
Riemann Surfaces

R. R. Simha and V. Srinivas

Dedicated to Prof. K. R. Parthasarathy on turning 60.

This expository article on Riemann surfaces is an outgrowth of a Winter
School on Riemann Surfaces held in December, 1995, organised by the Centre
of Advanced Study in Mathematics of the University of Bombay, and sponsored
by the University Grants Commission and the National Board for Higher Math-
ematics. It is a survey of some recent developments in the subject, which could
not be included in the Winter School because of lack of time. We have however
tried to make the exposition reasonably self-contained by recalling most of the
basic definitions and concepts, as well as some key examples.

We thank Prof. M. G. Nadkarni, the chief organiser of the Winter School, for
providing us this opportunity to take a look at this old but very active subject.
We also thank the rest of the faculty as well as the participants of the Winter
School for the stimulation they have provided.

1 Introduction, and some examples

Riemann surfaces are (Hausdorff) topological spaces on which one can do com-
plex analysis of one complex variable. These generalizations of open subsets
of the complex plane C occur in a natural way in a large number of areas of
mathematics (including complex analysis in C); their study is an active area of
current research, though the subject is almost two centuries old.

We recall that a Riemann surface is a Hausdorff topological space X , to-
gether with a rule OX which assigns to each open U ⊂ X a set OX(U) of
functions f : U → C (which will be called holomorphic functions on U) such
that:

(i) (Sheaf property) if {Ui}i∈I are open subsets of X , and U = ∪i∈IUi, then
a function f : U → C lies in OX(U) ⇔ f |Ui : Ui → C lies in OX(Ui) for
all i ∈ I;

(ii) for each x ∈ X , there exists an open neighbourhood U of x, and a homeo-
morphism f : U → V onto an open subset V ⊂ C, such that for any open
W ⊂ V , a function g : W → C is holomorphic on W (in the usual sense)
⇔ g ◦ f ∈ OX(g−1(W )).

1



The above definition is easily seen to be equivalent to the more usual one,
according to which one is given a family of pairs (Ui, fi), i ∈ I (called coordinate
charts), each consisting of an open set Ui and a homeomorphism fi of Ui onto
an open subset of C such that

(i)′ ∪iUi = X ;

(ii)′ fj ◦ f−1
i : fi(Ui ∩Uj) → fj(Ui ∩Uj) ⊂ C is holomorphic whenever Ui ∩Uj

is nonempty.

A holomorphic map f : (X,OX) → (Y,OY ) between Riemann surfaces is
a continuous map f : X → Y such that for all open subsets V ⊂ Y , and
g ∈ OY (V ), we have that g ◦ f ∈ OX(f−1(V )); f is said to be biholomorphic if
f is a homeomorphism of X onto Y , and f and f−1 are holomorphic. However,
it is easy to show that a holomorphic homeomorphism of one Riemann surface
onto another is a biholomorphic map.

Clearly, C and its open subsets are Riemann surfaces in a natural way;
if U, V ⊂ C are open sets, then a holomorphic map f : U → V is just a
holomorphic function on U with f(U) ⊂ V . More generally, an open subset of
a Riemann surface is a Riemann surface in a similar way.

Most of the properties of holomorphic functions on open subsets in C carry
over to holomorphic maps between Riemann surfaces. For example, if f, g :
X → Y are holomorphic maps and X is connected, then either f ≡ g, or
{x ∈ X | f(x) = g(x)} is a discrete1 subset of X . Similarly, the open mapping
theorem carries over in the obvious way. The theory of Riemann surfaces is
concerned with the study of holomorphic maps between Riemann surfaces.

1.1 Examples of Riemann surfaces

Example 1.1: The extended complex plane C (or P1
C).

This is the first example of a “new” Riemann surface, i.e., one which is not
(biholomorphic to) an open subset of C. As a topological space, C = C ∪ {∞}
is just the one-point compactification of C; in particular, C is compact, and in
fact homeomorphic to the two-sphere S2. The Riemann surface structure can
be defined, e.g., by two coordinate charts (C, Id) and (C − {0}, w), where Id
denotes the identity function, and

w(x) =

{
0 if x = ∞ ∈ C
1

x
if x ∈ C− {0}.

A meromorphic function on a Riemann surface X can be defined to be a
holomorphic map f : X → C such that f 6≡ ∞ on any connected component
of X . When X is an open subset of C, this reduces to the usual definition;

1A closed subset all of whose points are isolated.
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further, when X = C, one can show that meromorphic functions are precisely
the rational functions. The poles of a rational function f are the points in
f−1(∞).

The Riemann surface C can be naturally identified with the 1-dimensional
complex projective space P

1
C (see Example 1.5).

Example 1.2: The complex tori.
These are compact (connected) Riemann surfaces homeomorphic to the two-

torus S1 × S1, and arise as follows. Choose ω1, ω2 ∈ C which are linearly
independent over R (e.g., ω1 = 1, ω2 ∈ C \ R). Let Γ = Γ(ω1, ω2) denote the
additive subgroup of C generated by ω1 and ω2. Consider the quotient space
EΓ defined by the equivalence relation z1 ∼ z2 ⇔ z1 − z2 ∈ Γ. Since the map

R2 → C,

(s, t) 7→ sω1 + tω2

is an R-linear isomorphism carrying Z ⊕ Z ⊂ R
2 isomorphically onto Γ, the

quotient space EΓ is homeomorphic to

R
2/Z⊕ Z = R/Z× R/Z = S1 × S1;

in particular it is a compact Hausdorff topological group. The Riemann surface
structure on EΓ is the one which makes the quotient map π : C → EΓ locally
biholomorphic; thus if U ⊂ EΓ is an open set, then f : U → C is holomorphic
⇔ f ◦ π : π−1(U) → C is holomorphic. And meromorphic functions on EΓ are
precisely the doubly periodic meromorphic functions on C admitting ω1 and ω2

as periods.

Remark 1.1 Let X be a Riemann surface, and G be a subgroup of the
group Aut (X) of biholomorphic maps X → X . Suppose that any p, q ∈ X
have neighbourhoods Up, Uq (respectively) such that {g ∈ G | g(Up)∩Uq 6= ∅} is
finite; G is then said to be a discrete subgroup of Aut (X). In this case, it can be
shown that the orbit space Y = X/G (whose points are G-orbits {gx | g ∈ G}),
with the quotient topology induced by the natural quotient map π : X → Y ,
is a Hausdorff space, and has a unique Riemann surface structure making π a
holomorphic map. This result is easy to prove if G is fixed-point free (i.e., if
g ∈ G is not the identity, then gx 6= x for all x ∈ X). If X is simply connected,
and G is fixed-point free, then G is isomorphic to the fundamental group π1(Y )
of Y , and X is the universal covering space of Y . The complex tori are examples
of this situation, where X = C, and G = Γ, acting by translations.

The complex tori were the first (non-trivial) Riemann surfaces studied, and
their complex analytic theory is completely understood. For example, if EΓ′

corresponds to Γ′ = Γ(ω′
1, ω

′
2), such that τ = ω1/ω2, τ

′ = ω′
1/ω

′
2 have positive

imaginary part, then EΓ is biholomorphic to EΓ′ ⇔ there exists
[
a b
c d

]
∈ SL 2(Z)
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such that

τ ′ =
aτ + b

cτ + d
. (1.1)

Thus, if H is the upper half-plane in C, then isomorphism classes of tori are in
bijection with points of the quotient space H/SL 2(Z) for the action of SL 2(Z)
on H given by the formula (1.1). More interestingly, every Riemann surface
homeomorphic to S1 × S1 is biholomorphic to some EΓ.

Example 1.3: Riemann surfaces of algebraic functions.
These were the first “abstract” Riemann surfaces constructed by Riemann.

The construction begins with an easy observation: if X is a Hausdorff space,
and π : X → Y is a local homeomorphism2 and if Y is a Riemann surface, then
X becomes a Riemann surface by requiring that π be locally biholomorphic.

In the case at hand,X will be the set of all convergent power series
∑∞

n=0 an(z−
b)n which are obtained by analytic continuation (along some path in C) of a
fixed convergent power series

∑∞
n=0 αn(z−β)n; Y will be the complex plane C,

and π : X → Y will be defined by

π(

∞∑

n=0

an(z − b)n) = b.

(Thus, the series
∑∞

n=0 an(z − b)n is obtained by analytic continuation along
some path in C from β to b.) Note that there is a natural Hausdorff topology on
X making π a local homeomorphism, and thus X becomes a connected Riemann
surface. Defining f : X → C by

f(

∞∑

n=0

an(z − b)n) = a0,

we obtain a holomorphic function on X ; this single-valued function on X repre-
sents the “multivalued” holomorphic function consisting of all analytic contin-
uations of the given power series

∑∞

n=0 αn(z − β)n.
Now consider an irreducible polynomial P (z, w) ∈ C[z, w], the ring of poly-

nomials in 2 variables (e.g., P (z, w) = w2 − z2(1 − z)). We start from some
w0(z) =

∑∞

n=0 αn(z − β)n such that P (z, w0(z)) = 0 identically in a neigh-

bourhood of z = β (in our example, w0(z) = z
√
(1 − z) and β = 0). Now

perform the above construction on w0(z) to obtain a Riemann surface X . Be-
cause P (z, w) is irreducible, one can prove that X will consist of all convergent
power series w(z) =

∑∞

n=0 an(z − b)n such that P (z, w(z)) is identically zero
(near z = b). It is not hard to see that there is a finite set F ⊂ C such that for
all b 6∈ F , the polynomial P (b, w) ∈ C[w] has n = degw P (z, w) distinct roots
(here degw denotes the degree in the variable w), and π−1(b) ⊂ X consists of n

2i.e., each x ∈ X has an open neighbourhood Ux such that π : Ux → π(Ux) is a
homeomorphism.
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distinct points. (In our example, F = {0, 1} and n = 2; note that π−1(0) also
consists of 2 points, even though 0 ∈ F !).

Now using some elementary algebraic topology, it is possible to adjoin finitely
many points to X over each b ∈ F , and over ∞ ∈ C, and obtain a compact
Riemann surface XP , together with a holomorphic extension π : XP → C of
π : X → C − F . (At most n points are added over each point of F ∪ {∞}.)
There will also be a single-valued meromorphic function w on XP extending the
obvious holomorphic function w on X , and the meromorphic function P (π,w)
is identically 0 on XP . This is Riemann’s construction of the compact Riemann
surface associated to the irreducible polynomial P , or the “algebraic function”
w0(z).

In our example P (z, w) = w2− z2(1− z), the Riemann surface XP will have
only 1 point each over 1 and ∞, and is in fact biholomorphic to C. However, if
we take P (z, w) = w2 − C(z) where C(z) is a cubic polynomial with 3 distinct
roots, then XP is (biholomorphic to) a complex torus, and all complex tori arise
in this way.

Example 1.4: The method of Gauss.
It was observed by Gauss that an R-vector space V of dimension 2 can be

made a C-vector space by specifying any R-linear map J : V → V with J2 =
−1V (where 1V is the identity map); we have only to define i · v = J(v) for all
v ∈ V . When V = R

2, such a J is uniquely defined by specifying J(1, 0) = (a, b)

arbitrarily, so long as b 6= 0 (then J2 = −1V will force J(0, 1) = (−1−a2

b ,−a)).
Now suppose Ω ⊂ R

2 is a connected open subset, and a, b are C1 functions
on Ω with b > 0. Then Ω can be made a Riemann surface as follows: for any
U ⊂ Ω, we declare a C1 function f = u+ iv : U → C to be holomorphic iff, for
each x ∈ U , the R-linear map dfx : R2 → R2 (defined by the Jacobian matrix at
x of (u, v) : U → R

2) is C-linear, where the image R2 has the usual C-structure,
while the source R

2 has the C-structure given by Jx(1, 0) = (a(x), b(x)). (It
is not trivial to prove that this prescription makes Ω into a Riemann surface;
the usual Riemann surface structure on Ω corresponds to a ≡ 0, b ≡ 1.) A
beautiful theorem of Koebe asserts that Ω, with this new structure, is always
biholomorphic to some open subset of the plane C (with its standard structure).

This method of Gauss of introducing a complex structure, and its general-
izations, are of great importance in the study of Riemann surfaces and their
higher dimensional analogues.

Example 1.5: Smooth projective curves.
Recall that the n-dimensional complex projective space Pn = Pn

C is the
set of all one-dimensional C-vector subspaces of Cn+1; Pn becomes a compact
Hausdorff space by regarding it as the quotient space of Cn+1 − {0} by the
equivalence relation u ∼ v ⇔ u = λv for some λ ∈ C \ {0}. Clearly P0

is a point; also, Cn is identified with an open subset of Pn, as the image of
Cn × {1} ⊂ Cn+1 \ {0}. The complement of Cn in Pn is easily seen to be Pn−1;

5



in particular, P1 is a compact space obtained by adjoining 1 point to C, and is
hence identified with C.

Suppose now that H ∈ C[x, y, z] is a homogeneous polynomial such that
∂H

∂x
,
∂H

∂y
,
∂H

∂z
have no common zero in C3−{0}. Then the set C of (equivalence

classes of) zeroes of H defines a closed subset of P2, which becomes a compact,
connected Riemann surface in a natural way: if (x0, y0, z0) ∈ C, and (say)
∂H
∂x (x0, y0, z0) 6= 0, then it can be verified that either y/z or z/y (or both)
defines a local coordinate near (x0, y0, z0). The Riemann surface C is exactly
what is called in Algebraic Geometry a “smooth projective plane curve”.

