ) with Pn

k ,
which we can use to regard P(V ) as a variety; if we choose a different basis,
the variety structure on P(V ) (i.e., its Zariski topology, the rings of regular
functions on open sets, and its local rings) remains unchanged.

The homogeneous coordinate ring of P(V ) is now naturally identified
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with the symmetric algebra S(V ∗), where V ∗ is the dual vector space to
V . This is clear, if we think of the homogeneous coordinate ring as the
affine coordinate ring of the cone, i.e., of the original vector space V ; now
the coordinate functions are linear functions V → k, that is, are linear
functionals on V . Thus polynomials in the coordinate functions are naturally
elements of the symmetric algebra of V ∗.

In particular, a hyperplane in P(V ) determines a non-zero linear homoge-
neous polynomial, well defined upto scalar multiples; this can be considered
as a well defined element of the projective space P(V ∗). Conversely a point
of P(V ∗) corresponds to a linear homogeneous polynomial, whose zero-set in
P(V ) is a hyperplane. We call P(V ∗) the dual projective space to P(V ). If
P is a projective space over some vector space, we denote its dual projective
space by P̌.

If we fix a basis of V , identifying it with kn+1, the dual basis for V ∗

identifies P(V ∗) also with Pn
k . Now if H is a hyperplane, with equation

a0X0 + · · ·+ anXn = 0,

then the corresponding point of P(V ∗) = P̌(V ) is (a0 : a1 : · · · : an).
The relationship between P(V ) and P(V ∗) is encapsulated in the inci-

dence variety, which is the projective variety

I(V ) = {(P, [H]) ∈ P(V )×P(V ∗) | P ∈ H}.

Let p : I(V )→ P(V ) and q : I(V )→ P(V ∗) denote the two projections. If
P ⊂ P(V ) is any projective linear subspace, then

P∗ = q(p−1(P)) = {[H] ∈ P(V ∗) | P ⊂ H}

is called the dual linear subspace to P. Then dim P+dim P∗ = dim P(V )−1;
thus the dual of a point is a hyperplane, the dual of a line is of codimension
2, etc.

Note that the set of hypersurfaces in Pn
k of a fixed degree d are in bi-

jection with the hyperplanes in PN
k , where N =

(n+d
d

)
− 1, via the d-tuple

embedding; hence hypersurfaces of degree d in Pn
k are parametrized by the

points of the dual projective space P̌
N
k (in more invariant terms, the pa-

rameter space is P(Sd(V ∗)), where Sd(V ∗) is the dth symmetric power of
V ∗ = kn+1).

Returning to our plane curve C ⊂ P2, suppose P ∈ C is a non-singular
point. Then the projective tangent line TP,C to C at P gives a point of the
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dual projective plane [H] ∈ P̌
2
k. If F = 0 defines C, then the tangent at

(a : b : c) is

∂F

∂X
(a, b, c)X +

∂F

∂Y
(a, b, c)Y +

∂F

∂Z
(a, b, c)Z = 0,

so that

[H] = (
∂F

∂X
(a, b, c) :

∂F

∂Y
(a, b, c) :

∂F

∂Z
(a, b, c)).

Thus the association
D(C) : P 7→ [TP,C ] ∈ P̌

2
k

is a rational map, given by

D(C)(P ) = (
∂F

∂X
(P ) :

∂F

∂Y
(P ) :

∂F

∂Z
(P )).

In particular, if C is non-singular, then the 3 partial derivative polynomials
have no common zeroes in P2

k, so that they define a morphism D(C) : P2
k →

P̌
2
k, the dual map associated to C. The image of C under this morphism is

another projective plane curve C∗, the dual curve to C. The restricted map
C → C∗ is also called the dual map of C. Even if C is singular, let U ⊂ C
be the open set of smooth points; then define C∗ to be the Zariski closure
of D(C)(U). The terminology ‘dual curve’ is justified, because D(C)(U) is

a point ⇔ C is a line; so if degC ≥ 2, then C∗ is also a curve in P̌
2
k.

We claim that if C is irreducible and degC ≥ 2, and if k has character-
istic 0, then the rational map D(C) : C → C∗ is a birational isomorphism
(i.e., has a rational inverse). In fact, one can prove that D(C∗) ◦ D(C) is
the identity rational map on C. This imples that for all but a finite set of
non-singular points of C, the tangent line to C at P is not tangent to C at
any other point of intersection with C, i.e., C has only a finite number of
bitangents. Next, the degree of C∗ is the number of points of intersection of

C∗ with a general line in P̌
2
k, i.e., the number of intersections of C with a

general curve of degree d− 1 of the form

a
∂F

∂X
+ b

∂F

∂Y
+ c

∂F

∂Z
= 0,

where a, b, c ∈ k. Hence by Bezout’s theorem, we see that degC∗ = d(d−1).
In fact, if C is non-singular and k has characteristic 0, then in general

(i.e., for C in a nonempty Zariski open set in the projective space of curves

44



of degree d), the only singularities of C∗ are those where the local equation
for C is of the form

xy + (higher order terms) = 0

(this is called a node of C) or of the form

x2 + y3 + (higher order terms) = 0

(this is called an ordinary cusp of C). Note that in each cae the multiplicity
of the singular point (the origin, in the system of coordinates) is 2. Then
the number of nodes of C∗ is the number of bitangent lines (lines tangent to
C at 2 points), C has no tritangent lines (lines tangent at 3 points), and the
number of cusps of C∗ equals the number of flexes of C. The above facts
about C∗ are to be found in [F], and in [H], IV, Ex. 2.3.

One final remark about the dual curve is the following: let P1, . . . , Pr
denote the singular points of an irreducible curve C, and for 1 ≤ i ≤ r, let

Li = P ∗i be the line in P̌
2
k parametrizing lines in P2

k passing through Pi.

Then points of U = P̌
2
k − (C∗ ∪ L1 ∪ · · · ∪ Lr) correspond to lines H ⊂ P2

k

such that H ∩ C is not tangent to C at any of its points of intersection,
i.e., H ∩ C consists of d = degC distinct points. Note that U is a non-
emty Zariski open set of lines in P2

k; thus we see that the ‘general’ line in
P2
k intersects C transversally in d points. This assertion is the first case of

Bertini’s theorem, which we discuss below.
We will first generalize the discussion of the duals to the case of irre-

ducible varieties of arbitrary dimension. If X is an irreducible projective
variety of dimension d, and P ∈ X a non-singular point, then the projective
tangent space TP,X is a linear subvariety of Pn

k of dimension d. So we can
consider 2 types of duals, when X is non-singular:

(i) the variety of hyperplanes H in Pn
k such that TP,X ⊂ H for some

P ∈ X — this is a variety in P̌
n
k ;

(ii) the variety of tangent spaces TP,X , considered as a subvariety of a
parameter variety for all linear subvarieties L ⊂ Pn

k with dimL = d.

In the second case, we need to first put a natural structure of a variety on
the collection of all linear subvarieties of dimension d in Pn

k , i.e., on the
collection of all d+ 1-dimensional linear subspaces W ⊂ V = kn+1.

In the first type of dual, we see that if TX ⊂ Pn
k ×Pn

k is the projective
tangent variety, we have

JX = {(P, [H]) ∈ X × P̌
n
k | TP,X ⊂ H}
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is a subvariety, whose image X∗ ⊂ P̌
n
k under the second projection is called

the dual variety to X in P̌
n
k . To see that JX is indeed a subvariety, note

that if
p1 : Pn

k ×Pn
k × P̌

n
k → Pn

k ,

p2 : Pn
k ×Pn

k × P̌
n
k → Pn

k ,

p3 : Pn
k ×Pn

k × P̌
n
k → P̌

n
k

are the projections onto the 3 factors, then

JX = p1 × p2

(
(p1 × p2)−1(TX) ∩ (p2 × p3)−1(I)

)
,

where I ⊂ Pn
k×P̌

n
k is the incidence variety. Now JX is Zariski closed because

p1 × p2 is a closed map (since P̌
n
k is complete).

One can of course also choose homogeneous generators F1, . . . , Fs for
I(X) ⊂ S = k[X0, . . . , Xn], and using the Jacobian matrix of the Fj , write
down equations defining J , in order to prove J is a closed subvariety.

The fibre of the first projection p : J → X over a point P is just T∗P,X ,
the dual linear space to TP,X ; in particular, p is surjective, and all its fibres
have dimension n− d− 1 (since for any linear subvariety L ⊂ Pn

k , we have
dimL+ dimL∗ = n− 1). Hence

dim JX = dimX + (n− d− 1) = n− 1.

Now consider the second projection q : JX → P̌
n
k , whose image is X∗. Then

dimX∗ ≤ dim J = n− 1. In particular, X∗⊆/P̌
n
k .

Again as for plane curves, there is a ‘double duality’ theorem, that if
k has characteristic 0, then (X∗)∗ = X. In fact one can show that the
transpose of JX (obtained by interchanging the factors in X ×X∗) is JX∗ ,
the analogue of JX associated to the projective variety X∗. As with curves,
in order to do this, we have to extend the notions of JX and the dual
to irreducible, possibly singular varieties, by taking the Zariski closure of
the variety defined as before over the non-singular points. A proof that
(X∗)∗ = X over C can be found in [La]. A local analysis of singularities
and the dual, and related topics, can be found in [Lo]. Another source for
duals from an algebraic point of view, with an analysis of the situation in
characteristic p > 0 as well, is [SGA 7 II].

Note that if X is a non-singular hypersurface, then T∗P,X is a point,
so that the first projection JX → X is an isomorphism. Hence JX is the
graph of a morphism X → X∗, which we call the dual morphism of the

46



hypersurface X. As for curves, one can show it is given by the linear system
of partial derivatives of the defining polynomial of X, which extends to a
morphism on all of Pn

k . This implies it has finite fibres (see Example 2.7).
Since the fibres of JX → X∗ over non-singular points are just projective
spaces (since they are isomorphic to fibres of JX∗ → X∗), these fibres must
be points, i.e., X → X∗ is an isomorphism over the open set of non-singular
points of X∗.

Theorem 7 (Bertini’s theorem) Let X ⊂ Pn
k be an irreducible projective

variety. Then for all hyperplanes [H] 6∈ X∗ ⊂ P̌
n
k , the variety X ∩H is non-

singular of dimension d− 1. In particular, the ‘general’ hyperplane section
of X is non-singular.

Proof: Let P ∈ X; since X is non-singular, OP,X is a regular local ring
of dimension d. It suffices to show that if H is a hyperplane such that
TP,X 6⊂ H, then OP,X∩H is a regular local ring of dimension d− 1.

Let F ∈ S = k[X0, . . . , Xn] be a linear homogeneous polynomial defining
H. We may assume after a linear change of coordinates that P = (1 : 0 : 0 :
· · · : 0); now xi = Xi/X0, 1 ≤ i ≤ n are affine coordinates on U0 = D+(X0),
and P is the origin. Let f = F (1, x1, . . . , xn), and let I ⊂ k[x1, . . . , xn] be
the ideal of X ∩ U0. Then f is still linear homogeneous, since H passes
through the origin P . If m =< x1, . . . , xn > is the maximal ideal of P , then
I ⊂m; if m is the maximal ideal of P in A(X ∩ U0), then

m/m2 ∼= m/(I + m2.)

Let W = ker(S1 → m/m2 be the vector space of linear homogeneous
polynomials ‘vanishing to order ≥ 2 along X near P ’. Then TP,(X∩U0) =
U0 ∩TP,X is the linear subvariety of U0 = An

k defined by

{Q ∈ An
k | G(Q) = 0 ∀ G ∈W}.

Since this linear subvariety is not contained in H, we must have f 6∈ W .
Hence the image f of f ∈ m does not lie in m2, i.e., f ∈ m is part of a
regular system of parameters. In particular, the ideal fOP,X is prime, and

OP,X∩H = OP,X/
√
fOP,X = OP,X/fOP,X

is a regular local ring of dimension d− 1. 2
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The above analysis shows that if TP,X ⊂ H, then f ∈m2, so the quotient
local ring is not regular, unless X ⊂ H (since OP,X is regular, hence an
integral domain, the quotient local ring is not regular unless f = 0).

The second version of the dual variety involves the Grassmann variety
parametrizing d-dimensional linear subvarieties of Pn

k , or equivalently, d+1-
dimensional vector subspaces of kn+1. We construct the Grassmannian in a
slighly more intrinsic manner, as follows.

Let V be a vector space of dimension m. We construct a projective
variety G(r,m) parametrizing r-dimensional subspace of V . Let

Z = {v1 ∧ · · · ∧ vr | v1, . . . , vr are linearly independent} ⊂ ∧rV − {0}

be the set of non-zero decomposable tensors in ∧rV . The set of r-dimensional
subspaces of V is naturally in bijection with the image of Z in P(∧rV ); the
image of a subspace W is defined to be the class of v1 ∧ · · · ∧ vr, where
v1, . . . , vr is a basis for W . Any other basis is of the form Av1, . . . , Avr with
A ∈ GL (W ), the general linear group of linear automorphisms of W , and
Av1 ∧ · · · ∧ Avr = det(A)v1 ∧ · · · ∧ vr, from the definition of determinants;
hence the map from the collection of subspaces to P(∧rV ) is well defined.
Clearly the map is surjective onto the image of Z. To show that it is also
injective, we need to show that if

v1 ∧ · · · ∧ vr = v′1 ∧ · · · ∧ v′r,

then {v1, . . . , vr} and {v′1, . . . , v′r} span the same r-dimensional subspace of
V . But one verifies easily that if v1, . . . , vr are linearly independent, then
the kernel of the linear map

ψ : V → ∧r+1V, ψ(v) = v ∧ (v1 ∧ · · · ∧ vr)

is precisely the linear span of {v1, . . . , vr} (to verify the claim, note that
{v, v1, . . . , vr} is linearly independent precisely when ψ(v) 6= 0).

So it remains to show that Z/ ∼, the image of Z in P(∧rV ), is a pro-
jective variety. Note that Z is conical, i.e., if w ∈ Z, then λw ∈ Z for all
λ ∈ k∗. Let

(Z/ ∼) = Y ⊂ P(∧rV ).

Now coordinates on P(∧rV ) ∼= P
(mr )−1

k are given by elements of (∧rV )∗ =
∧rV ∗. Choose a basis e1, . . . , em of V , and dual basis `1, . . . , `m of V ∗. Then
`i1 ∧ · · · ∧ `ir , with i1 < · · · < ir, form a basis for ∧rV ∗. The set

Ui1,···,ir = {[ω] ∈ P(∧rV ) | `i1 ∧ · · · ∧ `ir(ω) 6= 0}
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is the an affine space ∼= A
(mr )−1

k , and‘these give the standard open covering of
the projective space P(∧rV ). We will show that Y0 = Y ∩U1,···,r is a (closed)
affine subvariety in U1,···,r; a similar argument proves that Y ∩Ui1,···,ir is an
affine variety in Ui1,...,ir for all i1 < . . . < ir. This implies Y ⊂ P(∧rV ) is
Zariski closed.

Let wi =
∑m
j=1wijej for 1 ≤ j ≤ r be a basis for a subspace W corre-

sponding to a point of Y0. Then the matrix

T = [wij ]1≤i,j≤r

is non-singular, since

`1 ∧ · · · ∧ `r(v1 ∧ · · · ∧ vr) = detT.

Hence W has a unique basis vi, 1 ≤ i ≤ r, such that for this basis, the
matrix T becomes the identity, i.e., we have

vi = ei +
m−r∑
j=1

aijer+j ∀ 1 ≤ i ≤ r

(equivalently, write V = V1 ⊕ V2 where V1 is spanned by e1, . . . , er, and
V2 is spanned by er+1, . . . , em; then the projection onto V1 with kernel V2

maps W isomorphically onto V1, and vi is the preimage of ei under this
isomorphism).

