
ORDINARY VARIETIES AND THE COMPARISON BETWEEN
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Abstract. We consider the following conjecture: if X is a smooth n-dimensional projec-
tive variety over a field k of characteristic zero, then there is a dense set of reductions Xs

to positive characteristic such that the action of the Frobenius morphism on Hn(Xs,OXs
)

is bijective. There is another conjecture relating certain invariants of singularities in char-
acteristic zero (the multiplier ideals) with invariants in positive characteristic (the test
ideals). We prove that the former conjecture implies the latter one in the case of ambient
nonsingular varieties.

1. Introduction

It has been known for about thirty years that there are close connections between
classes of singularities that appear in birational geometry, and such classes that appear
in commutative algebra, and more precisely, in tight closure theory. Recall that in bira-
tional geometry, singularities are typically described in terms of a suitable resolution of
singularities. On the other hand, tight closure theory describes the singularities in positive
characteristic in terms of the action of the Frobenius morphism. The connection between
the two points of view is very rich, but still remains somewhat mysterious.

The best known example of such a connection concerns rational singularities: it
says that a variety has rational singularities if and only if it has F -rational type (F -
rationality is a notion defined in positive characteristic via the tight closure of parameter
ideals). More precisely, suppose that X is defined over a field k of characteristic zero, and
consider a model of X defined over an algebra A of finite type over Z. For every closed
point s ∈ SpecA consider the corresponding reduction Xs to positive characteristic. Then
X has rational singularities if and only if there is an open subset U of SpecA such that
Xs has F -rational singularities for every closed point s ∈ U (the “if” part was proved in
[Smi], while the “only if” part was proved independently in [Ha] and [MS]).

Other classes of singularities behave in the same fashion: see [HW] for the comparison
between Kawamata log terminal and strongly F -regular singularities. On the other hand,
a more subtle phenomenon relates, for example, log canonical and F -pure singularities.
It is known that if there is a dense set of closed points S ⊂ SpecA such that Xs has
F -pure singularities for all s ∈ S, then X has log canonical singularities (see [HW]). The
converse, however, is widely open, and in general the set of closed points s ∈ SpecA
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for which Xs has F -pure singularities does not contain an open subset, even when it is
dense. Furthermore, examples have made it clear that there are some subtle arithmetic
phenomena involved.

The main goal of our paper is to consider an arithmetic-geometric conjecture, and
show that it implies a similar such connection, between multiplier ideals (invariants in
characteristic zero) and test ideals (invariants in characteristic p). We believe that this
puts in a new perspective the correspondence between the two sets of invariants, and
hopefully points to a possible way of proving this correspondence.

Conjecture 1.1. Let X be a smooth, connected n-dimensional projective variety over an
algebraically closed field k of characteristic zero. Given a model of X over a Z-algebra of
finite type A, contained in k, there is a dense set of closed points S ⊆ SpecA such that
the action induced by Frobenius on Hn(Xs,OXs) is bijective for every s ∈ S.

As we show, in the above conjecture it is enough to consider the case k = Q
(see Proposition 5.3). We mention that it is expected that under the assumptions in the
conjecture, there is a dense set of closed points S ⊆ SpecA, such that for every s ∈ S, the
smooth projective variety Xs over k(s) is ordinary in the sense of [BK]. One can show that
this condition implies that the action induced by Frobenius on each cohomology group
H i(Xs,OXs) is bijective. On the other hand, we hope that the property in Conjecture 1.1
would be easier to prove than the stronger property of being ordinary.

Before stating the consequence of Conjecture 1.1 to the relation between multiplier
ideals and test ideals, let us recall the definitions of these ideals. Since our main result only
deals with nonsingular ambient varieties, we review these concepts in this special case.
Let Y be a nonsingular variety defined over an algebraically closed field of characteristic
zero, and suppose that a is a nonzero ideal on Y . Recall that a log resolution of (Y, a) is
a projective birational morphism π : X → Y , with X nonsingular and a · OX = OX(−F ),
with F a divisor such that both F and KX/Y are supported on a simple normal crossings
divisor. Here KX/Y is the relative canonical divisor. Such resolutions exist by Hironaka’s
theorem, since Y lives in characteristic zero. The multiplier ideal of a of exponent λ ≥ 0
is the ideal

J (Y, aλ) := π∗OY (KX/Y − bλF c),
where for any R-divisor E, we denote by bEc its round-down. It is a general fact that
the definition is independent of the given resolution. These ideals have recently found
many striking applications in birational geometry, mostly due to their connection with
vanishing theorems, see [Laz].

In positive characteristic, Hara and Yoshida [HY] introduced the notion of (general-
ized) test ideal, relying on a generalization of the theory of tight closure. In this paper we
use an equivalent definition due to Schwede [Sch]. This definition is particularly transpar-
ent in the case of an ambient nonsingular variety, when it is an immediate consequence
of the description in [BMS].

Suppose that Y is a nonsingular variety over a perfect field L of characteristic
p > 0, and a is an ideal on Y . The Cartier isomorphism induces a surjective OX-linear
map tY : F∗ωY → ωY , where F is the absolute Frobenius morphism. Iterating this e times
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gives teY : F e
∗ωY → ωY . For any ideal b on Y , and for every e ≥ 1, the ideal b[1/pe] is defined

by teY (F e
∗ (b·ωY )) = b[1/pe] ·ωY . Given any λ ≥ 0, it is easy to see that the sequence of ideals(

(adλp
ee)[1/pe]

)
e≥1

is nondecreasing, and therefore it stabilizes by the Noetherian property.

The limit is the test ideal τ(Y, aλ). For a discussion of various analogies between test
ideals and multiplier ideals we refer to [HY]. The following is the main conjecture relating
multiplier ideals and test ideals.

Conjecture 1.2. Let Y be a nonsingular variety over an algebraically closed field k of
characteristic zero, and a a nonzero ideal on Y . Given a model for Y and a defined over a
Z-algebra of finite type A, contained in k, there is a dense set of closed points S ⊂ SpecA,
such that

(1) τ(Ys, a
λ
s ) = J (Y, aλ)s

for all s ∈ S and all λ ≥ 0. Furthermore, if we have finitely many pairs as above (Y (i), a(i)),
and corresponding models over SpecA, then there is a dense open subset of closed points
in SpecA such that (1) holds for each of these pairs.

Two things are known: first, under the assumptions in the conjecture, there is an
open subset of closed points in SpecA for which the inclusion “⊆” in (1) holds for all
λ. This was proved in [HY], and is quite elementary (we give a variant of the argument
using the equivalent definition in [Sch] in §3). A deeper result, also proved in [HY], says
that for a fixed λ, there is an open subset of closed points s ∈ SpecA such that equality
holds in (1) for this λ. This relies on the same kind of arguments as in [Ha] and [MS],
using the action of Frobenius on the de Rham complex, following [DI]. The key fact in
the above conjecture is that we require the equality to hold for all λ at the same time.
We mention that these two known results generalize the fact that (X, aλ) is Kawamata
log terminal if and only if for an open (dense) set of closed points S ⊂ SpecA the pair
(Ys, a

λ
s ) is strongly F -regular for all s ∈ S. The following is our main result.

Theorem 1.3. If Conjecture 1.1 holds, then Conjecture 1.2 holds as well.

It is easy to reduce the assertion in Conjecture 1.2 to the case when Y is affine and
a is a principal ideal (f). The usual approach for comparing the multiplier ideals of a with
the test ideals of a reduction of a is to start with a log resolution of a. Our key point is to
start instead by doing semistable reduction. This allows us to reduce at the end of the day
to understanding a certain reduced divisor with simple normal crossings on a nonsingular
variety.

One can formulate Conjecture 1.2 in a more general setting. For example, one can
only assume that Y is normal and Q-Gorenstein, or even more generally, work with a
pair (Y,D) such that KY +D is Q-Cartier. Furthermore, one can start with several ideals
a1, . . . , ar, and consider mixed multiplier ideals and test ideals. However, our method
based on semistable reduction does not allow us to handle at present these more general
versions of Conjecture 1.2.

The paper is organized as follows. In the next section we recall some general facts
about p-linear maps of vector spaces over perfect fields, and review the general setting for
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reducing from characteristic zero to positive characteristic. In §3 we recall the definition
and some useful properties of multiplier ideals and test ideals. While in our main result
we consider a nonsingular ambient variety, at an intermediate step we also need to work
on a singular variety. Therefore our treatment of multiplier ideals and test ideals in §3
is done in this general setting. In Section 4 we state and discuss a more general version
of Conjecture 1.2. Section 5 is devoted to a discussion of Conjecture 1.1, and to several
consequences that would be needed later. In the last Section 6 we prove our main result,
showing that Conjecture 1.1 implies Conjecture 1.2.