More generally, suppose C ⊂ P
n (n ≥ 2) is the set of (equivalence classes of)

common zeroes of finitely many homogeneous polynomials Hi ∈ C[z0, . . . , zn],

and the Jacobian matrix
(

∂Hi

∂zj

)
has rank n−1 at all points of C. Then C again

acquires the structure of a Riemann surface in a similar way; of course C will
be compact (as Pn is so), but C need not be connected in general.

For example, for each λ ∈ C − {0, 1}, the cubic polynomial (in 3 variables)
fλ = zy2 − x(x − z)(x − λz) defines a compact Riemann surface Cλ ⊂ P

2; this
Riemann surface is biholomorphic to a complex torus, and every complex torus
is biholomorphic to a Cλ.

1.2 Topology of a compact Riemann surface

A compact Riemann surface is, by virtue of the Riemann surface structure, a
compact, oriented C∞ differential manifold of dimension 2. As such, it has
a C∞ triangulation. As explained in the book [Mas], any such triangulation
can be “simplified”, to obtain a topological (or C∞) classification of connected
compact Riemann surfaces: any such is homeomorphic (resp. diffeomorphic) to
a “g-holed torus” (or a “sphere with g handles”) for a unique integer g ≥ 0. For
g = 0, this is a 2-sphere S2; for g ≥ 1, this can be realized as an identification
space of a 4g-sided polygon in a standard way. We call g the (topological) genus
of X .

Some consequences of this are the following. First, the (singular) homology
and cohomology of a (connected) compact Riemann surface has the following
description:

Hi(X,Z) ∼= H2−i(X,Z) =





Z if i = 0, 2,

Z
⊕2g if i = 1,
0 otherwise.

This implies analogous results for homology and cohomology with coefficients
in an arbitrary abelian group. The isomorphism between homology and coho-
mology is a particular case of the Poincaré duality theorem. There is a skew-
symmetric pairing (the cup-product, or intersection pairing)

H1(X,Z)⊗H1(X,Z) → H2(X,Z) ∼= Z;
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it is non-degenerate (over Z) by Poincaré duality, i.e., induces an isomorphism
H1(X,Z) ∼= Hom(H1(X,Z),Z). In particular, the matrix determined by this
pairing (with respect to any choice of Z-basis for H1(X,Z)) has determinant 1.

Finally, one has a presentation for the fundamental group π1(X, x) (with
respect to any choice of the base point x ∈ X),

π1(X, x) ∼= F (a1, . . . , ag, b1, . . . , bg)/ < a1b1a
−1
1 b−1

1 · · ·agbga−1
g b−1

g >,

as the quotient of the free group on the 2g generators ai, bj modulo the normal
subgroup generated by the product of the commutators. This presentation
follows from the description as a 4g-sided polygon with identifications, using
the van Kampen theorem (see [Mas]).

2 Divisors and the Riemann-Roch theorem

Let X be a Riemann surface. A divisor on X is a function D : X → Z such
that the set

supp (D) = {P ∈ X | D(P ) 6= 0},
called the support of D, is discrete. The set of divisors Div (X) forms an abelian
group under pointwise addition, which is a subgroup of

∏
P∈X Z. If D(P ) ≥ 0

for all P ∈ X , we call D an effective divisor, and write D ≥ 0.
In particular, if X is compact, then any divisor on X has finite support, so

Div (X) is the free abelian group on the points of X . In this case we may write a
divisor as D =

∑
i niPi, for points Pi ∈ X and integers ni; this notation means

that D(Pi) = ni, and D(P ) = 0 if P is distinct from any of the Pi.
Let f : X → C∪{∞} = P

1
C be an invertible meromorphic function onX (i.e.,

1/f is also meromorphic). For any P ∈ X , there is a coordinate neighbourhood
(U, z) of P , with z(P ) = 0. Then f |U= zrg for a unique integer r, and function
g : U → C ∪ {∞} which is holomorphic and non-zero at P . The integer r is
easily seen to be independent of the choice of (U, z); we define the order of f
at P to be ord P (f) = r. Now D : X → Z, D(P ) = ord P (f), defines a divisor
on X , which we denote by div (f). Such a divisor is called a principal divisor.
Note that if f , g are two such functions on X , then

div (fg) = div (f) + div (g).

Similarly, if ω is a meromorphic 1-form on X which is non-zero on any
component ofX , then on any coordinate neighbourhood (U, z) we may write ω =
f(z)dz, where f is meromorphic and invertible. We can then define ord P (ω) =
ord P (f), for any P ∈ U . One verifies easily that ord P (ω) depends only on P
and ω, and not on the coordinate (U, z). Thus we obtain a divisor div (ω) =∑

P ord P (ω)P .
Sometimes we will also use the notation ord P (D), where D is a divisor, to

mean the integer D(P ).
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From now onwards, we will assume X is a compact, connected Riemann
surface. For any divisor D on X , define

(i) an integer deg(D) =
∑

P∈X D(P ) (this makes sense since the sum has
only finitely many non-zero terms)

(ii) a vector space

L(D) = {f meromorphic function on X | f = 0, or D + div (f) ≥ 0}.

For example, if D =
∑

i niPi with ni > 0 for all i (i.e., D is effective), then
L(D) consists of functions which are holomorphic on X \ supp (D), which have
a pole of order ≤ ni at Pi for each i. So we can describe L(D) as the space of
meromorphic functions with “poles bounded by D”. When D is effective, L(D)
always contains at least the constant functions, i.e., dimL(D) ≥ 1.

An important problem in understanding function theory on X is what we
nowadays call the Riemann-Roch problem: to determine (or efficiently estimate)
dimL(D) for any divisor X on a compact Riemann surface X .

If D is effective of degree n, then one has an easy upper bound dimL(D) ≤
n + 1, obtained by considering principal parts of Laurent expansions in local
coordinates around each of the Pi.

For any divisor D and non-zero meromorphic function f , we have an iso-
morphism of C-vector spaces

L(D + div (f))
∼=−→ L(D),

given by g 7→ fg, since

(D + div (f)) + div (g) ≥ 0 ⇔ D + div (fg) ≥ 0.

This implies that
dimL(D) = dimL(D + div (f)).

This motivates the notion of linear equivalence of divisors: D is linearly
equivalent to E if there exists a non-zero meromorphic function f such that
E = D+div (f); thus the Riemann-Roch problems for D and E are equivalent.
Define the divisor class group Cl (X) of a compact Riemann surface X to be the
quotient

Cl (X) =
Div (X)

P (X)
,

where P (X) is the subgroup of Div (X) consisting of principal divisors (divisors
of non-zero meromorphic functions). Thus divisors D,E have the same image
in Cl (X) precisely when they are linearly equivalent.

We can now state the following important result.
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Theorem 2.1 (i) For any non-zero meromorphic function f on X, we
have deg(div (f)) = 0. Hence there is a well defined degree map

deg : Cl (X) → Z.

(ii) For any divisor D on X, L(D) is a finite dimensional vector space.
If deg(D) < 0, we have L(D) = 0.

(iii) (Riemann-Roch) Let X be a compact Riemann surface of genus
g. Then there exists a divisor K on X, called a canonical divisor, with
deg(K) = 2g − 2, such that for any divisor D on X, we have

dimL(D)− dimL(K −D) = deg(D) + 1− g.

Any two such canonical divisors K,K ′ are linearly equivalent. If ω is any
non-zero meromorphic 1-form on X, then we may take K = div (ω).

(iv) (Residue theorem) For any meromorphic 1-form ω on X, the sum
of the residues of ω vanishes.

Here, in the residue theorem, the residue of a 1-form ω at P may be defined

to be the integral of
1

2πi
ω over a small (positively oriented) contour around P .

From (i) of the Theorem, we may define the group

Cl 0(X) = ker(deg : Cl (X) → Z).

We begin by listing a few simple corollaries of the above results.

Corollary 2.2 Let X be a compact Riemann surface. Then there exists a non-
constant meromorphic function on X.

Proof: Let P ∈ X be a point, and D = (g + 1)P . Then

dimL(D) ≥ deg(D) + 1− g = 2.

Hence L(D) contains a non-constant meromorphic function, which is holomor-
phic on X − {P}, and has a pole of order at most g + 1 at P . ✷

Corollary 2.3 Let X be a compact, simply connected Riemann surface. Then
X is biholomorphic to the Riemann sphere P1

C.

Proof: Since X is simply connected, we have H1(X,C) = 0, and g = 0.
Hence for any point P on X , we have dimL(P ) ≥ 2. Let f be a non-constant
function in L(P ). Then f must have a pole at P , which is of order 1, and be
holomorphic elsewhere. This map f defines a holomorphic mapping X → P

1
C,

whose fibre over ∞ consists of 1 point P , which is not a point of ramification.
Hence f is a biholomorphic map. ✷
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Corollary 2.4 Let Ω(X) be the vector space of holomorphic 1-forms on X.
Then dimΩ(X) = g. We have degKX = 2g − 2, where KX is the divisor of
any non-zero holomorphic (or meromorphic) 1-form on X.

Proof: The Riemann-Roch theorem for D = 0 gives dimL(KX) = g. If ω
is a meromorphic 1-form on X , then taking KX = div (ω), we see at once from
the definitions that there is an isomorphism L(KX) → Ω(X), given by f 7→ fω.

Now the Riemann-Roch theorem for D = KX gives degKX = 2g − 2, since
dimL(D) = g, and dimL(KX −D) = L(0) = 1. ✷

We now give a sheaf theoretic interpretation of L(D) (see the Appendix A
for a brief discussion of sheaf theory). We will associate to each divisor D on a
Riemann surface X a sheaf OX(D). For any open subset U of X , define3

OX(D)(U) = {f meromorphic on U | ord P (f) +D(P ) ≥ 0 ∀ P ∈ U}.

Here, if f vanishes in a neighbourhood of P (e.g. if f = 0) then we take
ord P (f) = ∞, so the condition ord P (f) + D(P ) ≥ 0 is taken to be true for
any D. Now one easily verifies that U 7→ OX(D)(U) defines a sheaf of C-
vector spaces on X . By definition, the space of global sections OX(D)(X) is
just L(D). The sheaf OX(D) is in fact a sheaf of modules over the sheaf OX

of holomorphic functions on X . The space of global sections of OX(D) is the
zeroeth sheaf cohomology group H0(X,OX(D)).

Theorem 2.5 (Serre duality) Let D be a divisor on X. Then H1(X,OX(D))
is a finite dimensional vector space, and there is a natural isomorphism of the
dual vector space H1(X,OX(D))∨ with L(KX −D).

One can further show that Hi(X,OX(D)) vanishes for i ≥ 2.
For expository reasons, we have stated the Riemann-Roch and Serre duality

theorems as above. In fact, a convenient proof of the Riemann-Roch theorem
goes in several steps: first show that Hi(X,OX(D)) is a finite dimensional
vector space for all i, which vanishes for i ≥ 2; then prove the Riemann-Roch
theorem in the ‘Euler characteristic’ form

χ(OX(D)) = dimH0(X,OX(D)) − dimH1(X,OX(D)) = deg(D) + χ(OX).

One proof uses Hilbert space methods, combined with properties of normal fam-
ilies of analytic functions (Montel’s theorem in complex analysis). Now define
the genus g of X to be the dimension of H1(X,OX). Then the version of
Riemann-Roch stated in the Theorem follows from the Serre duality theorem,
which is proved independently (for example, one can prove Serre duality us-
ing the Euler characteristic form of Riemann-Roch, together with properties of
residues of differentials; see [Fo]).

3This slightly tricky definition of OX(D)(U) is because U need not be connected.
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Finally, one needs to identify the above modified notion of genus (the so-
called arithmetic genus) with the topological genus. Again, one way to do this
involves sheaf cohomology: one has the holomorphic de Rham complex

0 → CX → OX
d−→ Ω1

X → 0, (2.2)

where CX is the constant sheaf C on X , and OX ,Ω
1
X respectively denote the

sheaves of holomorphic functions and holomorphic differentials on X . Now
from the corresponding exact cohomology sequence, one extracts a short exact
sequence of finite dimensional C-vector spaces

0 → H0(X,Ω1
X) → H1(X,C) → H1(X,OX) → 0. (2.3)

From topology, the middle term has dimension 2gtop, where gtop is the topolog-
ical genus; from Serre duality, the extreme terms are dual to each other, hence
have the same dimension g. This implies that g = gtop.

The cohomological point of view also yields another interesting result. The
Mittag-Leffler theorem in complex analysis states that one can find a holomor-
phic function f(z) on C− S, where S is any discrete subset of C, such that the
Laurent expansion of f at each point of S has a prescribed principal part. From
the proof of corollary 2.3, we see that on a compact Riemann surface of genus
≥ 1, it is impossible to find a function holomorphic outside a single point P ,
and with a simple pole at P . Hence we cannot have a strict analogue of the
Mittag-Leffler theorem on a compact Riemann surface. However, we have the
following result.

Theorem 2.6 (Mittag-Leffler theorem) Let X be a compact Riemann surface
of genus g, S = {P1, . . . , Pr} points of X, and (Ui, zi) a local coordinate at Pi

for each i. Assume given convergent power series4 without constant terms

fi(t) =
∞∑

n=1

aint
n, 1 ≤ i ≤ r.

Let P ∈ X − S be an arbitrary point. Then there is a holomorphic function f
on X − ({P} ∪ S) such that

(i) f has a pole of order ≤ 2g − 1 at P

(ii) for each 1 ≤ i ≤ r, the Laurent expansion of f |Ui with respect to the
chosen coordinate zi is given by

f(zi) = gi(zi) + fi(z
−1
i )

where gi is holomorphic in a neighbourhood of Pi.

4With infinite radius of convergence.
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We do not prove this result here, but note that using the machinery of sheaf
cohomology, it can be easily deduced from the vanishing of the sheaf cohomology
group H1(X,OX((2g − 1)P )), which in turn follows from Serre duality.