Conversely, for any r × (m − r) matrix [aij ], the vectors vi = ei +∑m−r
j=1 aijej+r span an r-dimensional space W , with [W ] ∈ Y0, and the vi

then give the distinguished basis for W . Thus as a set, Y0
∼= kr(m−r). Our

aim is to show that Y0
∼= A

r(m−r)
k suitably embedded as a closed subvariety

of U1,2,...,r
∼= A

(mr )−1

k .
Considering Y0 ⊂ U0, the coordinate functions on U0 are ψi1,...,ir defined

by
ψi1,...,ir(W ) = `i1∧···∧ir(v1 ∧ · · · ∧ vr),

where v1, . . . , vr is the distinguished basis for W , and

i1 < · · · < ir, {i1, . . . , ir} 6= {1, 2, . . . , r}.

Note that `1∧· · ·∧`r(v1∧· · ·∧vr) = 1, so the remaining `i1∧···∧ir do determine
affine coordinates.

Now ψi1,...,ir is the determinant of the (r × r)-submatrix consisting of
the ith1 , . . . and ithr columns of the (r × m)-matrix [Ir, A], where Ir is the
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r × r identity matrix, and A = [aij ]. In particular, it is a polynomial with
integer coefficients in the aij . On the other hand, for any 1 ≤ i ≤ r and
1 ≤ j ≤ m− r, we compute that

ψ1,2,...,i−1,i+1,...,r,r+j([W ]) = (−1)r−iaij ,

since the left side is the determinant of a matrix which is the identity Ir
with its ith column removed, and with the jth column of A added on as the
new rth column.

Thus if we write

U0 = A
(mr )−1

k = A
r(m−r)
k ×A

(mr )−1−r(m−r)
k ,

where the first factor corresponds to the coordinate functions

(−1)r−iψ1,2,...,i−1,i+1,...,r,r+j ,

and the second factor corresponds to the remaining ψi1,...,ir , then Y0 maps

isomorphically onto A
r(m−r)
k under the first projection, and we identify Y0

with the graph of a morphism

A
r(m−r)
k ×A

(mr )−1−r(m−r)
k .

In particular Y0
∼= A

r(m−r)
k and Y0 is a Zariski closed subvariety of U0.

This completes the proof that Y = Gk(r,m) is a projective variety, and
further, shows that it has a covering by Zariski open subvarieties isomorphic

to A
r(m−r)
k . In particular Gk(r,m) is a non-singular irreducible projective

variety of dimension r(m− r).
Now again, one proves (using the above local coordinates, for example)

that the incidence variety

I = {(P, [W ]) ∈ Pn
k ×Gk(d+ 1, n+ 1) | P ∈W}

is an irreducible, non-singular projective variety in Pn
k ×Gk(d + 1, n + 1).

This implies that

J = {(P, [W ]) ∈ X ×Gk(d+ 1, n+ 1) | TP,X = W}

is Zariski closed in X ×Gk(d+ 1, n+ 1), and gives the graph of a morphism
DX : X → Gk(d+ 1, n+ 1), which we call the dual morphism.

We end this section with another application of the tangent variety, to a
result on embeddings. An embedding of X into Y is an isomorphism of X
with a closed subvariety of Y .
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Theorem 8 (Whitney embedding theorem)
(i) Let X be a non-singular affine variety of dimension d. Then there is an
embedding of X into A2d+1

k .
(ii) Let X be a non-singular projective variety of dimension d. Then there
is an embedding of X into P2d+1

k .

Proof:
We give the proof in the affine case. The proof in the projective case is

similar, and left to the reader.
We first note that the tangent variety is functorial for morphisms, i.e.,

if f : X → Y is a morphism of affine varieties, there is a natural morphism
df : TX → TY giving rise to a commutative diagram

TX
df→ Ty
↓ ↓
X

f→ Y

where the vertical arrows are the natural projections. Here df is defined as
follows: if P ∈ X, the homomorphism f∗ : Of(P ),Y → OP,X yields a linear
map

mf(P )/mf(P )3
2 →mP /m

2
P ,

hence a map on dual spaces in the reverse direction. We now write this out
explicitly in coordinates.

If X ⊂ An
k , Y ⊂ Am

k and f = (f1, . . . , fm), where fi ∈ k[x1, . . . , xn],
then one can check that df : TX → TY ⊂ Am

k ×Am
k is the map

(f1(x1, . . . , fm(x1, . . . , xn), f̃1, f̃2, . . . , f̃m),

where for 1 ≤ j ≤ m we have

f̃j(x1, . . . , xn, y1, . . . , yn) = fj(x1, . . . , xn) +
n∑
i=1

(yi − xi)
∂fj
∂xi

(x1, . . . , xn).

Here TX ⊂ An
k×An

k , and y1, . . . , yn are the coordinates on the second factor
of An

k . The definition of f̃j is motivated by the formula (essentially the chain
rule for differentiation)

m∑
k=1

∂h

∂zk
(f̃k − fk) =

n∑
i=1

∂f∗h

∂xi
(yi − xi),
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valid for any polynomial h, which implies via the Jacobian criterion that
df(TX) ⊂ TY .

We make use of the following lemma.

Lemma 2 Let f : X → Y be a morphism between affine varieties. Suppose

(i) A(X) is a finite A(Y )-module

(ii) f is injective and dominant (i.e., has Zariski dense image)

(iii) for each point P ∈ X, the tangent mapping df : TP,X → Tf(P ),Y

is injective.

Then f is an isomorphism.

Proof:
Since f is dominant, f∗ identifies A(Y ) with a subring of A(X). We first

claim that f : X → Y is in fact surjective, hence bijective. This is because
A(X) is a finite module over the subring A(Y ); hence for any point Q ∈ Y
with maximal ideal m of A(Y ), the ring A(X) ⊗A(Y ) A(Y )m is a non-zero
(since it contains A(Y )m), finite, A(Y )m-module. Hence A(X)/mA(X) 6= 0,
by Nakayama’s lemma. Hence there is a maximal ideal n of A(X) containing
mA(X), which corresponds to a point P of X with g(P ) = Q.

We have noted that A(X) ⊗A(Y ) A(Y )m is a finite A(Y )m-module, for
each maximal ideal m of A(Y ). Since f is bijective, there is a unique max-
imal ideal n of A(X) lying over m, and so A(X) ⊗A(Y ) A(Y )m = A(X)n.
Let P ∈ X correspond to n, so that f(P ) ∈ Y corresponds to m.

Since df : TP,X → Tf(P ),Y is injective, m/m2 → n/n2 is surjective.
Hence from Nakayama’s lemma, mA(X)n = nA(X)n, and soA(X)/mA(X) =
k. Again from Nakayama’s lemma, we get that 1 ∈ A(X)n generates A(X)n
as an A(Y )m module, i.e.,

A(Y )m → A(X)n = A(X)⊗A(Y ) A(Y )m

is surjective. Since this is true for every maximal ideal m of A(Y ), we see
that A(Y ) → A(X) is surjective, i.e., f : X → Y is a closed subvariety.
Since f is bijective, f is an isomorphism, from the Nullstellensatz. 2

Now to prove the theorem, start with some embedding of f : X ↪→ An
k .

If n ≤ 2d + 1 there is nothing to prove. So suppose n > 2d + 1. Let
π : An

k → A2d+1
k be the projection onto the first 2d + 1 coordinates. We

will show that there is a non-empty Zariski open set U ⊂ GL n(k) such
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that for σ ∈ U , the composite π ◦ σ ◦ f : X → A2d+1
k is an embedding.

Equivalently, if x1, . . . , xn are the given coordinate functions on X, and
y1, . . . , y2d+1 are 2d + 1 ‘general’ (homogeneous) k-linear combinations of
the xj , then y1, . . . , y2d+1 give an embedding of X in A2d+1

k .
First, from the proof given for Noether normalization, there is a non-

empty open set U1 ⊂ GL n(k) such that for σ ∈ U1, the composite

X
f−→ An

k
π′◦σ−→ Ad

k

makes A(X) a finite module over A(Ad
k), a polynomial subring; here π′ is

the projection onto the first d coordinates. Since π′ ◦σ factors through π◦σ,
we see that there are homomorphisms of k-algebras

A(Ad
k) ↪→ A(A2d+1

k )
(π◦σ)∗−→ A(An

k)
f∗−→ A(X),

we see that A(X) is also a finite (π ◦ σ ◦ f)∗A(A2d+1
k )-module. In more

concrete terms, if A(X) is a finite module over its k-subalgebra generated
by y1, . . . , yd, then it is also finite over the larger subalgebra generated by
y1, . . . , y2d+1.

Next, consider the set Γ of all σ ∈ Mn(k), the set of n×n matrices, such
that π ◦ σ(f(P )) = π ◦ σ(f(Q)), for some P 6= Q in X. We want to prove

this set is not Zariski dense in Mn(k) = An2

k ; if U2 is the complement of its
Zariski closure, then for σ ∈ U2, the map π ◦ σ restricts to an injective map
f : X → A2d+1

k .
Let ∆X ⊂ X×X be the diagonal; then X×X−∆X is a quasi-projective

variety of dimension 2d. Note that for any R ∈ An
k , the morphism

LR : Mn(k) = An2

k → A2d+1
k = k2d+1,

LR(σ) = π ◦ σ(R),

is a linear transformation kn
2 → k2d+1, which is surjective if R 6= 0, where

0 ∈ kn = An
k is the origin. Hence if R 6= 0, then kerLR is a linear subvariety

of An2

k of dimension n2 − 2d− 1. Consider the subvariety

I = {((P,Q), σ) ∈ (X ×X −∆X)×Mn(k) | Lf(P )−f(Q)(σ) = 0},

where the equation on the right side is between vectors in k2d+1. Clearly
the image of I in Mn(k) is Γ.
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Each fibre of I → X×X−∆X is an affine space of dimension n2−2d−1,
so that

dim I = dim(X ×X −∆) + n2 − 2d− 1 = n2 − 1.

Hence the Zariski closure of the image Γ ⊂ Mn(k) of I has dimension ≤
n2 − 1, i.e., is a proper subvariety of Mn(k) = An2

k .
Finally, we claim that there is a non-empty Zariski open set U3 ⊂

Mn(k) = An2

k such that for σ ∈ U3, and each P ∈ X, the map

d(π ◦ σ) : Tf(P ),f(X) → Tπ◦σ◦f(P ),A2d+1 , (5)

induced by π ◦ σ, is injective.
Since π ◦ σ is linear, and Tf(X) ⊂ f(X)×An

k , we have

Tf(P ),X ⊂ {f(P )} ×An
k , Tπ◦σ◦f(P ),A2d+1 ⊂ {π ◦ σ ◦ f(P )} ×A2d+1

k ,

and the map d(π ◦ σ) is just

d(π ◦ σ)(f(P ), Q) = (π ◦ σ ◦ f(P ), π ◦ σ(Q)),

that is, it is the restriction of a linear transformation to an affine linear
subspace with origin f(P ). Hence if it is non-injective, there must exist
Q 6= f(P ) with Q ∈ Tf(P ),f(X) such that π ◦ σ(Q) = π ◦ σ ◦ f(P ).

For each fixed (f(P ), Q) ∈ Tf(X) ⊂ An
k ×An

k , the morphism

DP,Q : Mn(k) = Ad
k → A2d+1

k = k2d+1,

DP,Q(σ) = π ◦ σ(Q− f(P )),

is a linear transformation, which is surjective if Q 6= f(P ) (i.e., if the ‘tan-
gent vector’ Q− f(P ) is non-zero). In fact DP,Q is just the natural map

σ 7→ (π ◦ σ)(Q− f(P )).

To prove the injectivity of the map in (5), consider the subvariety

J = {(P,Q), σ) ∈ (Tf(X) −∆f(X))×Mn(k) | DP,Q(σ) = 0}.

We claim that the image of J in Mn(k) is not Zariski dense. Assuming this,
let U3 ⊂ Mn(k) be a non-empty Zariski open set in the complement of the
image of J ; then for σ ∈ U3, the map (5) is non-zero on Q − f(P ) for all
Q ∈ Tf(P ),f(X), for each P ∈ X and each Q ∈ Tf(P ),f(X) with Q 6= f(P ). By
the linearity of (5), this means (5) is injective.
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We now compute the dimension of J . The fibre of J over (f(P ), Q) (with
Q ∈ Tf(P ),f(X)−{f(P )}) is an affine space of dimension n2−2d−1, so that
dim J = n2 − 2d − 1 + dimTf(X) = n2 − 1 < dim Mn(k), as before (this
is where the non-singularity of X is used; we then have dimTf(X) = 2d).
Hence the projection J → Mn(k) is not dominant.

Now take U = U1 ∩ U2 ∩ U3. By construction, for any σ ∈ U , the map
π ◦σ ◦f = g : X → A2d+1

k has the properties that (i) g∗ makes A(X) a finite
A(A2d+1

k )-module (ii) g is injective (iii) for each P ∈ X, the tangent map
Tf(P ),f(X) → Tg(P ),A2d+1 is injective.

Hence if we set Y = g(X), the Zariski closure of g(X) in A2d+1
k , then

Lemma 2 applied to g : X → Y shows that g is an isomorphism. 2

4 The Hodge Decomposition

4.1 Type decomposition of differential forms and Dolbeault
cohomology

If X is a complex manifold of dimension n, then for each point x ∈ X we can
find an open neighbourhood U of x in X and local holomorphic coordinates
z1, . . . , zn on U , identifying U with a polydisc in Cn. If we write zj = xj+ıyj ,
then dx1, dy1, . . . , dxn, dyn give a real basis for the real cotangent space T ∗yX
to X at each point y ∈ U , and hence also a C-basis for T ∗yXC = T ∗yX⊗R C.
Then dzj = dxj + ıdyj , dzj = dxj − ıdyj , 1 ≤ j ≤ n, give another C-basis
for this space, for each y. Define the subspaces

T 1,0
y =

n∑
j=1

Cdzj , T 0,1
y =

n∑
j=1

Cdzj .

Similarly, the complexified tangent space TyXC = TyX⊗RC has a basis
given by

∂

∂zj
=

1

2

(
∂

∂xj
− ı

∂

∂yj

)
,

∂

∂zj
=

1

2

(
∂

∂xj
+ ı

∂

∂yj

)
, 1 ≤ j ≤ n.

This basis is dual to the basis dzj , dzj , 1 ≤ j ≤ n. With this notation, the
exterior derivative has the formula

df =
n∑
j=1

∂f

∂xj
dxj +

∂f

∂yj
dyj =

n∑
j=1

∂f

∂zj
dzj +

∂f

∂zj
dzj .
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The Cauchy-Riemann equations, which describe the necessary and sufficient
conditions for a smooth function f to be a holomorphic function, now reduce
to

∂f

∂zj
= 0, 1 ≤ j ≤ n.

If we choose another set of holomorphic coordinates w1, . . . , wn on an
open set V ⊂ X, so that wj = wj(z1, . . . , zn) are holomorphic functions on
U ∩ V , then the Cauchy-Riemann equations imply that for all y ∈ U ∩ V ,
the subspaces

T 1,0
y ⊂ TyXC, T 0,1

y ⊂ TyXC

defined by the two sets of coordinates zj and wj are the same, since dwj is a
linear combination of only the dzk, and dwj is similarly a linear combination
of only the dzk. Thus these subspaces are independent of the choice of
local cordinates, and define C∞ complex sub-bundles of the complexified
cotangent bundle

T 1,0
X ⊂ T ∗X,C, T 0,1

X ⊂ T ∗X,C.

Further, the matrix entries of the transition matrices for the vector bun-

dle T 1,0
X are the holomorphic functions

∂wj
∂zk

, so that T 0,1
X is in fact a holo-

morphic vector bundle of rank n, the holomorphic cotangent bundle. The

transition matrix entries for T 0,1
X are the conjugate functions

∂wj
∂zk

=

(
∂wj
∂zk

)
,

so that T 0,1
X is the complex conjugate vector bundle to T 1,0

X .
Similarly, we can decompose any C∞ 1-form ω uniquely as a sum

ω = ω1,0 + ω0,1,

and correspondingly write the exterior derivative operator

d = ∂ + ∂,

where for any C∞ function f ,

∂(f) = (df)1,0, ∂(f) = (df)0,1.