Acknowledgment. We are indebted to Bhargav Bhatt, Hélène Esnault, and Johannes
Nicaise for several inspiring discussions. We would also like to thank Karl Schwede for his
comments on a preliminary version of this paper.

2. A review of basic facts

In this section we recall some well-known facts that will frequently come up during
the rest of the paper. In particular, we discuss the general setting, and set the notation
for reduction mod p.

2.1. p-linear maps on vector spaces. Let k be a perfect field of characteristic p > 0,
and let V be a finite-dimensional vector space over k. Let ϕ : V → V be a p-linear map,
that is, a morphism of abelian groups such that ϕ(au) = apϕ(u) for all a ∈ k and u ∈ V .
The following properties of such a map are well-known; for a proof see for example [CL,
Lemma 3.3].

The vector space V can be uniquely decomposed as a direct sum of subspaces pre-
served by ϕ, V = Vss ⊕ Vnil, where

1) ϕ is nilpotent on Vnil, that is, ϕN = 0 for some N .
2) ϕ is bijective on Vss.

One says that ϕ is semisimple if V = Vss. This is equivalent with ϕ being injective, or
equivalently, surjective.

Example 2.1. If k is a finite field with pe elements, then ϕe is a k-linear map. In this
case ϕ is semisimple if and only if ϕe is an isomorphism.

In general, if k is an algebraic closure of k, we get an induced p-linear map ϕ : V → V ,
where V = V ⊗k k. This is given by ϕ(v ⊗ λ) = ϕ(v) ⊗ λp. We have V ss = Vss ⊗k k and

V nil = Vnil⊗k k. Furthermore, V
ϕ=1

:= {u ∈ V | ϕ(u) = u} is an Fp-vector subspace of V
such that

(2) V ss = V
ϕ=1 ⊗Fp k.

In particular, we have dimFp(V
ϕ=1

) ≤ dimk(V ), with equality if and only if ϕ is semisim-
ple.
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Note that the morphism of abelian groups 1− ϕ is surjective on V ss by (2), and it

is clearly bijective on V nil. In particular, 1− ϕ is surjective, and its kernel is V
ϕ=1

.

Example 2.2. Let X be a scheme of finite type over k. The absolute Frobenius morphism
F : X → X is the identity on the underlying topological space, and the corresponding
morphism of sheaves of rings OX → OX is given by u→ up. Since k is perfect, F is a finite
morphism. It induces a p-linear map F : H i(X,OX)→ H i(X,OX) for every i ≥ 0. After
extending the scalars to an algebraic closure k, we obtain the corresponding p-linear map
F : H i(Xk,OXk

)→ H i(Xk,OXk
), where Xk = X ×Spec k Spec k (note that in this case we

still write F instead of F ).

On the other hand, we have the Artin-Schreyer sequence in the étale topology

0→ Fp → OXk

1−F→ OXk
→ 0.

This induces exact sequences

0→ H i
ét(Xk,Fp)→ H i(Xk,OXk

)
1−F→ H i(Xk,OXk

)→ 0

for every i ≥ 0. In particular, F is semisimple onH i(X,OX) if and only if dimFp H
i
ét(Xk,Fp) =

hi(X,OX).

Remark 2.3. Let ϕ : V → V and ψ : W → W be p-linear maps as above. Note that
we have induced p-linear maps on V ⊕W and V ⊗W , and (V ⊕W )ss = Vss ⊕Wss and
(V ⊗W )ss = Vss ⊗Wss.

Lemma 2.4. Let ϕ : V → V be a p-linear map as above.

i) If ϕ is semisimple, and if W is a linear subspace of V such that ϕ(W ) ⊆ W , then
the induced p-linear maps on W and V/W are semisimple.

ii) If we have an exact sequence V ′ → V → V ′′, and p-linear maps ϕ′ : V ′ → V ′ and
ϕ′′ : V ′′ → V ′′ that are compatible with ϕ in the obvious sense, and if ϕ′ and ϕ′′

are semisimple, then so is ϕ.

Proof. If ϕ is bijective, then clearly the induced map on W is injective, and the induced
map on V/W is surjective. This implies the assertion in i). In order to prove ii), we use i)
to reduce to the case when we have a short exact sequence

0→ V ′ → V → V ′′ → 0.

In this case ϕ′ and ϕ′′ being bijective implies ϕ is bijective by the 5-Lemma. �

2.2. Reduction mod p. We review the formalism for passing from characteristic zero
to positive characteristic. Let k be a fixed field of characteristic zero. Given a scheme
X of finite type over k, there is a subring A ⊂ k of finite type over Z, a scheme XA of
finite type over A, and an isomorphism X ' XA×SpecA Spec k. Note that we may always
replace A by Aa, for some nonzero a ∈ A, and XA by the corresponding open subscheme.
It follows from Generic Flatness (see [Eis, Theorem 14.4]) that we may (and will) assume
that XA is flat over A. We will refer to XA as a model of X over A. If A and B are two
such rings, and if XA and XB are models of X over A and B, respectively, then there is a
subring C of k containing both A and B, finitely generated over Z, and an isomorphism
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XA ×SpecA SpecC ' XB ×SpecB SpecC compatible after base-change to Spec k with the
defining isomorphisms for XA and XB. Given a model XA for X as above, and a point
s ∈ SpecA, we denote by Xs the fiber of XA over s. This is a scheme of finite type over
the residue field k(s) of s. Note that if s is a closed point, then k(s) is a finite field. We
say that a property P(s) holds for general closed points s ∈ SpecA if there is an open
subset U of SpecA such that P(s) holds for all closed points s ∈ U . In this case, after
replacing A by a suitable localization Aa, we may assume that P(s) holds for all closed
points s. We will often be interested in properties that are expected to only hold for a
dense set of closed points s ∈ SpecA.

Remark 2.5. Note that both conditions

i) P(s) holds for general closed points s ∈ SpecA
ii) P(s) holds for a dense set of closed points s ∈ SpecA

are independent of the choice of a model. Indeed, if α : SpecC → SpecA is induced by
the inclusion A ⊂ C of finitely generated Z-algebras, then α takes closed points to closed
points, and the image of α contains a (dense) open subset. Furthermore, the image or
inverse image of a dense subset has the same property.

On the other hand, in order to show that ii) above holds, it is enough to show that
for every model XA, there is at least one closed point s ∈ SpecA such that P(s) holds.

If XA is a model for X as above, and if F is a coherent sheaf on X, then after
possibly replacing A by a larger ring we may assume that there is a coherent sheaf FA on
XA whose pull-back to X is isomorphic to F . It follows from Generic Flatness that after
replacing A by some localization Aa, we may (and will) assume that FA is flat over A.
For a point s ∈ SpecA, we denote by Fs the restriction of FA to the fiber over s.

If ϕ : F → G is a morphism of coherent sheaves, after possibly enlarging A we may
assume that f is induced by a morphism of sheaves ϕA : FA → GA. In particular, for every
point s ∈ SpecA, we get an induced morphism ϕs : Fs → Gs. Since we may assume that
Coker(ϕA) and Im(ϕA) are flat over A, it follows that we may assume that Coker(ϕs) =
Coker(ϕ)s, Im(ϕs) = Im(ϕ)s, and Ker(ϕs) = Ker(ϕ)s for every point s ∈ Spec A. In
particular, if ϕ is injective or surjective, then so are all ϕs. It follows easily from this that
if F is an ideal, or if it is locally free, then so are all Fs (as well as FA).

Given a morphism f : X → Y of schemes of finite type over k, and models XA

and YB of X and Y , respectively, after possibly enlarging both A and B we may assume
that A = B and that f is induced by a morphism fA : XA → YA of schemes over A. If
s ∈ SpecA is a point, then we get a corresponding morphism fs : Xs → Ys of schemes
over k(s). If f is either of the following: a closed (open) immersion, finite or projective,
then we may assume that the same holds for fA. In particular, the same will hold for all
fs .

Suppose now that f : X → Y is a proper morphism, and F is a coherent sheaf on
X. If fA : XA → YA and FA are as above, arguing as in [Hart, Section III. 12] one can
show that FA satisfies generic base-change. In other words, after replacing A by Aa for
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some nonzero a ∈ A, we may assume that for all s ∈ SpecA, the canonical morphism(
Ri(fA)∗(FA)

)
s
→ Ri(fs)∗(Fs)

is an isomorphism.

