Dear Pati,

I decided to type up the reply to your question, so that you have a proper record of it. I worked it out with Paramu's help. As you see, it is a bit intricate. Let $(X, 0) \hookrightarrow (\mathbf{C}^N, 0)$ be the germ of an isolated 3-dim. singularity.

Proposition 1 Let X be a representative of the germ (X,0). Then after a linear change of coordinates, and shrinking the representative X if necessary, the following is true:

let

$$D_i = X - \{0\} \cap \{z_i = 0\}, \ 1 \le i \le n,$$

and let

 $E_{ijk} = \text{ zero locus (with its possibly non-reduced structure) of } \omega_{ijk} = d z_i \wedge d z_j \wedge d z_k$ on $X - \{0\}$, for any $1 \le i < j < k \le N$.

Then

- (i) D_i is smooth for all $1 \le i \le N$
- (ii) E_{ijk} is smooth for all $1 \le i < j < k \le N$
- (iii) D_i , D_j meet transversally for all $i \neq j$
- (iv) $E_{ijk}, E_{i'j'k'}$ meet transversally for all $(i, j, k) \neq (i', j', k')$
- (v) E_{ijk} and D_l meet transversally for all (i, j, k) and all l.

Here,

- (i) in (iv) above, some of the coordinates of (i, j, k), (i', j', k') are allowed to coincide, and
- (ii) in (v) above, the cases l = i, j, k are allowed.

We need to use the following transversality lemma, which is (I guess) folklore (but I don't know a reference). Its a slight generalisation of Kleiman's Bertini theorem, as stated in Hartshorne's book, and has a similar proof (there is also an article of Kleiman *The transversality of the general translate* which has related arguments).

Lemma 1 Let Y be a complex manifold, and let $\mathcal{E}_1, \dots, \mathcal{E}_k$ be locally free sheaves of ranks s_1, \dots, s_k respectively. Let V_i be an n_i -dimensional space of global sections of \mathcal{E}_i which generates \mathcal{E}_i , for each $1 \leq i \leq k$. Let r_i be a positive integer, with $r_i \leq n_i$, and set $m_i = \min\{r_i, s_i\}$; let \mathbf{G}_i be the Grassmannian of r_i -dimensional subspaces of V_i , and set $\mathbf{G} = \prod_{i=1}^k \mathbf{G}_i$. For $t = (t_1, \dots, t_k) \in \mathbf{G}$, if $W_i(t) \subset V_i$ are the corresponding subspaces, let

$$Y_t(\mathcal{E}_1, \cdots, \mathcal{E}_k) = \{ y \in Y \mid \text{ for each } 1 \le i \le k, W_i(t) \otimes \mathcal{O}_Y \to \mathcal{E}_i \text{ is not surjective} \}$$

with its natural (possibly non-reduced) structure as an analytic space, defined locally in Y by the vanishing of determinants.

Then there is a dense subset $U \subset \mathbf{G}$, whose complement is a countable union of locally closed analytic subsets of \mathbf{G} of smaller dimension, such that for $t \in U$,

- (i) $Y_t(\mathcal{E}_1, \dots, \mathcal{E}_k)$ is empty, or has codimension $\sum_{i=1}^k (r_i m_i + 1)(s_i m_i + 1)$ in Y
- (ii) the singular locus of $Y_t(\mathcal{E}_1, \dots, \mathcal{E}_k)$ is empty, or has codimension $\sum_{i=1}^k (r_i m_i + 2)(s_i m_i + 2)$ in Y
- (iii) the singular locus of the singular locus of $Y_t(\mathcal{E}_1, \dots, \mathcal{E}_k)$ is empty, or has codimension $\sum_{i=1}^k (r_i - m_i + 3)(s_i - m_i + 3)$ in Y
- (iv) $Y_t(\mathcal{E})$ is Cohen-Macaulay (i.e., its local rings are Cohen-Macaulay).