Another topic which we touch on briefly is the Riemann-Hurwitz formula.
If f : Y → X is a non-constant holomorphic map between compact Riemann
surfaces, then one can show that the following properties hold (see [Fo], Chap-
ter 1).

(i) There is an integer d > 0, called the degree of f , and a finite subset S ⊂ X
such that for any P 6∈ S, we have that f−1(P ) consists of d points, while
for P ∈ S, f−1(P ) consists of < d points (here S could be empty). The
map f : X − f−1(S) → Y − S is a covering space of degree d, in the
topological sense.

(ii) There is a finite set T ⊂ Y , consisting of ramification points, with f(T ) =
S, such that for each Q ∈ T , P = f(Q), we can find coordinate patches
(U, z) on X at P and (V,w) on Y at Q such that f(V ) ⊂ U , and z ◦ f =
weQ : V → C, for some integer eQ > 1 (i.e., locally f is the map z = weQ).
This integer is called the ramification index of f at Q, and is independent
of the choice of such local coordinates.

(iii) For any Q ∈ Y − T , if P = f(Q), we can choose coordinate patches (U, z)
on X at P , and (V,w) on Y at Q, so that w = z ◦ f : V → C (i.e., locally,
f is the map z = w). In this case we may define eQ = 1.

(iv) For any P ∈ X , we have
∑

Q∈f−1(P )

eQ = d.

If f : Y → X is as above, and D is any divisor of X , define f∗D(Q) =
eQD(f(Q)) (where we identify divisors with certain Z-valued functions). Thus
if

D =
∑

niPi,

then
f∗D =

∑
ni(

∑

Q∈f−1(Pi)

eQQ).

From property (iv) above, note that

deg f∗(D) = d(degD) = (deg f)(degD).

Also, f∗(div (g)) = div (g ◦ f), so that there are induced maps f∗ : Cl (X) →
Cl (Y ) and f∗ : Cl 0(X) → Cl 0(Y ).

The formula degKX = 2g − 2, combined with the interpretation of KX as
the divisor of a non-zero meromorphic differential, has the following important
consequence.

12



Theorem 2.7 (Riemann-Hurwitz formula) Let f : Y → X be a non-constant
holomorphic map between compact Riemann surfaces. Let g(X) = genus of X,
g(Y ) = genus of Y . Let P1, . . . , Pr be the points of Y where f is ramified, and
let ei = ramification index of f at Pi. Then

KY = f∗(KX) +

r∑

i=1

(ei − 1)Pi

holds in Cl (Y ), and

2g(Y )− 2 = (deg f)(2g(X)− 2) +

r∑

i=1

(ei − 1).

Proof: Let ω be a non-zero meromorphic differential on X . Then f∗ω is a
non-zero meromorphic differential on Y . If div (ω) = D, then we claim that

div (f∗ω) = f∗(D) +
∑

Q∈Y

(eQ − 1)Q,

where the right side is meaningful since eQ = 1 for all but a finite number of
Q. This will imply the first formula; on computing degrees on both sides, the
second formula follows.

To prove the claim, suppose Q ∈ Y , P = f(Q). Let (U, z) be a coordinate on
X at P , and (V,w) a coordinate on Y at Q such that f(V ) ⊂ U , and z◦f = weQ .
Then f∗dz = eQw

eQ−1dw. If ord P (ω) = r, then ω |U= zrh(z) dz, where h(z) is
holomorphic and non-zero at z(P ). Then

f∗ω |V = (weQ)rh(weQ )eQw
eQ−1dw.

Hence

ordQ(f
∗ω) = reQ + eQ − 1 = eQord P (ω) + eQ − 1 = ordQ(f

∗divω) + eQ − 1.

Since Q was arbitrary, the claim is proved. ✷

Remark 2.8 The numerical formula relating genera and ramification indices
can also be proved by topological arguments.

We mention two consequences of the Riemann-Hurwitz formula, which the
reader may try to prove as an exercise. First, if f : Y → X is a non-constant
map between compact Riemann surfaces, then g(Y ) ≥ g(X), with equality pos-
sible only if g(Y ) ≤ 1, or f is an isomorphism. Combined with Theorem 2.10,
this implies Lüroth’s theorem in algebra: any subfield K of a pure transcenden-
tal extension C(t) of C, with C⊆

/
K, is again a pure transcendental extension

of C. A second application of the theorem is as follows: granting that for any
Riemann surface X of genus g ≥ 2, the group Aut (X) of holomorphic automor-
phisms is finite, then in fact Aut (X) has cardinality ≤ 84(g−1) (the proof is by

13



applying the Riemann-Hurwitz formula to the quotient map X → X/Aut (X);
see [Ha], IV, Ex. 2.5).

As a final application of the Riemann-Roch theorem, we state the following
result.

Theorem 2.9 Let X be a compact Riemann surface. Then there is a biholo-
morphic map from X onto a non-singular, projective algebraic curve.

We give an idea of the proof when X has genus 1. Fix a point O ∈ X (an
origin). From the Riemann-Roch theorem, we see that dimL(D) = degD for
any divisor D of degree > 0 (since degKX = 0, and so L(KX −D) = 0).

In particular, L(O) is 1-dimensional, i.e., consists of the constant functions,
and L(2O) is 2-dimensional. Let x ∈ L(2O) be non-constant. Then x has a
double pole at O, and no other poles. Hence x defines a holomorphic mapping
x : X → P

1
C of degree 2. Each fibre of this mapping consists of either 2 distinct

unramified points, or 1 point with ramification index 2. From the Riemann-
Hurwitz formula, we deduce that there are 4 ramification points.

Now L(3O) is 3-dimensional; let y ∈ L(3O) − L(2O). Then y has a triple
pole at O, and no other poles. Notice that

(i) 1, x, y, x2, xy have poles at O of orders 0, 2, 3, 4, 5 respectively, and hence
are linearly independent elements of L(5O)

(ii) 1, x, x2, x3, y, xy, y2 are 7 elements in L(6O), which is 6-dimensional

(iii) y2, x3 are in L(6O)− L(5O).

Hence there is a non-trivial linear relation

py2 + qxy = ax3 + bx2 + cx+ d

with a, b, c, d, p, q ∈ C and ap 6= 0. We may replace y by p1/2y+ rx, and then x
by a1/3x+ s, for suitable r, s ∈ C (for any choice of the square and cube roots),
to get new functions x ∈ L(2O), y ∈ L(3O) as above for which the relation
takes the simplified form

y2 = x3 + ux+ v

for some complex numbers u, v. This equation defines an algebraic plane curve
A ⊂ C

2.
We claim the mapping (x, y) : X − {O} → A is injective. Indeed, if x(P ) =

x(Q) = t ∈ C with P 6= Q, then x − t ∈ L(2O) has zeroes at P , Q. These
must then be simple zeroes, and div (x − t) = P + Q − 2O. If we also have
y(P ) = y(Q) = t′, then div (y − t′) = P +Q+R − 3O for some (unique) point
R ∈ X − {O}, since y ∈ L(3O)− L(2O). Then

div (
y − t′

x− t
) = R−O,
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which (as in the proof of corollary 2.3) would imply that X ∼= P1
C, the isomor-

phism being given by the meromorphic function

f =
y − t′

x− t
.

Hence this is impossible, and so y(P ) 6= y(Q). In particular, t3 + ut+ v 6= 0.
The mapping x : X → P

1
C is ramified at 4 points, one of which is clearly

O (since x has a double pole there). At any unramified point P , we saw that
t = x(P ) is not a root of x3+ux+v = 0. Hence the roots of this cubic equation
are the only possible values of x at a point of ramification in X − {O}. Hence
this cubic must have 3 distinct roots, and they are precisely the remaining points
of ramification of x. Since y has zeroes at each of these points, and y ∈ L(3O),
these 3 points must be precisely the zeroes of y, and must all be simple zeroes.

Since the map x : A→ C also has 2 fibres over points t ∈ C where t3+ut+v 6=
0, and singleton fibres at the roots of the cubic, we see that X −{O} → A is in
fact bijective.

If we differentiate x, y with respect to a local parameter at P ∈ X , then
either (i) P is not a ramification point of x : X − {O} → C, in which case
x′(P ) 6= 0, or else (ii) P is a ramification point, in which case y has a simple
zero at P , so that y′(P ) 6= 0. Thus the map (x, y) : X − {O} → C

2 is a
holomorphic immersion.

It is now easy to see that A is in fact a non-compact Riemann surface in
C

2, such that X − {O} → A is biholomorphic. Thus, we can say that the open
Riemann surface X − {O} ‘is’ the algebraic curve A!

We can extend the above analysis to include the point O as well, by consid-
ering the projective algebraic plane curve associated to A, which is defined by
the homogeneous polynomial equation

y2z = x3 + uxz2 + vz3.

One can show that this defines a smooth projective plane curve A (see Ex-
ample 1.5), which is a 1-point compactification of A. Now one can show that
X ∼= A is biholomorphic.

The proof of the algebraicity theorem in general is along similar lines, but
is more elaborate.

There is a refinement of this result, as follows. If X ⊂ Pn
C is a smooth

projective curve, then one can further prove that any meromorphic function on
X is the restriction to X of a rational function in the coordinate functions of
P
n
C. This implies that the field C(X) of meromorphic functions on any compact

Riemann surface X is a so-called algebraic function field in 1 variable over C,
i.e., a finitely generated extension field which has transcendence degree 1. If
f : X → Y is a non-constant holomrophic map between Riemann surfaces, then
there is an inclusion of fields f∗ : C(Y ) → C(X), given by h 7→ h ◦ f .

Conversely, one has the following.
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Theorem 2.10 (i) Let K be an algebraic function field of 1 variable over
C. Then there exists a compact Riemann surface X with C(X) ∼= K (as
C-algebras).

(ii) If X, Y are two compact Riemann surfaces, and ϕ : C(X) → C(Y ) is
a homomorphism of C-algebras, then there is a unique holomorphic map
f : Y → X (which is non-constant) such that ϕ = f∗.

Thus the notions of a compact Riemann surface, and an algebraic function
field in 1 variable, are essentially equivalent. It can be shown that both of these
are equivalent to the notion of a smooth projective algebraic curve over C (i.e.,
any holomorphic mapping between smooth, projective curves is a morphism of
algebraic varieties).

3 The Jacobian variety

General references for the material in this section are the lecture notes [Mu],
[Mu2] and the book [ACGH].

Let X be a compact (connected) Riemann surface of genus g ≥ 1 (this topic
is uninteresting if g = 0, i.e., for the Riemann surface P1). From the exact
sequence (2.3), one has a surjection

ψ : H1(X,C) → H1(X,OX),

and hence a natural R-linear map

ϕ : H1(X,R) → H1(X,OX).

We claim that ϕ is injective; equivalently, from (2.3),

H0(X,Ω1
X) ∩H1(X,R) = 0

within H1(X,C). To see this, by de Rham’s theorem, we must show that if
ω is a holomorphic 1-form whose imaginary part, regarded as a C∞ 1-form, is
exact, then in fact ω = 0. But if Im (ω) = df , then one checks easily that f is a
harmonic function on X ; now the maximum modulus principle implies that f
is constant, which easily implies that ω = 0.

In particular, since H1(X,Z) ⊂ H1(X,R) is a lattice (a discrete subgroup
with compact quotient), we have that

image(H1(X,Z) → H1(X,OX))

is a lattice of rank 2g in the g-dimensional complex vector space H1(X,OX).
Hence the quotient

J(X) =
H1(X,OX)

H1(X,Z)

is a g-dimensional complex torus.
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Theorem 3.1 J(X) is a projective algebraic variety, such that the addition
map J(X)× J(X) → J(X) is a morphism of varieties.

The idea of the proof is as follows. Identifying H1(X,R) with H1(X,OX),
one computes that the intersection pairing on H1(X,R) corresponds to the
imaginary part of a positive definite Hermitian form on H1(X,OX). This form
is used to construct theta functions (see [Mu1], or [Mu2], Chapter 2) with respect
to the lattice

image(H1(X,Z) → H1(X,OX)).

Ratios of such theta functions yield meromorphic functions on J(X), which
are used to construct a projective embedding of J(X). Now a general result
implies that the group operation on J(X), which is clearly holomorphic, is in
fact algebraic.

We call J(X) the Jacobian variety of X ; it is an example of an Abelian
variety (a projective algebraic variety with an algebraic group operation). We
have dim J(X) = g.

Let A be a complex torus, i.e., we can write A = V/Λ, where V is a complex
vector space, and Λ ⊂ V is a lattice, that is, a discrete subgroup of maximal
rank. One may take V to be the Lie algebra of the complex Lie group A; then
Λ is the kernel of the exponential mapping Lie (A) → A, and is identifed with
the fundamental group of A.

It is a theorem, essentially due to Riemann, that A = V/Λ is an algebraic
variety, which is then automatically a projective algebraic manifold, precisely
when there exists a positive definite Hermitian form H on the vector space V ,
such that the alternating bilinear form Im (H) is integer valued on Λ. The
choice of such a Hermitian form H (or of its imaginary part, which suffices to
determine H) is called a polarization on the torus A. The proof that a polarized
torus (A,H) is algebraic is along similar lines to that for J(X); using H , one
can construct suitable theta functions to projectively embed A. On the other
hand, if A is already known to be projective algebraic, then a (Kähler) 2-form on
projective space (a certain non-zero closed 2-form invariant under the projective
linear group) can be used to construct a polarization H on A.

