
K-theory of Quadrics∗

V. Srinivas
(after Swan, Kapranov and Panin)

Let F be a field of any characteristic , and let V be an n-dimensional
vector space over F . Let q ∈ S2(V ∗) be a nondegenerate quadratic form on
V . Let P(V ∗) = ProjS(V ∗) be the projective space of lines in V . Then

H0(P(V ∗),OP(2)) ∼= S2(V ∗) 3 q;

let Q be the zero scheme of q. Then Q is a smooth quadric hypersurface in
P(V ∗). Let

Cl(q) = (
⊕
m≥0

V ⊗m)/ < v ⊗ v − q(v)1 >

be the Clifford algebra of q, and let

Cl(q) = Cl0(q)⊕ Cl1(q)

where Cl0(q) is the even Clifford algebra (the image of
⊕

m V
⊗2m in Cl(q)).

Theorem -1 There is a natural isomorphism

Ki(Q) ∼= Ki(F )⊕n−2 ⊕Ki(Cl0(q)).

The main sources are [Sw], [Be], [Ka] and [Pa]. We remark that if S is a
Z-scheme, E a locally free sheaf on S with a nondegenerate quadratic form,
then an analogous theorem is valid for the associated family of quadrics Q→
S, and can be proved by an easy extension of the proof given here. We leave
the formulation of the precise statement, and the necessary modifications of
the proof, to the interested reader.

∗Notes from lectures at Tata Institute of Fundamental Research, Bombay.
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1 The main theorem

If X is a scheme, P(X) the exact category of locally free sheaves of finite
rank on X, then

Ki(X) = Ki(P(X)) = πi+1(BQP(X), 0)

is Quillen’s K-group. If A is a locally free OX -module of finite rank which
is a sheaf of Azumaya algebras over its centre, let P(X,A) (respectively
P(X,Aop)) denote the exact category of locally free OX -modules which are
left (respectively right) A-modules. Let Ki(X,A) (respectively Ki(X,Aop))
denote the ith K-group of P(X,A) (respectively P(X,Aop)).

Some facts from K-theory:

1. If f : X → Y is a projective and flat morphism, then there is a direct
image map f∗ : Ki(X)→ Ki(Y ). If A is a sheaf of algebras, as above,
on Y , then there are direct image maps f∗ : Ki(X, f

∗A) → Ki(Y,A),
f∗ : Ki(X, f

∗Aop)→ Ki(Y,Aop).

2. If F : C′ × C′′ → C is a biexact functor (i.e. F (A,−−), F (−−, B) are
exact functors for any A ∈ C′, B ∈ C′′), then we have pairings

K0(C′)⊗Ki(C′′)→ Ki(C),Ki(C′)⊗K0(C′′)→ Ki(C).

In particular, we have pairings:

(i) K0(X)⊗Ki(X)→ Ki(X)

(ii) Ki(X)⊗K0(X)→ Ki(X)

(iii) K0(X)⊗Ki(X,A)→ Ki(X,A)

(iv) Ki(X)⊗K0(X,A)→ Ki(X,A)

(v) K0(X,Aop)⊗Ki(X,A)→ Ki(X)

(vi) Ki(X,Aop)⊗K0(X,A)→ Ki(X)

Analogues of (iii), (iv) are valid for Aop. The pairings (v), (vii) are
induced by the biexact functor

P(X,Aop)× P(X,A)→ P(X), E × F 7→ E ⊗A F ,

and are denoted by the symbol ⊗A (the remaining pairings are all
denoted ·). Commutative and associative laws hold whenever they
make sense e.g. the two pairings

K0(X)⊗Ki(X,Aop)⊗K0(X,A)→ Ki(X)

are equal.
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3. Projection formulas:
If f : X → Y is a projective, flat morphism, then

f∗(a · f∗b) = f∗(a) · b

in the following situations:

(i) if a ∈ K0(X), b ∈ Ki(Y ), then the formula holds in Ki(Y )

(ii) if a ∈ Ki(X), b ∈ K0(Y ), then the formula holds in Ki(Y )

(iii) if A is a sheaf of algebras on Y as above, and a ∈ K0(X), b ∈
Ki(Y,A), then the formula holds in Ki(Y,A)

(iv) if A is a sheaf of algebras on Y as above, and a ∈ K0(X, f∗A), b ∈
Ki(Y ), then the formula holds in Ki(Y,A)

(v) if A is a sheaf of algebras on Y as above, and a ∈ Ki(X), b ∈
K0(Y,A), then the formula holds in Ki(Y,A)

(vi) if A is a sheaf of algebras on Y as above, and a ∈ Ki(X, f
∗A), b ∈

K0(Y ), then the formula holds in Ki(Y,A).