Proof: Let \mathbf{G}'_i be the Grassmannian of s_i dimensional quotients of V_i , and let $f_i: Y \to \mathbf{G}'_i$ be the classifying map of \mathcal{E}_i . Let

$$\Gamma_Y = \{(t, y) \in \mathbf{G} \times Y \mid y \in Y_t(\mathcal{E}_1, \cdots, \mathcal{E}_k)\}.$$

If $\mathbf{G}' = \prod_{i=1}^{k} \mathbf{G}'_{i}$, and \mathcal{Q}_{i} is the universal quotient bundle of rank s_{i} on the Grassmannian \mathbf{G}'_{i} , then there is a 'universal' such subvariety

$$\Gamma = \{(t, y) \in \mathbf{G} \times \mathbf{G}' \mid y \in \mathbf{G}'_t(\mathcal{Q}_1, \cdots, \mathcal{Q}_k)\},\$$

which is Γ_Y for the case $Y = \mathbf{G}', \, \mathcal{E}_i = \mathcal{Q}_i$.

The projections $\Gamma \to G$, $\Gamma \to \mathbf{G}'$ are known to be locally trivial fibre bundles (for the Zariski topology), whose fibres are irreducible and Cohen-Macaulay; further,

(a) Γ has codimension $\sum_{i=1}^{k} (r_i - m_i + 1)(s_i - m_i + 1)$ in $\mathbf{G} \times \mathbf{G}'$;

(b) the singular locus Γ_{sing} of Γ has codimension $\sum_{i=1}^{k} (n_i - m_i + 2)(s_i - m_i + 2)$ in $\mathbf{G} \times \mathbf{G}'$ – it is the locus of pairs (t, y) where for each i, the map $W_i(t) \to \mathcal{Q}_i \otimes \mathbf{C}(y_i)$ has rank $\leq m_i - 2$;

(c) the singular locus of Γ_{sing} has codimension $\sum_{i=1}^{k} (r_i - m_i + 3)(s_i - m_i + 3)$ in $\mathbf{G} \times \mathbf{G}'$ – it is the locus of pairs (t, y) such that for each *i* the rank of $W_i(t) \to \mathcal{Q}_i \otimes \mathbf{C}(y_i)$ is $\leq m_i - 3$.

These assertions are easily (??!) reduced to the case k = 1, since

$$\mathbf{G}'_t(\mathcal{Q}_1,\cdots,\mathcal{Q}_k) = \prod_{i=1}^k (\mathbf{G}'_i)_{t_i}(\mathcal{Q}_i)$$

(for the case k = 1, see, for example, Fulton's *Intersection Theory*, Ch. 14, especially Thm. 14.3). Hence the same estimates hold for the codimensions in **G** of any fibre of $\Gamma \rightarrow \mathbf{G}'$, and for that of its singular locus, etc.

Now $\Gamma_Y = \Gamma \times_{\mathbf{G}'} Y \to Y$ is also a locally trivial fibre bundle over the complex manifold Y, so the same estimates hold for the codimension in $\mathbf{G} \times Y$ of Γ_Y , that of its singular locus, etc. The first three assertions of the lemma now follow from Sard's theorem applied to the projection to \mathbf{G} . Since Γ, X are Cohen-Macaulay, so is $\mathbf{G} \times Y$; since $\mathbf{G} \times \mathbf{G}'$ is smooth, the fibre product $\Gamma_Y \subset \mathbf{G} \times X$ is locally defined by the vanishing of a regular sequence, and so is Cohen-Macaulay. Hence any fibre $Y_y(\mathcal{E})$ of $\Gamma_Y \to \mathbf{G}$, which has the 'expected' codimension in X, is Cohen-Macaulay (again, since \mathbf{G} is smooth, such a fibre is defined by the vanishing of a regular sequence).

I don't think the estimate for the dimension of the 'singular locus of the singular locus', or the Cohen-Macaulay property, are needed in the proof of the above proposition, but it may be useful in other contexts. One has a similar statement for the higher iterated singular loci.