Given a model XA of X, it is easy to deduce from Noether’s Normalization Theorem
that all fibers of XA → SpecA have dimension ≤ dim(X). It follows from the Jacobian
Criterion for smoothness that if X is an irreducible regular scheme, then we may assume
that XA is smooth over SpecA of relative dimension equal to dim(X). In particular, Xs

is smooth over k(s) for every point s ∈ SpecA.

Suppose now that Y is an arbitrary reduced scheme over k, and let us consider a
resolution of singularities of Y , that is, a projective birational morphism f : X → Y , with
X regular. We may choose a morphism of models fA : XA → YA that is projective, bira-
tional, and with XA smooth over SpecA. We may also assume that SpecA is smooth over
Spec Z. Since OY ↪→ f∗(OX), we may assume that OYA

↪→ (fA)∗(OXA
). In particular, YA

is reduced. Furthermore, by generic base-change we may assume that OYs ↪→ (fs)∗(OXs)
for every s ∈ SpecA. In particular, Ys is reduced, and if Y is irreducible, then so are
all Ys. We also see that dim(Ys) = dim(Y ) for all s, since we know this property for X.
Similarly, if Y is normal, then OY = f∗(OX), and arguing as above we may assume that
YA and all Ys are normal.

If D = a1D1 + . . . + arDr is a Weil divisor on Y , then we may assume that we
have prime divisors (Di)A on YA, and let DA :=

∑
i ai(Di)A. After possibly replacing A

by a localization Aa, we may assume that for every s ∈ Spec A the fiber (Di)s is a prime
divisor on Ys, and we get the divisor Ds =

∑
i ai(Di)s.

In particular, if Y is irreducible and normal, we may consider KY , a Weil divisor
unique up to linear equivalence, whose restriction to the nonsingular locus Ysm is a divisor
corresponding to ωYsm . We write KYA

for (KY )A. If U = Ysm, then we may assume that
the corresponding open subset UA ⊂ YA is smooth over A, and KYA

is a divisor whose
restriction to UA corresponds to Ωn

UA/A
, where n = dim(Y ). We may therefore assume

that for every s ∈ SpecA, the restriction of KYA
to Ys gives a canonical divisor KYs .

3. Test ideals and multiplier ideals

3.1. Multiplier ideals. We start by recalling the definition of multiplier ideals. For
details, basic properties, and further results we refer to [Laz]. Let k be an algebraically
closed field of characteristic zero, and Y an irreducible normal scheme of finite type over
k. We consider a Weil divisor D on Y such that KY +D is Cartier1. Given a nonzero ideal
a on Y , we define the multiplier ideals J (Y,D, aλ) for λ ∈ R≥0, as follows.

Recall first that given any birational morphism π : X → Y , with X normal, there is
a unique divisor DX on X with the following two properties:

i) KX+DX is linearly equivalent with π∗(KY +D) (hence, in particular, it is Cartier).

1One can assume that D is just a Q-divisor such that KY + D is Q-Cartier; however, we will not need
this level of generality.



8 M. MUSTAŢĂ AND V. SRINIVAS

ii) For every non-exceptional prime divisor T on X, its coefficient in DX is equal to

its coefficient in the strict transform D̃ of D.

Note that DX is supported on D̃ + Exc(π), where Exc(π) is the exceptional locus of π.

Suppose now that π : X → Y is a log resolution of the triple (Y,D, a). This means
that π is projective and birational, X is nonsingular, a · OX = OX(−F ) for a divisor F ,

Exc(π) is a divisor, and E := D̃ + Exc(π) + F has simple normal crossings. With this
notation, we have

(3) J (X,D, aλ) := π∗OX(−DX − bλ · F c).
Recall that if T =

∑
i biTi is an R-divisor, then bT c :=

∑
ibbicTi, where bbic is the largest

integer ≤ bi. When a = (f) is a principal ideal, then we simply write J (X,D, fλ). Note
that J (X,D, aλ) is in general only a fractional ideal. However, if D is effective, then
all components of DX with negative coefficient are exceptional. Therefore in this case
J (X,D, aλ) is an ideal.

It is a basic fact that the above definition is independent of resolution. It follows
from (3) that J (Y,D, aλ) ⊆ J (Y,D, aµ) if λ > µ. Furthermore, given any λ ≥ 0, there is
ε > 0 such that J (Y,D, aλ) = J (Y,D, aµ) for all µ with λ ≤ µ ≤ λ + ε. One says that
λ > 0 is a jumping number of (Y,D, a) if J (Y,D, aλ) 6= J (Y,D, aµ) for every µ < λ. Note

that if we write F =
∑N

i=1 biEi, then for every jumping number λ we must have

(4) λbi ∈ Z for some i ≤ N

(if λ satisfies this property, we call it a candidate jumping number). In particular, the set
of jumping numbers of (X,D, a) is a discrete subset of Q>0.

We now recall a few properties of multiplier ideals that will come up later. The fol-
lowing result is [Laz, Theorem 9.2.33]. The proof follows using the definition of multiplier
ideals, and the independence of resolutions.

Proposition 3.1. If π : X → Y is any projective, birational morphism, with X normal,
and if a′ = a · OX , then for every λ ∈ R≥0 we have

J (Y,D, aλ) = π∗J (X,DX , (a
′)λ).

We now consider a finite surjective morphism µ : Y ′ → Y , with Y ′ normal, and put
a′ = a·OY ′ . In this case there is an open subset U ⊆ Y such that codim(Y rU, Y ) ≥ 2, and
both U and V = ϕ−1(U) are nonsingular (for example, one can take U = Ysmrµ(Y ′rY ′sm).
In this case both KV/U and µ∗(D|U) are well-defined divisors on V . We denote by DY ′ the
unique Weil divisor on Y ′ whose restriction to V is µ∗(D|U)−KV/U . Note that KY ′ +DY ′

is linearly equivalent with µ∗(KY + D), hence in particular it is Cartier. For an integral
scheme W , we denote by K(W ) the function field of W .

Proposition 3.2. With the above notation, for every λ ∈ R≥0 we have

J (Y,D, aλ) = µ∗J (Y ′, DY ′ , (a
′)λ) ∩K(Y ).

Proof. If both Y and Y ′ are nonsingular, then the result is [Laz, Theorem 9.5.42]. Note
that the result therein only requires µ to be generically finite. The singular case is an easy



ORDINARY VARIETIES, MULTIPLIER IDEALS, AND TEST IDEALS 9

consequence: if X → Y is a resolution of singularities, and X ′ → X×Y Y ′ is a resolution of
singularities of the irreducible component dominating Y ′, we get a commutative diagram

(5) X ′
g //

π′

��

X

π

��
Y ′

µ // Y

with π and π′ projective and birational, and g generically finite. Applying [Laz, Theorem
9.5.42] to g, and Proposition 3.1 to π and π′, we deduce the equality in the proposition. �

The following statement follows directly from the definition of multiplier ideals and
the projection formula, see [Laz, Proposition 9.2.31].

Proposition 3.3. Let (Y,D, a) be as above, and suppose that D′ is a Cartier divisor on
Y . For every λ ≥ 0 we have

J (Y,D +D′, aλ) = J (Y,D, aλ) · OY (−D′).

The following result is [Laz, Proposition 9.2.28]. It is a consequence of Bertini’s
theorem.

Proposition 3.4. Suppose that Y = SpecR is affine, a = (h1, . . . , hm), and d is a positive
integer. If g1, . . . , gd are general linear combinations of the hi with coefficients in k, and
if g =

∏d
i=1 gi, then

J (Y,D, aλ) = J (Y,D, gλ/d)

for every λ < d.

We end this subsection with a statement of Skoda’s theorem for multiplier ideals on
singular varieties. For a proof, see [LLS, Corollary 1.4]. Note, however, that in this paper
we will only need the case when X is nonsingular, for which we refer to [Laz, § 11.1.A].

Proposition 3.5. Let (Y,D, a) be as above. If a can be locally generated by m sections,
then

J (Y,D, aλ) = a · J (Y,D, aλ−1)

for every λ ≥ m.

3.2. Reduction mod p of multiplier ideals. Suppose now that Y , D and a are as in
§3.1, and let us consider a model YA of Y over a finitely generated Z-subalgebra A of k.
We follow the notation introduced in §2.2. We may assume that we have a Weil divisor
DA on YA and a sheaf of ideals aA on YA that give models for D and a. Let us fix now a
log resolution π : X → Y of (Y,D, a). We may assume that this is induced by a projective
birational morphism XA → YA, with XA smooth over A.