Analogous formulae hold with Aop. Finally, we have

f∗(a⊗f∗A f∗b) = f∗a⊗A b

in Ki(Y ), whenever

(i) a ∈ K0(X, f∗Aop), b ∈ Ki(Y,A), or

(ii) a ∈ Ki(X, f
∗Aop), b ∈ K0(Y,A).

4. Fibre product formulas:
If we have a fibre product diagram of schemes

X ′
g′→ X

f ′ ↓ ↓ f
Y ′

g→ Y

where f, f ′ are projective and flat, then

(i) f ′∗ ◦ g′∗ = g∗ ◦ f∗ : Ki(X)→ Ki(Y
′)

(ii) if A is a sheafof algebras on Y as above, then f ′∗ ◦ g′∗ = g∗ ◦ f∗ :
Ki(X, f

∗A)→ Ki(Y
′, g∗A).
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We now state the key proposition, which is proved in the next section,
and is the point of departure from Swan’s original proof.

Proposition 0 Let Q be a quadric as in the theorem. There exist locally free
sheaves (which are functorial in Q) E1, E2, · · · En−3, and U ∈ P(Q,Cl0(q)op),V ∈
P(Q,Cl0(q)), which are faithful Cl0(q) modules, such that there is a resolu-
tion on Q×Q

0→ U2Cl0(q)V → OQ(−n+ 3)2En−3 → · · ·
→ OQ(−1)2E1 → OQ×Q → O∆ → 0

where ∆ ⊂ Q×Q is the diagonal.

Here F2G = p∗1F ⊗OQ×Q p
∗
2G; and F2Cl0(q)G = p∗1F ⊗(Cl0(q)⊗FOQ×Q) p

∗
2G,

if F ∈ P(Q,Cl0(q)op),G ∈ P(Q,Cl0(q)).
We prove the theorem in the following more precise form. Let

Φj : P(F )→ P(Q), 0 ≤ j ≤ n− 3; Φn−2 : P(Cl0(q))→ P(Q)

be defined by

Φj(W ) = OQ(−j)⊗F W, 0 ≤ j ≤ n− 3, for W ∈ P(F ),

Φn−2(W ) = U ⊗Cl0(q) W for W ∈ P(Cl0(q)).

Let ϕj be the map on Ki induced by Φj .

Theorem 1 The map

ϕ =
n−2∑
j=0

ϕj : Ki(F )⊕n−2 ⊕Ki(Cl0(q))→ Ki(Q)

is an isomorphism.

Let

aj = [OQ(−j)], bj = (−1)j [Ej ] ∈ K0(Q) (E0 = OQ),

an−2 = [U ] ∈ K0(Q,Cl0(q)op),

bn−2 = [V] ∈ K0(Q,Cl0(q)),

where we abuse notation, and write Cl0(q) also for Cl0(q)⊗F OQ. Then

ϕj(x) = aj · f∗x, if 0 ≤ j ≤ n− 3,
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ϕn−2(x) = an−2 ⊗Cl0(q) f
∗x,

where f : Q→ SpecF is the structure morphism. Hence

ϕ(x0, x1, · · · , xn−2) =
n−3∑
j=0

aj · f∗xj + an−2 ⊗Cl0(q) f
∗xn−2

Surjectivity of ϕ: For z ∈ K0(Q × Q), let z∗ ∈ End (Ki(Q)) be
defined by

z∗(x) = p1∗(z · p∗2x).

If h : Q → Q is any morphism, and Γ ⊂ Q × Q is the transpose of its
graph, [Γ] = [OΓ] ∈ K0(Q × Q), then one verifies easily that [Γ]∗ is the
endomorphism of Ki(Q) induced by h. In particular, [∆]∗ is the identity
endomorphism of Ki(Q).