If Y is an irreducible analytic space, call a subset $U \subset Y$ big if it is the complement of a countable union of locally closed analytic subsets of smaller dimension. Then

- (i) any countable intersection of big subsets is big
- (ii) if $f: Y' \to Y$ is a morphism of irreducible analytic spaces, $U \subset Y$ a big subset, then $f^{-1}(U) \subset Y'$ is big
- (iii) if $f: Y' \to Y$ is a morphism of irreducible analytic spaces with open, dense image and irreducible fibres, $U' \subset Y'$ a subset whose complement is the countable union of locally closed analytic subsets, such that for some big subset $U \subset Y$, $f^{-1}(y) \cap U' \subset f^{-1}(y)$ is big for all $y \in U$, then $U' \subset Y'$ is big (the hypotheses here can probably be relaxed). This is because

Let $G = GL_N(\mathbf{C})$, which we regard as parametrizing possible bases in \mathbf{C}^N . By the above remarks, it suffices to show that each of the smoothness/transversality conditions is (individually) valid for all bases of \mathbf{C}^N in some big subset of G.

We now observe the following. Note that when we assert below that an variety is smooth, the variety always comes equipped with a natural structure as a possibly non-reduced analytic space, and we are asserting that this analytic space is a complex manifold.

1. For a given index i, there is a big subset of G on which the i^{th} hyperplane section of $X - \{0\}$ is a smooth surface.

We apply lemma 1 with $Y = X - \{0\}$, k = 1, $\mathcal{E} = \mathcal{O}_{X-\{0\}}$, $V = \mathbb{C}^N$ and r = 1. Here elements of V are considered as homogeneous linear functions on $X - \{0\}$. This gives a big subset $U \subset \mathbb{P}^{N-1}$, the projective space of

lines in \mathbb{C}^N , parametrizing smooth hyperplane sections. The choice of the index *i* yields a surjective mapping $\varphi_i : G \to \mathbb{P}^{N-1}$, giving it the structure of a homogeneous space; the desired big subset of *G* is $\varphi^{-1}(U)$.

2. For given $i \neq j$, there is a big subset of G on which the intersection of the i^{th} and j^{th} hyperplane sections is transversal.

We apply lemma 1 with $Y = X - \{0\}$, k = 1, $\mathcal{E} = \mathcal{O}_{X-\{0\}}^{\oplus 2}$, $V = \mathbf{C}^N \oplus \mathbf{C}^N$ and r = 1. Elements of V are ordered pairs of homogeneous linear functions. This yields a big subset U' of $\mathbf{P}^{2N-1} = \mathbf{P}(\mathbf{C}^N \oplus \mathbf{C}^N)$. The choice of indices $i \neq j$ yields a map $\varphi_{ij} : G \to \mathbf{P}^{2N-1}$ whose image is a Zariski open subset, and $\varphi_{ij}^{-1}(U')$ is the desired big subset of G.

3. For a given triplet (i, j, k), there is a big subset of G such that the corresponding E_{ijk} is a smooth surface.

We apply lemma 1 with $Y = X - \{0\}$, k = 1, $\mathcal{E} = \Omega^1_{X-\{0\}}$, r = 3. Elements of V yield differentials of homogeneous linear functions on $X - \{0\}$. The Grassmannian of 3 dim. subspaces of \mathbb{C}^N is a homogeneous space for G, and the choice of indices yields a surjection $\varphi_{ijk} : G \to \mathbb{G}(3, \mathbb{C}^N)$; the inverse image under this of the big set of lemma 1 is the desired subset of G.

4. For a given triplet (i, j, k) and a given index $l \notin \{i, j, k\}$, there is a big open subset of G such that the corresponding intersection $E_{ijk} \cap D_l$ is transversal.