Note that since KY +D is Cartier, we may assume that KYA
+DA is Cartier, and all

KYs + Ds are Cartier, for s ∈ SpecA. The divisor DXA
on XA that induces DX satisfies

analogous properties to properties i) and ii) stated in §3.1 for DX . Furthermore, for every
s ∈ SpecA, the restriction DXs of DXA

to Xs satisfies
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i) The Cartier divisors KXs +DXs and π∗s(KYs +Ds) are linearly equivalent.
ii) For every non-exceptional prime divisor T on Xs, its coefficient in DXs is equal to

its coefficient in the proper transform D̃s of Ds.

We may assume that aA·OXA
= OXA

(−FA) for a divisor FA onXA, and that Exc(πA)

is a divisor. Furthermore, we may assume that we have a divisor EA =
∑N

i=1(Ei)A on XA

such that every intersection (Ei1)A ∩ . . . ∩ (Ei`)A is smooth over A, and such that FA,
Exc(πA) and DXA

are supported on Supp(EA). We deduce that for every s ∈ SpecA, the
induced morphism πs : Xs → Ys gives a log resolution of (Ys, Ds, as).

Suppose now that m is a positive integer such that a can be generated locally by m
sections. Recall that in this case we have by Proposition 3.5 J (Y,D, aλ) = a·J (Y,D, aλ−1)
for every λ ≥ m. This allows us to focus on exponents < m in defining J (Y,D, aλ)s, and
then extend the definition by putting J (Y,D, aλ)s = as · J (Y,D, aλ−1)s for λ ≥ m.

For λ < m, we have the ideal (πA)∗OXA
(−(DX)A−bλFAc) on YA that gives a model

of J (Y,D, aλ). By generic base-change, we may assume that for every s ∈ SpecA, the
induced ideal J (Y,D, aλ)s is the ideal (πs)∗OXs(−DXs−bλFsc). Indeed, note that we only
have to consider finitely many ideals, corresponding to the candidate jumping numbers as
in (4) that are < m. We mention that if we consider the above construction starting with
a different log resolution of (Y,D, a), then there is an open subset of SpecA such that for
every s in this subset, the two definitions of the ideals J (Y,D, aλ)s coincide.

3.3. Test ideals. In this subsection we work over a perfect field L of positive character-
istic p (in the case of interest for us, L will always be a finite field). In this case, the test
ideals of Hara and Yoshida [HY] admit a simpler description, due to Schwede [Sch], that
completely avoids tight closure theory. Our main reference here is [ST], though for some
of the proofs the reader will need to consult the references given therein.

Before giving the definition of test ideals, we review a fundamental map in positive
characteristic. Suppose that Y is a smooth connected scheme over L, of dimension n. Let
Ω•Y/L be the de Rham complex on Y . If F denotes the absolute Frobenius morphism on Y ,

then the Cartier isomorphism is an isomorphism of graded OY -modules CY : ⊕i Ωi
Y/L →

⊕iHi(F∗(Ω
•
Y/L)) (see [DI] for description and proof). In particular, we get a surjection

F∗ωY = F∗Ω
n
Y/L → Hn(F∗(Ω

•
Y/L))

C−1
Y→ ωY ,

that we denote by tY . Iterating this map e times gives teY : F e
∗ωY → ωY .

If f and w are local sections ofOY and ωY , respectively, then tY

(
1
f
w
)

= 1
f
tY (fp−1w).

This shows that for every effective divisor D on Y , we have an induced map

tY,D : F∗(ωY (D))→ ωY (D),

compatible with the previous one via the inclusion ωY ↪→ ωY (D). The same remark applies
to the maps teY . If D is not necessarily effective, then tY,D is still well-defined, but its image
lies in the sheaf ωY ⊗K(Y ) of rational n-forms on Y .
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The map tY : F∗(ωY ) → ωY can be explicitly described as follows at a point p ∈
Y . Let us choose a system of coordinates y1, . . . , yn at p (that is, a regular system of
parameters of OY,p). In this case dy = dy1 ∧ . . . ∧ dyn gives a local basis of ωY around p,
and

tY (λ · ya1
1 · · · yan

n dy) = λ1/p · y
a1−p+1

p

1 · · · y
an−p+1

p
n dy

for every λ ∈ L, where the monomial on the right-hand side is understood to be zero if
one of the exponents is not an integer.

The above map tY is functorial in the following sense. Consider a morphism π : X →
Y of smooth schemes over L. For every i we have a commutive diagram involving the
respective Cartier isomorphisms

π∗Ωi
Y/L

π∗(CY )−−−−→ π∗Hi(F∗Ω
•
Y/L)

αi

y yβi

Ωi
X/L

CX−−−→ Hi(F∗Ω
•
X/L)

where αi is given by pulling-back forms, while βi is obtained as the composition

π∗Hi(F∗Ω
•
Y/L)→ Hi(π∗(F∗Ω

•
Y/L))→ Hi(F∗π

∗Ω•Y/L)→ Hi(F∗Ω
•
X/L).

If, in addition, π is a proper birational map, D is an effective divisor on Y , and DX is the
divisor on X defined as in §3.1, we get an induced commutative diagram relating the two
trace maps

(6)

π∗(F e
∗ (ωY (D)))

π∗(teY,D)
−−−−−→ π∗(ωY (D))y yψ

F e
∗ (ωX(DX))

teX,DX−−−→ ωX(DX)

where ψ is the canonical isomorphism, and the left vertical map is given by the composition

π∗(F e
∗ (ωY (D))) −−−→ F e

∗ (π
∗(ωY (D)))

F e
∗ (ψ)−−−→ F e

∗ (ωY (D)).

Suppose now that Y is a normal, irreducible scheme over L, of dimension n. We fix
an effective Weil divisor D on Y such that KY +D is Cartier (note that in [ST] one works
in a more general framework, which complicates some of the definitions; for the sake of
simplicity, we only give the definitions in the setting that we will need). We claim that to
D and to every e we can naturally associate an OY -linear map

(7) ϕ
(e)
D : F e

∗OY ((1− pe)(KY +D))→ OY .

Indeed, in order to define ϕ
(e)
D it is enough to do it on the complement of a closed subset of

codimension ≥ 2. Therefore we may assume that Y is smooth over L. In this case ϕ
(e)
D is

obtained by tensoring teY,D : F e
∗ (ωY (D))→ ωY (D) by ω−1

Y (−D), and using the projection
formula for F e. Note that if D is not necessarily effective, then we may still define as

above ϕ
(e)
D , but its image will be a fractional ideal on Y , not necessarily contained in OY .
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If π : X → Y is a proper, birational morphism of schemes, with X smooth, then we
have as in §3.1 a unique divisor DX on X such that KX + DX is linearly equivalent to
π∗(KY + D), and such that DX agrees along the non-exceptional divisors of π with the
proper transform of D. In this case, the commutative diagram (6) induces a commutative
diagram

(8)

π∗F e
∗OY ((1− pe)(KY +D))

π∗(ϕ
(e)
D )

−−−−→ π∗OYy yId

F e
∗OX((1− pe)(KX +DX))

ϕ
(e)
DX−−−→ OX .

Indeed, commutativity is clear when Y is smooth, too. In the general case, note that (8)
corresponds by the adjointness of (π∗, π∗) to the diagram

(9)

F e
∗OY ((1− pe)(KY +D))

ϕ
(e)
D−−−→ OY

F e
∗ (ρ)

y yId

π∗F
e
∗OX((1− pe)(KX +DX))

π∗(ϕ
(e)
DX

)

−−−−−→ π∗OX = OY ,
where ρ : OY ((1−pe)(KY +D))→ π∗OX((1−pe)(KX+DX)) is the canonical isomorphism
given by pull-back of sections. In order to check the commutativity of (9) we may restrict
to the complement of a codimension ≥ 2 closed subset, and therefore we may assume that
both X and Y are smooth.

Example 3.6. Suppose that Y is nonsingular, and D = a1E1 + . . . + arEr is a not-
necessarily-effective simple normal crossings divisor on Y . If b = OY (−D′), where D′ =∑r

i=1 biEi is effective, then ϕ
(e)
D (b·OY ((1−pe)(KY +D)) is the fractional idealOY (−D−F ),

where F =
∑r

i=1 ciEi, with ci = b(bi − ai)/pec for every i. This description follows easily
from the description in coordinates of the map teY,D.

We can now recall the definition of the test ideal τ(Y,D, aλ), where (Y,D) is as
above (with D effective), a is a nonzero ideal on Y , and λ is a non-negative real number.
One shows that there is a unique minimal nonzero coherent ideal sheaf J on Y such that
for every e we have

(10) ϕ
(e)
D

(
F e
∗ (a
dλ(pe−1)eJ · OY ((1− pe)(KY +D)))

)
⊆ J.

This is the test ideal τ(Y,D, aλ). Here due denotes the smallest integer ≥ u. When a = (f)
is a principal ideal, then we simply write τ(Y,D, fλ).