From the proposition,

[∆] =
n−3∑
j=0

aj2bj + an−22Cl0(q)bn−2

in K0(Q×Q), where x2y denotes p∗1x ·p∗2y (and 2Cl0(q) has a similar mean-
ing). Hence, if x ∈ Ki(Q), then

x = [∆]∗(x) = p1∗([∆] · p∗2x)

=
n−3∑
j=0

p1∗(aj2bj · p∗2x) + p1∗(an−22Cl0(q)bn−2 · p∗2x)

=
n−3∑
j=0

aj · p1∗ ◦ p∗2(bj · x) + an−2 ⊗Cl0(q) p1∗ ◦ p∗2(bn−2 · x)

by the projection formulae. Now

Q×Q p2→ Q
p1 ↓ ↓ f
Q

f→ SpecF

is a fibre product diagram; hence p1∗ ◦ p∗2 = f∗ ◦ f∗. We thus get

x =
n−3∑
j=0

aj · f∗ ◦ f∗(bj · x) + an−2 ⊗Cl0(q) f
∗ ◦ f∗(bn−2 · x)

=
n−2∑
j=0

ϕj(f∗(bj · x))
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which is contained in imageϕ.
Injectivity of ϕ

Let P(Q, f) ⊂ P(Q) be the full subcategory of locally free sheaves E
satisfying Hm(Q, E(k)) = 0 for all m > 0, k ≥ 0. Note that OQ(−j) ∈
P(Q, f) for j ≤ n−3; hence for any F -vector space W , we have OQ(−j)⊗F
W ∈ P(Q, f).

Lemma -2 For any W ∈ P(Cl0(q)), we have U ⊗Cl0(q) W ∈ P(Q, f), and
H0(Q,U ⊗Cl0(q) W ⊗OQ(k)) = 0 for k ≥ 0.

Proof: Since Cl0(q) is a finite dimensional semisimple algebra over F , any
W as above is projective; hence it suffices to prove the lemma for W =
Cl0(q). It suffices to prove the lemma after a base change to SpecF (Q) =
SpecK, the geometric generic point of Q. If V is a faithful Cl0(q)-module,
then Cl0(q) is itself a direct summand of the module V ⊕N for some N > 0.
Hence it suffices to prove the lemma for W = V , where V is a given faithful
module. Let V be the stalk of V at the geometric generic point. The
resolution of the diagonal given by the Proposition yields an exact sheaf
sequence on QK

0→ UK ⊗Cl0(q)K V → OQK
(−n+ 3)⊗K En−3 → · · ·

→ OQK
(−1)⊗K E1 → OQK

→ Oη → 0

where η is the closed point of QK determined by the geometric generic point,
and Ej is the stalk of Ej at the geometric generic point. If E = UK⊗Cl0(q)KV ,
then by splitting the above exact sequence into short exact sequences, we
obtain

Hm(E(k)) ∼= Hm−n+2(Oη) = 0, 0 ≤ m < n− 2, k ≥ 0;

Hn−2(E(k)) ∼= coker (H0(OQK
(k))→ H0(Oη)) = 0

2

Let Ψj : P(Q, f) → P(F ) be the exact functor given by Ψj(F) =
H0(Q,F(j)), for 0 ≤ j ≤ n − 3. Let ψj : Ki(Q) → Ki(F ) be the induced
map. Then we see that

ψj ◦ ϕj = identity , 0 ≤ j ≤ n− 3

ψk ◦ ϕj = 0, j > k.
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Thus to prove that ϕ is injective, we are reduced to proving that ϕn−2 is
injective.

We now distinguish between the cases of even and odd rank.
Case 1 (n odd):
In this case, Cl0(q) is a central simple algebra over F . Let X be the
associated Severi-Brauer scheme. Then H i(X,OX) = 0 for i > 0, and
H0(X,OX) = F . Hence if π : X → SpecF is the structure map, then
π∗ : K0(X) → K0(F ) satisfies π∗(1) = 1. Hence, from the projection for-
mula, π∗ ◦π∗ = identity in End (Ki(F )) and in End (Ki(Cl0(q)). Thus π∗ is
injective.

Let π′ : X × Q → Q, f ′ : X × Q → X be the projections. We have a
fibre product diagram

X ×Q×Q
p′2→ X ×Q

p′1 ↓ ↓ f ′

X ×Q f ′→ X

Let E ′j = π′∗Ej . Since X is the Severi-Brauer variety associated to Cl0(q),
there is a locally free sheaf E on X such that OX ⊗F Cl0(q) ∼= End(E). Let

U ′ = π′∗U ⊗End(E) E ,
V ′ = E∗ ⊗End(E) π

′∗V.

Let g be the composite map X × Q × Q → X. Then we have a natural
(Morita) isomorphism

π′∗U2End(E)π
′∗V ∼= p′∗1 (π′∗U)⊗g∗End(E) p

′∗
2 (π′∗V)

∼= p′∗1 (U ′)⊗OX×Q×Q p
′∗
2 (V ′)

= U ′2V ′.