We apply lemma 1 with $Y = X - \{0\}$, k = 2, $\mathcal{E}_1 = \mathcal{O}_{X-\{0\}}$, $\mathcal{E}_2 = \Omega^1_{X-\{0\}}$, $V_1 \cong V_2 \cong \mathbb{C}^N$, $r_1 = 1$, $r_2 = 3$, where V_1 is the space of homogeneous linear functions, and V_2 the space of differentials of homogeneous linear functions. Now use the fact that the choice of indices yields a map $\psi_{l,ijk}$: $G \to \mathbb{P}^{N-1} \times \mathbb{G}(3, \mathbb{C}^N)$; since $l \notin \{i, j, k\}$, its image is a Zariski open subset.

5. For a given pair of triplets (i, j, k) and (i', j', k') with no common indices, there is a big subset of G on which the intersection $E_{ijk} \cap E_{i'j'k'}$ is transversal.

We apply lemma 1 with $Y = X - \{0\}$, k = 2, $\mathcal{E}_1 \cong \mathcal{E}_2 \cong \Omega^1_{X-\{0\}}$, $V_1 \cong V_2 \cong \mathbf{C}^N$ (considered as differentials of homogeneous linear functions), $r_1 = r_2 = 3$. The choice of indices yields a map $\psi_{ijk,i'j'k'} : G \to \mathbf{G}(3, \mathbf{C}^N) \times \mathbf{G}(3, \mathbf{C}^N)$ whose image is a Zariski open subset, since all 6 indices are distinct.

6. Let i, j, k be distinct indices, and choose $l \in \{i, j, k\}$; then there is a big subset of G for which $D_l \cap E_{ijk}$ is transversal.

The choice of indices yields a map $\psi_{l,ijk}: G \to \mathbf{P}^{N-1} \times \mathbf{G}(3, \mathbf{C}^N)$ whose

image is the closed subvariety $\mathbf{F}(1,3)$ consisting of pairs of subspaces (L,W) of \mathbf{C}^N with dim L = 1, dim W = 3 and $L \subset W$ (this is a flag variety). We use the criterion (iii) above, applied to the projection $p: \mathbf{F}(1,3) \to \mathbf{G}(3,\mathbf{C}^N)$ (which is surjective with irreducible fibres), in order to produce a big subset of $\mathbf{F}(1,3)$ parametrizing smooth intersections. First, the subset $U' \subset \mathbf{F}(1,3)$ parametrizing such transversal intersections is the complement of a countable union of locally closed analytic subsets, since it is the image of an analytic set under an analytic map (the projection to $\mathbf{F}(1,3)$ from the 'universal' such intersection, which is a closed analytic subset of $\mathbf{F}(1,3) \times X - \{0\}$). So we are reduced to showing that for some big set $U \subset \mathbf{G}(3, \mathbf{C}^N)$, and any fixed $W \in U$, there is a big subset of the fibre $p^{-1}(W) \cong \mathbf{P}^2$, such that the points corresponding to smooth intersections form a big subset. There are big subsets U_1, U_2 of $\mathbf{G}(3, \mathbf{C}^N)$ such that (a) for $W \in U_1$, the subvariety of $X - \{0\}$ on which W fails to generate $\Omega^1_{X-\{0\}}$ is a smooth surface S_W , and (b) for $W \in U_2$, W generates $\mathcal{O}_{X-\{0\}}$ (we may have to shrink the representative of the germ to do this); equivalently, if z_1, z_2, z_3 is a basis for W, then $\{0\}$ is the locus of common zeroes of the z_i . Now take $U = U_1 \cap U_2$. For $W \in U$, $S_W \subset X - \{0\}$ is a smooth complex surface; apply lemma 1 with $Y = S_W$, $k = 1 \mathcal{E} = \mathcal{O}_Y, r = 1 \text{ and } V = W$; this yields a big subset of $\mathbf{P}^2 = p^{-1}(W)$ parametrising smooth hyperplane sections of S_W by hyperplanes defined by the vanishing of elements of W.

7. Let (i, j, k), (i', j', k') be two sets of indices with exactly two indices in common; then there is a big subset of G on which $E_{ijk} \cap E_{i'j'k'}$ is transversal except at a finite set.