Now the Cauchy-Riemann equations reduce further to

∂(f) = 0.
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The decomposition of T ∗X,C into a direct sum of two complex sub-bundles
induces a decompositon on the bundles of k-forms, for all k ≥ 0,

k∧
T ∗X,C =

⊕
p, q ≥ 0
p+ q = k

T p,qX ,

where

T p,qX =
p∧
T 1,0
X ⊗

q∧
T 0,1
X

is the bundle wih local basis

dzj1∧· · ·∧dzjp∧dzk1∧· · ·∧dzkq , 1 ≤ j1 < · · · < jp ≤ n, 1 ≤ k1 < · · · < kq ≤ n.

Thus any smooth k-form ω has a unique decomposition into smooth forms

ω =
k∑
p=0

ωp,k−p;

we say ω has type (p, q) if ω = ωp,q in this decomposition.
The decomposition into types is compatible with the exterior product of

forms, in the sense that if ω is of type (p, q), and η is of type (r, s), then
ω ∧ η is of type (p + r, q + s). Similarly, the exterior derivative operator d
on k-forms can be decomposed as

d = ∂ + ∂,

where for ω of type (p, q),

∂ω = (dω)p+1,q, ∂ω = (dω)p,q+1.

Finally, the Cauchy-Riemann equations imply that for any smooth k-form
ω of type (k, 0), ω is holomorphic ⇔ ∂ω = 0, and in this case, dω = ∂ω.

The condition that d ◦ d = d2 = 0 implies the following identities:

∂2 = ∂
2

= ∂∂ + ∂∂ = 0.

In particular, we can define the Dolbeault cohomology groups (in fact C-
vector spaces) by

Hp,q

∂
(X) =

{smooth (p, q)-forms ω with ∂ω = 0}
{∂η for smooth (p, q − 1)-forms η}

.
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We may compare this definition with that of the de Rham cohomology groups

Hk
DR(X,C) =

{smooth k-forms ω with dω = 0}
{dη for smooth k − 1-forms η}

.

A further analogy between de Rham and Dolbeault cohomology is given
by the following lemma, which is the analogue of the Poincaré lemma. Later,
we will use it to derive a sheaf-theoretic interpretation of Dolbeault coho-
mology.

Lemma 3 (∂-Poincaré lemma) If ∆ = ∆(s) = {| zj | < s, 1 ≤ j ≤ n} is

a polydisk in Cn, then Hp,q

∂
(∆) = 0 for all q > 0, and Hp,0

∂
(∆) is the space

of holomorphic p-forms on ∆.

Proof: ThatHp,0

∂
(∆) is the space of holomorphic p-forms, is an immediate

consequence of the Cauchy-Riemann equations. So we may assume q > 0.
Let z1, . . . , zn be the holomorphic coordinates on ∆(s). If ω is any

smooth (p, q)-form, then we may uniquely write

ω =
∑
I

dzI ∧ ωI ,

where I runs over all (ordered) subsets of {1, . . . , n} of cardinality p, dzI =
∧i∈Idzi, and ωI is a smooth (0, q)-form. Then

∂ω =
∑
I

dzI ∧ ∂ωI = 0 ⇔ ∂ωI = 0 for all I.

Hence we reduce at once to the case when p = 0. Now we proceed by
induction on q ≥ 1.

Let ω be a smooth (0, q)-form on ∆(s). We first show that for any r < s,
there is a smooth (0, q − 1)-form η with ∂η = ω on ∆(r). We work by
induction on k, such that ω is a linear combination (with smooth function
coefficients) of wedge products of dz1, . . . , dzk. The case k = 1 is trivial, so
assume k > 1. Write

ω = dzk ∧ ω1 + ω2,

where ω1 is a smooth q − 1-form which is a linear combination of wedges of
dz1, . . . , dzk−1, and ω2 is a smooth q-form which is also a linear combination
of wedges of the same differentials. Then ∂ω = dzk ∧ ∂ω1 + ∂ω2 = 0 implies
that if we write

ω1 =
∑
k 6∈I

ωIdzI ,
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then
∂ωI
∂zj

= 0 ∀ j > k.

This means ωI is holomorphic in zj for all j > k. Now we solve the differ-
ential equation in 1 variable zk

∂ηI
∂zk

= ωI

by the integral formula

ηI(z) =
1

2πı

∫
| wk ≤ s |

ωI(z1, . . . , zk−1, wk, zk+1, . . . , zn)
dwk ∧ dwk
wk − zk

.

The integral converges absolutely, since s < r, and gives a well-defined
smooth function on open polydisk ∆(s), such that (by differentiating under
the integral sign) ηI is holomorphic in zj for all j > k; further, by a standard
Stokes theorem argument in 1 (complex) variable wk, we see also that

∂ηI
∂zk

= ωI

holds. Hence if we set η =
∑
I ηIdzI , then ω − ∂η is a (0, q)-form which

involves only the differentials dz1, . . . , dzk−1.
To finish the proof, let rm be an increasing sequence of positive real

numbers converging to r. Since we can ηm on ∆(rm) with ∂ηm = ω, we
can find such ηm on ∆(r) such that ∂(ηm) = ω holds on ∆(rm) (first choose
ηm arbitrarily; then replace each ηm by ϕmηm+1, for a suitable bump func-
tion ϕm which is 1 in a neighbourhood of ∆(rm) and is supported within
∆(rm+1)).

We wish to modify our sequence ηm to a new sequence η̃m which con-
verges uniformly on compact sets. We now work by induction on q. Suppose
q ≥ 2. Take η̃i = ηi for i ≤ 2. Now ∂(ηm+1 − η̃m) = 0 on ∆(rm), so that
by induction, we can find a smooth (0, q − 2)-form β on ∆(r) such that
∂β = ηm+1− η̃m on ∆(rm−1). Take η̃m+1 = ηm+1 + ∂β; then ∂η̃m+1 = ω on
∆(rm+1), and η̃m+1 = η̃m on ∆(rm−1). Hence {η̃m} converges uniformly on
compact subsets to a smooth (0, q − 1)-form η with ∂η = ω on ∆(r).

If q = 1, then ηm is a sequence of smooth functions. Modify it to a
sequence η̃m as follows: η̃i = ηi for i ≤ 2; if η̃m is already determined, then
∂(ηm+1 − η̃m) = 0 on ∆(rm), i.e., ηm+1 − η̃m is a holomorphic function on
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∆(rm). Hence it is represented by a convergent power series in ∆(rm). Let
β be a polynomial obtained by truncating this power series so that

sup
∆(rm−1)

| ηm+1 − η̃m − β | < 2−m.

Set
η̃m+1 = ηm+1 − β.

Then ∂η̃m+1 = ω on ∆(rm+1), η̃m+1 − η̃m is holomorphic on ∆(rm) and
uniformly bounded by 2−m on ∆(rm−1). Hence lim

m
η̃ = η is smooth, and

satisfies ∂η = ω on ∆(r). 2

4.2 Harmonic forms and the Hodge theorem

Since T 0,1
X is the complex conjugate bundle to the holomorphic cotangent

bundle T 1,0
X , a smooth section h of T 1,0

X ⊗ T 0,1
X is identified with a smoothly

varying family of R-bilinear forms on the holomorphic tangent spaces, hx :
Tx ⊗R TxX → C, which are C-linear in the first argument and conjugate
linear in the second argument. If in addition hx is positive definite Her-
mitian, we call h a smooth Hermitian metric on X. Thus we can locally
write h =

∑
j,k hjkdzj ⊗ dzk; then h defines a smooth Hermitian metric if

the matrix [hjk(x)] is positive definite Hermitian for each x.
The real and imaginary parts of a positive definite Hermitian form on

a complex vector space V respectively yield a positive definite inner prod-
uct, and a skew-symmetric form, on the underlying real vector space of V .
Hence, Re(h), the real part of h, gives a Riemannian metric on X, while
the imaginary part of h yields a real 2-form on X. The imaginary part of h
is expressible as

∑
j,k hjkdzj ∧ dzk for a positive definite Hermitian matrix

hjk.
A coframe for the metric h on an open set U ⊂ X is defined to be

an n-tuple of smooth forms ϕ1, . . . , ϕn of type (1, 0) on U such that h =∑n
i=1 ϕi ⊗ ϕi on U , i.e., which correspond to the choice of an orthonormal

basis with respect to h(x) of the holomorphic tangent space TxX, at each
point x ∈ U . Such coframes always exist locally, by the applying the Gram-
Schmidt process to dz1, . . . , dzn. Then the imaginary part of h is locally
given by the 2-form

ω =
ı

2

n∑
j=1

ϕj ∧ ϕj ,
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from which we see that ω is a (1, 1)-form, with ω = ω (i.e., ω is a real 2-
form). In this case, a volume form for X (with respect to the Riemannian
metric determined by the real part of h) is given by

Φ =
ωn

n!
=

(−1)n(n−1)/2(ı)n

2n
ϕ1 ∧ · · · ∧ ϕn ∧ ϕ1 ∧ · · · ∧ ϕn.

This is an easy computation, using the fact that if ϕj = αj + ıβj , then the
associated Riemannian metric is

∑
j,k αj ⊗ αk + βj ⊗ βk, and the volume

element corresponding to this is

α1 ∧ β1 ∧ α2 ∧ β2 ∧ · · · ∧ αn ∧ βn.

The metric h induces Hermitian metrics on all the tensor bundles T p,qX ,
where {ϕI ∧ϕJ}, for all multi-indices I, J with cardinality p, q respectively,
form an orthogonal set of elements each of length given by ‖ ϕI ∧ ϕJ ‖

2 =
2p+q (note that ‖ dz ‖2 = 2 on C). We can then define the Hodge star
operator on (p, q)-forms as a bundle map

∗ : T p,qX → Tn−p,n−qX ,

where
∗ϕI ∧ ϕJ = 2p+2−nεIJϕĨ ∧ ϕJ̃ ,

where Ĩ = {1, . . . , n} − I, J̃ = {1, . . . , n} − J are the complementary sets of
indices, and εIJ is the sign of the permutation

(1, 2, . . . , n, 1′, 2′, . . . , n′) 7→ (i1, . . . , ip, j
′
1, . . . , j

′
q, ĩ−1, . . . , ĩn−p, j̃

′
1, . . . , j̃

′
n−q).

Then one verifies that ∗ ∗ ω = (−1)p+qω on (p, q)-forms ω. The important
property of ∗ is that the inner product on (p, q) forms is given by

h(ω, η)Φ = ω ∧ ∗η.

Thus if Ap,q(X) is the space of global smooth forms on X of type (p, q),
and X is a compact complex manifold, then we have a positive definite
Hermitian inner product on Ap,q defined by

(ω, η) =

∫
X
h(ω, η)Φ =

∫
X
ω ∧ ∗η.

This makes Ap,q(X) into a pre-Hilbert space. We compute that of ψ ∈
Ap,q−1(X), then

(∂ψ, η) =

∫
X
∂ψ ∧ ∗η
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= (−1)p+q
∫
X
ψ ∧ ∂ ∗ η +

∫
X
∂(ψ ∧ ∗η)

= (−1)p+q
∫
X
ψ ∧ ∂ ∗ η +

∫
X
d(ψ ∧ ∗η),

since ∂ = d on forms of type (n, n − 1). But
∫
X d(ψ ∧ ∗η) = 0 by Stokes’

theorem. Hence we deduce that

(∂ψ, η) = −
∫
X
ψ ∧ ∗(∗∂ ∗ η).

Hence ∂ has an adjoint ∂
∗

= − ∗ ∂∗ with respect to the Hermitian inner
product on Ap,q(X).

Lemma 4 A ∂-closed (p, q)-form ψ has minimal norm in its cohomology
class in Hp,q

∂
(X) ⇔ ∂

∗
ψ = 0.

Proof: If ∂
∗
ψ = 0 then for any (p, q − 1)-form η with ∂η 6= 0, we have

‖ ψ + ∂η ‖2 = (ψ + ∂η, ψ + ∂η)

= ‖ ψ ‖2 + ‖ ∂η ‖2 + 2 Re (ψ, ∂η)

= ‖ ψ ‖2 + ‖ ∂η ‖2 + 2 Re (∂
∗
ψ, η)

= ‖ ψ ‖2 + ‖ ∂η ‖2

> ‖ ψ ‖2

Hence ψ has minimal norm. Conversely, if ψ has minimal norm, then for
any η ∈ Ap,q−1(X),

∂

∂t
‖ ψ + t∂η ‖2 |t=0= 0.

This gives 2 Re (ψ, ∂η) = 0. Applying the same argument to ıη gives also
2 Im (ψ, ∂η) = 0. Hence

(∂
∗
ψ, η) = (ψ, ∂η) = 0.

2

Notice that from the lemma, a Dolbeault cohomology class contains a
unique form of minimal norm, if one exists.

Definition: A (p, q) form ω ∈ Ap,q(X) is called ∂-harmonic if ∂ω =
∂
∗
ω = 0.
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Equivalently, ω is ∂-harmonic ⇔ ∆∂ω = (∂∂
∗

+ ∂
∗
∂)ω = 0. Indeed, if

∆∂ω = 0, then

0 = (∆∂(ω), ω) = (∂∂
∗
ω, ω) + (∂

∗
∂ω, ω) = (‖ ∂ω ‖2 + ‖ ∂∗ω ‖2

which implies that ω is ∂-harmonic; the converse clearly holds. Notice that
the operator ∆∂ is self-adjoint.

One of the first major results of Hodge theory is the following. The proof
is beyond the scope of these lectures.

Theorem 9 (∂-Hodge Theorem) Let Hp,q(X) denote the space of harmonic
forms of type (p, q) on X. Then for each p, q we have:

(i) Hp,q(X) is finite dimensional

(ii) the orthogonal projection H : Ap,q(X) → Hp,q(X) is well-defined,
and there exists a unique operator (the Green’s operator) G = Gp,q :
Ap,q(X)→ Ap,q(X) with kernel Hp,q, such that G commutes with both
∂ and ∂

∗
, and

H+ ∆∂ ◦G = identity

on Ap,q(X).

Thus there is an orthogonal direct sum decomposition for each p, q

Ap,q(X) = Hp,q(X) + ∂Ap,q−1(X) + ∂∗Ap,q+1(X).

Corollary 3 There is a natural identification of Hp,q(X) with Hp,q

∂
(X).

Proof: If ω is ∂-closed, then

ω = H(ω) + ∂(∂
∗
Gω) + ∂

∗
∂Gω

= H(ω) + ∂(∂
∗
Gω) + ∂

∗
G∂ω

= H(ω) + ∂(∂
∗
Gω).

Hence ω and H(ω) represent the same element of Hp,q

∂
(X), i.e., Hp,q(X)→

Hp,q

∂
(X) is surjective. If ω ∈ Hp,q(X) is ∂-exact, i.e., ω = ∂η, then

‖ ω ‖2 = (ω, ∂η) = (∂
∗
ω, η) = 0,

that is, ω = 0. 2
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In a similar vein, one has the Hodge theorem for the exterior derivative
operator d. Let Ak(X) be the vector space of smooth (C-valued) k-forms
on X. Then the Hodge star operator gives a map ∗ : Ak(X) → A2n−k(X),
and hence we obtain a Hermitian inner product on Ak(X) by

(ω, η) =

∫
X
ω ∧ ∗η,

as before. This is in fact the Hermitian extension of a positive definite inner
prodcut on the R-subspace of real forms in Ak(X). This is because the
Hodge ∗-operator is in fact a real operator.

Now the exterior derivative operator d has an adjoint d∗ = − ∗ d∗, and
we can define the corresponding Laplace-Beltrami operator ∆d = dd∗ + d∗d.
A smooth k-form ω is d-harmonic (or just harmonic) if dω = d∗ω = 0, or
equivalently, if ∆dω = 0.

Theorem 10 (‘Real’ Hodge theorem) Let Hk(X) ⊂ Ak(X) denote the
space of harmonic forms of degree k on X. Then for each k, we have:

(i) Hk(X) is finite dimensional

(ii) the orthogonal projection H : Ak(X) → Hk(X) is well-defined,
and there exists a unique operator (the Green’s operator) G = Gk :
Ak(X) → Ak(X) with kernel Hk, such that G commutes with both d
and d∗, and

H+ ∆d ◦G = identity

on Ak(X).

Thus there is an orthogonal direct sum decomposition for each k

Ap,q(X) = Hp,q(X) + d(Ak−1(X)) + d∗(Ak+1(X)).

Finally, d, d∗, H, G are all real operators, i.e., commute with complex
conjugation on forms.