Proposition 3.7. If (Y,D) is as above, and d is a positive integer, then

τ(Y,D, (ad)λ) ⊆ τ(Y,D, adλ) for every λ ∈ R≥0.

Proof. For every e we have ddλ(pe − 1)e ≥ ddλ(pe − 1)e. It follows that if J satisfies (10)
with adλ(pe−1)e replaced by addλ(pe−1)e, then it also satisfies (10) with adλ(pe−1)e replaced
by addλ(pe−1)e. The assertion in the proposition now follows from the minimality in the
definition of τ(Y,D, (ad)λ). �
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In order to describe τ(Y,D, aλ), it is enough to do it when Y = SpecR is affine. In
this case one can show (see [ST, Lemma 5.4]) that there is a nonzero c ∈ R such that for
every nonzero g ∈ R and every e ≥ 1 one has

(11) c ∈ ϕ(e)
D

(
F e
∗ (a
dλ(pe−1)eg · OY ((1− pe)(KY +D)))

)
.

In this case, it is not hard to see that

(12) τ(Y,D, aλ) =
∑
e≥1

ϕ
(e)
D

(
F e
∗ (a
dλ(pe−1)ec · OY ((1− pe)(KY +D)))

)
(see [ST, Proposition 5.8]). For example, if u ∈ a r {0} is such that U = SpecRu is
regular, and D|U = 0, then one can take c to be a power of u (see [ST, Remark 5.6]).

Note that if a ⊆ b and c ∈ R satisfies (11) for a, then it also satisfies it for b. An im-
mediate consequence of the description (12) for the test ideal is the following monotonicity
property.

Proposition 3.8. If (Y,D) is as above, and a, b are nonzero ideals on Y with a ⊆ b,
then τ(Y,D, aλ) ⊆ τ(Y,D, bλ) for every λ ∈ R≥0.

The above gives a definition of τ(Y,D, aλ) in the case when D is an effective divisor.
On the other hand, one shows (see [ST, Lemma 5.11]) that if D′ is any effective Cartier
divisor, then

(13) τ(Y,D +D′, aλ) = τ(Y,D, aλ) · OY (−D′).
If D is a not-necessarily-effective Weil divisor such that KY +D is Cartier, then we define
τ(Y,D, aλ) as follows. Working locally, we can find a Cartier divisor D′ such that D+D′

is effective, and in this case τ(Y,D, aλ) is the fractional ideal τ(Y,D + D′, aλ) · OY (D′).
It follows from (13) that the definition is independent of the choice of D′.

If Y is nonsingular, one can show that the above definition for the test ideal
τ(Y,D, aλ) coincides with the one in [BMS], which is the one we gave in the Introduction.
We refer to [BSTZ, Proposition 3.10] for a proof.

While we will not need the results on the jumping numbers for the test ideals, we
mention them because of the analogy with the case of multiplier ideals. For the proofs, see
[BMS] for the case when X is smooth and D = 0, and [BSTZ] for the general case. Given
any (Y,D, a) as above, and any λ ≥ 0, there is ε > 0 such that τ(Y,D, aλ) = τ(Y,D, aµ)
for every µ with λ ≤ µ ≤ λ + ε. A positive λ is an F-jumping number if τ(Y,D, aλ) 6=
τ(Y,D, aµ) for every µ < λ. One can show that the set of F -jumping numbers is a discrete
set of rational numbers. However, we emphasize that this result is much more subtle than
the corresponding one for multiplier ideals.

The following proposition gives the analogue of Skoda’s theorem for test ideals (see
[BSTZ, Lemma 3.26]). For the smooth case, which is the only one that we will need in
this paper, see [BMS, Proposition 2.25].

Proposition 3.9. Let (Y,D, a) be a triple as above, and m a positive integer such that a
is locally generated by m sections. For every λ ≥ m we have

τ(Y,D, aλ) = a · τ(Y,D, aλ−1).
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We will make use in §6 of the following result of Schwede and Tucker [ST, Corol-
lary 5.26] concerning the behavior of test ideals under finite morphisms. Let µ : Y ′ → Y
be a finite surjective morphism of normal, irreducible varieties. Given the Weil divisor D
on Y such that KY + D is Cartier, then as in Proposition 3.2 we have a divisor DY ′ on
Y ′ such that KY ′ +DY ′ and µ∗(KY +D) are linearly equivalent. We also put a′ = a ·OY ′ .

Theorem 3.10. With the above notation, if µ is a separable morphism and if the trace
map Tr: K(Y ′)→ K(Y ) is surjective, then

τ(Y,D, aλ) = µ∗τ(Y ′, DY ′ , (a
′)λ) ∩K(Y ).

One can compare this result with the corresponding result about multiplier ideals
in Proposition 3.2. Note that the hypothesis in Theorem 3.10 is satisfied if p = char(L)
does not divide [K(Y ′) : K(Y )].

4. The conjectural connection between multiplier ideals and test ideals

The following is the main conjecture relating multiplier ideals and test ideals.

Conjecture 4.1. Let Y be a normal, irreducible scheme over an algebraically closed field
k of characteristic zero. Suppose that D is a Weil divisor on Y such that KY + D is
Cartier, and a is a nonzero ideal on Y . Given a model YA of Y over a ring A ⊂ k of finite
type over Z, there is a dense set of closed points S ⊂ SpecA such that

(14) τ(Ys, Ds, a
λ
s ) = J (Y,D, aλ)s for all λ ∈ R≥0 and all s ∈ S.

Furthermore, if we have finitely many triples as above (Y (i), D(i), a(i)), and corresponding
models over SpecA, then there is a dense open subset of closed points in SpecA such that
(14) holds for each of these triples.

One can formulate variants the above conjecture in more general settings. For ex-
ample, D may be assumed to be a Q-divisor such that KY +D is Q-Cartier, and one can
replace the ideal a by finitely many ideals a1, . . . , ar. In the latter case one has to consider
the corresponding mixed multiplier and test ideals. On the other hand, in our main result
we will restrict ourselves to the case when X is nonsingular. In particular, in this case D
is Cartier, and therefore (14) holds if and only if it holds when D = 0. Therefore in this
case Conjecture 4.1 reduces to Conjecture 1.2 in the Introduction. For examples related
to the above conjecture in the case of an ambient nonsingular variety, see [Mus, §3] and
[MTW, §4].

The inclusion “⊆” in (14) is due to Hara and Yoshida [HY]. In fact, this inclusion
holds for an open subset of closed points in SpecA. It is a consequence of the more
precise result below. We include a proof, since this is particularly easy with the alternative
definition of test ideals that we are using.

Proposition 4.2. Let Y be a normal irreducible scheme over a perfect field L of positive
characteristic p. Suppose that D is a divisor on Y such that KY +D is Cartier, and a is
a nonzero ideal on Y . If π : X → Y is a proper birational morphism, with X nonsingular,



ORDINARY VARIETIES, MULTIPLIER IDEALS, AND TEST IDEALS 15

a · OX = OX(−F ) for a divisor F , and F,DX have simple normal crossings, where the
divisor DX on X is defined as in §3.1, then

(15) τ(Y,D, aλ) ⊆ π∗OX(−DX − bλF c)
for every λ ∈ R≥0.

Proof. After replacing Y by each of the elements of a suitable open cover of Y , we may
assume that there is a Cartier divisor D′ on Y such that D + D′ is effective. Since it is
enough to prove (15) with D replaced by D +D′, we may assume that D is effective.

Let J denote the right-hand side of (15). It follows from the minimality in the
definition of the test ideal that in order to prove the inclusion in (15), it is enough to
show that for every e ≥ 1 we have the inclusion in (10). Let us fix such e. Since X
is nonsingular and DX , F have simple normal crossings, if b = OX(−F ), then J ′ :=
τ(X,DX , b

λ) = OX(−DX − bλF c). Indeed, this is is an easy consequence of the formula
(12) and of the one in Example 3.6 (note that in this case we may take c to be a power
of the defining equation of Supp(DX) ∪ Supp(F )).