There is a numerical invariant associated to a polarization H on a torus A =
V/Λ. The imaginary part ofH yields an alternating, integer valued bilinear form
on Λ; letM be the matrix for this alternating form in some basis for Λ (which is
free abelian of rank 2 dimV = 2g, say). Then M is a 2g× 2g alternating matrix
with integer entries, and non-zero determinant; the determinant is independent
of the choice of basis. Then det(M) is the square of an integer, from the theory
of the Pfaffian (see [La3]); the positive square root of det(M) is called the degree
of the polarization H . If det(M) = 1, we call H a principal polarization.

As we remarked earlier, for the torus J(X), we have V = H1(X,OX), Λ =
H1(X,Z), and Im (H) is the intersection form, which is of course integer valued
(one can also describe the Hermitian form H explicitly, using the intersection
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form and the complex vector space structure, but we do not need this here).
Since by Poincaré duality, the intersection pairing

H1(X,Z)⊗H1(X,Z) → H2(X,Z) = Z

is non-degenerate, with determinant 1, we see that the polarization on J(X)
has degree 1, i.e., J(X) is principally polarized.

Theorem 3.2 There is a natural identification of abelian groups Cl 0(X) ∼=
J(X).

A sketch of a proof is as follows. Let O∗
X denote the sheaf of invertible holo-

morphic functions. One has the following exact sequence of sheaves

0 → Z
17→2πi−→ OX

f 7→ef−→ O∗
X → 0,

the exponential sequence, with associated long exact sequence of cohomology
groups

· · ·H0(X,OX) → H0(X,O∗
X) → H1(X,Z) → H1(X,OX) →

H1(X,O∗
X) → H2(X,Z) · · ·

Here, H0(X,OX) → H0(X,O∗
X) is the exponential map C → C∗, which is

surjective. Next, H1(X,O∗
X) is identified with the group of isomorphism classes

of line bundles (or locally free sheaves of rank 1), and hence in turn with the
divisor class group Cl (X); the isomorphism associates to a divisor D the class of
the sheaf OX(D). Finally, the boundary map H1(X,O∗

X) → H2(X,Z) = Z can
be identified with the degree map Cl (X) → Z. Thus we have an identification of
J(X) with the group Cl 0(X) of divisors of degree 0 modulo linear equivalence.

Another way to understand the isomorphism in Theorem 3.2 is as follows. By
Serre duality, we may view H1(X,OX) as the dual space H0(X,Ω1

X)∨. There
is also an isomorphism (Poincaré duality) H1(X,Z) ∼= H1(X,Z). Thus we must
have a natural map H1(X,Z) → H0(X,Ω1

X)∨, that is, a bilinear pairing

H1(X,Z)×H0(X,Ω1
X) → C.

One can show that this is just the natural pairing

[γ]× ω 7→
∫

γ

ω

given by integrating holomorphic 1-forms on homology classes (since holomor-
phic 1-forms are closed, this is well-defined, by Stokes theorem). Thus we have
another description

J(X) =
H0(X,Ω1

X)∨

H1(X,Z)
.
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Now we can define a map AJX : Cl 0(X) → J(X), called the Abel-Jacobi
map, as follows: if D =

∑
i([xi] − [yi]) is a divisor of degree 0, associate to it

the linear functional on holomorphic 1-forms given by

ω 7→
∑

i

∫ xi

yi

ω.

This depends on the choice of paths joining yi to xi (and on the particular
way of decomposing D); however, if we make different choices, one verifies that
the difference between the two functionals is obtained by integration over some
closed loop, i.e., is the functional associated to an element of H1(X,Z). Now a
more precise form of Theorem 3.2 states that the map AJX is an isomorphism
of abelian groups. In particular, one has Abel’s Theorem, which characterizes
principal divisors on X as those divisors D such that, for a suitable choice of
paths as above, the corresponding functional can be made to vanish identically.

In particular, let x0 ∈ X be a chosen base point. Then we have a set-
theoretic map X → Cl 0(X) given by x 7→ [x] − [x0]. Composing with the
Abel-Jacobi map, we obtain a map

f : X → J(X),

such that f(x0) = 0 ∈ J(X). It is easy to see that f is in fact holomorphic;
from the description of the map AJX , this can be reduced to the fact that in
any open disk in C, the function h(z) =

∫ z

z0
g(w)dw is holomorphic, for any

holomorphic function g on the disk, and any chosen base point z0. Further,
the Riemann-Roch theorem can be used to prove that f is an embedding. In
particular, when g = 1, f is an isomorphism of X with J(X), proving that any
compact Riemann surface of genus 1 is biholomorphic to a complex torus.

Now since X and J(X) are both projective algebraic, general theorems im-
ply that f is an algebraic morphism. In particular, one can restrict rational
functions on J(X) to f(X) to obtain rational functions on X ; in particular, one
can use theta functions to give a concrete description of rational functions on
X (see [Mu2], Chapter 2).

It turns out that if X is defined (as an algebraic subvariety of some projective
space) by equations with coefficients in a subfield k of C, then so is J(X); if x0
also has coordinates in k, then f is described by polynomials with coefficients
in k. This is important for number-theoretical applications, which we touch on
later in this article.

We now mention 2 other important topics in connection with the Jacobian
variety. A natural question is:

to what extent does its Jacobian variety J(X) determine a compact
Riemann surface X?

There are examples (see [H], [HN], [Lg]) of non-isomorphic Riemann surfaces
X1, X2 such that J(X1) ∼= J(X2) as complex tori (by a result of Narasimhan
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and Nori [NN], however, a given complex torus can be the Jacobian of at most a
finite number of distinct Riemann surfaces). So J(X) alone does not determine
X . However, the Torelli theorem states that the pair (J(X), H) consisting of
J(X) with its natural principal polarization, does determine X — in other
words, if (J(X1), H1) ∼= (J(X2), H2), then X1

∼= X2.
A more precise statement is as follows. Suppose there is an isomorphism of

the cohomology groups f : H1(X1,Z) → H1(X2,Z) such that

(i) f is compatible with the intersection products on both groups

(ii) the induced R-linear map H1(X1,R) → H1(X2,R) is in fact C-linear,
where we use the (R-linear) isomorphisms H1(Xj ,R) → H1(Xj ,OXj ),
j = 1, 2 to regard the two real vector spaces as complex vector spaces.

Then f is induced by a unique biholomorphic map f̃ : X2 → X1. Of course an
isomorphism (J(X1), H1) ∼= (J(X2), H2) does yield such an f . For proofs of the
Torelli theorem, see the books [Mu], [ACGH] and references given there.

We give a third formulation of the Torelli theorem which is perhaps the
most concrete. If X is a compact Riemann surface of genus g, then one can
find a basis for H1(X,Z) consisting of the classes of loops a1, . . . , ag, b1, . . . , bg
such that if a∗1, . . . , b

∗
g is the corresponding (dual) basis for H1(X,Z), then the

intersection pairing has the simple form

< a∗j , a
∗
k >=< b∗j , b

∗
k >= 0,

< a∗j , b
∗
k >=

{
0 if j 6= k
1 if j = k

Such a basis for H1(X,Z) is called a symplectic basis, and is well determined up
to the action of an element of the (integral) symplectic group Sp (2g,Z). One
way to obtain such a basis is to express X as a quotient of a 4g sided polygon in
the standard way; the images of oriented edges of the polygon are loops giving
the desired basis.

Now we use the description J(X) = H0(X,Ω1
X)∨/(imageH1(X,Z)). We

know that H1(X,Z) → H0(X,Ω1
X)∨ is injective; further, the positive definite

Hermitian form on H0(X,Ω1
X)∨ is real valued, hence symmetric and positive

definite, on the real g-dimensional subspace
∑

j Raj (as the imaginary part,
which corresponds to the intersection form, vanishes). Hence

∑
j Raj contains

an orthonormal set of cardinality g, i.e., a C-basis for H0(X,Ω1
X)∨. Thus,

a1, . . . , ag is a C-basis for H0(X,Ω1
X)∨. Hence we can find a (dual) basis for

H0(X,Ω1
X) consisting of forms ω1, . . . , ωg such that

∫

aj

ωk =

{
1 if j = k,
0 otherwise.
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Then we have a complex g × g matrix

Ω =

[∫

bj

ωk

]

1≤j,k≤g

.

This is called a Riemann matrix for the curve X ; it depends on the choice of
symplectic basis. Now one can work out the conditions that the intersection
form is the imaginary part of a positive definite Hermitian form; these are the
so-called Riemann bilinear relations:

(i) Ω is a symmetric matrix, and

(ii) Im (Ω), the imaginary part of the (symmetric) matrix Ω, defines a positive
definite inner-product on R

g.

If one changes the symplectic basis for H1(X,Z) by a 2g × 2g matrix in the
symplectic group Sp (2g,Z), written in (g × g)-block form

[
A B
C D

]
,

then one computes that Ω is replaced by (AΩ + B)(CΩ + D)−1. So we may
finally restate the Torelli theorem as follows: given compact Riemann surfaces
X and Y , such that their respective Riemann matrices Ω, Ω′ are related as
above by an element of Sp (2g,Z), then X and Y are biholomorphic.

This also brings us naturally to the second important topic alluded to earlier.
This is the Schottky problem, which we first state loosely as follows:

can one describe (or characterize) the set of all Riemann matrices of
Riemann surfaces?

More precisely, one observes that in the discussion of Riemann matrices and
Riemann’s bilinear relations, one only needs that the imaginary part of the
Hermitian form yields an integral, alternating form which has determinant 1;
then standard linear algebra implies that one can find a symplectic basis for
the lattice relative to this alternating form, and hence define an analogue of the
Riemann matrix, which satisfies the Riemann bilinear relations. Conversely,
given a g × g matrix Ω of complex numbers satisfying the Riemann relations,
then A = C

g/Λ, where Λ = Z
g+ΩZg does define a complex torus. Further, one

checks that under the identification

Zg × Zg ∼=−→ Λ, (m,n) 7→ Ωm+ n,

the alternating form

< (m1, n1), (m2, n2) >= m1 · n2 −m2 · n1
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(where · is the dot product of g-vectors) is transported to a form on Λ which is
the imaginary part of a positive definite Hermitian form on C

g. This Hermitian
form determines a principal polarization on the torus A.

Let Hg denote the set of all g × g complex matrices Ω satisfying the above
two Riemann bilinear relations; it is an open subset of the C-vector space of
symmetric matrices. The integral symplectic group acts on Hg (on the left) by
the formula [

A B
C D

]
· Ω = (AΩ+B)(CΩ +D)−1.

From the discussion above, the quotient space

Ag = Hg/Sp (2g,Z)

parametrizes isomorphism classes of principally polarized abelian varieties. The
space Ag, which by construction is (almost) a complex manifold5 , can in fact
be shown to be a (Zariski) open subset of a projective algebraic variety Ag; the
algebraic structure is natural, in the following sense. Assume given a surjective
morphism f : X → Y of algebraic varieties, with a section σ : Y → X , such that
the fibres (f−1(y), σ(y)) form an algebraic family of principally polarized abelian
varieties of dimension g (this notion can be made precise) with σ(y) ∈ f−1(y)
as the origin. Then we have a set-theoretic map Y → Ag, given by

y 7→ isomorphism class of f−1(y).

The algebraic structure on Ag is the unique one such that for any such family f ,
the induced map Y → Ag is a morphism of algebraic varieties. We express this
by saying that Ag is a (coarse) moduli space for principally polarized abelian
varieties of dimension g (the notions of a moduli problem, and moduli space, are
discussed in some more detail later in this article).

Let Mg be the set of isomorphism classes of compact Riemann surfaces of
genus g. Then the Torelli theorem implies that there is an injective map Mg →
Ag. One can prove that the image is a (Zariski) open subset of a subvariety of
Ag, such that the boundary points of Mg correspond to ‘generalized Jacobians’
of certain ‘Riemann surfaces with singularities’.

A more precise version of the Schottky problem is the following: give equa-
tions (in terms of suitable coordinates on Ag) describing the closure of the
image of Mg. There are certain natural equations satisfied by the closure of
Mg in Ag, which amount to the condition that the corresponding theta func-
tions satisfy certain differential equations; the Novikov Conjecture asserts that
the closure of Mg is precisely the set of solutions of these equations. The dif-
ferential equations themselves are motivated by the so-called ‘KdV equation’
(or ‘soliton equation’) which arises in many other contexts in mathematics and
physics (like fluid dynamics, and string theory, to name two).

5Ag has mild singularities, called quotient singularities; for example, it is a rational ho-
mology manifold.
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The Schottky problem was solved fairly recently [AD]; shortly after that, the
Novikov Conjecture was proved [S]. We do not attempt any discussion of these
papers, and refer the interested reader to the original sources, as well as to the
articles [Gu], [A].

4 Non-compact Riemann surfaces

Let f =
∑∞

n=0 an(z−b)n be a convergent power series. Consider the set C(f) of
all convergent power series

∑∞
n=0 cn(z− b)n obtained by analytically continuing

f along loops (closed paths) at b. Then, acording to a famous theorem of
Poincaré and Volterra, the set C(f) is at most countable.

Now, we know that there is a connected Riemann surface Xf and a holo-
morphic map π : Xf → C such that π−1(b) = Cf ; hence Cf is a discrete subset
of Xf . Thus, if we know that Xf is a countable union of compact subsets, then
the countability of C(f) would follow. And we have, in fact,

Theorem 4.1 (Rado) Every connected Riemann surface is a countable union
of compact subsets.

One method of proving this theorem, which is useful in many contexts, has
to do with harmonic functions and the Dirichlet problem, which we now briely
explain. A function h : X → R on a Riemann surface X is harmonic if it is
locally the real part of a holomorphic function. Given an open subset Ω of X ,
the Dirichlet problem for Ω consists in finding a continuous function h : Ω → R

which is harmonic in Ω, and coincides with a given continuous function b on the
boundary ∂Ω := Ω \Ω. A method of Perron (Ahlfors [Ahl], Forster [Fo]) shows
that the Dirichlet problem can be solved for Ω if, for example, ∂Ω is a finite
disjoint union of Jordan curves6 on X .