Corollary 4 There is a natural identification of Hk(X) with the de Rham
cohomology Hk

DR(X), compatible with complex conjugation.
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4.3 The Kähler condition

Recall that a Hermitian metric h has an associated (1, 1) form ω, given
by the imaginary part of h. We say h is a Kähler metric if dω = 0. Two
basic examples of Káhler metrics on a complex manifold are (i) the standard
Hermitian metric

∑n
j=1 dzj⊗dzj on Cn, and (ii) the Fubini-Study metric on

Pn
C —- if X0, . . . , Xn are standard homogenous coordinates on Pn

C, and U is
the open set with X0 6= 0, let zj = Xj/X0 be the standard affine coordinates
on U ; then

ω =
ı

2π

[∑
j dzj ∧ dzj

1 +
∑
j zjzj

−
(
∑
j zjdzj) ∧ (

∑
j wjdwj)

(1 +
∑
j zjzj)

2

]

is a (1, 1) form on U , which extends to a (1, 1) form on Pn
C which is invariant

under the group PGLn(C) of projective linear transformations, and is the
imaginary part of a unique, PGLn(C)-invariant Hermitian metric on Pn

C.
Since one computes readily that dω = 0, we see that the Fubini-Study
metric is Kähler. Further, one can compute that H2

DR(Pn
C) = C for any

n ≥ 1, and the class of ω is a generator; under the isomorphism H2
DR(Pn

C) ∼=
H2(Pn

C,C) = H2(Pn
C,Z) ⊗ C given by de Rham’s theorem, in fact ω is a

generator of H2(Pn
C,Z) = Z.

Lemma 5 Let X ⊂ Y be a complex submanifold of a complex manifold Y ,
and let h be a Hermitian metric on Y . Then the restriction h |X of h to X
is a Hermitian metric on X, such that if i : X → Y is the inclusion, then
the corresponding (1, 1) forms are related by

i∗ωh = ωh|X .

In particular, if h is a Kähler metric on Y , then h |X is a Kähler metric on
X.

Proof: Let dimX = m, dimY = n. For each x ∈ X, TxX ⊂ TxY , and
we have a corresponding restriction map T ∗xY→→T ∗xX. By Gram Schmid,
we can find a coframe ϕ1, . . . , ϕn for Y near x, such that ϕj , m+ 1 ≤ j ≤ n
lie in the kernel of the restriction map to X. Then i∗ϕj , 1 ≤ j ≤ m are a
coframe for h |X , and clearly

i∗ωh = i∗(
n∑
j=1

ϕj ∧ ϕj) =
m∑
j=1

i∗ϕj ∧ i∗ϕj = ωh|X .
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Thus, any non-singular complex projective algebraic variety X has a
Kähler Hermitian metric. If h is a Kähler metric on X, the associated
(1, 1)-form ω is called the Kähler form on X. We call such a pair (X,h) or
(X,ω) a Kähler manifold; however, we will often abuse notation and refer
to X itself as a Kähler manifold, meaning that there is a choice of Käher
metric implicit in the discussion.

Lemma 6 Let X be a compact Kähler manifold.

(i) The even de Rham cohomology groups H2k
DR(X) are all non-zero,

0 ≤ k ≤ n = dimX.

(ii) The space of holomorphic k-forms injects into Hk
DR(X), i.e., all

non-zero holomorphic k-forms are d-closed, and non d-exact.

(iii) If V ⊂ X is any closed analytic subvariety, of codimension p,
then the corresponding fundamental cohomology class ηV ∈ H2p

DR(X)
is non-zero.

Proof: (i) Since ω is d-closed, ωk represents an element of H2k
DR(X), for

each 1 ≤ k ≤ n = dimX. If ωk = dη, then ωn = d(η∧ωk−n) is exact as well,
and so

∫
X ω

n = 0. This contradicts that ωn is a non-zero positive multiple
of the volume form of X.

(ii) If η is a holomorphic k-form, k ≤ n = dimX, and we have a local
expression

η =
∑
I

ηIϕI

for a local coframe, then we compute that

η ∧ η =
∑
I,J

ηIηJϕI ∧ ϕJ ;

since
ωn−k = Ck

∑
#K=n−k

ϕK ∧ ϕK

for a certain non-zero constant Ck, we then have

η ∧ η ∧ ωn−k = (
Ck

(n− k)!

∑
I

| ηI |2) · Φ.
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Hence ∫
X
η ∧ η ∧ ωn−k 6= 0

if η 6= 0. On the other hand, if η = dµ is exact, then η ∧ η ∧ ωn−k =
d(µ ∧ η ∧ ωn−k) is exact as well, and hence has vanishing integral over X;
hence if η is non-zero holomorphic, then η is non-exact. This also forces η to
be closed, else dη = ∂η would be a non-zero, exact holomorphic k+ 1-form.

(iii) We first recall the definition of the fundamental class ηV in the
de Rham cohomology H2p

DR(X). From the de Rham theorem and Poincaré

duality, the pairing H2p
DR(X) ⊗ H2n−2p

DR (X) → C, ω ⊗ η 7→
∫
X ω ∧ η, is a

perfect pairing of finite dimensional C-vector spaces. Now V determines a
functional

H2n−2p
DR (X)→ C,

ω 7→
∫
V
∗ω |V ∗ ,

where V ∗ ⊂ V is the dense open subset of non-singular points (i.e., the
set of points of V where V is a complex submanifold of X). One first
needs to prove that this is well-defined, i.e., that the integral is finite for
any closed form ω, and vanishes for exact forms; the first property can be
proved by locally representing V as a branched covering of a polydisk in Cm

(m = dimV ), and the second follows from a version of Stokes’ theorem (see
the book [GH], pages 32-33 for details). Now one appeals to Wirtinger’s
theorem, which states that∫

V ∗
ωn−p |V ∗= (n− p)! Volume (V ∗),

where the volume is measured using the volume form of the Riemannian
metric induced on V ∗ from that on X; this is of course finite, as a par-
ticular case of our earlier remarks, and it is evidently positive. Hence the
functional ηV ∈ H2p

DR(X) is non-zero. (Incidentally, Wirtinger’s theorem is
a consequence of lemma 5, since h |V ∗ is the induced Kähler metric from
X, with corresponding Kähler form ω |V ∗ ; now the n− p-th power of this is
proportional to the volume form on V ∗.) 2

Remark: The condition (iii) of the above lemma has been used by Hiron-
aka to construct examples of non-singular ‘abstract’ algebraic varieties over
C which are compact, but not projective. See [H], Appendix. His argument
is actually valid over any algebraically closed field, but then uses the inter-
section theory of algebraic cycle classes in place of de Rham cohomology.
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Let X be a compact Kähler manifold with Kähler form ω. Let L :
Ap,q(X)→ Ap+1,q+1(X) denote the Lefschetz operator defined by

L(η) = ω ∧ η,

and let Λ = L∗ : Ap+1,q+1(X) → Ap,q(X) be its adjoint. Define new opera-
tors

dc =
ı

4π
(∂ − ∂), ∆∂ = ∆∂ = ∂∂∗ + ∂∗∂.

One computes at once that

ddc + dcd = 0

and
ddc =

ı

2π
∂∂.

Further, taking complex conjugates, the analogue of the Hodge theorem
(Theorem 9) is valid for ∆∂ as well.

Lemma 7 (Kähler identitites) The following formulas hold.

(i) (Basic Identity) [L, d∗] = 4πdc and [Λ, d] = −4πdc∗.

(ii) [Λ, ∂] = −ı∂∗ and [Λ, ∂] = ı∂
∗
.

(iii) [L, d] = [Λ, d∗] = 0.

(iv) [L,∆d] = [Λ,∆d] = 0, and ∂∂
∗

+ ∂
∗
∂ = ∂∗∂ + ∂∂∗ = 0.

(v) ∆∂ = ∆∂ =
1

2
∆d.

Proof: The two forms of the Basic Identity, as well as the two formulas
in (ii) are (respectively) equivalent to each other, by adjointess. Further, by
decomposition into types, (ii) is equivalent to (i). These identities are proved
by first proving analogous identities for the standard metric on Cn, where
the operators are now regarded as acting on compactly supported smooth
forms on Cn (so that we still have Hermitian inner products on spaces of
forms, and adjoints make sense). This involves elementary, but tedious,
computations (see pages 111-114 in [GH]). The general case is reduced to
this by showing that for any x ∈ X, the Käler metric has a unitary coframe
ϕ1, . . . , ϕn near x such that dϕj(x) = 0 for all j. Now one argues that, if
one tries to carry out the same computations as in the Euclidean case, say
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for the identity [Λ, ∂] = −ı∂∗, we get all the same terms as before, as well
as additional terms which contain factors of first derivatives ∂ϕj (on Cn, we
would get ∂(zj) = 0). But at x, all these additional terms will vanish, so
the desired identity will hold at x.

Since ω is closed, d(ω ∧ η) = ω ∧ dη, and so [L, d] = 0; adjointness gives
[Λ, d∗] = 0. We now compute that

[L,∆d] = Ldd∗ + Ld∗d− dd∗L− d∗dL

= dLd∗+Ld∗d−dd∗L−d∗Ld = d(Ld∗−d∗L)+(Ld∗−d∗L)d = 4π(ddc+dcd) = 0.

By adjointness, [Λ,∆d] = 0 (since ∆d is self-adjoint). Next, since ∂
∗

=
−ı[Λ, ∂], we get that

ı(∂∂
∗

+ ∂
∗
∂) = ∂[Λ, ∂] + [Λ, ∂]∂

= ∂Λ∂ − ∂2Λ + Λ∂2 − ∂Λ∂ = 0.

Now adjointness gives ∂∗∂ + ∂∂∗ = 0.
Hence

∆d = (∂ + ∂)(∂∗ + ∂
∗
) + (∂∗ + ∂

∗
)(∂ + ∂) = ∆∂ + ∆∂ .

It remains to show that ∆∂ = ∆∂ . For this we use

−ı∆∂ = ∂[Λ, ∂] + [Λ, ∂]∂

= ∂Λ∂ − ∂∂Λ + Λ∂∂ − ∂Λ∂,

and so
ı∆∂ = ∂[Λ, ∂] + Λ, ∂]∂

= ∂Λ∂ − ∂∂Λ + Λ∂∂ − ∂Λ∂

= ı∆∂ ,

since ∂∂ + ∂∂ = 0. 2

As a consequence, we obtain that ∂-harmonic forms are d-harmonic.
We also get that ∆d preserves the type decomposition; in particular, if ω =∑
p,q ω

p,q, then ω is harmonic ⇔ each ωp,q is harmonic. Finally, we obtain
the decomposition

Hk(X) =
⊕
p≥0

Hp,k−p
∂

,
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which can be viewed as a decomposition on cohomology groups

Hk
DR(X) =

⊕
p≥0

Hp,k−p
∂

(X).

Identifying Hk
DR(X) with the singular cohomology Hk(X,C), we obtain the

Hodge Decomposition

Hk(X,C) =
⊕
p≥0

Hp,k−p(X),

where Hp,k−p(X) is the image of Hp,k−p
∂

under the above series of identifi-
cations; we then have also

Hp,k−p(X) = Hk−p,p(X) (Hodge symmetry)

Since Hp,0

∂
(X) = Hp,0

∂
is naturally identified with the space of holomor-

phic p-forms, we get that holomorphic forms on X are harmonic for any
Kähler metric on X. Another consequence is that the odd Betti numbers of
a compact Kähler manifold X are even, since

dimCH
2k+1(X,C) =

k∑
p=0

dimCH
p,2k+1−p(X)+dimCH

2k+1−p,p(X) = 2
k∑
p=0

dimHp,2k+1−p(X).

4.4 The Hard Lefschetz Theorem

Theorem 11 (Hard Lefschetz Theorem) Let X be compact Kähler of di-
mension n. Then the map

Lk : Hn−k(X,C)→ Hn+k(X,C)

is an isomorphism, for each k ≤ n. If we define the primitive cohomology
by

Pn−k(X,C) = ker
(
Lk+1Hn−k(X,C)→ Hn+k+2(X,C)

)
,

then we have the Lefschetz decomposition

Hm(X,C) =
⊕
k≥0

LkPm−2k(X,C).
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Note that the Lefschetz decomposition is compatible with the Hodge decom-
position, in the sense that if we define

P r,s(X) = P r+s(X,C) ∩Hr,s(X),

then
Pm(X,C) =

⊕
k≥0

P k,m−k(X).

If the class of ω in H2
DR(X) ∼= H2(X,Z) ⊗C corresponds to a rational

cohomology class under the above de Rham isomorphsim, then the Hard
Lefschetz Theorem, the definition of primitive cohomology and the Lefschetz
Decomposition are valid for cohomology with rational coefficients as well.
However this is not the case with integral cohomology, in genenral. If the
Kähler class is induced from a projective embedding X ↪→ PN

C , then the
Kähler class is indeed an integral, hence rational cohomology class. In this
case, L has the following geometric/topological interpretation: it is the cup
product with the fundamental cohomology class of a hyperplane intersection
H ∩ X, where H ∼= PN1

C is a projective linear hyperplane intersecting X
transversally. This is because the Kähler class of the Fubini-Study metric
on PN

C is the fundamental cohomology class of any hyperplane.
We may use the Hard Lefschetz Theorem to state the Hodge-Riemann

bilinear relations. Define a bilinear form on Hn−k(X,C) (k ≥ 0) by the
formula

Q(η, ψ) =

∫
X
η ∧ ψ ∧ ωk.

Since ω is a real form, Q in fact defines a real valued bilinear form on
Hn−k(X,R). Also Hp,q and Hp′,q′ are orthogonal with respect to Q unless
(p, q) = (q′, p′).

Now the bilinear relations assert that for any ξ ∈ P r,s(X),

ır−s(−1)(n−r−s)(n−r−s−1)/2Q(ξ, ξ) > 0.

In particular, if r + s is even,

ır−s(−1)(n−r−s)(n−r−s−1)/2Q

defines a positive definite quadratic form on

(P r,s(X)⊕ P s,r(X)) ∩Hr+s(X,R).

If r+s is odd, then Q defines a non-degenerate alternating form on P r+s(X).
Since Q(Lkη, Lkψ)Q(η, ψ) for any primitive classes η, ψ we have by the Lef-
schetz decomposition that Qis non-degenerate on Hn−k(X,C).
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5 Topology of Varieties

In this lecture we discuss several aspects of the topological structure of
algebraic varieties. We begin with an outline of the proof of the Lefschetz
Hyperplane Theorem via Morse Theory, following Andreotti and Frankel (as
exposed in [Mi]).

5.1 Review of Morse Theory

We first review, without proofs, some of the basis facts from Morse Theory.
We begin by recalling the basic definitions.

Let M be a smooth manifold, and f : M → R a smooth function.
A point x ∈ M is called a critical point for f if df(x) = 0; equivalently,
if x1, . . . , xn are local coordinates on M near x, then ∂f

∂xi
(x) = 0 for all

1 ≤ i ≤ n. We say that a critical point x is non-degenerate if, in any such
system of local coordinates, the matrix of second partial derivatives

H =

[
∂2f

∂xi∂xj
(x)

]

is non-singular. One checks easily that the definition of non-degeneracy of
a critical point is independent of the choice of local coordinates. Finally, a
critical value of f is the image of a critical point of f .

The matrix of second partial derivatives (the Hessian)

H =

[
∂2f

∂xi∂xj
(x)

]

is symmetric, and defines a quadratic form

q(y1, . . . , yn) =
∑
i,j

∂2f

∂xi∂xj
(x)yiyj .

The equivalence class of this form, i.e., the nullity and index, are independent
of the choice of local coordinates; here recall that the nullity is the number
of 0-eigenvalues of H, and the index is the number of negative eigenvalues
of H. One has the following lemma.

Lemma 8 Let f : M → R be a smooth function on a smooth n-manifold,
and x ∈ M a non-degenerate critical point. Then there is a system of local
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coordinates x1, . . . , xn on M in a neighbourhood U of x such that on U , we
have

f(x1, . . . , xn) = f(x) + x2
1 + · · ·+ x2

n−k − x2
n−k+1 − · · · − x2

n.