By definition, we have

(16) ϕ
(e)
DX

(F e
∗ (b

`J ′ · π∗(L))) ⊆ J ′,

where L = OY ((1− pe)(KY +D)) and ` = dλ(pe− 1)e. We now use the commutativity of
(9). With the notation therein we have ρ(a`J · L) ⊆ π∗(b

`J ′ · π∗(L)). Therefore

ϕ
(e)
D (F e

∗ (a
`J · L)) = π∗(ϕ

(e)
DX

)
(
F e
∗ (ρ)(F e

∗ (a
`J · L))

)
⊆ π∗(ϕ

(e)
DX

)
(
F e
∗ (ρ(a`J · L))

)
⊆ π∗

(
ϕ

(e)
DX

(F e
∗ (b

`J ′ · π∗(L)))
)
⊆ π∗(J

′) = J,

where the last inclusion follows by applying π∗ to (16). Therefore we have the inclusion
in (10) for J , and this completes the proof of the proposition. �

Note that in the setting of the conjecture, it is known that if we fix λ, then we get
the equality in (14) for all closed points in an open subset of SpecA (depending on λ).
This was proved by Hara and Yoshida in [HY], relying on ideas that had been used also
in [Ha] and [MS] 2.

We end this section with the following proposition, that allows us to only consider
Conjecture 1.2 in the case of principal ideals on nonsingular affine varieties.

Proposition 4.3. In order to prove Conjecture 1.2, it is enough to consider the case when
Y is an affine nonsingular variety and a = (f) is a principal ideal (but allowing several
such pairs).

Proof. Since every Y admits a finite affine open cover Y =
⋃
i Ui, and since proving the

conjecture for (Y, a) is equivalent to proving it (simultaneously) for all (Ui, a|Ui
), it follows

that it is enough to consider the case when for all pairs we treat, the ambient scheme Y
is affine and nonsingular.

2The result in [HY] only treats the case of a local ring, since one uses the tight closure approach to
test ideals. However, one can modify the proof therein to give the assertion in our setting.
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For such a pair (Y, a), let h1, . . . , hm be generators of a. It follows from Proposi-
tion 4.2 that we only need to guarantee the inclusion

(17) J (Y, aλ)s ⊆ τ(Ys, a
λ
s ).

Furthermore, in light of Propositions 3.5 and 3.9 it is enough to only consider the case
λ < m.

Let g1, . . . , gm be general linear combinations of the hi with coefficients in k, and
g =

∏m
i=1 gi, so that by Proposition 3.4 we have J (Y, aλ) = J (Y, gλ/m) for all λ < m. As

we have seen in §3.2, in the case of multiplier ideals of bounded exponents we only have to
consider finitely many such exponents (the candidate jumping numbers), hence we may
assume after taking a model over A that for every closed point s ∈ SpecA we have

(18) J (Y, aλ)s = J (Y, gλ/m)s

for all λ < m.

Suppose now that we can find a dense set S of closed points in SpecA such that

(19) J (Y, gλ/m)s ⊆ τ(Ys, g
λ/m
s )

for every s ∈ S and every λ < m. Since g ∈ am, we have by Propositions 3.8 and 3.7

(20) τ(Ys, g
λ/m
s ) ⊆ τ(Ys, (a

m
s )λ/m) ⊆ τ(Ys, a

λ
s )

for every s ∈ S. Putting together (18), (19), and (20), we get (17), which completes the
proof of the proposition. �

5. A conjecture regarding the Frobenius action on the cohomology of
the structure sheaf

In this section we discuss our conjecture about Frobenius actions, and deduce some
consequences. Let k be an algebraically closed field of characteristic zero. We will freely
use the notation and notions introduced in §2.1 and §2.2. Recall the conjecture made in
the Introduction: suppose that X is a connected, nonsingular n-dimensional projective
algebraic variety over k, and XA is a model of X over the finitely generated Z-subalgebra
A of k. Conjecture 1.1 asserts that there is a dense set of closed points S ⊂ SpecA such
that the Frobenius action F : Hn(Xs,OXs)→ Hn(Xs,OXs) is semisimple for every s ∈ S.

Remark 5.1. In fact, one expects that the analogous assertion would be true for the
Frobenius action on each of the cohomology vector spaces H i(Xs,OXs). Moreover, it is
expected that there is a dense set of closed points s ∈ SpecA such that each Xs is ordinary
in the sense of Bloch and Kato [BK] (see also [CL, Exposé III] for a nice introduction
to ordinary varieties). As follows from [BK, Proposition 7.3], if Xs is ordinary, then the
action of Frobenius on the Witt vector cohomology H i(Xs,WOXs) is bijective. Note that
we have an exact sequence of sheaves of abelian groups

0→ WOXs

V→ WOXs → OXs → 0
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that is compatible with the action of Frobenius, where V is the Verschiebung operator.
From the long exact sequence

H i(Xs,WOXs)→ H i(Xs,WOXs)→ H i(Xs,OXs)→ H i+1(Xs,WOXs)→ H i+1(Xs,WOXs)

that is compatible with the action of Frobenius, and the 5-Lemma, it follows that Frobe-
nius acts bijectively on H i(Xs,OXs).

However, our hope is that proving that the Frobenius action on Hn(Xs,OXs) is
semisimple would be easier than showing that Xs is ordinary.

Remark 5.2. If Conjecture 1.1 holds, then given finitely many varieties X(1), . . . , X(r)

as above, with dim(X(i)) = di, we may consider models X
(1)
A , . . . , X

(r)
A over A. In this

case, there is a dense set of closed points S ⊂ SpecA such that the action of F on each

cohomology group Hdi(X
(i)
s ,O

X
(i)
s

), with s ∈ S, is semisimple. Indeed, it is enough to

apply the conjecture for X = X(1) × · · · × X(r), using Remark 2.3 and the fact that by
Künneth’s Formula we have

Hd(Xs,OXs) =
r⊗
i=1

Hdi(X(i)
s ,O

X
(i)
s

),

where d = dim(X) =
∑r

i=1 di.

Proposition 5.3. In order to prove Conjecture 1.1 for every algebraically closed field k
of characteristic zero, it is enough to prove it for the field of algebraic numbers k = Q.

Proof. Suppose that X is defined over k, and let XA be a model over A, where A ⊂ k is a
Z-algebra of finite type. As pointed out in Remark 2.5, it is enough to show that there is
a closed point s ∈ SpecA such that the Frobenius action on Hn(Xs,OXs) is semisimple.

The Q-algebra AQ := A ⊗Z Q is finitely generated, hence if m is a prime ideal of
A such that mAQ is a maximal ideal of AQ, then K = AQ/mAQ is a finite extension of
Q. If OK is the ring of integers in K, then using the finite generation of A over Z we see
that there is a nonzero h ∈ OK such that the surjective morphism AQ → K induces a
morphism A→ B = (OK)h.

Let XB = XA ×SpecA SpecB and XQ = XA ×SpecA Spec Q, where the morphism

A → Q is given by the composition A → K ↪→ Q. Since we may assume that XA is
smooth and projective over SpecA, it follows that XQ is smooth and projective over

Q, and clearly XB is a model of XQ over SpecB. If we know Conjecture 1.1 over Q,
then it follows that there is a closed point t ∈ SpecB such that the Frobenius action on
Hn((XQ)t,O(XQ)t) is semisimple. Since (XQ)t = Xs, where s ∈ SpecA is the image of t,

it follows that s satisfies our requirement. �

Example 5.4. If X is a g-dimensional abelian variety, then we may assume that Xs is an
abelian variety over k(s) for every closed point s ∈ SpecA. In this case h1(Xs,OXs) = g,
and the action of Frobenius on Hg(Xs,OXs) ' ∧gH1(Xs,OXs) is semisimple if and only
if the action of Frobenius on H1(Xs,OXs) is semisimple. This is the case if and only if

Xs is ordinary in the usual sense, that is, if Xs×Spec k(s) Spec k(s) has pg p-torsion points,
where p = char(k(s)).
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By Proposition 5.3, in order to check Conjecture 1.1 in this case we may assume
that X is defined over Q. The conjecture is then known if g ≤ 2, but it is open in general.
The case of elliptic curves is classical, while the case g = 2 is due to Ogus [Og, Proposition
2.7] (see also [CL, Théorème 6.3] for a proof of this result).

Example 5.5. If X is a smooth projective curve of genus g, then the action of Frobenius
on H1(Xs,OXs) is semisimple if and only if the Jacobian of Xs is ordinary in the usual
sense. As pointed out in the previous example, Conjecture 1.1 is known in this case for
g ≤ 2, but it is open even in this case for g ≥ 3.

In what follows we will assume Conjecture 1.1 (for all smooth, connected projective
varieties), and then deduce several stronger versions, working in the relative setting, and
in the presence of a simple normal crossings divisor. We start by considering a pair (X,E),
whereX is a connected, nonsingular n-dimensional projective variety over k, and E = E1+
. . .+Er is a reduced simple normal crossings divisor on X. Let XA be a model of X over
SpecA. We may assume that XA is smooth over A, and that we have irreducible divisors
(Ei)A on XA giving models for the Ei, such that every intersection (Ei1)A ∩ . . . ∩ (Eim)A
is smooth over A. In particular, if we put EA =

∑r
i=1(Ei)A, then for every closed point

s ∈ SpecA, the divisor Es on Xs has simple normal crossings.