To prove Rado’s theorem, we take Ω = X \ (K1 ∪ K2), where K1, K2 are
disjoint closed disks in X contained in a coordinate disk in X , and use Perron’s
method to obtain a non-constant harmonic function on Ω. It is then easy to
show that Ω, and hence X , is a countable union of compact sets (see Forster
[Fo]).

Using solvability of the Dirichlet problem, one can also prove fairly easily
the following basic results.

Theorem 4.2 Let Ω be a connected open subset of a Riemann surface X. Sup-
pose that (i) Ω is compact, and (ii) ∂Ω is the disjoint union of (differentiable)
Jordan curves. Then there exists a compact Riemann surface Y which contains
an open subset Ω′ biholomorphic to Ω, and such that Y − Ω′ is a finite disjoint
union of compact sets homeomorphic to the closed unit disk in C.

6Homeomorphic images of the circle S1.

23



Theorem 4.3 (Riemann Mapping Theorem, or Uniformization Theorem) Let
X be a connected, simply connected Riemann surface. Then

(i) if X is compact, X is biholomorphic to C = P
1
C;

(ii) if X is non-compact, X is biholomorphic to either C, or the unit disk
in C.

Both these theorems can be deduced rather easily from the following result,
which can be proved using solvability of the Dirichlet problem (see Ahlfors
[Ahl]).

Theorem 4.4 A Riemann surface which is homeomorphic to an annulus {R1 <
| z | < R2} is biholomorphic to a unique annulus {1 < | z | < R ≤ ∞}, or to
C

∗ = C \ {0}.

By the Riemann-Roch theorem 2.1, we have detailed information about
meromorphic functions on compact Riemann surfaces. Theorem 4.2 can be
used to solve the analogues of the Weierstrass and Mittag-Leffler problems on
relatively compact open subsets of any non-compact Riemann surface X . To
do the same on the whole of X , one needs (as in the case of domains in C) a
Runge approximation theorem.

Theorem 4.5 (Behnke-Stein) Any connected non-compact Riemann surface X
can be written as an increasing union of relatively compact open subsets Ωn such
that, for each n, the pair (Ωn+1,Ωn) has the Runge property:
for any holomorphic function f on Ωn, any compact set K ⊂ Ωn and any ε > 0,
there exists a holomorphic function g on Ωn+1 such that | g(z)− f(z) | < ε for
all z ∈ K.

This implies that the theorems of Weierstrass and Mittag-Leffler are valid on
any non-compact Riemann surface. In particular, on any non-compact Riemann
surface, there exists a holomorphic function which takes arbitrarily prescribed
values at points of any given discrete set.

The Uniformization Theorem is perhaps the single most useful result in the
theory of Riemann surfaces. To explain some of its applications, we recall that,
by topology, every connected Riemann surface admits a universal covering X̃,
which is a (Hausdorff) topological spaceX equipped with a map π : X̃ → X such

that (i) X̃ is connected and simply connected (ii) π is a local homeomorphism
(iii) the fundamental group π1(X) ofX acts discretely as a fixed-point free group
of homeomorphisms of X onto itself, and the orbits of the action are precisely
the fibres π−1(x), x ∈ X , of π. As π is a local homeomorphism, there is a

unique Riemann surface structure on X̃ which makes π locally biholomorphic,
and it is then clear that π1(X) acts by holomorphic automorphisms on X̃.

Now the Uniformization Theorem says that X̃ is (biholomorphic to) either
(i) P1

C = C, (ii) C or (iii) the unit disk ∆ (or equivalently, the upper half plane
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H) in C. But every g ∈ Aut (P1) = PGL2(C) has a fixed point, and the fixed-
point free automorphisms of C are precisely the translations z 7→ z + a. It
follows rather easily that

(i) P
1 is the only Riemann surface X with universal cover X̃ = P

1;

(ii) C, C∗ = C − {0} and the complex tori X = C/Γ are the only Riemann

surfaces X with X̃ = C.

All other Riemann surfaces X arise as X = H/Γ, where Γ is a discrete, fixed-
point free subgroup of Aut (H) isomorphic to π1(X). Thus the Uniformization
Theorem enables us, in principle, to list “all” (connected) Riemann surfaces in
a fairly concrete way.

Example 4.1: Consider the Riemann surface X = C \ {0, 1}. It is standard
that its fundamental group π1(X) is non-abelian (it is the free group on 2

generators). It follows that its universal covering X̃ cannot be C, since all fixed-

point free subgroups of Aut (C) are abelian. Hence X̃ = H. This statement
implies the Picard Theorem, that any entire function f : C → C − {0, 1} = X
is constant (indeed, since C is simply connected, topology implies that there is

a continuous lifting f̃ : C → X̃ = H of f ; now f̃ is a bounded, entire function).

Example 4.2: The Uniformization Theorem yields an easy proof of the fact
that every Riemann surface is triangulable (Rado’s Theorem). It can also be
used to get complete information on the topological structure of a compact
Riemann surface (c.f. Nevanlinna [Ne], or Springer [Sp]), as described earlier in
§1.2 of this article.

Classification problems regarding non-compact Riemann surfaces seem to
be very hard; for example, it is not easy to decide whether a given simply
connected Riemann surface is either H or C. There has been a lot of work on
special classes of non-compact Riemann surfaces and inclusion relations among
these classes, e.g. the class OH (respectively OA) of Riemann surfaces admitting
no non-constant bounded harmonic (respectively holomorphic) functions, etc.
(see Ahlfors-Sario [AS]). But the area does not appear to be very active now.

5 Moduli of Riemann surfaces

In general, a classification problem for certain mathematical objects leads to a
moduli problem if, intuitively speaking, the objects in question can vary con-
tinuously. To see this in a concrete example from complex analysis, consider
the set D of biholomophic equivalence classes of bounded, doubly connected
domains D ⊂ C (i.e., domains D such that C \ D has precisely 2 connected
components). It is well-known (see [Ahl]) that each such D is biholomorphic to
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a unique annulus7

Ar = {z ∈ C | 1 < | z | < r},
where r ∈ (0,∞). Thus, the classification problem in this case leads to the
topological space (1,∞), and it is natural to ask in what sense D “is” this
1-dimensional Hausdorff space (instead of merely the underlying set).

The only compact Riemann surface of genus 0 is P1
C. However, if g ≥ 1, there

are different isomorphism classes of Riemann surfaces of genus g, depending
continuously on complex parameters. For any g ≥ 1, let Mg be the set of
isomorphism classes of compact Riemann surfaces of genus g. We will see that
it has a natural structure as a topological space, and in fact, as an algebraic
variety; it is called the moduli space for Riemann surfaces of genus g.

First we consider the case when g = 1. We had seen (example 1.2) that the
moduli space M1 can be identified (as a set) with the quotient space SL 2(Z)\H,
where H = {τ ∈ C | Im (τ) > 0} is the upper half-plane in C, and SL 2(Z) acts
on H through fractional linear transformations τ 7→ aτ+b

cτ+d .
We now give a different-looking description ofM1. We had also seen that any

compact Riemann surface X of genus 1 can be realized as a smooth projective
plane curve, defined by a homogeneous cubic equation

y2z = f(x, z),

where f(x, 1) is a cubic polynomial with distinct roots. The meromorphic func-
tion x/z onX yields a holomorphic mapX → P

1 of degree 2 ramified at 4 points,
namely ∞ and the 3 roots of f(x, 1) = 0. One can show that two curves X,X ′

of genus 1 are isomorphic (biholomorphic) precisely if there is an automorphism
of P1

C mapping the 4 ramification points of X → P
1 to the corresponding points

for X ′. The group Aut (P1) is known to be PGL2(C) = GL 2(C)/(scalars), act-
ing through linear fractional transformations. Thus, if U ⊂ (P1)4 is the open
subset consisting of 4-tuples of distinct points, then G = S4 × Aut (P1) acts on
U , where the symmetric group S4 permutes the coordinates, and Aut (P1) acts
diagonally. The parameter space M1 for Riemann surfaces of genus 1 is thus
identified with the quotient space U/G.

We may further normalize the cubic polynomial f to be of the form fλ(x, z) =
x(x−z)(x−λz), where λ 6= 0, 1. Let Xλ be the curve defined by y2z = fλ(x, z).
This amounts to forming the quotient U/Aut (P1); the quotient is identified with
P
1 − {0, 1,∞}, with coordinate λ. Then Xλ is biholomorphic to Xµ iff there is

an element of Aut (P1) carrying {0, 1,∞, λ} onto {0, 1,∞, µ}. This amounts to
µ lying in the orbit of λ under the permutation group S4 (which acts through
its quotient ∼= S3, as it turns out), and the parameter space U/G may be then
identified with the quotient (C − {0, 1})/S3, which we may compute to be C,

with (λ2−λ+1)3

λ2(1−λ)2 as a coordinate.

7Classically, log(r) was called the “modulus” of D.
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One can prove that the point in C corresponding to the isomorphism class of
X = C/Z+ Zτ is just the classical j-invariant j(τ), if we make an appropriate
choice of the coordinate function on (C−{0, 1})/S3. Thus, one has an identifica-
tion SL 2(Z)\H ∼= C as well, i.e., the natural Riemann surface structures on the
set M1 obtained by the two (rather different) constructions are the same! The
proof is not entirely trivial, however; Picard’s theorem (that an entire function
omitting 2 values is constant) can be deduced as a consequence.

The “reason” why both constructions gave the same Riemann surface struc-
ture on M1 is that both give a universal parameter space for “families” of
Riemann surfaces of genus 1, depending continuously (or holomorphically, or
algebraically) on parameters. Then, as is usual with objects satisfying universal
mapping properties, the universal property would force uniqueness.

We will later make the above notions of “families” more precise. The notion
of an algebraic family is easiest to define, at least in some contexts: for example,
an algebraic family of plane curves of degree d parametrized by a variety T is
given by a collection of homogeneous polynomials ft(x, y, z) of degree d, whose
coefficients are all algebraic (regular) functions on T with no common zero.

Thus, in our example above, the Riemann surfaces (or algebraic curves) Xλ

form an algebraic family. Further, G can be viewed as an algebraic group, and
U as an algebraic variety; the quotient map U → U/G ∼= (C−{0, 1})/S3

∼= C is
seen to be a morphism of algebraic varieties. Thus, the algebraic construction of
M1 reduces to the problem of construction of a quotient of an algebraic variety
modulo the action of an algebraic group; in this case, we have determined this
quotient explicitly.

In the case of compact Riemann surfaces of genus g ≥ 2, there is a construc-
tion of a parameter space for isomorphism classes, which again identifies it with
a quotient of an algebraic variety modulo the action of an algebraic group of au-
tomorphisms. This is a purely algebraic construction, and is important (among
other things) for number-theoretic reasons. There is also a purely analytic con-
struction of this space via Teichmüller theory, which has been most successful
in terms of obtaining explicit results about the topology and geometry of Mg.
We discuss these two constructions separately.

5.1 Mg via Teichmüller theory

Let G denote the fundamental group of a compact Riemann surface of genus g,
and define Γg, the Teichmüller modular group or mapping class group (of genus
g), to be the quotient group

Γg = Γ =
AutG

IntG
,

where IntG is the subgroup of inner automorphisms of G. The main result of
Teichmüller theory is the following.
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Theorem 5.1 There exists a bounded domain Tg ⊂ C3g−3, and an open set
Ωg ⊂ Tg × P

1, such that

(i) Tg is homeomorphic to R6g−6;

(ii) Γg acts as a discrete group of holomorphic automorphisms of Tg;

(iii) G acts as a discrete, fixed-point free group of automorphisms of Ωg,
preserving the fibres of the projection π : Ωg → Tg, and acting on each
fibre through linear fractional transformations;

(iv) the induced mapping Ωg/G→ Tg is continuous, and for each t ∈ Tg,
the quotient Xt = π−1(t)/G is a compact Riemann surface of genus g,
such that the map π−1(t) → Xt is holomorphic;

(v) every compact Riemann surface is biholomorphic to Xt, for some t ∈
Tg, and Xt, Xt′ are biholomorphic precisely when t, t′ are in the same
Γg-orbit; in particular, there is a natural bijection Mg

∼= Tg/Γg;

(vi) for any t ∈ Tg, the isotropy group Γg(t) = {g ∈ Γg | g · t = t} is a
finite group, naturally isomorphic to the group Aut (Xt) of holomorphic
automorphisms of the compact Riemann surface Xt.

Remark 5.2 Observe that if we take T1 to be H (the unit disk in its un-
bounded avatar), Ω1 = H×C, G = Z⊕Z, and Γ1 = SL 2(Z), then the conclusions
(ii)-(v) of the theorem hold in the case g = 1 as well; the conclusion (vi) needs
to be modified to read: Γ1(t) = Aut (Xt, 0), where Aut (Xt, 0) is the group of
holomorphic group automorphisms (i.e., preserving the group structure) of the
torus Xt.

The above theorem was formulated by Teichmüller in the 30’s, but was
finally proved only in the 60’s by Lipman Bers ([Be]). The space Tg, called the
Teichmüller space of genus g, was constructed abstractly as a metric space by
Teichmüller, and came with a natural action of Γg. Teichmüller himself proved
only that Γg is homeomorphic to R

6g−6, and that the action of Γg has the
properties (iv) and (v) of the theorem, in a suitable sense. It must be noted
that Riemann himself had stated that the space of compact Riemann surfaces
of genus g ≥ 2 has complex dimension 3g − 3, and had given some heuristic
justification for this.