There is an equivalence of categories Θ : P(X, End(E)) ' P(X), given by
F 7→ E∗ ⊗End(E) F ; further, we have an isomorphism

π′∗U ⊗End(E) F ∼= U ′ ⊗OX×Q Θ(F).

Let ∆′ = X×∆ ⊂ X×Q×Q. The resolution for the diagonal on Q×Q
pulls back under π′ to a resolution for ∆′

0→ U ′2V ′ → OX×Q(−n+ 3)2E ′n−3 → · · ·
→ OX×Q(−1)2E ′1 → OX×Q×Q → O∆′ → 0.
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Let a′j = [OX×Q(−j)], b′j = (−1)j [E ′j ] in K0(X × Q) for 0 ≤ j ≤ n − 3
(where b′0 = 1), and let a′n−2 = [U ′], b′n−2 = (−1)n−2[V ′] ∈ K0(X × Q).
Let ϕ′j : Ki(X) → Ki(X × Q) be given by x 7→ a′j · f ′∗x, and let ϕ′ :
Ki(X)⊕n−1 → Ki(X × Q) be their sum. Since π′∗ ◦ ϕj = π∗ ◦ ϕ′j (this is
clear for j < n − 2, and follows for j = n − 2 from the Morita equivalence
discussed above), to prove the injectivity of ϕ, it suffices to prove that of ϕ′.

Let cij = f ′∗(a
′
i · b′j) ∈ K0(X). Suppose that for some xj ∈ Ki(X), we

have ∑
j

a′j · f ′∗(xj) = 0.

Then we compute that

0 = f ′∗(bk · (
∑
j

a′j · f ′∗xj))

=
∑
j

cjk · xj .

Hence it suffices to show that the determinant of the matrix [cij ] is a unit
in K0(X). Let L be the algebraic closure of the function field F (X). There
is a surjective homomorphism of rings K0(X)→ K0(L) = Z whose kernel is
a nilpotent ideal. So it suffices to prove that the determinant of [cij ] maps
to a unit in K0(L).

Let ãj , b̃j be the images of aj , bj respectively under the natural map
K0(Q) → K0(QL), where QL is the quadric obtained from Q by extending
the ground field F to L. We again obtain a resolution for the diagonal of
QL. If f̃ : QL → SpecL is the structure map, then by the calculation we
made earlier, we have a formula for any x ∈ Ki(QL),

x =
∑
j

ãj · f̃∗ ◦ f̃∗(b̃j · x).

In particular, the ãj generate K0(QL) as a K0(L) = Z-module. However,
K0(QL) ∼= Z⊕n−1 from the standard decomposition of a quadric over an
algebraically closed field into Schubert cells. Hence the ãi are a Z-basis
for K0(QL).The above equation, with x = ãj , now yields f̃∗c̃ij = δij , the
Kronecker delta. Since H0(QL,OQL

) = L, and Hm(QL,OQL
) = 0 for m >

0, we have f̃∗ ◦ f̃∗ = identity. Hence c̃ij = δij .
Case 2 (n even)

In this case, Cl0(q) is a central simple algebra over a reduced commuta-
tive F -algebra A which has dimension 2 over F .
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Suppose A ∼= F×F as an algebra. Then Cl0(Q) ∼= B×B for some central
simple F -algebra B. Now an argument as in Case 1, with the Severi-Brauer
variety Y associated to B in place of X, yields the injectivity of ϕ. Indeed,
the role of X could be played by any smooth projective variety Y satisfying
H0(Y,OY ) = F,H i(Y,OY ) = 0 for i > 0, and such that on Y , the pullback
of Cl0(q) is a direct product of two endomorphism algebras of locally free
sheaves.

Suppose A is a quadratic extension field of F . If QA is the quadric ob-
tained fromQ by base change, then Cl0(qA) ∼= Cl0(q)×Cl0(q) as A- algebras.
In particular, the maps Ki(Cl0(q)) → Ki(Cl0(qA)) are injective. Since the
theorem is valid for qA, we deduce that the map ϕn−2 : Ki(Cl0(q))→ Ki(Q)
is injective. But we had reduced the proof of injectivity of ϕ to this.

