
23 Feb. 91.
Dear Pati,

I decided to type up the reply to your question, so that you have a proper
record of it. I worked it out with Paramu’s help. As you see, it is a bit intricate.

Let (X, 0) ↪→ (CN , 0) be the germ of an isolated 3-dim. singularity.

Proposition 1 Let X be a representative of the germ (X, 0). Then after a
linear change of coordinates, and shrinking the representative X if necessary,
the following is true:
let

Di = X − {0} ∩ {zi = 0}, 1 ≤ i ≤ n,

and let

Eijk = zero locus (with its possibly non-reduced structure) of ωijk = d zi ∧ d zj ∧ d zk
on X − {0}, for any 1 ≤ i < j < k ≤ N .

Then

(i) Di is smooth for all 1 ≤ i ≤ N

(ii) Eijk is smooth for all 1 ≤ i < j < k ≤ N

(iii) Di, Dj meet transversally for all i 6= j

(iv) Eijk, Ei′j′k′ meet transversally for all (i, j, k) 6= (i′, j′, k′)

(v) Eijk and Dl meet transversally for all (i, j, k) and all l.

Here,

(i) in (iv) above, some of the coordinates of (i, j, k), (i′, j′, k′) are allowed to
coincide, and

(ii) in (v) above, the cases l = i, j, k are allowed.

We need to use the following transversality lemma, which is (I guess) folklore
(but I don’t know a reference). Its a slight generalisation of Kleiman’s Bertini
theorem, as stated in Hartshorne’s book, and has a similar proof (there is also an
article of Kleiman The transversality of the general translate which has related
arguments).

Lemma 1 Let Y be a complex manifold, and let E1, · · · , Ek be locally free sheaves
of ranks s1, · · · , sk respectively. Let Vi be an ni-dimensional space of global
sections of Ei which generates Ei, for each 1 ≤ i ≤ k. Let ri be a positive
integer, with ri ≤ ni, and set mi = min {ri, si}; let Gi be the Grassmannian of

1



ri-dimensional subspaces of Vi, and set G =
∏k

i=1 Gi. For t = (t1, · · · , tk) ∈ G,
if Wi(t) ⊂ Vi are the corresponding subspaces, let

Yt(E1, · · · , Ek) = {y ∈ Y | for each 1 ≤ i ≤ k, Wi(t)⊗OY → Ei is not surjective},

with its natural (possibly non-reduced) structure as an analytic space, defined
locally in Y by the vanishing of determinants.

Then there is a dense subset U ⊂ G, whose complement is a countable union
of locally closed analytic subsets of G of smaller dimension, such that for t ∈ U ,

(i) Yt(E1, · · · , Ek) is empty, or has codimension∑k
i=1(ri −mi + 1)(si −mi + 1) in Y

(ii) the singular locus of Yt(E1, · · · , Ek) is empty, or has codimension∑k
i=1(ri −mi + 2)(si −mi + 2) in Y

(iii) the singular locus of the singular locus of Yt(E1, · · · , Ek) is empty, or

has codimension
∑k

i=1(ri −mi + 3)(si −mi + 3) in Y

(iv) Yt(E) is Cohen-Macaulay (i.e., its local rings are Cohen-Macaulay).

Proof: Let G′i be the Grassmannian of si dimensional quotients of Vi, and
let fi : Y → G′i be the classifying map of Ei. Let

ΓY = {(t, y) ∈ G× Y | y ∈ Yt(E1, · · · , Ek)}.

If G′ =
∏k

i=1 G
′
i, and Qi is the universal quotient bundle of rank si on the

Grassmannian G′i, then there is a ‘universal’ such subvariety

Γ = {(t, y) ∈ G×G′ | y ∈ G′t(Q1, · · · ,Qk)},

which is ΓY for the case Y = G′, Ei = Qi.
The projections Γ→ G, Γ→ G′ are known to be locally trivial fibre bundles

(for the Zariski topology), whose fibres are irreducible and Cohen-Macaulay;
further,
(a) Γ has codimension

∑k
i=1(ri −mi + 1)(si −mi + 1) in G×G′;

(b) the singular locus Γsing of Γ has codimension
∑k

i=1(ni−mi +2)(si−mi +2)
in G ×G′ – it is the locus of pairs (t, y) where for each i, the map Wi(t) →
Qi ⊗C(yi) has rank ≤ mi − 2;

(c) the singular locus of Γsing has codimension
∑k

i=1(ri −mi + 3)(si −mi + 3)
in G × G′ – it is the locus of pairs (t, y) such that for each i the rank of
Wi(t)→ Qi ⊗C(yi) is ≤ mi − 3.
These assertions are easily (??!) reduced to the case k = 1, since

G′t(Q1, · · · ,Qk) =

k∏
i=1

(G′i)ti(Qi)
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(for the case k = 1, see, for example, Fulton’s Intersection Theory, Ch. 14,
especially Thm. 14.3). Hence the same estimates hold for the codimensions in
G of any fibre of Γ→ G′, and for that of its singular locus, etc.