To understand in what sense the above theorem solves the “moduli prob-
lem”, we must finally give the definition of a holomorphic family of compact
Riemann surfaces. Suppose Z is a connected complex manifold of dimension n
(for example, a connected open set in C

n). Then a holomorphic family of com-
pact Riemann surfaces of genus g parametrized by Z is a triple (C, Z, p : C → Z),
where

(i) C is a connected complex manifold of dimension n+ 1
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(ii) p is a holomorphic, surjective map whose Jacobian matrix has maximal
rank everywhere on C

(iii) the fibres of C (which, by (i), (ii) and the holomorphic implicit function
theorem, must necessarily be complex submanifolds of C of dimension 1)
are compact Riemann surfaces of genus g.

For example, one may take Z = C − {0, 1}, C = {((x, y, z), λ) ∈ P1 × Z |
y2z − x(x − z)(x − λz) = 0}, and p : C → Z to be the natural projection map;
here g = 1.

Given such a family p : C → Z, we have the obvious set-theoretic map

f : Z → Mg, (z ∈ Z) 7→ (isomorphism class of p−1(z)).

It is natural to require that, for the “correct” topology onMg, this map f should
be continuous; in fact, Mg should have the strongest8 topology for which this
holds. For example, the topology of Mg should be T1 (i.e., points are closed)
iff, in all such families, the set

{z ∈ Z | p−1(z) is isomorphic to a fixed Riemann surface X}

is closed, for each compact Riemann surface X (of genus g).
Now define the topology on Mg as the strongest one for which all such

“classifying maps” f are continuous. To get a non-trivial topology on Mg,
we must then construct plenty of families for which the classifying maps f are
non-constant. In a sense, this is one of the major steps in tackling any moduli
problem.

The Teichmüller-Bers theorem constructs a holomorphic family of compact
Riemann surfaces of genus g over Z = Tg, with C = Ωg/G. Indeed, C is a
complex manifold, since the action of G is discrete, fixed-point free and through
holomorphic automorphisms of Ωg; since Ωg → C is locally biholomorphic, the
Jacobian matrix condition holds for C → Z (since it clearly holds for Ωg → Z).
The classifying map Tg → Mg is just the quotient map modulo the action of Γg,
by (v) of the theorem. Thus, the correct topology on Mg (as defined above) can
be no finer than the quotient topology, under the identification Tg/Γg

∼= Mg.
Now the Teichmüller family C → Tg has the following “semi-universal” prop-

erty: if Y → Z is any holomorphic family of compact Riemann surfaces of genus
g, then the (set-theoretic) classifying map Z → Tg/Γg lifts locally

9 to a holomor-
phic map Z → Tg. It follows that Z → Tg/Γg is continuous, i.e., the quotient
topology on Mg = Tg/Γg is the correct topology.

As a corollary, the we deduce that Mg is a connected, Hausdorff space.
Because the action of Γg on Tg has fixed points, Mg is not a (complex) manifold,

8Finest, i.e., with the most open sets.
9That is, each x ∈ Z has an open coordinate neighbourhood U , such that the restricted

map U → Tg/Γg lifts to a holomorphic map U → Tg.
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but it does have a complex analytic structure: namely, that of a so-called normal
complex space. It is possible to define the notion of a holomorphic family of
compact Riemann surfaces p : Y → Z on a complex space Z. One can show that
the classifying map Z → Mg determined by any such family is a holomorphic
map of complex spaces; we express this by saying that Mg is a coarse moduli
space (for compact Riemann surfaces of genus g).

It would be ideal if there were a “universal” holomorphic family u : U → Mg

such that an arbitrary family Y → Z is obtained from u via the pull-back under
a holomorphic map Z → Mg. However, it can be proved that there is no such
universal family u : U → Mg. This explains the need to go to the Teichmüller
space, which is a “ramified covering” of Mg.

The above phenomenon often occurs in moduli problems. For a “sufficiently
good” moduli problem, for which there is moduli spaceM , as well as a universal
family U →M of the objects one is classifying, one says thatM is a fine moduli
space. At the other extreme, we mention here that, in some moduli problems
(for example, that of holomorphic vector bundles on P

1 of a fixed rank ≥ 2),
the “natural” topology on the moduli space, as defined via families, is non-
Hausdorff.

We mention some topological consequences of the construction ofMg via Te-
ichmüller theory. Since Mg is the quotient of Tg by a group of automorphisms,
whose stabilizers are all finite groups, one can prove that the cohomology groups
Hi(Mg,Q) can be identified with the “group cohomology” Hi(Γg,Q), which
may (in principle) be computed purely in terms of the group Γg (as an abstract
group).

J. Harer ([Harer]) used the Teichmüller construction to show thatH2(Mg,Z) =
Z; another result of his ([Harer2]) is a stability theorem: Hk(Mg,Z) ∼= Hk(Mg+1,Z)
if g ≥ 3k + 1. He has also proved that Mg is homotopy equivalent to a simpli-
cial complex of dimension 4g − 4; in particular, Hi(Mg,Z) = 0 for i > 4g − 4.
D. Johnson [Jo] has interesting results on the related Torelli group, namely the
subgroup of Γg of automorphisms of G = π1 consisting of automorphisms acting
trivially on the abelianization Gab = G/[G,G] (here [G,G] is the commutator
subgroup). The geometric consequences of some of these results are still being
understood.

5.2 Mg via invariant theory

As stated earlier, there is a different algebraic construction of Mg, for g ≥ 2,
analogous to the construction of M1 using plane cubic curves.

One begins by considering the space of n-fold “pluricanonical forms” on a
compact Riemann surface X of genus g, which is just the space L(nKX) for a
canonical divisor KX (elements of this space may be identified with holomor-
phic tensors which are locally expressible as f(z)(dz)⊗n, with evident transition
formulas). If n ≥ 3, the Riemann-Roch theorem implies that dimL(nKX) =
(2n− 1)(g − 1) = N + 1, say. If f0, . . . , fN is a basis for this vector space, then

30



x 7→ (f0(x), . . . , fN (x)) gives a (holomorphic) mapping V → CN+1−{0}, where
V is the complement of the finite set of poles, and of the common zeroes, of the
fj in X . From the Riemann-Roch theorem, one can show that the composite

V → P
N extends to a biholomorphic map from X onto a non-singular curve

Y ⊂ P
N . This construction is essentially intrinsic to the Riemann surface X ,

except that it involves the choice of the basis f0, . . . , fN .
A. Grothendieck has constructed a certain universal (algebraic) family C →

H, where H is a projective algebraic variety called the Hilbert scheme10. The
fibres of C → H are precisely the subvarieties (or subschemes) of PN of degree11

n(2g − 2), with a sheaf OX of algebraic (or holomorphic) functions with Euler
characteristic χ(OX) = 1 − g (over C, this is computed via sheaf cohomology
as defined in the appendix; however, there is an equivalent algebraic definition
using the Hilbert-Samuel polynomial which works in general). An open subset
U ⊂ H (in the Zariski topology) will parametrize those fibres which are non-
singular curves of genus g. As with the Teichmüller family, we see that (i) every
compact Riemann surface is isomorphic to the fibre over some point of U , and
(ii) the fibres over x, y ∈ U are isomorphic iff both are obtained as embeddings
of a fixed Riemann surface X , with (possibly) different choices of bases for the
vector space L(nKX).

There is a natural action of the algebraic group Aut (PN ) = PGLN+1(C)
on H, which (on points) is given by (g, [Z]) 7→ [g(Z)], where Z ⊂ P

N is a
subvariety (or subscheme) corresponding to a point [Z] of H (i.e., Z has the
appropriate degree and holomorphic Euler characteristic), g ∈ Aut (PN ), and
g(Z) is the image of Z under translation by g (clearly g(Z) again determines
a point of H). Also, the open set U ⊂ H parametrizing smooth projective
curves is clearly stable under Aut (PN ). Hence the quotient set U/Aut (PN) is
naturally in bijection with Mg.

Mumford’s geometric invariant theory (see [GIT]) gives a way of construct-
ing quotients of algebraic varieties modulo algebraic actions of linear algebraic
groups, whenever these exist as varieties. This is done using the notion of sta-
ble points for such an action. One first considers a projective algebraic variety
T , together with an algebraic action of a linear algebraic group (i.e., an alge-
braic matrix group) G on T . Then, one must choose a possibly new embedding
T ⊂ P

M such that G acts on P
M via a linear representation G → GLM+1(C),

where GLM+1(C) → Aut (PM ) is the obvious quotient map onto PGLM+1(C).
The choice of such an embedding gives a parameter in Mumford’s theory; it is
called a linearization of the action of G on T .

Now define a point t ∈ T to be semi-stable for the given action (and lin-
earization) if there exists a G-invariant hypersurface Yt ⊂ P

M with t 6∈ Yt; we
say t is stable if in addition, Yt can be chosen so that all G-orbits on the (affine)

10Actually, H is a scheme, which is a generalization of an algebraic variety, on which one
is also allowed to have non-zero nilpotent functions; however, the subsets we will need to
consider will be algebraic varieties in the usual sense.

11This means a “general” hyperplane intersects the subvariety in n(2g − 2) points.

31



open subvariety T \ Yt are closed. The main theorem of geometric invariant
theory is the following.

Theorem 5.3 Let G act on T , with a given linearization, corresponding to an
embedding T ⊂ P

M . Let T ss be the set of semi-stable points of T , and T s the
subset of stable points. Then

(i) T s, T ss are G-invariant Zariski open subsets of T

(ii) there is a projective variety M , and a surjective algebraic morphism
ψ : T ss →M , with affine fibres, such that ψ(t) = ψ(t′) iff Gt ∩Gt′ 6= ∅

(iii) ψ is an open map between algebraic varieties (i.e., the inverse image
of a Zariski open subset of T ss is Zariski open in M)

(iv) ψ−1ψ(t) consists of a single G-orbit iff t ∈ T s

(v) M = ψ(T s) is a Zariski open subset of M

(vi) points of M are in bijection with closed orbits in T ss.

Thus, a good quotient, namelyM , exists for the action of G on T s, andM comes
equipped with a “good compactification” M , which is a projective algebraic
variety.

In our example of smooth curves, Mumford shows (see [GIT], Chapter 5)
that there is a certain natural G-linearization of the action of G on U , where
G = Aut (PN ); if U is the closure of U in the corresponding projective space,
then Mumford proves that U ⊂ U

s
. Hence the quotient U/G exists, as a Zariski

open subset of U
s
/Aut (PN ). In fact, since the whole theory is purely algebraic,

it works in a similar fashion over arbitrary fields, and even over the ring of
integers. Thus Mumford is able to construct a “moduli scheme” Mg over Z,
whose generic fibre is (as a C-variety) just Mg, and whose reduction modulo
any prime p is the moduli space of smooth projective curves of genus g over
fields of characteristic p.

Needless to say, the appropriate universal property of this quotient structure
U/G implies that, considered as a (normal) complex space, it coincides with the
space Mg constructed using Teichmüller theory.

In the above case, it turns out that U
s
= U

ss
, and the good compactification

Mg can be identified as the coarse moduli space for “stable curves of genus g”;
the boundary points (i.e., points of Mg \Mg) correspond to certain “Riemann
surfaces with singularities” (the singularities are restricted in a certain explicitly
described way). The term “stable curve” is consistent with the fact that such
curves correspond to stable points. However, we will see later that in dealing
with the moduli spaces of vector bundles, we do encounter semi-stable points
which are not stable.

Another point of interest is related to the Jacobian variety and Torelli’s
theorem. We had discussed the analytic construction of Ag, the parameter
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space of principally polarized complex tori (or abelian varieties) of dimension
g. Mumford’s geometric invariant theory again gives an algebraic construction,
by starting with a suitable projective embedding, and using a suitable Hilbert
scheme. Since a holomorphic (or algebraic) family of Riemann surfaces of genus
g gives rise to a similar family of Jacobians, i.e., a family of principally polarized
complex tori, there is a natural map Mg → Ag which is a morphism of algebraic
varieties (and hence a holomorphic mapping between complex spaces.) This
“explains” the statement made earlier that the image ofMg inAg is an algebraic
variety.

The algebraic construction of Mg has been useful in number theory; for
example, it featured critically in Faltings’ proof of the Mordell Conjecture (we
further discuss this topic later in this article). The present focus has been on
natural subvarieties of Mg, and intersection theory for these (which, in princi-
ple, amounts to counting the number of fibres with some distinguished property
in any given family of Riemann surfaces of genus g, in terms of “intrinsic invari-
ants” of the family); see [Mu3]. Recent impetus has been received from string
theory in theoretical physics, leading to conjectures which have been studied by
mathematicians like Kontsevich (see [Lo] for a recent exposition of these ideas).

We mention in passing that Mg, though non-compact, is far from being an
affine algebraic variety. On the one hand, this can be seen by the fact that
there are no non-constant algebraic regular (or even holomorphic) functions
on Mg. Another evidence of this “non-affineness” is that one can construct
non-constant families of compact Riemann surfaces of genus g with a compact
parameter space; one construction of such families was exhibited by Kodaira,
and a variant was also used in the proof of the Mordell conjecture (this was an
idea of Parshin).

For a nice overview of this topic, with many references for further reading,
see [Har].

6 Riemann surfaces and number theory

Due to our lack of expertise, and to limit the scope of the discussion, we mention
here only a few of the connections of Riemann surface theory with number
theory.