æ

2 The resolution of the diagonal

Let Bi = H0(Q,OQ(i)), so that B = ⊕mBm is the homogeneous coordinate
ring of Q. Let B+ ⊂ B be the ideal generated by elements of positive degree.
Let

T (V ) = ⊕mV ⊗m

A = T (V )[t]/ < v ⊗ v − q(v)t >

where t is an indeterminate which commutes with T (V ). Then A is graded
with deg t = 2. Clearly,

A/tA ∼= ∧(V ), (the exterior algebra on V ),

A/(t− 1)A ∼= Cl(q).

Let Ai ⊂ A be the subset of homogeneous elements of degree i. If

(v1, v2) = q(v1 + v2)− q(v1)− q(v2)

defines the bilinear form ( , ) associated to q, the relation

v1v2 + v2v1 = (v1, v2)t

holds in A for any v1, v2 in V = A1
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Since A1 = V , B1 = V ∗, we have pairings

Bi ⊗ V ∗ → Bi+1

V ⊗Ai → Ai+1

Ai ⊗ V → Ai+1

where the second and third pairings correspond to left and right multiplica-
tion by elements of A1, respectively. In particular, if ϕ ∈ End (V ) = V ∗⊗V ,
then we have two maps

l(ϕ) : A∗i ⊗F Bj → Ai−1 ⊗Bj+1,

r(ϕ) : A∗i ⊗F Bj → Ai−1 ⊗Bj+1

corresponding to left and right multiplication by elements of V . Clearly the
diagram

A∗i ⊗F Bj
l(ϕ)→ A∗i−1 ⊗F Bj+1

r(ϕ) ↓ ↓ r(ϕ)

A∗i−1 ⊗F Bj+1
l(ϕ)→ A∗i−2 ⊗F Bj+2

Lemma -4 If 1 ∈ End (V ) denotes the identity endomorphism, then

l(1) ◦ l(1) = r(1) ◦ r(1) = 0

in
Hom (A∗i ⊗F Bj , A∗i−2 ⊗Bj+2).

Proof: Let v1, v2, · · · , vn be a basis for V ,and let v∗1, v
∗
2, · · · , v∗n be the dual

basis; then 1 =
∑
i v
∗
i ⊗ vi. If a⊗ b ∈ A∗i ⊗F Bj , then

l(1)(a⊗ b) =
∑
i

(vi · a)⊗ (v∗i b)

and so

l(1) ◦ l(1)(a⊗ b) =
n∑

i,j=1

((vjvi) · a)⊗ (v∗i v
∗
j b)

=
n∑
i=1

((v2
i ) · a)⊗ (v∗2i b) +

n∑
i=1

∑
j<i

((vivj + vjvi) · a)⊗ (v∗i v
∗
j b)

=
n∑
i=1

(q(vi)t · a)⊗ (v∗2i b) +
n∑
i=1

∑
j<i

((vi, vj)t · a)⊗ (v∗i v
∗
j b)

= t · a⊗ q(v∗1, · · · , v∗n)b

= 0
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where q(v∗1, · · · , v∗n) ∈ S2(V ∗) maps to 0 in B. An analogous argument works
for r(1). 2

Thus we obtain two complexes of graded B modules

· · · l(1)→ A∗i ⊗F B(−i) l(1)→ A∗i−1 ⊗F B(−i+ 1)
l(1)→ · · ·

l(1)→ A∗1 ⊗F B(−1)
l(1)→ B → 0

· · · r(1)→ A∗i ⊗F B(−i) r(1)→ A∗i−1 ⊗F B(−i+ 1)
r(1)→ · · ·

r(1)→ A∗1 ⊗F B(−1)
r(1)→ B → 0

(where for a graded module M = ⊕Mm, M(i) is M with the new grading
M(i)m = Mm+i). Clearly both complexes have H0 = B/B+ = F .

Lemma -3 The above complexes give graded resolutions of B/B+ as a
graded B module.

Proof: We give the proof for the complex with l(1); the argument for
r(1) is very similar.

For any graded left A-module M = ⊕Mm, the action of A1 = V allows
us to define maps

l(ϕ) : M∗i ⊗B(−i)→M∗i−1 ⊗B(−i+ 1)

as in the case M = A, and we have l(1) ◦ l(1) = 0. Let M∗ ⊗B denote the
resulting complex of graded B modules. Clearly M 7→ M∗ ⊗ B is an exact
contravariant functor from graded left A modules to complexes of graded B
modules.

We have an exact sequence of graded left A modules

0→ A(−2)→ A→ A/tA→ 0.