Now ΓY = Γ ×G′ Y → Y is also a locally trivial fibre bundle over the
complex manifold Y , so the same estimates hold for the codimension in G× Y
of ΓY , that of its singular locus, etc. The first three assertions of the lemma
now follow from Sard’s theorem applied to the projection to G. Since Γ, X
are Cohen-Macaulay, so is G × Y ; since G ×G′ is smooth, the fibre product
ΓY ⊂ G×X is locally defined by the vanishimg of a regular sequence, and so is
Cohen-Macaulay. Hence any fibre Yy(E) of ΓY → G, which has the ‘expected’
codimension in X, is Cohen-Macaulay (again, since G is smooth, such a fibre
is defined by the vanishing of a regular sequence). 2

I don’t think the estimate for the dimension of the ‘singular locus of the singular
locus’, or the Cohen-Macaulay property, are needed in the proof of the above
proposition, but it may be useful in other contexts. One has a similar statement
for the higher iterated singular loci.

If Y is an irreducible analytic space, call a subset U ⊂ Y big if it is the
complement of a countable union of locally closed analytic subsets of smaller
dimension. Then

(i) any countable intersection of big subsets is big

(ii) if f : Y ′ → Y is a morphism of irreducible analytic spaces, U ⊂ Y a big
subset, then f−1(U) ⊂ Y ′ is big

(iii) if f : Y ′ → Y is a morphism of irreducible analytic spaces with open,
dense image and irreducible fibres, U ′ ⊂ Y ′ a subset whose complement is
the countable union of locally closed analytic subsets, such that for some
big subset U ⊂ Y , f−1(y)∩U ′ ⊂ f−1(y) is big for all y ∈ U , then U ′ ⊂ Y ′
is big (the hypotheses here can probably be relaxed). This is because

Let G = GLN (C), which we regard as parametrizing possible bases in
CN . By the above remarks, it suffices to show that each of the smooth-
ness/transversality conditions is (individually) valid for all bases of CN in some
big subset of G.

We now observe the following. Note that when we assert below that an
variety is smooth, the variety always comes equipped with a natural structure
as a possibly non-reduced analytic space, and we are asserting that this analytic
space is a complex manifold.

1. For a given index i, there is a big subset of G on which the ith hyperplane
section of X − {0} is a smooth surface.

We apply lemma 1 with Y = X − {0}, k = 1, E = OX−{0}, V = CN and
r = 1. Here elements of V are considered as homogeneous linear functions
on X − {0}. This gives a big subset U ⊂ PN−1, the projective space of
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lines in CN , parametrizing smooth hyperplane sections. The choice of the
index i yields a surjective mapping ϕi : G→ PN−1, giving it the structure
of a homogeneous space; the desired big subset of G is ϕ−1(U).

2. For given i 6= j, there is a big subset of G on which the intersection of the
ith and jth hyperplane sections is transversal.

We apply lemma 1 with Y = X − {0}, k = 1, E = OX−{0}
⊕2, V =

CN ⊕ CN and r = 1. Elements of V are ordered pairs of homogeneous
linear functions. This yields a big subset U ′ of P2N−1 = P(CN ⊕ CN ).
The choice of indices i 6= j yields a map ϕij : G→ P2N−1 whose image is
a Zariski open subset, and ϕ−1ij (U ′) is the desired big subset of G.

3. For a given triplet (i, j, k), there is a big subset of G such that the corre-
sponding Eijk is a smooth surface.

We apply lemma 1 with Y = X − {0}, k = 1, E = Ω1
X−{0}, r = 3. Ele-

ments of V yield differentials of homogeneous linear functions on X−{0}.
The Grassmannian of 3 dim. subspaces of CN is a homogeneous space for
G, and the choice of indices yields a surjection ϕijk : G→ G(3,CN ); the
inverse image under this of the big set of lemma 1 is the desired subset of
G.

4. For a given triplet (i, j, k) and a given index l 6∈ {i, j, k}, there is a big
open subset of G such that the corresponding intersection Eijk ∩ Dl is
transversal.

We apply lemma 1 with Y = X−{0}, k = 2, E1 = OX−{0}, E2 = Ω1
X−{0},

V1 ∼= V2 ∼= CN , r1 = 1, r2 = 3, where V1 is the space of homogeneous
linear functions, and V2 the space of differentials of homogeneous linear
functions. Now use the fact that the choice of indices yields a map ψl,ijk :

G → PN−1 × G(3,CN ); since l 6∈ {i, j, k}, its image is a Zariski open
subset.

5. For a given pair of triplets (i, j, k) and (i′, j′, k′) with no common indices,
there is a big subset of G on which the intersection Eijk∩Ei′j′k′ is transver-
sal.

We apply lemma 1 with Y = X − {0}, k = 2, E1 ∼= E2 ∼= Ω1
X−{0},

V1 ∼= V2 ∼= CN (considered as differentials of homogeneous linear func-
tions), r1 = r2 = 3. The choice of indices yields a map ψijk,i′j′k′ : G →
G(3,CN ) × G(3,CN ) whose image is a Zariski open subset, since all 6
indices are distinct.