We first discuss the Diophantine properties of a Riemann surface (or al-
gebraic curve) X , which is defined (as a subset of some projective space) by
polynomial equations with coefficients in an algebraic number field F , i.e., a
subfield F ⊂ C which is a finitely generated algebraic extension field of Q). We
then say that X is defined over F . One wants a description of 2 types of point
sets: (i) points on X with coordinates in F (called F -rational points), and (ii)
points with integer coordinates on an affine curve X − {P1, . . . , Pr}, for suit-
able points Pj in X . An excellent survey of current ideas on these topics, with
particular emphasis on connections with geometry, is the book of S. Lang (see
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[La]).
We first discuss rational points. We begin with Riemann surfaces of genus

1, which are also called elliptic curves (see [Si] for more details). If X is an
elliptic curve, with a chosen base point P , then as seen earlier, one can find
meromorphic functions x, y which are holomorphic on X − {P}, which have
poles of order 2 and 3 respectively at P , such that we have an algebraic relation

y2 = f(x) = ax3 + bx+ c,

where f(x) is a cubic polynomial with distinct roots. There is a group structure
on the points of X , such that P is the identity element; this group operation
X ×X → X is an algebraic morphism. One way to realize this group operation
is through the bijection X → Cl 0(X), Q 7→ [Q] − [P ], composed with the
group isomorphism Cl 0(X) ∼= J(X); equivalently, the Abel-Jacobi mapping
AJX : X → J(X) (associated to the chosen base point P ) is an isomorphism of
algebraic varieties.

Now suppose f has coefficients in an algebraic number field F . Then in
fact the group operation on X can be described by polynomial functions with
coefficients in F . Hence one can show that, for any field K ⊂ C containing F ,
the set X(K) of points with coordinates in K is in fact a subgroup of X .

It is now natural to ask what the structure of the group X(F ) is. The
Mordell-Weil theorem implies that X(F ) is a finitely generated abelian group.
Thus, since it is a subgroup of the complex torus X = X(C) ∼= R/Z× R/Z, we
see that

X(F ) ∼= Z⊕r(X) ⊕ Z/aZ⊕ Z/bZ,

for unique positive integers a, b with a | b, and a unique integer r(X) ≥ 0.
A remarkable theorem of Mazur states that for F = Q, there are only 15

possibilities for the torsion subgroup of X(Q), i.e., for the pair of integers a, b.
An analogous result is conjectured for any algebraic number field F (the con-
jectured finite list of possible torsion subgroups would, presumably, depend on
F ).

For a given elliptic curve X , a result of Lutz and Nagell in fact gives a simple
procedure to compute the torsion subgroup ofX(F ), by finding an explicit upper
bound on its order, in terms of the orders of the ‘reductions modulo primes (of
F )’ of the algebraic curve X (see [Si] for details).

We explain further what is meant by ‘reduction modulo a prime of F ’. For
simplicity, suppose F = Q; then ‘prime’ refers to a prime number in the usual
sense. Without loss of generailty, we may assume that the defining homogeneous
cubic polynomial F (x, y, z) of X in P

2 has relatively prime, integer coefficients.
Then it makes sense to consider the solutions of the congruence F (x, y, z) ≡
0 (mod p), for any prime number p; equivalently, we consider the corresponding
cubic equation over the finite field Z/pZ. Let Xp be the corresponding curve; it
is the ‘reduction modulo p’ of the curve X .
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For all but a finite set of p, one sees that Xp is a non-singular projective curve
of genus 1 over Z/pZ, which then has a group structure; nowXp(Z/pZ) (i.e., the
set of solutions of the congruence) will form a finite abelian group, whose order
can be explicitly determined. We say X has good reduction at such a prime p.
One can show that there is a well-defined homomorphism X(Q) → Xp(Z/pZ),
which is injective on the torsion subgroup of order relatively prime to p. The
Lutz-Nagell theorem is a stronger form of this assertion (which includes all
primes p, not just those of good reduction). The constructions over an arbitrary
algebraic number field are similar, involving congruences modulo prime ideals.

The most important remaining problem is to determine r(X) (and further,
to identify r(X) points on X which generate X(F ) modulo torsion). There is no
known formula for r(X) in terms of ‘simpler’ invariants of X , nor is an effective
procedure known to find a generating set of X(F ). However, one of the deep
conjectures in the subject gives a conjectural method for determining r(X). We
now explain this further.

If p is a prime of good reduction for X , then define

ap = p+ 1− (cardinality of Xp(Z/pZ)),

and set

Lp(X, s) =
1

1− app−s + p1−2s
,

where s is a complex parameter. There is a certain more technical definition
of ap for the remaining p, which we do not go into here (see [Si], Appendix C,
§ 16). Then one defines

L(X, s) =
∏

p prime

Lp(X, s),

which is seen to converge for Re s > 3/2 (since one has that | ap | ≤ 2
√
p, by a

result of Hasse, which is a special case of Weil’s Riemann Hypothesis for curves
over finite fields). It is conjectured that L(X, s) has an analytic continuation to
the whole complex plane, and satisfies a funtional equation relating its values at
s and 2−s, analogous to the functional equation of the Riemann Zeta function (a
more precise form of the functional equation is given in [Si]). This conjecture has
been recently proved by A. Wiles, for F = Q, for a certain class of elliptic curves
X (the so-called semi-stable curves), while proving Fermat’s Last Theorem.

The conjecture of Birch and Swinnerton-Dyer states that r(X) equals the
order of vanishing of L(X, s) at s = 1. A more precise version of the conjecture
describes the coefficient of the leading term (s− 1)r(X) of L(X, s) at s = 1. The
conjecture has been verified in some cases (see [Si] and references given there,
particularly the works of Coates and Wiles, and of Gross and Zagier, as well as
recent work of Kolyvagin [Ko]).

Now we consider the situation with Riemann surfaces of genus ≥ 2. Here,
the main result is the Mordell Conjecture. It states that if X is of genus ≥ 2
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and defined over a number field F , then X(F ) is always a finite set. This was
proved by Faltings in 1983. Later, other proofs of the Mordell Conjecture were
given, including a second proof by Faltings; perhaps the most accessible (though
by no means easy) proof is that given in Bombieri [Bom]. As an application, we
have that if X is the Riemann surface associated to a smooth projective plane
curve of degree d ≥ 4, defined by a homogeneous polynomial f(x, y, z) = 0 with
coefficients in F , then X(F ) is finite, and so the equation f(x, y, z) = 0 has only
finitely many solutions in F , upto multiples.

As mentioned earlier, if X is defined over F , then so is its Jacobian J(X).
The Mordell-Weil Theorem states that if A is an abelian variety defined over
F , an algebraic number field, then A(F ) is a finitely generated abelian group.
If P ∈ X(F ) is a base point, then we have the embedding f : X → J(X),
f(Q) = AJX([Q] − [P ]), given by the Abel-Jacobi map. Then X(F ) is the
intersection of f(X) with the finitely generated subgroup J(X)(F ) ⊂ J(X).
In fact, Lang conjectured (and Faltings proved, giving his second proof of the
Mordell conjecture) that in any abelian variety A, an algebraic curve C ⊂ A
has finite intersection with any finitely generated subgroup of A, unless C is an
elliptic curve which is a translate of a subgroup variety of A.

We now discuss the topic of integer points. Let X ⊂ P
n be a projective

non-singular curve defined over Q (for simplicity), and let U = X − X ∩ H ,
where H is a hyperplane not containing X . Choosing homogeneous coordinates
x0, . . . , xn on P

n so that H is given by x0 = 0, we can identify P
n −H with C

n,
with inverse isomorphism given by (t1, . . . , tn) 7→ (1 : t0 : · · · : tn). Then U is a
subset of Cn defined by the vanishing of a finite set of polynomials with integer
coefficients

f1(x1, . . . , xn) = · · · = fr(x1, . . . , xn) = 0.

It now makes sense to consider U(Z), the set of integer solutions of this system of
equations. More generally, one considers the set U(S−1Z) of ‘S-integer points’,
where S is a finite set of primes, and S−1Z is the set of rationals whose denom-
inators are divisible only by primes from the set S. The sets U(Z), U(S−1Z)
depend on the choice of the embedding of U in C

n.
The main result on integer points is a theorem of Siegel: in the above context,

U(S−1Z) is finite for any finite set S, if either (i) X has genus > 0, or (ii) X
has genus 0 (i.e., X = P

1
C) and X − U has cardinality ≥ 3. In case U ∼= C

or U ∼= C − {0}, there are obvious counterexamples given by lines and conics.
Siegel’s results are also valid if we replace Z by the ring of algebraic integers in
an algebraic number field F .

A nice way to “understand” Mordell’s conjecture (Faltings’ theorem) and
Siegel’s result is the following. By the uniformization theorem (Theorem 4.3),
for any (connected) Riemann surface U , the universal covering Riemann surface
of U is either P1

C, the complex plane C, or the unit disk ∆ in C. If U = X − T
for a compact Riemann surface X and a finite set T , then (i) the universal
cover is P1

C only if U = X = P1
C (ii) the universal cover is C when either X
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has genus 0, and T has cardinality 1 or 2, or X = U has genus 1. In case the
universal cover is the disk, one may view U as ‘hyperbolic’ in the sense that U
has a metric of constant negative curvature. Thus, the Mordell conjecture and
Siegel’s theorem state that ‘hyperbolic’ Riemann surfaces have finitely many
rational/integral points. These are the prototypes of far-reaching conjectures
relating ‘hyperbolicity’ of algebraic varieties to Diophantine properties; a precise
articulation of this vision has been given by Vojta, explained in [Vo] (see also
[La]).

There is one further topic related to Diophantine questions: the question
of effectivity. What this means is the following: given a curve which is known
(say, by the Mordell conjecture, or Siegel’s theorem) to have finitely many ra-
tional/integral points; is there then a finite procedure which can be used to
determine all the points, at least in principle? At present, this is an open prob-
lem, in general. However, work of Baker and others shows that the problem has
a positive solution for some special types of equations; see Baker’s book [Ba] for
more details. The theorems of Faltings and Siegel are not effective, since (in a
sense) they assume the existence of an infinity of (rational or integral) points
and derive a contradiction; however, one can (in principle) use their proofs to
find an upper bound for the number of such points.

In a rather different direction, we discuss some connections of Riemann sur-
faces with the theory of transcendental numbers. We begin by considering the
open Riemann surface C∗ = C−{0}, which we may regard as an algebraic curve,
the hyperbola defined by xy = 1. Notice that this curve has a defining equation
with rational coefficients, and has a regular, algebraic differential form defined
over Q,

ω = y dx =
dx

x
.

We also have H1(C
∗,Z) = Z, generated by a positively oriented loop γ winding

around 0 once. There is then one basic period

∫

γ

ω = 2πi.

More generally, if α is a non-zero algebraic number, then for any choice of a
path δ within C

∗ from 1 to α, we have

∫

δ

ω = log(α),

where ‘log’ is a suitable branch of the logarithm (the case of a period arises
when we take α = 1). The classical results of Hermite and Lindemann on the
transcendence of e and π, and more generally, the transcendence of any non-zero
value of log(α) for any non-zero algebraic number α, may thus be viewed as a
transcendence result on integrals of rational differential forms.
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More generally, the following can be proved (see [La2]). Let X be a com-
pact Riemann surface regarded as an algebraic curve defined over an algebraic
number field F . Let a, b ∈ X(F ) be two F -rational points, γ a path in X join-
ing a to b. Let ω1, . . . , ωg be a basis for the holomorphic 1-forms on X given
by forms which are rational over F (i.e., are each expressible as fdg for some
meromorphic functions f, g defined over F ). Then at least 1 of the numbers

∫

γ

ω1, . . . ,

∫

γ

ωg

is transcendental, unless they are all 0. In particular, for any non-zero homology
class [γ], there exists a period

∫
γ ω which is transcendental, for some F -rational

differential ω. The cases of e and π considered above are included by allowing
the Riemann surface to have ‘singularities’, and/or be affine.

We mention 2 interesting examples of this result. Let a, b be rational numbers
which are non-integral. Then

β(a, b) =

∫ 1

0

xa−1(1− x)b−1dx =
Γ(a)Γ(b)

Γ(a+ b)

is transcendental; this follows by considering the Riemann surface yn = xna(1−
x)nb, where n is the smallest common denominator for the fractions a, b. An-
other example is given by the Chowla-Selberg formula. Here, one considers the
case of an elliptic curve X with complex multiplication, which is defined over a
number field F ; then as a Riemann surface, X = C/Λ where Λ is (essentially)
the ring of algebraic integers in an imaginary quadratic field Q(

√
−d), for some

integer d > 0. This means that there is a holomorphic differential η whose lat-
tice of periods is Λ = Z+ Zτ , for some τ in the upper half plane, which is also
an algebraic integer in Q(

√
−d). On the other hand, one can find a holomorphic

differential ω which is also defined over F ; since X has genus 1, we must have
ω = Cη for some complex constant C, and so ω has period lattice CZ + CZτ .
The Chowla-Selberg formula is a formula for C, where we have suitably nor-
malized the choices of ω, η; independent of the specific normalizations, C is
determined upto multiplication by a non-zero element of F (see [Gr], and also
the original paper [CS]). Now the theorem on transcendence of periods implies
that the number C is transcendental. If d = p, a prime number, for example,
then one has

C =
√
π

p−1∏

a=1

Γ(
a

p
)

wε(a)
4h ,

where ε(a) = 1 or −1 according as a is a quadratic residue (i.e., congruent to
a square), or a non-residue, modulo p; here w denotes the number of roots of
unity (usually 2) in Q(

√−p), and h denotes the class number of this field. The
formula for C in general is similar, with ε(a) now denoting the value of the
Dirichlet character associated to the quadratic field extension Q(

√
−d) of Q.
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As a final topic in this section, we discuss briefly the modular curves, and
their relation with modular forms (see the book [Sh] for more details). We have
seen that the isomorphism class of an elliptic curve over C is determined by
its j-invariant, and the set of isomorphism classes is thus identified with C. In
fact more is true; C, considered as the affine line, is the coarse moduli space
for elliptic curves (i.e., given an ‘algebraic family’ of elliptic curves f : X → Y
with a chosen 0-section, the map y 7→ j(f−1(y)) ∈ C is a morphism of algebraic
varieties Y → C). From an analytic point of view, one views C as the quotient
space H/SL2(Z), where H is the upper half plane, and SL 2(Z) acts in the usual
way; the class of the Riemann surface C/Z+Zτ is given by the image of τ ∈ H.