The integer k depends only on f , and is the index of the critical point.
In particular, any non-degenerate critical point is isolated.

Finally, a Morse function on a manifold M is a smooth function f such
that

(i) the sets Mf,c = f−1((−∞, c]) are compact, for all c ∈ R

(ii) the critical points of f are all non-degenerate.

Theorem 12 (Main Theorem of Morse Theory) Let f : M → R be a Morse
function on a smooth manifold M . Then M has the homotopy type of a CW
complex, whose k-cells are in bijection with the critical points of f of index
k, for each k ≥ 0.

The proofs of the above lemma and theorem can be found in §2-3 of Milnor’s
book [Mi] on Morse Theory.

5.2 The distance squared as a Morse function

Let M ⊂ Rm be a closed smooth submanifold (by the Whitney Embedding
Theorem, every smooth n manifold M can be realized as a closed smooth
submanifold of R2n+1). Let p ∈ Rm be a point, and let fp : M → R be the
function given by the square of the Euclidean distance from p,

fp(x) = ‖ x− p ‖2 =< x, x > + < p, p > −2 < x, p > . (6)

Here < , > denotes the Euclidean inner product. Following the treatment
of Milnor’s book [Mi], §6, we discuss when this is a Morse function, and
show how to compute the index of f at a critical point of f in terms of other
data.

Let N denote the normal bundle of M . It may be regarded as the set

N = {(x, v) ∈M ×Rm | v is normal to M at x}.

Consider the map
ϕ : N → Rm, (x, v) 7→ x+ v.
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Then ϕ is a smooth map between smooth m-dimensional manifolds, whose
Jacobian is non-singular at points (x, 0) (the zero-section of N). Recall that
a critical point of ϕ is a point where the Jacobian (with respect to any
system of local coordinates) is singular; a critical value is the image of a
critical point. By Sard’s Theorem, we know that the set of critical values of
ϕ has measure 0 in Rm (see [Mi2], Chapter 2, for a proof of Sard’s Theorem).

We call a point y ∈ Rm a focal point of multiplicity µ of (M,x) if y =
ϕ(x, v), where (x, v) is a critical point of ϕ, and

µ = dimR ker(dx,vϕ : Tx,vN → TyR
m).

Note that if y is a focal point of (M,x), then v = y − x is normal to M at
x. We say y ∈ Rm is a focal point of M if it is a focal point of (M,x) for
some x; equivalently, y is a critical value for ϕ.

The interest in this concept for us is seen in the following lemma.

Proposition 13 (i) x ∈ M is a critical point for fp ⇔ v = p− x is
normal to M at x

(ii) x ∈M is a degenerate critical point for fp : M → R if and only if
p is a focal point of (M,x)

(iii) If x is a non-degenerate critical point for fp, then the index of
fp at x equals the number of focal points for (M,x), counted with
multiplicity, which lie on the line segment joining x and p. This index
is always ≤ n = dimM .

In particular, for almost all p ∈ Rm, fp is a Morse function on M .

Proof: This is a local computation. Suppose x ∈ M . Let u1, . . . , un be
local coordinates on M on a neighbourhood U of x, and let

w1 = (w11, . . . , w1m), . . . , wm−n = (wm−n 1, . . . , wm−nm)

be local vector (Rm) valued functions on U whose values at any y ∈ U give
an orthonormal basis of the normal space NyM to M at y. If π : N →M is
the projection, then we have coordinates u1, . . . , un, t1, . . . , tm−n on π−1(U),
where

(u1, . . . , un, t1, . . . , tm−n) 7→ (x(u), v),

x(u) = (x1(u1, . . . , un), . . . , xm(u1, . . . , un)), v =
∑
j

tjwj(u1, . . . , un)).
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In terms of these corrdinates, ϕ is given by

ϕ(u1, . . . , un, t1, . . . , tm−n) = x+
m−n∑
j=1

tjwj .

This has partial derivatives

∂ϕ

∂ui
=

∂x

∂ui
+
∑
j

tj
∂wj
∂ui

,

∂ϕ

∂tj
= wj .

Now form the matrix of inner products of these m partial derivative vectors
with the m linearly independent vectors

∂x

∂ui
= (

∂x1

∂ui
, · · · , ∂xm

∂ui
), 1 ≤ i ≤ n,

w1, . . . , wm−n.

This is equivalent to multiplying the Jacobian matrix of ϕ by a non-singular
matrix (and hence preserves the rank). We obtain the m×m matrix[

J K
0m−n×m Im−n

]

where

J =

< ∂x

∂ui
,
∂x

∂uk
> +

∑
j

tj <
∂wj
∂ui

,
∂x

∂uk
>


1≤i≤n,1≤k≤n

,

K =

∑
j

tj <
∂wj
∂ui

, wl >


1≤i≤n,1≤l≤m−n

,

0r×s is an r× s matrix of zeroes, and Ir is an identity matrix of size r. This
follows by a simple computation using the formulas

< wj ,
∂x

∂ui
>= 0 ∀ 1 ≤ i ≤ n, 1 ≤ j ≤ m− n

< wj , wl >= δjl ∀ 1 ≤ j, l ≤ m− n

75



(the first set of formulas express that each wj is normal to M , and the
second, that the wj give an orthonormal basis for the nromal space at each
point.)

Thus, (u1, . . . , un, t1, . . . , tm−n) is a critical point precisely when the ma-
trix

J =

< ∂x

∂ui
,
∂x

∂uk
> +

∑
j

tj <
∂wj
∂ui

,
∂x

∂uk
>


1≤i≤n,1≤k≤n

is singular. Now using

0 =
∂

∂ui
< wj ,

∂x

∂uk
>=<

∂wj
∂ui

,
∂x

∂uk
> + < wj ,

∂2x

∂ui∂uk
>,

we may rewrite J as
[gik− < v, `ik >] ,

where

gik =<
∂x

∂ui
,
∂x

∂uk
>, `ik =

∂2x

∂ui∂uk
, v =

∑
j

tjwj ;

here v is a nomal vector to M at x = x(u1, . . . , un).
Hence we have proved:

Lemma 9 For v ∈ Rm, the vector x + v is a focal point for (M,x) with
multiplicity µ ⇔ the matrix

J = [gik− < v, `ik >]

is singular, with nullity (i.e., dimension of kernel) equal to µ.

We now want to relate this to critical points for the distance function
fp. We have from equation (6) that

∂fp
∂ui

= 2 <
∂x

∂ui
, x− p >,

so that x is critical for fp ⇔ v = p − x is normal to M at x; in this case,
the Hessian at x is[

∂2fp
∂ui∂uk

]
= [2(gik− < v, `ik >)] = 2J.

Hence from the lemma, we conclude that x is a degenerate critical point for
fp ⇔ p is a focal point for (M,x).
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Now suppose p is not a focal point for M , so that fp is a Morse function.
As above, x is critical for fp precisely when v = p− x is normal to M at x.
The index of fp at x is then given by the number of negative eigenvalues,
counted with multiplicity, of

J = [gik− < v, `ik >] .

We may always make a linear change of coordinates (in the ui) so that gik
is the identity matrix; then the index of fp at x is the number of eigenvalues
of [< v, `ik >] which are > 1. If t is such an eigenvalue, then clearly x+ t−1v
is a focal point for (M,x), lying on the line segment joining x to p. This
implies that index of fp at x equals the number of focal points for (M,x),
counted with multiplicity, which lie on the line segment joining x and p.
This finishes the proof of Proposition 9. 2

Remark: Note that since ϕ : N → Rm is always a diffeomorphism on a
neighbourhood of the 0-section M × {0} ⊂ N , x ∈M is never a focal point
for (M,x).

Corollary 5 Any smooth manifold of dimension n has the homotopy type
of a CW complex of dimension ≤ n.

5.3 The Lefschetz Hyperplane Theorem

Theorem 14 (Weak Lefschetz, first form) Let M ⊂ CN be a closed complex
submanifold of dimension n (for example, a nonsingular affine variety of di-
mension n). Then M has the homotopy type of a CW complex of dimension
≤ n.

Proof: We make use of 2 lemmas.

Lemma 10 Let Q(z1, . . . , zn) =
∑
aijzizj be a quadratic form in n complex

variables, and let

Q̃(x1, . . . , xn, y1, . . . , yn) = Real part of Q(x1 + ıy1, . . . , xn + ıyn).

If e is an eigenvalue of Q̃ of multiplicity µ, then −e is also an eigenvalue of
multiplicity µ.

Proof: Since Q(ız1, . . . , ızn) = −Q(z1, . . . , zn), the quadratic forms Q̃
and −Q̃ are related by an orthogonal transformation, and hence have the
same eigenvalues, with multiplicites. 2
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Lemma 11 If x ∈ M , and x + v ∈ CN = R2N is a focal point for (M,x)
with multiplicity µ, then x − v is also a focal point for M with the same
multiplicity.

Proof: For v, w ∈ CN = R2n, we can consider the Euclidean innder
product < v,w > as the real part of a Hermitian inner product,

<< v,w >>=
N∑
i=1

viwi.

Choose anaytic coordinates z1, . . . , zn on M near x so that zi(x) = 0 for all
i. Let v be a vector normal to M at x. Let w1, . . . , wN be the coordinate
functions on M , so that wi = wi(z1, . . . , zn) are holomorphic functions in a
neighbourhood of the origin. Then << w, v >> is a holomorphic function
of z1, . . . , zn near the origin, and so has a power series expansion

<< w, v >>=
N∑
i=1

wi(z1, . . . , zn)vi = constant+Q(z1, . . . , zn)+higher degree terms,

where Q is a homogeneous quadratic polynomial in the zj (there is no linear
term since v is normal to M at x). Hence if we set zi = xi + ıyi, then
< w, v > has a real power series expansion

< w, v >= constant + Q̃(x1, . . . , xn, y1, . . . , yn) + higher terms,

where the notation Q̃ is as in lemma 10. Since the eigenvalues of Q̃ occur
in opposite pairs, the focal points of (M,x) along the normal line x + Rv
occur in pairs x± tv. 2

Now we complete the proof of theorem 14, as follows. Choose a point
p ∈ CN = R2N such that fp is a Morse function for M . If x is any critical
point for fp, then the index of fp at x is the number of focal points, counted
with multiplicity, lying on the line segment joining x to p (where p − x is
normal to M at x). There are at most 2n such focal points on the line
x + R(p − x), and if x + t(p − x) is a focal point with multiplicity µ, so is
x− t(p− x). Hence at most n of these, counted with multiplicity, can have
the form x+ t(p−x) with 0 < t < 1. Thus the index of any critical point of
fp is always ≤ n = dimCM . In particular, Theorem 12 imples that M has
the homotopy type of a CW complex of dimension ≤ n. 2
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Corollary 6 (Lefschetz hyperplane theorem) Let X ⊂ PN
C be a projective

variety of dimension n, and H ⊂ PN
C a hyperplane containing the singular

locus of X, i.e., such that X − X ∩ H is a non-singular affine variety of
pure dimension n. Then Hi(X ∩H,Z) → Hi(X,Z) is an isomorphism for
i < n− 1, and is surjective for i = n− 1.

Proof: From the long exact sequence of homology groups of the pair
(X,X∩H), the above result is equivalent to the vanishing of Hi(X,X∩H; Z)
for i ≤ n−1. By Lefschetz duality, Hi(X,X∩H; Z) ∼= H2n−i(X−X∩H; Z),
and since X −X ∩ Z is non-singular affine of dimension n, its cohomology
groups Hj(X −X ∩H; Z) vanish for j > n. 2

A slight refinement of the above argument yields the following stronger con-
clusion.

Theorem 15 (Lefschetz) Let X ⊂ PN
C and H be as above. Then

πi(X,X ∩H) = 0 for i < n.

Proof: (Sketch) Let p be a point in CN = PN
C−H such that fp is a Morse

function for X −X ∩H. Consider the function f : X → R,

f(x) =

{
0 if x ∈ X ∩H
1

fp(x) otherwise

This is again sort of a Morse function on X −X ∩H, such that each critical
point now has index ≥ n. Hence, for any ε > 0, a variant of Theorem 12
implies that if Xε = f−1([0, ε]), then (X,Xε) has the homotopy type a rel-
ative CW complex with finitely many cells, each of dimension ≥ k. Hence
πi(X,Xε) = 0 for all i < k. Now one argues that Xε has the same homo-
topy type as X ∩ H, for small enough ε, for example since there exists a
triangulation of X such that X ∩H is a subcomplex. 2

5.4 Example: hypersurfaces and complete intersections

Let X ⊂ Pn+1
C be a hypersurface of degree d. Then we may regard X as a

hyperplane section of Pn+1
C embedded in some projective space PN

C via the
d-tuple embedding. From the Lefshctz Hyperplane theorems for homology
and homotopy (Corollary 6 and Theorem 15), it follows that

πi(X)→ πi(P
n+1
C ), Hi(X,Z)→ Hi(P

n+1
C ,Z)
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are isomorphisms for i < n and are surjective for i = n. This gives that if
n ≥ 2, then X is simply connected. Further,

Hi(X,Z) =


0 if i < n is odd
Z if i < n is even

Z⊕ (?) if i = n is even.

Suppose further that X is non-singular. Then Poincaré duality implies
thatHi(X,Z) ∼= H2n−i(X,Z) for all i. Since alsoH i(X,Z) ∼= Hom (Hi(X,Z),Z)
for i < n (by the Universal Coefficient Theorem in topology, since the ho-
mology in degrees < n is torsion-free), we get that

H i(X,Z) =

{
0 if i 6= n is odd
Z if i 6= n is even

Further,

Hn(X,Q) =

{
Q⊕ PHn(X,Z) if i = n is even
PHn(X,Q) if i = n is odd.

Here PHn(X,Q) = ker(Hn(X,Q)→ Hn+2(X,Q)) is the primitive middle-
dimensional cohomology (in the sense of the Lefschetz decomposition, give
by the Hard Lefschetz theorem).

Now we may proceed further as follows. Recall that a complete intersec-
tion of dimension n in PN

C is a subvariety X, such that for some homoge-
neous polynomials F1, . . . , FN−n, the homogeneous ideal I(X) is generated
by F1, . . . , FN−n. Let X be a non-singular complete intersection of dimen-
sion n. Bertini’s Theorem then implies that there exist N − n non-singular
hypersurfacesX1, . . . , XN−n such thatX = X1∩· · ·∩XN−n, and all of the in-
tersections X1∩· · ·∩Xi, 2 ≤ i ≤ N−n are transverse. Then Yi = X1∩· · ·∩Xi

is non-singular, for each i, and Yi+1 is a non-singular hypersurface section
of Yi. Hence by the Weak Lefschetz theorems for homology and homotopy,
we see by induction that

πj(Yi)→ πj(P
N
C), Hj(Yi,Z)→ Hj(Yi,Z)

are isomorphisms for j < dimYi = N − i and are surjective for j = N − i.
Since YN−n = X, we conclude the following (using also Poincaré duality).

Corollary 7 For any smooth projective complete intersection X of dimen-
sion n, we have

Hi(X,Z) =


0 if i 6= n is odd
Z if i 6= n is even

Z⊕ (?) if i = n is even.
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H i(X,Z) =

{
0 if i 6= n is odd
Z if i 6= n is even

Hn(X,Q) =

{
Q⊕ PHn(X,Z) if i = n is even
PHn(X,Q) if i = n is odd.

If X is a smooth surface in P3
C, then by the above, the only ‘unknown’

cohomology group is H2(X,Z). Since X is simply connected, the Universal
Coefficient theorem implies that this cohomology group is torsion-free, hence
is free abelian of finite rank, equal to the second Betti number b2. We now
sketch an argument to compute b2 of a surface in P3

C. This depends on
the following result, which is interesting in its own right. Recall that the
topological Euler characteristic of a space X is defined to be

χtop(X) =
∑
i≥0

(−1)ibi(X),

where bi(X) = dimQHi(X,Q) is the i-th Betti number of X; for χtop(X)
to be well-defined, we must have that bi < ∞ for all i, and is non-zero
for only finitely many i. Since any projective algebraic variety over C is
known to have a finite triangulation, its topological Euler characteristic is
well-defined.