6. Let i, j, k be distinct indices, and choose l ∈ {i, j, k}; then there is a big
subset of G for which Dl ∩ Eijk is transversal.

The choice of indices yields a map ψl,ijk : G → PN−1 ×G(3,CN ) whose
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image is the closed subvariety F(1, 3) consisting of pairs of subspaces
(L,W ) of CN with dimL = 1, dimW = 3 and L ⊂ W (this is a
flag variety). We use the criterion (iii) above, applied to the projection
p : F(1, 3)→ G(3,CN ) (which is surjective with irreducible fibres), in or-
der to produce a big subset of F(1, 3) parametrizing smooth intersections.

First, the subset U ′ ⊂ F(1, 3) parametrizing such transversal intersections
is the complement of a countable union of locally closed analytic subsets,
since it is the image of an analytic set under an analytic map (the pro-
jection to F(1, 3) from the ‘universal’ such intersection, which is a closed
analytic subset of F(1, 3)×X − {0}). So we are reduced to showing that
for some big set U ⊂ G(3,CN ), and any fixed W ∈ U , there is a big
subset of the fibre p−1(W ) ∼= P2, such that the points corresponding to
smooth intersections form a big subset. There are big subsets U1, U2 of
G(3,CN ) such that (a) for W ∈ U1, the subvariety of X − {0} on which
W fails to generate Ω1

X−{0} is a smooth surface SW , and (b) for W ∈ U2,

W generates OX−{0} (we may have to shrink the representative of the
germ to do this); equivalently, if z1, z2, z3 is a basis for W , then {0} is the
locus of common zeroes of the zi. Now take U = U1 ∩ U2. For W ∈ U ,
SW ⊂ X−{0} is a smooth complex surface; apply lemma 1 with Y = SW ,
k = 1 E = OY , r = 1 and V = W ; this yields a big subset of P2 = p−1(W )
parametrising smooth hyperplane sections of SW by hyperplanes defined
by the vanishing of elements of W .

7. Let (i, j, k), (i′, j′, k′) be two sets of indices with exactly two indices in com-
mon; then there is a big subset of G on which Eijk ∩Ei′j′k′ is transversal
except at a finite set.

Let F(2, 3) ⊂ G(2,CN ) × G(3,CN ) be the flag variety parametrizing
flags of subspaces W1 ⊂W2 ⊂ CN with dimW1 = 2, dimW2 = 3, and let
p : F(2, 3)→ G(2,Cn) be the projection. Let F = F(2, 3)×G(2,CN )F(2, 3)
be the fibre product, paramatrizing pairs of such flags with the same 2 dim.
subspace W1. The choice of indices (i, j, k), (i′, j′, k′) gives a morphism
ψ : G→ F whose image is the complement of the diagonal, hence is Zariski
open and dense. So it suffices to find a big subset of F corresponding to
transversal intersections.

Let U ′ ⊂ F be the subset of the complement of the diagonal such that
for (W1,W2,W

′
2) ∈ F (with dimW1 = 2, dimW2 = dimW ′2 = 3 and

W1 = W2 ∩W ′2), then the subvariety of X − {0} where neither W2 nor
W ′2 generate Ω1

X−{0} is a reduced curve (this is the desired transversality

condition). Clearly (?!) U ′ is the complement of a countable union of
locally closed analytic subsets.

Consider the projection q : F → G(3,CN ) (induced by the first pro-
jection F → F(2, 3), followed by the projection F(2, 3) → G(2, 3); thus
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q(W1,W2,W
′
2) = W2. For W ∈ G(3,CN ), the fibre q−1(W ) is an ir-

reducible subvariety of the flag variety F(2, 3). There is a big subset of
G(3,CN ) corresponding to subspaces W such that the subvariety SW ⊂
X−{0}, where W does not generate Ω1

X−{0}, is a smooth surface. The fi-

bre of F(2, 3)→ G(3,CN ) over W is ∼= P2, parametrizing two dimensional
subspaces of W ; there is a big subset parametrizing the W1 ⊂W such that
the subvariety of SW , where W1 ⊗OSW

→ Ω1
X−{0} ⊗OSW

has rank < 2,

is a finite set TW1 (apply lemma 1 with Y = SW , E = Ω1
X−{0} ⊗ OSW

,

etc. to conclude this degeneracy locus is zero dimensional). The fibre of
p1 : F → F(2, 3) over (W1,W ) is isomorphic to the projective space of
lines in CN/W1; on SW − TW1 ,

E = Ω1
X−{0} ⊗OSW

/(im W1 ⊗OSW
)

is an invertible sheaf, generated by the space CN/W1 of global sections;
now lemma 1 yields a big subset of p−11 (W1,W ) on which the desired
transversality condition holds.

8. Let (i, j, k), (i′, j′, k′) be two sets of indices with exactly 1 index in com-
mon; then there is a big subset of G on which Eijk ∩Ei′j′k′ is transversal.
This is similar to the previous case.

As you can see, its probably best to check the arguments carefully before
you quote them!

Bye,
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