Let $\mathbf{F}(2,3) \subset \mathbf{G}(2,\mathbf{C}^N) \times \mathbf{G}(3,\mathbf{C}^N)$ be the flag variety parametrizing flags of subspaces $W_1 \subset W_2 \subset \mathbf{C}^N$ with dim $W_1 = 2$, dim $W_2 = 3$, and let $p: \mathbf{F}(2,3) \to \mathbf{G}(2,\mathbf{C}^n)$ be the projection. Let $\mathbf{F} = \mathbf{F}(2,3) \times_{\mathbf{G}(2,\mathbf{C}^N)} \mathbf{F}(2,3)$ be the fibre product, parametrizing pairs of such flags with the same 2 dim. subspace W_1 . The choice of indices (i, j, k), (i', j', k') gives a morphism $\psi: G \to \mathbf{F}$ whose image is the complement of the diagonal, hence is Zariski open and dense. So it suffices to find a big subset of \mathbf{F} corresponding to transversal intersections.

Let $U' \subset \mathbf{F}$ be the subset of the complement of the diagonal such that for $(W_1, W_2, W'_2) \in \mathbf{F}$ (with dim $W_1 = 2$, dim $W_2 = \dim W'_2 = 3$ and $W_1 = W_2 \cap W'_2$), then the subvariety of $X - \{0\}$ where neither W_2 nor W'_2 generate $\Omega^1_{X-\{0\}}$ is a reduced curve (this is the desired transversality condition). Clearly (?!) U' is the complement of a countable union of locally closed analytic subsets.

Consider the projection $q : \mathbf{F} \to \mathbf{G}(3, \mathbf{C}^N)$ (induced by the first projection $\mathbf{F} \to \mathbf{F}(2,3)$, followed by the projection $\mathbf{F}(2,3) \to \mathbf{G}(2,3)$; thus $q(W_1, W_2, W'_2) = W_2$. For $W \in \mathbf{G}(3, \mathbf{C}^N)$, the fibre $q^{-1}(W)$ is an irreducible subvariety of the flag variety $\mathbf{F}(2, 3)$. There is a big subset of $\mathbf{G}(3, \mathbf{C}^N)$ corresponding to subspaces W such that the subvariety $S_W \subset X - \{0\}$, where W does not generate $\Omega^1_{X-\{0\}}$, is a smooth surface. The fibre of $\mathbf{F}(2, 3) \to \mathbf{G}(3, \mathbf{C}^N)$ over W is $\cong \mathbf{P}^2$, parametrizing two dimensional subspaces of W; there is a big subset parametrizing the $W_1 \subset W$ such that the subvariety of S_W , where $W_1 \otimes \mathcal{O}_{S_W} \to \Omega^1_{X-\{0\}} \otimes \mathcal{O}_{S_W}$ has rank < 2, is a finite set T_{W_1} (apply lemma 1 with $Y = S_W$, $\mathcal{E} = \Omega^1_{X-\{0\}} \otimes \mathcal{O}_{S_W}$, etc. to conclude this degeneracy locus is zero dimensional). The fibre of $p_1 : \mathbf{F} \to \mathbf{F}(2,3)$ over (W_1, W) is isomorphic to the projective space of lines in \mathbf{C}^N/W_1 ; on $S_W - T_{W_1}$,

$$\mathcal{E} = \Omega^1_{X-\{0\}} \otimes \mathcal{O}_{S_W} / (\text{im } W_1 \otimes \mathcal{O}_{S_W})$$

is an invertible sheaf, generated by the space \mathbf{C}^N/W_1 of global sections; now lemma 1 yields a big subset of $p_1^{-1}(W_1, W)$ on which the desired transversality condition holds.

8. Let (i, j, k), (i', j', k') be two sets of indices with exactly 1 index in common; then there is a big subset of G on which $E_{ijk} \cap E_{i'j'k'}$ is transversal. This is similar to the previous case.

As you can see, its probably best to check the arguments carefully before you quote them!

Bye,