Proposition 16 Let f : X → C be a morphism from a projective variety X
to a smooth projective curve C, over the complex number field C. Assume
that there exists a finite set S = {x1, . . . , xn} ⊂ C such that f−1(C − S)→
C−S is a smooth morphism (i.e., has non-zero differential everywhere). Let
F be any fiber of f over a point of CS, and let Fi = f−1(xi) be the “singular
fibers” of f . Then the topological Euler characteristic of X satisfies the
formula

χtop(X) = χtop(C)χtop(F ) +
n∑
i=1

(χtop(Fi)− χtop(F )).

Proof: Since f : f−1(C − S)→ C − S is a smooth and proper morphism
(since f is proper), it is in fact a C∞ locally trivial fiber bundle, all of whose
fibers are diffeomorphic to F .

Lemma 12 Let π : E → B be a locally trivial fiber bundle with fiber F ,
where B, F are finite CW complexes. Then χtop(E) is defined, and

χtop(E) = χtop(B)χtop(F ).
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Proof: We can find a finite open covering of B by subsets Ui, 1 ≤ i ≤ m,
such that f−1(Ui) ∼= Ui×F for all i, and Vi = U1∪· · ·∪Ui and Ui∩Vi−1 have
well-defined topological Euler characteristics, for all i ≥ 2. Now π−1(Ui) ∼=
Ui × F , so by the Kunneth formula,

χtop(π
−1(A)) = χtop(A)χtop(F )

for any subset A ⊂ Ui for which χtop(A) is well-defined. Then from the
Mayer Vietoris sequences (homology is with Q-coefficients)

· · ·Hi(Ui ∩ Vi−1)→ Hi(Ui)⊕Hi(Vi−1)→ Hi(Vi)→ Hi−1(Vi−1 ∩ Ui)→ · · ·

and

· · ·Hi(π
−1(Ui ∩ Vi−1))→ Hi(π

−1(Ui))⊕Hi(π
−1(Vi−1))→

Hi(π
−1(Vi))→ Hi−1(π−1(Vi−1 ∩ Ui))→ · · ·

we conclude that

χtop(Vi) = χtop(Ui) + χtop(Vi−1)− χtop(Ui ∩ Vi−1),

χtop(π
−1(Vi)) = χtop(π

−1(Ui)) + χtop(π
−1(Vi−1))− χtop(π−1(Ui ∩ Vi−1)),

and hence by induction on i, that

χtop(π
−1(Vi)) = χtop(Vi)χtop(F ),

for all i. The conclusion of the lemma is the case i = m. 2

In our context, choose a small neighbourhood W of S in C, such that W
is a disjoint union of open disks Wi centred at each xi. Let V be a smaller
neighbourhood which is a union of concentric disks. Then from the lemma,

χtop(f
−1(C − V )) = χtop(C − V )χtop(F ).

Further, if Si ⊂Wi−Vi is a small circle in Wi around Vi, then Si ↪→Wi−Vi is
a homotopy equivalence; hence also f−1(Si) ↪→ f−1(Wi− Vi) is a homotopy
equivalences, since f−1(Wi − Vi) → Wi − Vi is a locally trivial fiber bundle
(with fiber F ). By the lemma, χtop(f

−1(Si)) = χtop(Si)χtop(F ) = 0, since
Si is a circle, and hence has vanishing Euler characteristic. Hence

χtop(Wi − Vi) = χtop(f
−1(Wi − Vi)) = 0
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for all i. Finally, one can show that Fi ↪→ f−1(Wi) is a homotopy equiv-
alence, provided Wi are sufficiently small disks around xi; this follows, for
example from the fact that X and C have triangulations, such that S ⊂ C,
f−1(S) ⊂ X are subcomplexes. Hence

χtop(f
−1(Wi)) = χtop(Fi) = χtop(Wi)χtop(F ) + χtop(Fi)− χtop(F ),

since χtop(Wi) = 1 (as Wi is contractible). Again arguing as in the proof
of the lemma, using the Mayer-Vietoris exact sequences for the open cover
{W,C − V } of C, and the induced covering of X, we deduce the formula
claimed in the proposition. 2

Now to apply this to study surfaces in P3
C, we use the technique of

Lefschetz pencils. Let L ⊂ P3
C be a line, and consider all hyperplanes

H ⊂ P3
C such that L ⊂ H. There is a line L̂ in the dual projective space

P̂
3
C parametrizing these hyperplanes H. Now let F (x, y, z, w) = 0 be the

defining equation for the surface X ⊂ P3
C of degree d. The tangent plane to

X at P = (a : b : c : d) is

x
∂F

∂x
(a, b, c, d) + y

∂F

∂y
(a, b, c, d) + z

∂F

∂z
(a, b, c, d) + w

∂F

∂w
(a, b, c, d) = 0.

This corresponds to the point in P̂
3
C with coordinates

(
∂F

∂x
(a, b, c, d) :

∂F

∂y
(a, b, c, d) :

∂F

∂z
(a, b, c, d) :

∂F

∂w
(a, b, c, d)).

Consider the morphism D : P3
C → P̂

3
C given by

D(a : b : c : d) = (
∂F

∂x
(a, b, c, d) :

∂F

∂y
(a, b, c, d) :

∂F

∂z
(a, b, c, d) :

∂F

∂w
(a, b, c, d)).

Then X → D(X) is dual morphism of X. One knows that this is in fact
birational (for a given X, this can of course be checked explicitly), and if

X̂ = D(X), then one has the “double duality theorem” (̂X̂) = X (the dual
of a singular hypersurface is defined to be the closure of the dual of its non-
singular locus). Further, local calculations show that D is an isomorphism
near x ∈ X ⇔ the tangent hyperplane PTx∩X is a curve with an ordinary
double point at x (a plane curve singularity with a local analytic equation
z1z2 = 0). Of course PTx ∩X is a curve in PTxX ∼= P2

C of degree d.
In particular, one may choose the line L so that the dual line L̂ intersects

D(X) = X̂ only at smooth points of X̂, and the intersection is transverse.
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This will imply that if H corresponds to a point of L̂∩ X̂, then H = PTxX
for a unique point x ∈ X (namely x = D−1(Ĥ)), and H ∩ X is a plane
curve of degree d with one ordinary double point. We can also assume that
L meets X transversally; this will force the finite set D−1(X̂ ∩ L̂)∩X to be
disjoint from L (if the tangent hyperplane to X at a point x ∈ L contains L,
then L∩X is a hyperplane section through x of the singular curve X∩PTxX,
which will force x to be a singular point of L ∩X).

Let
X̃ = {(x, t) ∈ X × L̂ | x ∈ Ht}.

One sees by a simple local calculation that X̃ → X is the blow up of X at
the set of d points L ∩X. Hence one sees easily that

χtop(X̃) = d+ χtop(X).

On the other hand, f : X̃ → L̂ ∼= P1
C has singular fibres over the points

L̂ ∩ X̂. Now D−1(L̂) is a subvariety of P3
C defined by 2 homogeneous

polynomials of degree d − 1 (linear combinations of partial derivatives of
F (x, y, z, w)). Hence by Bezout’s Theorem for P3

C, L̂ ∩ X̂ ∼= D−1(L̂) ∩ X
consists of d(d − 1)2 points. Finally, the general fiber F of f is a non-

singular plane curve of degree d, which has genus
(d− 1)(d− 2)

2
, hence has

Euler characteristic d2 − 3d; any singular fiber Fi is a plane curve of degree
d with 1 ordinary double point, so that χtop(Fi) − χtop(F ) = 1. Hence we
see that

χtop(X̃) = χtop(P
1
C)(d2 − 3d) + d(d− 1)2

= d(d− 1)2 − 2(d2 − 3d) = d3 − 4d2 + 7d.

Hence
χtop(X) = d3 − 4d2 + 6d.

But the Betti numbers of X satisfy b0 = b4 = 1, and b1 = b3 = 0. Hence

b2 = χtop(X)− 2 = d3 − 4d2 + 6d− 2.

For example, this formula gives the following.

(i) If d = 1, then b2 = 1, which is consistent with the fact that X is a
plane.

(ii) If d = 2, then b2 = 2, which is consistent with the fact that X ∼=
P1

C ×P1
C.
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(iii) If d = 3, then b2 = 7; in fact it is known that a general cubic surface
in P3

C is the blow up of P2 at 6 distinct points, so our formula is
consistent with this.

(iv) If d = 4, then b2 = 22. In fact, a quartic surface in P3
C is an example

of a K3 surface; one knows that these types of surfaces have b2 = 22.

5.5 Barth theorems

We saw above that by the Lefschetz hyperplane theorem, the homology and
homotopy groups of a projective complete intersection of dimension n agree
with those of projective space, in degrees < n. A line of argument, origi-
nating with ideas of Barth, implies that similar conclusions can be obtained
about the homology and homotopy of an arbitrary non-singular projective
variety X ⊂ PN

C of dimension n, provided the codimension N −n is “small”
compared to the dimension.

A new approach was found to such results by Fulton and Hansen, via
the following “connectedness theorem”.

Theorem 17 Connectedness Theorem Let X be a projective variety of di-
mension n, f : X → Pm

C × Pm
C a morphism with finite fibers. Let ∆ ⊂

Pm
C ×Pm

C be the diagonal. Then

(i) if n ≥ m, then f−1(∆) is non-empty

(ii) if n > m, then f−1(∆) is connected

(iii) if n > m and X is locally analytically irreducible, then π1(f−1(∆))→
π1(X) is surjective

(iv) if X is a local complete intersection at each point not in f−1(∆),
then

πi(X, f
−1(∆)) ∼= πi(P

m
C ×Pm

C ,∆)

for all i ≤ n−m.

For a proof, see [Fu1] and the (extensive) bibliography given there. Note
that

πi(P
m
C ×Pm

C ,∆) =

{
Z if i = 2
0 otherwise, for i ≤ 2m

As a corollary, we get the following, proved originally for non-singular V
by Barth (for homology) and Larsen (for homotopy).
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Corollary 8 (Barth-Larsen theorem) In V ⊂ Pm
C is an n-dimensional local

complete intersection (for example, a nonsingular variety), then

πi(P
m
C , V ) = Hi(P

m
C , V ; Z) = 0 for i ≤ 2n−m+ 1.

To prove the corollary, one applies the Connectedness Theorem to the in-
clusion of X = V × V into Pm

C ×Pm
C , to try to conclude that

πi(V ) = πi(V × V ∩∆)→→πi(V × V ) = πi(V )× πi(V ).

But if the diagonal homomorphism A → A × A of an abelian group is
surjective, then clearly A = 0. This argument is not quite correct, since
π2(Pm

C×Pm
C ,∆) = Z is non-zero, but the argument can be modified to take

care of this problem.
Similarly, one can prove the following.

Corollary 9 Let Y ⊂ Pm
C be a local complete intersection of codimension

d, and h : V → Pm
C a morphism with finite fibres, where dimV = n, and V

is also a local complete intersection. Then

πi(V, h
−1(Y ))→ πi(P

m
C , Y )

is an isomorphism for i ≤ n− d, and is surjective for i = n− d+ 1.

The proof proceeds by applying the Connectedness Theorem to V × Y →
Pm

C × Pm
C . Taking Y = V , we get the earlier corollary, while taking Y L, a

projective linear subspace, we obtain a version of the Lefschetz hyperplane
theorem. æ

6 Sheaves

Let X be a topological space. The open sets in X are partially ordered by
inclusion, hence may be regarded as a category3 TX , whose objects are the
open sets in X, and a unique morphism U → V if U ⊂ V .

A presheaf of sets on X is a functor T opX → Set, where Set is the category
of sets.

Thus if F is a presheaf on X, then for each open set U ⊂ X, we are
given a set F(U), and for any smaller open subset V ⊂ U , a restriction

3Category theory and homological algebra are briefly reviewed in an appendix to this
section.
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map ρUV : F(U) → F(V ), such that ρVW ◦ ρUV = ρUW for W ⊂ V ⊂ U .
Elements of F(U) are called sections of F over U ; if U = X, they are called
global sections. We sometimes also use the notation Γ(U,F) instead of F(U).

Morphisms of presheaves are just natural transformations of functors. A
presheaf F ′ is called a sub-presheaf of F if F ′(U) ⊂ F(U) for each U , and the
restriction maps for F ′ are obtained by restricting those for F . If f : F → G
is a morphism of presheaves, then U 7→ (imageF(U)) is a presheaf, which is
a sub-presheaf of G.

For example, let A be a set. For any topological space X, let F(U) = A
for all open sets U , and let ρUV be the identity for all V ⊂ U . Then F is a
presheaf on X called the constant presheaf associated to A.

A presheaf F is called a sheaf if for any open set U of X and any open
cover {Uα}α∈A of U , the following conditions hold.

(i) For any sections s, t ∈ F(U), if ρUUα(s) = ρUUα(t) for all α ∈ A, then
s = t.

(ii) Let Uαβ = Uα ∩ Uβ for any α, β ∈ A; then for any family of sections
sα ∈ F(Uα), α ∈ A, such that ρUαUαβ (sα) = ρUβUαβ (sβ) for all α, β ∈
A, there exists a (necessarily unique, by (i)) s ∈ F(U) such that
ρUUα(s) = sα for all α ∈ A.

(iii) If U = φ is empty, then F(U) is a 1-point set (i.e., a final object in the
category Set).

Morphisms of sheaves are defined to be morphisms of the underlying
presheaves. Thus we can make sense of subsheaves of a sheaf. However, if
f : F → G is a morphism of sheaves, the image presheaf is not a sheaf in
general.

Some basic examples of sheaves for this course are as follows.

(i) The structure sheaf OX of an algebraic variety X (with its Zariski
topology) over a given field k; this is the sheaf given by OX(U) =
O(U), the ring of regular functions on U .

(ii) The structure sheaf AM of a smooth manifold M ; here AM (U) is the
C-algebra of complex valued smooth (i.e., C∞) functions on U ; we
may similarly consider real valued functions.

(iii) The structure sheaf OX of a complex manifold X; this is the sheaf
OX(U) = H(U), the C-algebra of holomorphic functions on U .
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(iv) The sheaf of smooth differential forms AnM on a smooth manifold M ;
here AnM (U) is the C-vector space of smooth n-forms on U .

(v) The sheaf Ωn
X of holomorphic n forms on a complex manifold X.

(vi) The sheaf Ωn
X/k of algebraic n-forms on a non-singular variety over the

field k.

The stalk Fx of a presheaf F at x ∈ X is defined as

Fx = lim
−→
U3x
F(U).

Define
G(F)(U) =

∏
x∈U
Fx.

(If U = φ, define G(F)(U) to be a final object in Set.) Then G(F) is a
sheaf, such that all the restriction maps ρUV are surjective; a sheaf with this
property is called flasque (or flabby). For each open set U , there is a natural
map F(U) →

∏
x∈U Fx, giving a morphism of presheaves F → G(F). If F

is a sheaf, this is injective, giving an isomorphism of F with its image. In
general, the image of F is a sub-presheaf. Let a(F) be the intersection of
all the subsheaves of G(F) which contain the image of F (since G(F) is one
such, the family of subsheaves is non-empty, and clearly any intersection
of subsheaves is a subsheaf). If f : F → F ′ is a morphism of presheaves,
there is an induced morphism of sheaves G(F) → G(F ′) compatible with
f , and hence a morphism a(F) → a(F ′). In particular, if F ′ is a sheaf, so
that F ′ → a(F ′) is an isomorphism, we see that f factors uniquely through
F → a(F). Thus a is a functor from presheaves to sheaves on X, which
is left adjoint to the inclusion functor from sheaves to presheaves. We call
a(F) the sheaf associated to the presheaf F .

A presheaf of abelian groups (or rings, or modules over a ring ...) on
X is a functor from T opX to the category Ab of abelian groups (or rings,
or modules over a ring, ...). It is a sheaf if the analogues of the conditions
(i), (ii), (iii) above are satisfied. If F is a presheaf of abelian groups, G(F),
a(F) are sheaves of abelian groups; a similar claim holds for sheaves of rings,
modules, etc. In particular, for any abelian group A, we have the constant
sheaf AX associated to A, which is the sheaf associated to the constant
presheaf determined by A (discussed earlier). If A is a ring, AX is a sheaf
of rings. An important example is the sheaf ZX of rings determined by the
ring Z of integers.
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More generally, we may consider sheaves with values in any category with
arbitrary products and finite inverse limits, and which has a final object,
since the sheaf conditions may be rephrased using only these notions.