This gives an exact sequence of complexes

0→ (A/tA)∗ ⊗B → A∗ ⊗B → A∗ ⊗B[−2]→ 0

(where the [−2] denotes the shift operator on complexes).Thus we have an
exact homology sequence

· · ·Hi((A/tA)∗ ⊗B)→

Hi(A
∗ ⊗B)→ Hi−2(A∗ ⊗B)

∂→ Hi−1((A/tA)∗ ⊗B)→ · · · (#)
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Now (A/tA) is the exterior algebra of V , so that for any v ∈ V , the map
∧i(V )∗ → ∧i−1(V )∗ dual to left multiplication by v is contraction on the left
with v. Hence (A/tA)∗⊗B is identified with the Koszul complex K.(B) for
V ∗ = B1 over B.

We have an exact sequence of complexes

0→ K.(S(V ∗))(−2)
q→ K.(S(V ∗))→ K.(B)→ 0

which gives an exact homology sequence

→ Hi(K.(S(V ∗)))
q→ Hi(K.(S(V ∗)))→ Hi(K.(B))→ Hi−1(K.(S(V ∗)))→

But K.(S(V ∗)) is exact except at H0 = F , which is in degree 0; since deg
q = 2, multiplication by q is 0 on H0(K.(S(V ∗))), and we deduce that
Hi(K.(B)) = 0 for i 6= 0, 1, and Hi(K.(B)) ∼= F for i = 0, 1.

From the exact sequence (#) we now see that

Hi(A
∗ ⊗B) ∼= Hi+2(A∗ ⊗B), i ≥ 1

and there is an exact sequence

0→ H2(A∗ ⊗B)→ H0(A∗ ⊗B)
∂→

H1((A/tA)∗ ⊗B)→ H1(A∗ ⊗B)→ 0.

If we show that ∂ : F → F is nonzero, then Hi(A
∗⊗B) = 0 for i = 1, 2 and

hence for all i > 0. We do this by computing the map ∂.
Let v1, v2, · · · , vn be a basis for V , and let v∗1, · · · , v∗n be the dual basis.

Note that a generator for H1((A/tA)∗ ⊗B) is given by a nontrivial relation
in B, with coefficients in B1 = V ∗, between the v∗i , which is induced by the
quadratic form q. Explicitly, we may choose the class of

n∑
i=1

q(vi)v
∗
i ⊗ v∗i +

∑
i<j

(vi, vj)v
∗
i ⊗ v∗j

(which lies in (A/tA)∗1 ⊗F B1).
We have

A2 =
∑
i>j

Fvivj + Ft,

so that if a ∈ A∗2 is defined by

a(vivj) = 0, if i > j,

a(t) = 1,
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then a maps to a generator α ∈ H0(A∗ ⊗ B) under the map of complexes
A∗ ⊗ B → A∗ ⊗ B[−2] dual to multiplication by t. Then ∂α is represented
by the class in H1((A/tA)∗ ⊗B) of l(1)(a⊗ 1). We have

l(1)(a⊗ 1) =
n∑
i=1

(vi · a)⊗ v∗i ,

where vi · a ∈ A∗1 = V ∗ satisfies

vi · a(vj) =


0 if i > j
q(vi) if i = j
(vi, vj) if i < j

Hence

l(1)(a⊗ 1) =
n∑
i=1

q(vi)v
∗
i ⊗ v∗i +

∑
i<j

(vi, vj)v
∗
i ⊗ v∗j ,

which is precisely the generator for H1((A/tA)∗ ⊗B) considered above. 2

From the theorem of Serre about the correspondence between coherent
sheaves and graded modules, the lemma yields exact sequences of locally
free sheaves on Q

· · · l(1)→ A∗i ⊗F OQ(−i) l(1)→ · · · l(1)→ A∗1 ⊗F OQ(−1)
l(1)→ OQ → 0

· · · r(1)→ A∗i ⊗F OQ(−i) r(1)→ · · · r(1)→ A∗1 ⊗F OQ(−1)
r(1)→ OQ → 0.

Let

Ei = {ker r(1) : A∗i ⊗F OQ(−i)→ A∗i−1 ⊗F OQ(−i+ 1)} ⊗OQ OQ(i)

Then we have a resolution

0→ Ei → A∗i ⊗OQ
r(1)→ A∗i−1 ⊗OQ(1)

r(1)→ · · ·
r(1)→ A∗1 ⊗OQ(i− 1)

r(1)→ OQ(i)→ 0.