Lemma 5.6. With the above notation, if Conjecture 1.1 holds, then there is a dense
set of closed points S ⊂ SpecA such that the Frobenius action F : Hn−1(Es,OEs) →
Hn−1(Es,OEs) is semisimple for all s ∈ S.

Proof. Let us fix a closed point s ∈ SpecA. For every subset J ⊆ {1, . . . , r} we put
(EJ)s =

⋂
i∈J(Ei)s (of course, these sets will be empty for some J). Note that we have an

acyclic complex

C• : 0→ C0 d0→ C1 d1→ · · · d
n−1

→ Cn → 0,

where C0 = (OE)s, and for all p > 0 we have Cp = ⊕|J |=pO(EJ )s . Furthermore, we have
a morphism of complexes C• → F∗C

•. If we put Zi = Ker(di) for 1 ≤ i ≤ n − 1 and
Zn = Cn, then we have exact sequences

(21) Hn−p−1(Xs, Z
p+1)→ Hn−p(Xs, Z

p)→ Hn−p(Xs, C
p)

compatible with the action of Frobenius. Applying Conjecture 1.1 to all connected com-
ponents of all the intersections Ei1 ∩ . . . ∩ Eim simultaneously (see Remark 5.2), we see
that we have a dense set of closed points S ⊂ SpecA such that the Frobenius action on
each Hn−p(Xs, C

p) is semisimple for p ≥ 1 and s ∈ S. Using Lemma 2.4 and the exact
sequences (21), we see by descending induction on p ≤ n that for every s ∈ S, the Frobe-
nius action on each Hn−p(Xs, Z

p) is semisimple. By taking p = 1, we get the assertion in
the lemma. �

Corollary 5.7. With the notation in the lemma, and still assuming Conjecture 1.1, there
is a dense set of closed points S ⊂ SpecA such that the Frobenius action

F : Hn(Xs,O(−Es))→ Hn(Xs,O(−Es))

is semisimple for every s ∈ S.
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Proof. Consider the exact sequence

T • : 0→ OXs(−Es)→ OXs → OEs → 0.

Note that we have a morphism of exact sequences T • → F∗T
•. Applying Lemma 2.4 to

the exact sequence

Hn−1(Es,OEs)→ Hn(Xs,OXs(−Es))→ Hn(Xs,OXs),

as well as Conjecture 1.1 to Hn(Xs,OXs) and Lemma 5.6 to Hn−1(Es,OEs), it follows
that the Frobenius action on Hn(Xs,O(−Es)) is semisimple for all s in a suitable dense
set of closed points S ⊂ SpecA. �

Still keeping the above notation, let s ∈ SpecA be a closed point. Recall that
we have a canonical surjective OXs-linear map ts := tXs,Es : F∗(ωXs(Es)) → ωXs(Es)
induced by the Cartier isomorphism. For every e ≥ 1 we also consider the composition
tes : F e

∗ (ωXs(Es))→ ωXs(Es).

Corollary 5.8. With the notation in Lemma 5.6, and assuming that Conjecture 1.1 holds,
there is a dense set of closed points S ⊂ SpecA such that the map induced by tes

H0(Xs, F
e
∗ (ωXs(Es)))→ H0(Xs, ωXs(Es))

is surjective for all e ≥ 1 and all s ∈ S.

Proof. It is enough to show that every closed point s ∈ SpecA that satisfies Corol-
lary 5.7 also satisfies our conclusion. As abelian groups, we have H0(Xs, F

e
∗ (ωXs(Es))) =

H0(Xs, ωXs(Es)), and the map induced by tes is just the eth iterate of the map induced by ts.
Therefore is it enough to prove the assertion in the case e = 1. On the other hand, this case
follows if we show the surjectivity when e is such that the cardinality of the residue field
k(s) is pe. Note that in this case the map tes : H0(Xs, ωXs(Es))→ H0(Xs, ωXs(Es)) is k(s)-
linear. Its Serre dual is the map F e : Hn(Xs,OXs(−Es)) → H0(Xs,OXs(−Es)), where F
denotes the Frobenius action on Hn(Xs,OXs(−Es)). By assumtion, F is semisimple hence
bijective, which implies the assertion in the lemma. �

Remark 5.9. It follows from the proofs of Lemma 5.6 and of Corollaries 5.7 and 5.8 that
in order to get the assertions in these two corollaries we need to apply Conjecture 1.1
to finitely many smooth projective varieties. It follows from Remark 5.2 that if we have
finitely many pairs (X(1), E(1)), . . . , (X(m), E(m)) as in Corollaries 5.7 and 5.8, then we can
find a dense set of closed points s ∈ SpecA such that the conclusion in each of of these
two corollaries holds for all these pairs. In particular, in Corollary 5.8 we do not need to
assume that X is connected.

We now turn to the relative setting, and state the main result of this section.

Theorem 5.10. Suppose that Conjecture 1.1 holds. Let π : X → T be a projective mor-
phism of schemes over k, with X nonsingular, and let E = E1 + . . . + Er be a reduced
simple normal crossings divisor on X. If πA : XA → TA and EA are models over A for π
and E, respectively, then there is a dense set of closed points S ⊂ SpecA such that for
every e ≥ 1 and every s ∈ S, the induced morphism

(22) (πs)∗(F
e
∗ (ωXs(Es)))→ (πs)∗(ωXs(Es))
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is surjective.

Proof. Suppose first that T is affine. Since π is projective, we have a closed immersion
X ↪→ PN × T , for some N ≥ 1. Let us fix an open immersion T ↪→ T ′, where T ′ is
projective. Let X be the closure of X in PN×T ′ (with the reduced scheme structure), and
π : X → T ′ the induced morphism. Since X ∩ (PN ×T ) = X, it follows that π−1(T ) = X.

By hypothesis, X is nonsingular and E has simple normal crossings, hence by the
standard results on resolution of singularities in characteristic zero, there is a projective
morphism ϕ : X ′ → X that is an isomorphism over X, with X ′ nonsingular, and a reduced
simple normal crossings divisor E ′ on X ′ such that E ′|ϕ−1(X) = ϕ−1(E). If π′ = π◦ϕ, then
X is isomorphic to (π′)−1(T ), and it is clear that if the assertion in the theorem holds for
π′ and E ′, then it also holds for π and E. Therefore we may assume that X and T are
projective.

We now choose a very ample line bundle L on T such that π∗(ωX(E))⊗L is globally
generated. After possibly replacing A by some localization Aa we may assume that for
every closed point s ∈ SpecA we have (ωX)s = ωXs and π∗(ωX(E))s = (πs)∗(ωXs(Es)). In
particular, (πs)∗(ωXs(Es))⊗ Ls is globally generated.

Since L is very ample, π∗(L) is globally generated, hence by Bertini’s Theorem
(recall that char(k) = 0) if D′ ∈ |L| is a general element, then E ′ = π∗(D′) has the
property that E+E ′ is a reduced simple normal crossings divisor. Of course, it is enough
to ensure that (22) is surjective after tensoring with Ls, and since (πs)∗(ωXs(Es))⊗Ls is
globally generated, it is enough to show that the map

(23) H0(Ts, (πs)∗(F
e
∗ (ωXs(Es)))⊗ Ls)→ H0(Ts, (πs)∗(ωXs(Es))⊗ Ls)

is surjective. By the projection formula, (23) gets identified with the map

(24) H0(Xs, F
e
∗ (ωXs(Es + peE ′s)))→ H0(Xs, ωXs(Es + E ′s)).

Applying Corollary 5.8 to X and E + E ′, we deduce that there is a dense set of closed
points S ⊆ SpecA such that the composition

H0(Xs, F
e
∗ (ωXs(Es + E ′s)))→ H0(Xs, F

e
∗ (ωXs(Es + peE ′s)))→ H0(Xs, ωXs(Es + E ′s))

is surjective for every s ∈ S. This clearly implies the surjectivity of (24), and completes
the proof in the case when T is affine.

Note that the proof in this special case relies on an application of Corollary 5.8
for one pair. In general, we consider a finite affine cover T =

⋃
i Ui. Combining what we

proved so far with Remark 5.9, we see that there is a dense set of closed points S ⊆ SpecA
such that the assertion in the theorem holds for all morphisms π−1(Ui) → Ui and for all
s ∈ S. This implies the surjectivity of the map in (22) for every s ∈ S, which completes
the proof of the theorem. �

Remark 5.11. It follows from the proof of Theorem 5.10, using also Remark 5.9, that
given finitely many morphisms π(i) : X(i) → T (i) and divisors E(i) on X(i) satisfying the
hypothesis in the theorem, there is a dense set of closed points of SpecA that satisfies the
conclusion of the theorem with respect to each of the morphisms π(i).
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6. The connection between the two conjectures

We can now prove our main result, stated in the Introduction.