Let F be a sheaf of abelian groups on X, and s ∈ F(U). Then the
support of s is the set | s | = {x ∈ U | sx 6= 0}, where sx is the image of
s in the stalk Fx. One sees easily that | s | ⊂ U is closed. We define the
support of F to be the union of the supports of its sections, which is the set
| F | = {x ∈ X | Fx 6= 0}. This need not be closed in general. However, we
will see later that this is the case for coherent sheaves of OX -modules on a
‘reasonable’ scheme X.

Let OX be a presheaf of rings on a topological space X. A presheaf
of OX-modules is a presheaf F of abelian groups together with an OX(U)-
module structure on each abelian group F(U), such that if V ⊂ U , then
ρUV : F(U)→ F(V ) is OX(U)-linear, where F(V ) is regarded as an OX(U)-
module via the ring homomorphism ρUV : OX(U)→ OX(V ) and the given
OX(V )-module structure. If OX is a sheaf of rings, a sheaf of OX-modules
is a sheaf of abelian groups which has the structure of a presheaf of OX -
modules. A sheaf of ZX -modules is just a sheaf of abelian groups. In another
direction, if X = {x}, then all presheaves which satisfy the sheaf condition
(iii) are in fact sheaves; a sheaf of rings OX is identified with a ring R (the
stalk of OX at x), and the category of sheaves of OX -modules is identified
with the category of R-modules.

Convention: whenever we consider sheaves of OX -modules, we will as-
sume that OX is a sheaf of rings.

The category of presheaves of OX -modules on a topological space X
forms an abelian category in a natural way. The category of sheaves of OX -
modules is a full additive subcategory, which is also an abelian category; for
any morphism f : F → F ′, the sheaf kernel of f is the presheaf kernel, but
the sheaf cokernel is defined to be a(coker p(f)) where ‘coker p’ denotes the
presheaf cokernel. In particular, one sees that a sequence

0→ F ′ → F → F ′′ → 0

of sheaves of OX -modules is exact iff

0→ G(F ′)→ G(F)→ G(F ′′)→ 0

is exact as a sequence of presheaves; this is equivalent to the exactness of

0→ F ′x → Fx → F ′′x → 0
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for each x ∈ X.
The category of presheaves of OX -modules has direct sums, and direct

and inverse limits over directed sets. A finite (presheaf) direct sum of sheaves
of OX -modules is a sheaf. The inverse limit presheaf of a directed family
of sheaves of OX -modules is in fact a sheaf, but the direct limit in the
category of sheaves of OX -modules is the sheaf associated to the presheaf
direct limit. However there is one case where the presheaf and sheaf direct
limits coincide: when the topological space X is Noetherian, i.e., satisfies the
descending chain condition for closed subsets, that any strictly descending
chain of closed subsets of X is finite.

We mention some other basic operations on presheaves and sheaves. If
f : X → Y is a continuous map, and F is a presheaf on X, then we can
define a presheaf f∗F on Y by f∗F(U) = F(f−1(U)). We call f∗F the direct
image of F . If F is a sheaf, so is f∗F . If OX is a sheaf of rings on X, then
f∗OX is a sheaf of rings, and for any OX -module F , the direct image f∗F
is an f∗OX -module in a natural way. The direct image functor is left exact.

The direct image functor f∗ from presheaves (or sheaves) of abelian
groups on X to those on Y has a left adjoint f−1, called the inverse image
functor. On presheaves, it is defined (on objects) by

(f−1F)(U) = lim
−→

V⊃f(U)

F(V ).

This clearly defines a presheaf on X, and the adjointness property

Hom (f−1F ′,F) ∼= Hom (F ′, f∗F)

is easily verified. The sheaf inverse image is the sheaf associated to the
presheaf inverse image; the adjointness property follows from the adjoint-
ness at the level of presheaves, and the adjointness of the ‘associated sheaf’
functor a. If f(x) = y, then for any presheaf F on Y , we have an identi-
fication of stalks f−1(F)x ∼= Fy. In particular, f−1 is an exact functor. If
OY is a sheaf of rings, then so is f−1OY , and f−1 takes OY -modules into
f−1OY -modules, and converts OY -linear maps into f−1OY -linear ones.

In particular, if j : U ↪→ X is the inclusion of an open subset, we have
(j−1F)(V ) = F(V ) for any open set V ⊂ U . We also denote j−1F by F |U .
The functor j−1 from sheaves of abelian groups on X to those on U has a
left adjoint j!, called extension by 0, where j!F is the sheaf associated to the
presheaf

V 7→
{
F(V ) if V ⊂ U

0 if V 6⊂ U
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The sheaf j!F is characterized by the properties that j−1j!F ∼= F and
(j!F)x = 0 for x ∈ X −U . Note that there is a natural inclusion j!(F |U )→
F for any sheaf F os abelain groups.

If i : Z ↪→ X is the inclusion of a closed subset, let F |Z= i−1F .
The functor i∗ gives an equivalence of categories between sheaves of abelian
groups on Z and the full subcategory of sheaves of abelian groups F on X
with F |X−Z= 0.

If OX is a sheaf of rings on X, let OU = OX |U . If F ,G are presheaves of
OX -modules, define a presheaf of abelian groups HomOX (F ,G) by the as-
signment U 7→ HomOU (F |U ,G |U ). If F , G are sheaves, so isHomOX (F ,G).
If OX is a sheaf of commutative rings, HomOX (F ,G) is a sheaf of OX -
modules in a natural way. In particular, if OX is commutative, we have a
notion of dual; the dual F∗ of a sheaf F of OX -modules is HomOX (F ,OX).

If OX is a sheaf of rings, not necessarily commutative, let Oop
X be the

corresponding sheaf of opposite rings, so that an Oop
X -module is a right

OX -module. For any Oop
X -module F , and any sheaf H of abelian groups,

the sheaf Hom ZX (F ,H) is an OX -module in a natural way, via the action
(s · ϕ)(f) = ϕ(s · f) for sections s ∈ Oop

X (U) = OX(U), f ∈ F(U) and
ϕ ∈ Hom ZX (F ,H)(U).

Let OX be a sheaf of rings, F an Oop
X -module. The functor H 7→

Hom ZX (F ,H) (from the category of ZX -modules to that of OX -modules)
has a left adjoint G 7→ F ⊗OX G. Thus, by definition, there are natural
isomorphisms

HomOX (G,Hom ZX (F ,H)) ∼= Hom ZX (F ⊗OX G,H),

which characterizes F ⊗OX G in terms of the usual universal property for
bilinear maps of sheaves F × G → H. One checks that the sheaf associated
to the presheaf U 7→ F(U)⊗OX(U) G(U) satisfies this universal property, so
that this defines the sheaf F ⊗OX G. When OX is commutative, if H is also
an OX -module, then we have a commutative diagram

HomOX (G,Hom ZX (F ,H))
∼=−→ Hom ZX (F ⊗OX G,H)

↑ ↑
HomOX (G,HomOX (F ,H))

∼=−→ HomOX (F ⊗OX G,H)

where the vertical arrows are each induced by the natural inclusion of the
abelian group of OX -linear maps into that of ZX -linear ones.

In a similar fashion, one may define symmetric powers, exterior powers,
etc. when OX is commutative.
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Convention: from now onwards, we will assume OX is a sheaf of commu-
tative rings, unless explicitly mentioned otherwise. Some statments made
below may have generalizations to the non-commutative case; we leave these
to the interested reader.

One way to define a sheaf on a space X is through patching: let {Ui}i∈I
be an open cover of X, and let Fi be a sheaf on Ui, for each i, such that
(i) for any pair of distinct indices i, j there is an isomorphism

ϕij : Fi |Ui∩Uj
∼=−→ Fj |Ui∩Uj

(ii) ϕji = ϕ−1
ij

(iii) for any 3 distinct indices i, j, k we have ϕjk ◦ϕij = ϕik on Ui ∩Uj ∩Uk.
Then there is a sheaf F , such that there are isomorphisms ϕi : F |Ui→ Fi
compatible with the ϕij ; further such an F is unique upto unique isomor-
phism compatible with the ϕij . One way to construct F is to define a
presheaf F0 as follows: let U be the collection of open subsets of X which are
contained in some Ui, and choose a function f : U → I such that V ⊂ Uf(V )

for all V ∈ U . Define F0(V ) = 0 for V 6∈ U , and F0(V ) = Ff(V )(V ) for
V ∈ U . Using the isomorphisms ϕij we see that there are natural restriction
maps making F0 a presheaf, together with given isomorphisms F0 |Ui∼= Fi.
Then F = a(F0) is the desired sheaf obtained by patching the Fi using
the isomorphisms ϕij . We leave it to the reader to check the uniqueness
assertion.

An OX -module is free of rank n if it is isomorphic to O⊕nX . An OX -
module F is called locally free (of finite rank) if each x ∈ X has an open
neighbourhood U such that F |U is a free OU = OX |U -module of finite
rank. A locally free OX -module of rank 1 is called an invertible OX -module.

Locally free modules have several good properties. For example, if E is
locally free, then the functors F 7→ E ⊗OX F , F 7→ HomOX (E ,F) are exact.
We also have isomorphisms of functors (in F) HomOX (E ,F) ∼= E∗ ⊗OX F ,
and HomOX (E ,F) ∼= (cE∗ ⊗OX F)(X). The natural map E → (E∗)∗ from
E to its double dual is an isomorphism. For any locally free OX -module
E , there is a natural OX -linear surjection E ⊗OX E∗ → OX , which is an
isomorphism if E is invertible. However, note that in general, locally free
OX -modules are not projective objects in the category of OX -modules.

Recall that an object I of an abelian category A is injective if the functor
X 7→ HomA(X, I) is exact. For any (possibly non-commutative) sheaf of
rings OX , the abelian category of sheaves of OX -modules has enough injec-
tives, i.e., for any sheaf F of OX -modules, there is a monomorphism F → I,
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where I is an injective OX -module. To prove this, one notes that if J is
an injective sheaf of abelian groups, then I = Hom ZX (Oop

X ,J ), which is
naturally an OX -module, is in fact injective; this follows from the natural
isomorphism

HomOX (F ,Hom ZX (Oop
X ,J )) ∼= Hom ZX (Oop

X ⊗OX F ,J ) = Hom Z(F ,J )

for any sheaf F of OX -modules. This reduces us to proving the result when
OX = ZX . One sees easily that if {Ix}x∈X is a family of injective (=
divisible) abelian groups indexed by points of X, and I(U) =

∏
x∈U Ix, then

I is an injective sheaf of abelian groups. Now for any sheaf F of abelian
groups, if we choose inclusions Fx ↪→ Ix into injective abelian groups, then
we obtain an injection of sheaves G(F) ↪→ I, where I is defined by the
chosen family {Ix}x∈X ; composing with the natural injection F ↪→ G(F)
(since F is a sheaf, the natural map is an inclusion), we are done.

Thus any sheaf F of OX -modules has an injective resolution

0→ F → I0 → I1 → · · · → In → · · ·

in the category of OX -modules, and this is unique upto chain homotopy
(by standard arguments using the universal property of an injective object).
Hence for any left exact functor F from the category of sheaves of OX -
modules to an abelian category, we may define its derived functors RiF
by

RiF (F) = ith cohomology object of the complex F (I•).

If 0→ F ′ → F → F ′′ → 0 is an exact sequence of sheaves, we have functorial
boundary maps RiF (F ′′) → Ri+1F (F ′) giving a long exact sequence of
derived functors (where we identify R0F with F )

0→ F (F ′)→ F (F)→ F (F ′′)→ R1F (F ′)→ · · · →
RiF (F ′)→ RiF (F)→ RiF (F ′′)→ Ri+1(F ′)→ · · ·

Any natural transformation between left exact funtors induces a unique
natural transformation between their derived functors, compatible with bound-
ary maps in the respective long exact sequences.

Important examples of left exact functors on sheaves and their derived
functors are as follows.

(i) Let f : X → Y be a continuous map, OX a sheaf of (possibly non-
commutative) rings on X. Then f∗ is a left exact functor from OX -
modules to f∗OX -modules, whose derived functors Rif∗ are called the
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higher direct image functors of the map f . In particular, if Y = {y}
is a point, then f∗OX is identifed with the ring R = OX(X), and f∗F
is identified with the R-module F(X) of global sections. The sheaves
Rif∗F yield R-modules H i(X,F) called the cohomology groups (really,
cohomology R-modules) of F .

(ii) Let G be an OX -module. Then

F 7→ HomOX (G,F), F 7→ HomOX (G,F)

are left exact functors. Their ith derived functors are denoted by
Ext iOX (G,F) and Ext iOX (G,F), respectively.

We have a natural isomorphism HomOX (OX ,F) ∼= F(X) = H0(X,F).
Hence there are natural isomorphisms Ext iOX (OX ,F) ∼= H i(X,F). Note
that if OX is commutative, and E is a locally free OX -module, then

Ext iOX (E ,F) = 0 for all i > 0,

and there are natural isomorphisms

Ext iOX (E ,F) ∼= H i(X, E∗ ⊗OX F).

Derived functors may also be computed using acyclic resolutions, i.e., if
0 → F → F• is a resolution, and F a left exact functor with RiF (Fj) = 0
for all i > 0, j ≥ 0, then the ith cohomology object of the complex F (F•) is
naturally isomorphic to RiF (F).

We claim that flasque sheaves of abelian groups are acyclic for f∗ for any
map f : X → Y . Indeed, one shows that the following statements hold (see
[H], II, Ex. 1.16).

(i) Injective sheaves of abelian groups are flasque. Indeed, if j : U ↪→ X
is an open set, then the map Hom ZX (ZX , I) → Hom ZX (j!ZU , I),
induced by the inclusion of sheaves j!ZU → ZX , is surjective for any
injective sheaf I, i.e., ρX,U : I(X) → I(U) is surjective. Similarly,
working with OX and j!OU , we see that injective OX -modules are
flasque for any (possibly non-commutative) sheaf of rings OX .

(ii) If 0 → F ′ → F → F ′′ → 0 is exact with F ′ flasque, then F(U) →
F ′′(U) is surjective for each open U ⊂ X.

(iii) If 0 → F ′ → F → F ′′ → 0 is exact with F ′,F flasque, then F ′′ is
flasque.
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From (i) and (iii), the quotient of an injective sheaf by a flasque subsheaf
is flasque. From (ii), given a short exact sequence 0 → F ′ → F → F ′′ → 0
with F ′ flasque, we get that for any continuous map f : X → Y , the direct
image sequence 0 → f∗F ′ → f∗F → f∗F ′′ → 0 is exact. Hence if F is
a flasque sheaf of OX -modules, 0 → F → I• is an injective resolution by
sheaves of OX -modules, then 0 → f∗F → f∗I• is exact for any continuous
map f : X → Y . Hence Rif∗F = 0 for all i > 0.

Since injective OX -modules are flasque, we see that the cohomology (or
higher direct images) of an OX -module F , computed with resolutions by in-
jective OX -modules, equals the cohomology (or higher direct images) of the
underlying sheaf of abelian groups F . Another application is the following:
if f : X → Y is the inclusion of a closed subset, then f∗ is an exact functor
from sheaves of abelian groups on X to those on Y , which sends flasque
sheaves on X to flasque sheaves on Y . Hence Rif∗F = 0 for all i > 0, and
there are natural isomorphisms H i(X,F) ∼= H i(Y, f∗F) for all i ≥ 0 (an
injective resolution of F on X yields a flasque resolution of f∗F with the
same complex of global sections).

Another important class of acyclic sheaves are fine sheaves on a para-
compact space. For a proof, see [Sw] or [W]. Recall from general topology
that (i) any metric space is paracompact (ii) a second countable T3-space4 is
paracompact. In particular, a simplicial complex with countably many cells
is paracompact. Thus all the spaces usually encountered in algebraic geom-
etry over C (with their Euclidean topology, rather than Zariski topology)
are paracompact.