In particular, Ei is locally free on Q, and E0 = OQ. If v ∈ V = A1, then the
dual of left multiplication by v on A yields a map of complexes

0→ A∗
i ⊗OQ

r(1)→ A∗
i−1 ⊗OQ(1)

r(1)→ · · · r(1)→ A∗
1 ⊗OQ(i− 1)

r(1)→ OQ(i) → 0
v· ↓ v· ↓ v· ↓ v· ↓

0→ A∗
i−1 ⊗OQ

r(1)→ A∗
i−2 ⊗OQ(1)

r(1)→ · · · r(1)→ OQ(i− 1) → 0
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Hence we have a pairing
V ⊗F Ei → Ei−1.

Since V ∗ = H0(Q,OQ(1)), we have a pairing

V ∗ ⊗F OQ(−i)→ OQ(−i+ 1).

Hence, the identity endomorphism of V induces a map on Q×Q

OQ(−i)2Ei
l(1)→ OQ(−i+ 1)2Ei−1.

Lemma -2

· · · l(1)→ OQ(−i)2Ei
l(1)→ OQ(−i+ 1)2Ei−1 · · ·

l(1)→ OQ(−1)2E1
l(1)→ OQ×Q → O∆ → 0

is a resolution of the diagonal on Q×Q.

Proof: Let B(2) = ⊕mBm ⊗F Bm. Then B(2) is the homogeneous co-
ordinate ring of Q × Q in the Segre embedding. The homogeneous coordi-
nate ring of ∆ in this embedding is B(∆) = ⊕mB2m, and the embedding
∆ ⊂ Q × Q corresponds to the surjection B(2) → ⊕mB2m induced by the
maps Bm ⊗F Bm → B2m given by the ring structure of B.

Let E(i) be the graded B-module defined by

E(i) = (ker r(1) : A∗i ⊗B(−i)→ A∗i−1 ⊗B(−i+ 1))⊗B B(i)

so that E(i) is associated to the sheaf Ei.
For any two graded B-modules M1, M2 let M12M2 be the graded B(2)

module given by
(M12M2)i = (M1)i ⊗F (M2)i.

We have a double complex of graded B(2) modules C ··

0
↑

l(1)
→ B(−i)2B(i)→ 0

.

.

.
· · · 0

↑

· · ·
l(1)
→ B(−2)2B(2) → 0

r(1) ↑ r(1) ↑ ↑
l(1)
→ A∗

i−1 ⊗F B(−i)2B(1)
l(1)
→ · · ·

l(1)
→ A∗

1 ⊗F B(−2)2B(1)
l(1)
→ B(−1)2B(1) → 0

r(1) ↑ r(1) ↑ r(1) ↑ ↑
l(1)
→ A∗

i ⊗F B(−i)2B
l(1)
→ · · ·

l(1)
→ A∗

2 ⊗F B(−2)2B
l(1)
→ A∗

1 ⊗F B(−1)2B
l(1)
→ B(2) → 0

14



Here the l(1)’s are induced by the dual to left multiplication by A1 on the
A∗j , and the B module structure on a B(2) module induced by B ⊂ B(2) by
b 7→ b ⊗ 1. The maps r(1) are induced by right multiplication by A1, and
the B module structure induced by b 7→ 1⊗b. Since the sub double complex
of elements which are homogeneous of degree m has only a finite number
of nonzero terms, for any m, the two spectral sequences both converge to
the cohomology of the total complex (we regard the double complex as
concentrated in the second quadrant).

If Tot(C ··) is the total complex, there is a surjection f : H0(Tot(C ··))→
B(∆) induced by the maps C−i,i = B(−i)2B(i) → B(∆), b1 ⊗ b2 7→ b1b2.
To see that this induces a map on H0(Tot), it suffices to prove that the
diagram

B(−i− 1)2B(i+ 1) → B(∆)
r(1) ↑ ↑

A∗1 ⊗F B(−i− 1)2B(i)]
l(1)→ B(−i)2B(i)

is commutative. Identifying A∗1
∼= V ∗ ∼= B1, this follows from the associa-

tivity of multiplication in B. Clearly f is a surjection.
The columns of C ·· are exact, except possibly at H0, and we have

E−i,01 = H0(C−i,·) = B(−i)2E(i);

clearly the differentials d1 are just the maps l(1). In particular, E0,0
1 = B(2);

the edge homomorphism E0,0
1 → H0(Tot) ,when composed with f , induces

a map B(2) → B(∆), which is readily computed to be the natural surjection.
Hence, the lemma follows from Serre’s theorem, if we prove that H i(Tot) = 0
for i < 0, and f is an isomorphism.