Proof of Theorem 1.3. Let us assume that Conjecture 1.1 holds. Actually, we will use its
consequence in Theorem 5.10. It follows from Proposition 4.3 that in order to show that
Conjecture 1.2 holds, it is enough to consider the following setup. Suppose that Y is a
nonsingular affine variety over an algebraically closed field k of characteristic zero. Let
a = (f) be a nonzero principal ideal on Y . We need to show that given a model of (Y, a)
over A, where A is a subalgebra of k of finite type over Z, there is a dense set of closed
points S ⊂ SpecA such that

(25) τ(Ys, f
λ
s ) = J (Y, fλ)s

for all s ∈ S and all λ ∈ R≥0. Furthermore, given finitely many such pairs (Y, a), we need
to be able to do this simultaneously for all the pairs.

After covering Y by suitable affine open subsets, we may assume that f : Y → A1

is smooth over A1 r {0}. Indeed, there is an open neighborhood U of V (f) such that f
is smooth on U r f−1(0), while on Y r V (f) we may replace f by 1.

Therefore we can apply the semi-stable reduction theorem of [KKMS] for f to get
a positive integer d ≥ 1 with the following property. If β : A1 → A1 is given by β(t) = td,
and if we consider the Cartesian diagram

(26) W
α //

g

��

Y

f
��

A1
β // A1

then there is a projective morphism ψ : Z → W that satisfies

(i) ψ is an isomorphism over A1 r {0} (in particular, ψ is birational).
(ii) Z is nonsingular.

(iii) ψ∗(g) defines a reduced simple normal crossings divisor on Z.

Let W0 be an irreducible component of W that maps surjectively onto Y , and let
X be the corresponding irreducible component of Z that surjects onto W0. If Y ′ is the
normalization of W0, then we have induced morphisms

X
π→ Y ′

ϕ→ Y.

We denote by h the pull-back of g to Y ′ By construction, ϕ is finite and surjective, étale
over Y r V (f). In particular, the singular locus of Y ′ is contained in V (h).

Let D′ = −KY ′/Y be the divisor defined as in Proposition 3.2. Note that D′ is
supported on V (h). It follows from Proposition 3.2 that for every λ ∈ R≥0 we have

(27) J (Y, fλ) = ϕ∗J (Y ′, D′, hmλ) ∩K(Y ).

We define the divisor D′X as in §3.1, such that in particular KX +D′X and π∗(KY ′ +
D′) are linearly equivalent. Let E be the reduced simple normal crossings divisor defined
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on X by π∗(h). Note that D′X is supported on E, which has simple normal crossings,
hence it follows from Proposition 3.1 and the definition of multiplier ideals that for every
λ ∈ R≥0 we have

(28) J (Y ′, D′, hmλ) = π∗OX(−D′X − bmλEc).

We choose a model over a finitely generated Z-algebra A, contained in k, for all the
above varieties and morphisms. We may assume that the above properties extend to all
fibers over k(s), for s ∈ SpecA a closed point. Furthermore, after replacing A by some
localization Aa, we may assume that for every closed point s ∈ SpecA the characteristic
of k(s) does not divide [K(Y ′) : K(Y )]. In this case Theorem 3.10 applies to give

(29) τ(Ys, f
λ
s ) = (ϕs)∗τ(Y ′s , D

′
s, h

mλ
s ) ∩K(Ys)

for every closed point s ∈ SpecA and every λ ∈ R≥0. On the other hand, we may assume
that (27) induces

(30) J (Y, fλ)s = (ϕs)∗J (Y ′, D′, hmλ)s ∩K(Ys),

and (28) induces

(31) J (Y ′, D′, hmλ)s = (πs)∗OXs(−D′Xs
− bmλEsc)

for every s ∈ SpecA and every λ ∈ R≥0. Therefore in order to guarantee τ(Ys, f
λ
s ) =

J (Y, fλ)s for all λ, it is enough to ensure

(32) τ(Y ′s , D
′
s, h

λ
s ) = (πs)∗OXs(−D′Xs

− bmλEsc)

for all λ ∈ R≥0.

We now apply Theorem 5.10 to the morphism π : X → Y ′ and to the reduced simple
normal crossings divisor E. It follows that there is a dense set of closed points S ⊂ SpecA
such that

(πs)∗(F
e
∗ (ωXs(Es)))→ (πs)∗(ωXs(Es))

is surjective for every s ∈ S and every e ≥ 1. The equality (32) now follows applying
Lemma 6.1 below to the morphism πs : Xs → Y ′s , the divisor D′s and hs ∈ Γ(Y ′s ,OY ′s ). �

Lemma 6.1. Let π : X → T be a birational morphism of schemes of finite type over a
perfect field of characteristic p > 0, with T normal and irreducible, and h ∈ Γ(T,OT )
nonzero. If D is a divisor on T supported on V (h) such that KT + D is Cartier, and if
the following hold:

(i) X is nonsingular.
(ii) If H = V (h), then E := π∗(H) is reduced and has simple normal crossings.

(iii) π is proper, and an isomorphism over T r Supp(H).
(iv) The map π∗(F

e
∗ (ωX(E)))→ π∗(ωX(E)) is surjective for every e ≥ 1,

then τ(T, hλ) = π∗OX(−DX − bλEc) for every λ ∈ R≥0, where DX is defined as in §3.1.
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Proof. Note that by (iii), the divisor DX is supported on E, hence DX , E have simple
normal crossings by (ii). Proposition 4.2 gives the inclusion “⊆” in the statement, hence
we just need to show that

(33) π∗OX(−DX − bλEc) ⊆ τ(T, hλ)

for every λ ≥ 0.

After replacing D by D + `H, with ` � 0, we may assume that D is effective. It
follows from the projection formula and from Proposition 3.9 that it is enough to prove
(33) for λ < 1. Let us fix such λ. Note that in this case, the left-hand side of (33) is equal

to π∗OX(−DX). We write DX =
∑N

i=1 aiEi.

After taking a finite affine open cover of T , we may assume that T is affine. For the
description of τ(T, hλ) we use formula (12). Note that by (i) and (iii), the singular locus of
T is contained in Supp(H). Since D is also supported on Supp(H), we see that if `� 0,
then we may take c = h`. We fix ` with this property such that, in addition, ` ≥ ai for all
i. It follows that it is enough to show that if e� 0 then

(34) π∗OX(−DX) ⊆ ϕ
(e)
D

(
F e
∗ (h

de · OT ((1− pe)(KT +D)))
)
,

where de = dλ(pe − 1)e+ `.

For the sake of a more compact notation, let us put L = OT ((1− pe)(KT +D)) and
b = OX(−E). We use the commutative diagram (9) to write the right-hand side of (34)
as

(35) π∗(ϕ
(e)
DX

)
(
F e
∗ (ρ(hde · L))

)
,

in which we recall that ρ : L → π∗(π
∗(L)) denotes the canonical isomorphism. It is clear

that F e
∗ (ρ(hde · L)) = π∗

(
F e
∗ (b

de · π∗(L))
)
. For e� 0, ϕ

(e)
DX

induces a surjection on X

(36) u : F e
∗ (b

de · π∗(L))→ OX(−DX)

This follows from Example 3.6 and the fact that b(de − ai)/pec = 0 for e� 0.

Claim. π∗(u) : π∗
(
F e
∗ (b

de · π∗(L))
)
→ π∗OX(−DX) is surjective.

If this holds, then the expression in (35) is equal to π∗OX(−DX), which gives the
inclusion in (34).

Therefore the proof of the lemma is complete if we show the Claim. Note that the
surjectivity of π∗(u) is equivalent to the surjectivity of π∗(u) ⊗ OT (KT + D). Using the
projection formula, this becomes equivalent to the surjectivity of

(37) π∗ (F e
∗ (ωX(DX − deE)))→ π∗(ωX).

For e � 0, the divisor (DX − deE) + (pe − 1)E is effective, hence the surjectivity of the
map in (37) follows from the surjectivity of

(38) w : π∗ (F e
∗ (ωX(−(pe − 1)E)))→ π∗(ωX).

This in turn is surjective if and only if w ⊗ OT (H) is surjective, but the latter map is
identified via the projection formula with

π∗ (F e
∗ (ωX(E)))→ π∗(ωX(E)),
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which is surjective by the assumption in (iv). This completes the proof of the lemma. �
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