A sheaf F is fine if for any open set U ⊂ X, and any locally finite5 open
cover U = {Uα} of U , there exist endomorphisms tα : F |U→ F |U such that
supp tα ⊂ Uα for all α. The tα act like partitions of unity, allowing us to
patch up locally defined sections of the sheaf. One can prove the acyclicity of
fine sheaves by showing that if 0→ F → G → H → 0 is exact, and F is fine,
then for any open set U ⊂ X, the map G(U) → H(U) is surjective. Since
F |U is also fine, we reduce to considering the case when U = X; now given
a section s ∈ H(X), and local liftings si ∈ G(Ui) of s, one uses the partitions
of unity to modify these lifts si by sections ti ∈ F(Ui), so that si + ti patch
together to give a global lift of s — we leave the details of this argument
to the reader. Now we apply this lemma to an exact sequence where F

4A T3 space is a Hausdorff space in which any point and a disjoint closed set can be
separated by open neighbourhoods.

5Recall that a family of subsets of X is locally finite if each point of X has a neigh-
bourhood which intersects only a finite number of sets in the family.
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is fine and G is flasque (say, injective), to conclude that H is flasque; this
implies that F is acyclic, from the long exact sequence of derived functors
associated to the short exact sequence of sheaves 0→ F → G → H → 0.

(We note here that our definition of a fine sheaf differs slightly from that
in the literature ([Sw], for example); it is usually only assumed that F has
a partition of unity associated to an open cover of X (rather than of an
arbitrary open U). But this extra condition is always satisfied in practice.
This modification was suggested to me by R. R. Simha.)

If X is a topological space, OX a fine sheaf of (commutative) rings, then
any sheaf of OX -modules is fine. Examples of fine sheaves of rings are (i) the
sheaf of continuous functions on a paracompact space (ii) the sheaf of C∞

functions on a smooth manifold (i.e., a C∞ differential manifold). For any
locally finite open cover {Uα}, the endomorphisms tα then become functions,
which can be even chosen to have values in the interval [0, 1] ⊂ R, and are
called a partition of unity subordinate to the covering {Uα}.

Fine sheaves are used to prove that on a paracompact, locally con-
tractible space X, the sheaf cohomology groups Hn(X,AX) with coefficients
in a constant sheaf AX , associated to an abelian group A, are naturally iso-
morphic to the singular cohomology groups Hn(X,A) defined in algebraic
topology.

Thus, for example, on a smooth manifold, the constant sheaf C has a
resolution by the de Rham complex of sheaves of C∞ differential forms (with
complex values)

0→ CX → AX → A1
X → A2

X → · · · ,

where AjX is the sheaf of smooth j-forms, and the maps in the complex are
given by exterior differentiation of forms. We deduce that

Hn(X,CX) ∼=
closed smooth n-forms

exact smooth n-forms
.

On the other hand, one can construct another fine resolution of C

0→ CX → S0
X → S1

X → S2
X → · · ·

where SjX is the sheaf of singular complex valued cochains on X (this is
the sheaf associated to the presheaf of singular cochains). One shows that
SjX is fine, and the complex Γ(X,S•) is the complex of singular cochains
modulo the subcomplex of locally trivial cochains (cochains which vanish
on simplices of sufficiently small support). By a subdivision argument, one
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shows the complex of locally trivial cochains is acyclic, so that Hn(X,CX)
is identified with singular cohomology. We obtain deRham’s theorem, iden-
tifying the quotient of the closed forms modulo the subspace of exact ones
with the singular cohomology of X. For a detailed proof, see [Sw] or [W].
A similar theorem is valid for cohomology with real coefficients, and real
valued differential forms.

One important tool in computing sheaf cohomology is Leray’s theorem,
which relates the cohomology groups defined above to Čech cohomology. We
first recall the definition of Čech cohomology (in a simple context sufficient
for our needs). Let U = {Ui}i∈I be an open covering of a topological space
X, where we fix a well ordering of the index set I, and let F be a sheaf of
abelian groups on X. Define groups

Čp(U ,F) =
∏

i0<i1<···<ip
F(Ui0 ∩ · · · ∩ Uip)

and maps δp : Čp(U ,F)→ Čp+1(U ,F) by

(δpα)i0,...,ip+1 =
p+1∑
j=0

(−1)jα
i0,...,îj ,...,ip+1

|Ui0∩···∩Uip+1
,

where îj means that the index ij is omitted. Then (Č
•
(U ,F), δ

•
) is a com-

plex, called the Čech complex of F with respect to U , whose cohomology
groups are called the Čech cohomology groups of F with respect to U , and
are denoted by Ȟ i(U ,F).

There is a natural map Ȟ i(U ,F) → H i(X,F) for each i (see [H], III,
(4.4)). Leray’s theorem asserts that if Hj(Ui0 ∩ · · · ∩ Uip ,F) = 0 for all
finite intersections of open sets in the covering, and for all j > 0, then these
natural maps are isomorphisms (see [H], III, Ex. 4.11).

A Review of categories and homological algebra

We will assume some acquaintence with the notions of categories and func-
tors.

Thus, in a category C, one is given a collection Ob C of objects. For any
pair of objects A,B we are given a set Hom C(A,B) of morphisms (or arrows)
between them, with an associative composition law, such that each object
A has an identity arrow 1A which is a left and right identity for composition
of morphisms.
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If C,D are categories, a (covariant) functor F : C → D between them
associates to each object A of C an object F (A) of D, and for any pair A,B
of objects of C, a map of sets

Hom C(A,B)→ Hom C(F (A), F (B)),

f 7→ F (f),

such that F (1A) = 1F (A), and F (f ◦ g) = F (f) ◦ F (g).
If C is any category, define its opposite category Cop to have the same

objects, with
Hom Cop(A,B) := Hom C(B,A),

and with composition of arrows reversed from C (i.e., fop ◦ gop = (g ◦ f)op).
A contravariant functor C → D is a functor Cop → D.

If C, D are categories, their product C ×D has Ob C ×D = Ob C ×ObD,
and

Hom C×D((A,B), (C,D)) = Hom C(A,C)×HomD(B,D),

with composition rule (f, g) ◦ (h, k) = (f ◦ h, g ◦ k).
If F,G are functors from C to D, then a natural transformation η :

F → G is a rule which associates to each object A of C an element η(A) ∈
HomD(F (A), G(A)), such that for any morphism f : A → B in C, the
diagram below commutes:

F (A)
η(A)−→ G(A)

F (f) ↓ ↓ G(f)

F (B)
η(B)−→ G(B)

A natural isomorphism between functors is a natural transformation η
such that for any object A, the morphism η(A) is an isomorphism. A functor
F : C → D is called an equivalence of categories if there is a functor G : D →
C such that the two composities F ◦G and G◦F are each naturally equivalent
to the respective identity functors.

Let Set denote the category of sets. A pair of functors F : C → D and
G : D → C are said to be an adjoint pair (in which case we say F is left
adjoint to G, and G is right adjoint to F ) if there is a natural isomorphism
of functors Dop × C → Set,

Hom C(F (A), B)
∼=−→ HomD(A,G(B)).
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For example, if N is an abelian group, and C = D = Ab, the category of
abelian groups, then F (A) = N ⊗Z A and G(B) = Hom Z(N,B) are an
adjoint pair; this is equivalent to the universal property of tensor products.
Given a functor, the construction of an adjoint for it amounts to solving a
class of universal mapping problems: for example, given G, for any A we
want in particular to define F (A) such that there is an arrow A→ GF (A),
corresponding under the natural isomorphism to the identity arrow of A; this
is universal among arrows from A to objects G(C), in the obvious sense.

An initial object of C is an object O such that for any object A, there
is a unique morphism O → A. A final object of C is an object E such that
there is a unique morphism A → E for each object A. For example, the
empty set is the initial object for Set, and a one-point set is a final object
for Set.

An additive category is a category C such that (i) Hom C(A,B) has the
structure of an abelian group, such that composition of morphisms is bilinear
(ii) there is an object 0 which is both an initial and a final object (iii) for
a pair of objects A,B there is a direct sum A ⊕ B, which is also a direct
product, i.e., there are morphisms i1 : A → A ⊕ B, i2 : B → A ⊕ B,
j1 : A ⊕ B → A, j2 : A ⊕ B → B such that j1 ◦ i1 = 1A, j2 ◦ i2 = 1B,
j1 ◦ i2 = 0, j2 ◦ i1 = 0, and j1 ◦ i1 + j2 ◦ i2 = 1A⊕B.

An additive functor between additive categories is a functor which pre-
serves 0 objects and direct sums, such that the maps on Hom sets are ho-
momorphisms of abelian groups.

If A is additive, an arrow k : C → A is called a kernel of f : A→ B if for
any D, the sequence of abelian groups (with maps induced by composition
with k and f respectively)

0→ HomA(D,C)→ HomA(D,A)→ HomA(D,B)

is exact. The definiton of a cokernel of f is dual: it is an arrow B → C ′

such that for any D, the sequence of abelian groups

0→ HomA(C ′, D)→ HomA(B,D)→ HomA(A,D)

is exact. A kernel or cokernel, if it exists, is unique upto unique isomorphism;
we let ker f (or ker(f)) denote the kernel of f , and coker f (or coker (f)) the
cokernel.

Suppose every arrow in A has a kernel and cokernel; then for any arrow
f , we have a unique arrow

coker (ker(f))→ ker(coker (f)).
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An abelian category is an additive category A such that every arrow has a
kernel and cokernel, and the above arrow coker (ker(f))→ ker(coker (f)) is
an isomorphism, for any morphism f . This last condition means f cann be
factored into the composition of a surjection (coker = 0), an isomorphism
and an injection (ker = 0). Equivalently, an arrow with 0 kernel and cokernel
is an isomorphism. There are additive categories C which are not abelian,
where every arrow has a kernel and cokernel (for example, the category of
Banach spaces and linear continuous maps, or the category of vector spaces
with a given filtration, and linear maps preserving the filtrations).

Abelian categories provide the natural context for doing homological al-
gebra; the usual basic lemmas (snake lemma, five lemma) which hold for
the category of abelian groups also hold in any abelian category; in particu-
lar, a short exact sequence of complexes in an abelian category gives rise to
a long excat sequence of (co)homology objects. The category of (co)chain
complexes in an abelian category A is again abelian, where the kernel and
cokernel of a morphism of complexes is defined term by term. One has a
notion of (co)chain homotopy between two morphisms of complexes, and ho-
motopic morphisms induce the same morphism on (co)homomolgy objects.
From now onwards, we work only with cochain complexes and cohomology
objects; the theory of chain complexes and homology is dual (i.e., is obtained
by working in the opposite category). For example, if

0→ C0 → C1 → C2 → · · · , 0→ D0 → D1 → D2 · · ·

are complexes, and f•, g• : C• → D• are 2 morphisms of complexes, a
homotopy between them is a sequence of arrows kn : Cn → Dn−1 (with
k0 = 0), such that

∂D ◦ kn + (−1)nkn+1 ◦ ∂C = fn − gn

for all n.
Let C

•
[m] be the shifted complex with (C

•
[m])n = Cm+n, and differen-

tial (−1)mn∂C on Cm+n = (C
•
[m])n. Then Hn(C

•
[m]) = Hn+m(C

•
). For

any morphism f
•

: C
• → D

•
between complexes, we can define its mapping

cone by
C(f

•
)n = Cn+1 ⊕Dn

with differential C(f
•
)n → C(f

•
)n+1 represented by the matrix[

(−1)n+1∂C fn+1

0 ∂D

]
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Then there is a short exact sequence of complexes

0→ D
• → C(f

•
)→ C

•
[1]→ 0,

such that the boundary morphism in the long exact sequence of cohomology
objects

Hn−1(C
•
[1])→ Hn(D

•
)

is identified with fn : Hn(C
•
) → Hn(D

•
). In particular, f

•
induces an

isomorphism on all cohomology objects ⇔ C(f
•
) is exact.

An injective object of an abelian category A is an object I such that the
functor HomA(−, I) is exact. Equivalently, for any injective map i : A→ B,
any arrow f : A → I factors though i (i.e., f extends to B). A projective
object is an injective object in the oposite abelian category.

We have the following lemma.

Lemma 13 Let
0→ A→ C0 → C1 → · · ·

be a resolution, and let

0→ B → I0 → I1 → dots

be a complex, with Ij injective for all j. Then the natural map from the
group of homotopy classes of maps of complexes C• → I• to Hom (A,B) is
an isomorphism of abelian groups (i.e., , any f : A → B lifts to a map of
complexes C• → I•, which is unique upto homotopy).

This is easily proved by starting with a map f , and using the defining
property of injective objects to construct the map of complexes inductively.
Similarly given two such lifts, a homotopy between them may be constructed
inductively.

We say that an abelian category has enough injectives if every object is
a subobject of an injective object. Now suppose F : A → B is a left exact
(additive) functor between abelian categories A and B, and A has enough
injectives. We define the right derived functors RnF (A) by

RnF (A) = Hn(F (I•))

where
0→ A→ I0 → I1 → I2 → · · ·
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is an injective resolution of A. From the lemma, any two injective resolutions
are homotopy equivalent, so have the same cohomology; hence the derived
functors are well defined. Clearly R0F (A) ∼= F (A), i.e., R0 is isomorphic to
the given functor F .

If 0 → A → B → C → 0 is an exact sequence in A, then we can
extend it to a compatible short exact sequence of injective resolutions as
follows: first choose injective resolutions 0 → A → I0 → I1 → · · · and
0 → C → J0 → J1 → · · ·. Then we can inductively construct an injective
map B → I0 ⊕ J0 and differentials In ⊕ Jn → In+1 ⊕ Jn+1 such that

(i) 0→ B → (I0⊕ J0)→ (I1⊕ J1)→ · · · is a resolution, which we denote
by 0→ B → K•, and

(ii) the split exact sequences 0→ In → In⊕Jn → Jn → 0 fit together into
an exact sequence of complexes 0→ I• → K• → J• → 0.

Thus for any left exact functor F : A → B, we obtain a short exact sequence
of complexes

0→ F (I• → F (K•)→ F (J•)→ 0,

which gives rise to a long exact sequence of derived functors

0→ F (A)→ F (B)→ F (C)→ R1F (A)→ R1F (B)→
R1F (C)→ R2F (A)→ R2F (B)→ · · ·

The notion of derived functors of objects can be generalized to ‘derived
functors of complexes’, in the following sense. A map of complexes is called
a quasi-isomorphism if it induces isomorphisms on cohomology objects, or
equivalently, if its mapping cone is exact. Suppose A has enough injectives.
Given a complex 0 → C0 → C1 → C2 → · · · in A, there is a morphism of
complexes C• → I• where 0 → I0 → I1 → · · · is a complex of injectives,
such that C

• → I
•

is a quasi-isomorphism, and any two such complexes
of injectives are homotopy equivalent via unique (upto homotopy) cochain
maps. If C• is a single object A in degree 0, I• is just an injective resolution
of A. Define the hyper-derived functors of C

•
to be

RnF (C
•
) = Hn(I

•
).

The definition is immediately extended to all complexes bounded below by
shifting, using the formula

RnF (C
•
[m]) = Rn+mF (C

•
).

Again, one shows that
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(i) a short exact sequence of complexes (which are bounded below) in-
duces a long exact sequence of hyper-derived functors

(ii) a quasi-isomorphism between (bounded below) complexes induces iso-
morphisms on hypercohomology

(iii) there are two functorial convergent spectral sequences

IE
p,q
1 = RqF (Cp)⇒Rp+qF (C

•
)

and

IIE
p,q
2 = RpF (Hq(C−d)⇒Rp+qF (C

•
)

In particular, a morphism of complexes C
• → D

•
inducing isomor-

phisms RnF (Cm) → RnF (Dm) for all m,n induces isomorphisms on
hyperderived functors RnF (C

•
)→ RnF (D

•
).

Hyperderived functors (like hypercohomology groups of a complex of sheaves)
arise naturally in algebraic geometry. For example, with the last remark
above as a starting point, Grothendieck has given a purely algebraic defini-
tion of ‘de Rham cohomology groups’ for an algebraic variety over k, which
are k-vector spaces, and for non-singular varieties over C agree with the
usual de Rham cohomology (and hence with singular cohomology).

æ
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