To do this, we consider the other spectral sequence for the double com-
plex. The complex C ·,j is obtained (upto a shift of [-j]) from the exact
sequence of graded B modules

· · · l(1)→ A∗i ⊗F B(−i) l(1)→ A∗i−1 ⊗F B(−i+ 1)
l(1)→ · · ·

l(1)→ A∗1 ⊗F B(−1)
l(1)→ B → 0

by applying the functor ⊗BB(−j)2B(j) where the B module structure on
the 2 term is via b 7→ b⊗ 1. In particular it is exact except at H−j , and

H−j(C ·,j) = F ⊗B B(−j)2B(j) = F ⊗B2j ,

concentrated in degree j. Hence Ei,j1 = 0 except when i = −j, and the
spectral sequence degenerates at E1. Thus H i(Tot) = 0 for i 6= 0, and
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H0(Tot)i ∼= B2i. Since f is a surjection of graded B(2) modules, whose
spaces of homogeneous elements of degree i are isomorphic finite dimensional
vector spaces, f is an isomorphism. 2

We now prove the proposition. We truncate the above resolution of O∆

as follows:

0→ F → OQ(−n+ 3)2En−3
l(1)→ · · · → OQ×Q → O∆ → 0.

It suffices to prove that F ∼= U2Cl0(q)V for suitable U , V.
Since Ei has a left resolution

· · · r(1)→ A∗i+2 ⊗F OQ(−2)
r(1)→ A∗i+1 ⊗F OQ(−1)→ Ei → 0

F has a resolution by the total complex of the double complex of sheaves
on Q×Q

· · · l(1)→ A∗n ⊗F OQ(−n+ 1)2OQ(−1)
l(1)→ A∗n−1 ⊗F OQ(−n+ 2)2OQ(−1)

r(1) ↑ r(1) ↑
· · · l(1)→ A∗n+1 ⊗F OQ(−n+ 1)2OQ(−2)

l(1)→ A∗n ⊗F OQ(−n+ 2)2OQ(−2)
r(1) ↑ r(1) ↑

...
...

From the natural identification (of F -algebras)

A/(t− 1)A ∼= Cl(q)

we obtain isomorphisms

Ai ∼= Cli(q) for i ≥ n− 1

where i denotes i(mod 2). These are clearly compatible with the isomor-
phisms Ai ∼= Ai+2 for i ≥ n − 1 given by multiplication by t. We can then
rewrite the above double complex as

· · · l(1)→ Cln(q)∗ ⊗F OQ(−n+ 1)2OQ(−1)
l(1)→ Cln−1(q)∗ ⊗F OQ(−n+ 2)2OQ(−1)

r(1) ↑ r(1) ↑
· · · l(1)→ Cln+1(q)∗ ⊗F OQ(−n+ 1)2OQ(−2)

l(1)→ Cln(q)∗ ⊗F OQ(−n+ 2)2OQ(−2)

r(1) ↑ r(1) ↑
...

...
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Now l(1), r(1) are regarded as maps induced by the dual of left (respectively
right) multiplication in the Clifford algebra.

There are natural isomorphisms

Cli(q)⊗Cl0(q) Clj(q)
∼= Cli+j(q)

for all i, j. In particular, the above double complex can be regarded as the
double complex (α)2Cl0(q)(β), where (α), (β) are the following complexes:

· · · l(1)→ Cli(q)
∗ ⊗F OQ(−i) l(1)→ Cli−1(q)∗ ⊗F OQ(−i+ 1)

l(1)→ · · ·
l(1)→ Cln−1(q)∗ ⊗F OQ(−n+ 1)

l(1)→ Cln−2(q)∗ ⊗F OQ(−n+ 2)→ 0 · · · (α)

· · · r(1)→ Clj(q)
∗ ⊗F OQ(−j) r(1)→ Clj−1(q)∗ ⊗F OQ(−j + 1)

r(1)→ · · ·
r(1)→ Cl2(q)∗ ⊗F OQ(−2)

r(1)→ Cl1(q)∗ ⊗F OQ(−1)→ 0 · · · (β)

Thus F ∼= U2Cl0(q)V where U ∼= H0((α)) and V ∼= H0((β)). This proves the
Proposition.
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