In a similar fashion, one can construct moduli spaces of pairs (X,G), where
X is an ellliptic curve and G is some additional data, which may be (i) a cyclic
subgroup of order N , or (ii) an element of order N , or (iii) a choice of two points
of order N which form a Z/NZ basis for the N -torsion subgroup of X . In each
case, an analytic construction of the moduli space is given as M(Γ) = H/Γ,
where Γ ⊂ SL 2(Z) is a subgroup containing the subgroup ΓN ⊂ SL 2(Z) of all
the matrices congruent to the identity moduloN (i.e., Γ is a congruence subgroup
of SL 2(Z)). Each such moduli space M(Γ) turns out to be a non-compact
Riemann surface, which is naturally a branched covering space of the affine line
C; further, M(Γ) has a compactification M(Γ) which is then a branched cover
of P1

C. The boundary points in M(Γ)−M(Γ) are called the cusps of M(Γ) (or
of the group Γ). The compact Riemann surfaces (or curves) M(Γ) obtained in
this way are called modular curves. One can work out the ramification indices
of M(Γ) → P

1
C, and hence compute invariants like the genus of M(Γ), for the

various groups Γ of the above type.
Given a group Γ as above, one defines a modular form of weight k with

respect to Γ to be a holomorphic function f(z) on H such that (i) f has the
transformation property

f(
az + b

cz + d
) = (cz + d)kf(z), ∀

[
a b
c d

]
∈ Γ ⊂ SL 2(Z),

and (ii) | f(z) | is bounded in any set of the form | Re(z) | ≤ C, | Im(z) | > D for
any positive constants C,D. In particular, from (i), we see that f(z+N) = f(z)
if Γ contains ΓN ; hence f has a Fourier expansion

f(z) =
∑

m≥0

amq
m
N ,

where
qN (z) = e

2πiz
N .

We also denote q1(z) by q(z).
An example is given by the Delta function

∆(z) = q(z)

∞∏

n=1

(1− q(z)n)24 =
∑

n≥1

τ(n)q(z)n.

39



This is known to be a modular form of weight 12 with respect to Γ = SL 2(Z).
The Fourier coefficients τ(n) are integers; the function n 7→ τ(n) is called Ra-
manujan’s tau function.

In general, the ratio of two modular forms of the same weight for Γ yields a
meromorphic function on the modular curve M(Γ). In fact, one may regard the
modular forms of a fixed weight as holomorphic sections of a suitable line bundle
on M(Γ), and hence can compute the dimension of the space of modular forms
of a given weight using the Riemann-Roch theorem. The modular forms of a
sufficiently large (and perhaps sufficiently divisible) weight in fact determine
a projective embedding of M(Γ); most interestingly, in this embedding, the
defining equations have coefficients in a suitable algebraic number field.

Mazur’s theorem on torsion subgroups of elliptic curves over Q, which we
mentioned earlier, is proved by studying geometric and number-theoretic proper-
ties of certain modular curves and their Jacobian varieties. Another application
of the geometry and number theory of modular curves (and related objects)
is Deligne’s proof of the Ramanujan conjecture, that | τ(p) | ≤ 2p11/2 for any
prime number p. Finally, A. Wiles’ recent proof of Fermat’s Last Theorem is
by relating certain elliptic curves over Q to modular forms.

The Fourier coefficients of modular forms are interesting for number-theoretic
reasons. For example, one can show that if k is a positive integer, and

rk(n) = number of distinct ways of writing n as a sum of k squares,

then for any k ≥ 1,

1 + 2
∞∑

n=1

r4k(n)q(z)
n

is a modular form of weight 2k for a suitable congruence subgroup of SL 2(Z).
Techniques of modular form theory can then be used to prove (i) exact formulas
for r4(n) and r8(n), and (ii) asymptotic formulas for r4k(n) for any k > 0.
For examples of this reasoning, see Serre’s book [Se], Chapter VII, and [Mu2],
Chapter I, §15.

The Langlands conjectures form an exciting area of research today in number
theory. In very rough terms, these conjectures relate representations of the
Galois groups of algebraic number fields to modular forms. Modular curves,
and their (étale) cohomology groups, provide interesting non-trivial examples
of the Langlands correspondence. For an introduction to these ideas, see [Ge].

7 Vector bundles on Riemann surfaces

In this section, we discuss the topic of stable vector bundles on a compact Rie-
mann surface of genus g ≥ 2. We consider this topic for two reasons, apart from
its intrinsic interest. One is that this is one area of current research in Riemann
surface theory, motivated by problems and questions from physics (particularly
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gauge theory, and string theory). Another is that this is an area of research
where significant contributions have been made by Indian mathematicians, par-
ticularly M. S. Narasimhan and C. S. Seshadri. There are at present a number
of Indian mathematicians who are still actively doing research in this general
area.

We begin by recalling the definition of a vector bundle on a Riemann surface.
If X is a Riemann surface, a (complex) vector bundle of rank n on X is

(a) a (topological) space V and a continuous mapping f : V → X , together
with

(b) an open cover {Ui}i∈I and homeomorphisms ϕi : f
−1(Ui) → Ui×Cn, such

that

(i) for each i, we have
ϕi(y) = (f(y), ψi(y))

for some function ψi : f
−1(Ui) → Cn, and

(ii) for each i 6= j, the composite homeomorphism

ϕij : (Ui ∩ Uj)× C
n → (Ui ∩ Uj)× C

n,

ϕij = ϕj ◦ ϕ−1
i ,

satisfies
ϕij(x, v) = (x, gij(x)(v))

for an invertible matrix gij(x) ∈ GL n(C).

Then in (ii) above, we see that gij : Ui ∩ Uj → GL n(C) is a continuous
mapping, with pointwise inverse given by gji(x), and such that on Ui ∩
Uj ∩ Uk (for distinct i, j, k), we have

gjk(x) · gij(x) = gik(x)

(here · is induced by composition of maps, i.e., is given by matrix multi-
plication).

Here, another set of data consisting of an open covering {Vj}j∈J and homoemor-
phisms ϕ̃j : f

−1(Vj) → Vj×Cn are defined to give the same vector bundle on X
if the open cover {Ui}∪{Vj} and the collection of homeomorphisms {ϕi}∪{ϕ̃j}
define a vector bundle on X (this is analogous to the situation in the definition
of a Riemann surface via an atlas of charts).

Conversely, suppose given an open cover {Ui} and matrix valued functions
gij : Ui ∩ Uj → GL n(C), which satisfy the cocycle conditions gij(x)

−1 = gji(x)
for x ∈ Ui ∩ Uj , and gjk · gij = gik on Ui ∩ Uj ∩ Uk for all distinct i, j, k, then
one can construct a vactor bundle f : V → X by ‘glueing’ (or ‘patching’), as
follows. Let V be the quotient of the disjoint union of the spaces Ui × Cn,
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modulo the equivalence relation generated by (x, v) ∼ (x, gij(x)v) for all i, j
such that x ∈ Ui ∩ Uj, and for all v ∈ C

n. The cocycle conditions imply that
this is an equivalence relation, such that the natural maps Ui × C

n → V are
injective; clearly the projections Ui × Cn → Ui induce a map V → X , giving a
vector bundle on X .

The simplest example of a vector bundle of rank n is f : V = X×Cn → Cn,
given by the first projection. This is called the trivial bundle of rank n. Of
course, the whole point of the theory is that there are many interesting non-
trivial vector bundles.

The reason for the term ‘vector bundle’ is because, via the maps ϕi, one can
endow each fibre Vx = f−1(x) with the structure of a vector space of dimension n
over C. Thus, if x ∈ Ui, then to add 2 points v1, v2 ∈ Vx, we transport them over
to {x} ×C

n using ϕi, add the coordinates in C
n, and transport the result back

to Vx via ϕ−1
i . Scalar multiplication by complex numbes is defined similarly. If

x ∈ Ui ∩ Uj , then the vector space structures on Vx defined using ϕi and ϕj

agree, since gij(x) is an invertible linear transformation. We may thus view the
collection {Vx} as a ‘continuously varying family of vector spaces paramterized
by X ’. From this point of view, it is easy to see that various constructions with
vector spaces (like direct sums, tensor products, duals, exterior products, etc.)
generalize in a natural way to yield analogous constructions on vector bundles.
The trivial vector bundle can be thought of as a constant family of vector spaces.

In Riemann surface theory, one is more interested in a refinement of the
above notion, that of a holomorphic vector bundle of rank n on X . This is
analogous to the above notion, except that the ‘transition matrix functions’

gij : Ui ∩Uj → GL n(C) ⊂ C
n2

are required to be holomorphic (i.e., the matrix
entries of gij are holomorphic functions, in the usual sense). The constructions
mentioned above (direct sum, etc.), when performed on holomorphic vector
bundles, again yield holomorphic bundles; the trivial vector bundle is clearly
holomorphic.

Holomorphic vector bundles of rank 1 are also called line bundles. The
isomorphism class of line bundles on X forms an abelian group under the tensor
product, with identity element given by the trivial line bundle X × C → X .
One can associate a line bundle f : L(D) → X to any divisor D on X , as
follows. Suppose for simplicity that X is compact, and D =

∑r
i=1 niPi. Choose

local coordinate neighbourhoods (Ui, zi) near Pi, with zi(Pi) = 0, such that
Ui∩Uj = ∅ for i 6= j. Take U0 = X−{P1, . . . , Pr}. To define a line bundle on X
by glueing, with respect to the given open cover {U0, U1, . . . , Ur}, notice that one
only needs to define holomorphic transition functions g0i : U0∩Ui → C

∗ for each
1 ≤ i ≤ r, since we must then have gi0(x) = 1/g0i(x), and all other intersections
Ui ∩ Uj are empty; further, there are no non-empty triple intersections, so the
second cocycle condition holds vacuously. We now define g0i(x) = zi(x)

−ni .
The resulting line bundle is defined to be L(D). It turns out that (i) every line
bundle on a compact Riemann surface arises in this way, and (ii) L(D) → X and
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L(D′) → X are isomorphic if and only if D,D′ are linearly equivalent. Thus
the group of isomorphism classes of line bundles is isomorphic to the familiar
invariant Cl (X).

Given a holomorphic vector bundle, one can associate to it the underlying
topological vector bundle; equivalently, we can view the given data as putting a
holomorphic structure on a given topological vector bundle. Just as in the case
of moduli theory for compact Riemann surfaces, one can fix a topological vector
bundle f : V → X on a given compact Riemann surface X , and ask if there is a
parameter space (or parameter variety) for all possible holomorphic structures
on V , upto isomorphism.

For line bundles, the degree map on divisors yields an integer-valued invari-
ant. It turns out that two line bundles are topologically isomorphic precisely
when their degrees are equal. Fixing the topological type, i.e., the degree, the
possible holomorphic structures are then parametrized by (a coset of) J(X),
the Jacobian variety. This has a rich structure, as seen earlier; it is then natural
to hope for some similar theory associated to vector bundles of higher rank. It
turns out that in order to get a good answer in the new situation, one should
further restrict the types of possible holomorphic bundles.

One interesting way to construct a holomorphic vector bundle on a Riemann
surface X is as follows. Let ρ : π1(X, x) → GL n(C) be a representation of the

fundamental group of X (with a chosen base point x ∈ X). Let α : X̃ → X

be the universal covering space of X , so that X̃ has a unique Riemann surface
structure such that α is holomorphic. As remarked earlier, π1(X, x) acts on the

Riemann surface X̃ through holomorphic automorphisms, with quotient space
X . There is an induced action of π1(X, x) on the product space X̃ ×C

n, given
by

γ · (x̃, v) = (γ · x̃, ρ(γ)(v)).
The quotient space

Vρ = (X̃ × C
n)/π1(X, x)

maps naturally via the first projection to X̃/π1(X, x) = X . Then f : Vρ → X
is easily seen to be a holomorphic vector bundle on X ; two representations
ρi : π1(X, x) → GL n(C) which are conjugate by an element of GL n(C) yield
isomorphic holomorphic vector bundles on X . The converse is false in general,
however.

An equivalent way of considering the above bundles is via differential geom-
etry: any vector bundle as above has an integrable (holomorphic) connection.
We explain what this means. If f : V → X is a vector bundle of rank n, a
section of V on an open subset U ⊂ X is a continuous map s : U → V such
that the composite f ◦ s : U → X is the inclusion map. Then, if {(Ui, ϕi)} are
the data giving the structure of a vector bundle, then

si = ϕi ◦ s : Ui ∩ U → (Ui ∩ U)× C
n
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has the form
si(x) = (x, hi(x)),

where hi : Ui ∩ U → Cn is a continuous function. The local vector-valued
functions hi are related by

hj(x) = gij(x)hi(x),

where gij : Ui ∩ Uj → GL n(C) are the (matrix valued) transition functions.
Thus, if f : V → X is a holomorphic vector bundle, it makes sense to speak of
a section s being C∞, or holomorphic, in a neighbourhood of a point x ∈ U : if
x ∈ U∩Ui, this means that the corresponding function hi is C

∞, or holomorphic,
respectively. Since gij(x) has holomorphic matrix entries, these notions do not
depend on the choice of the index i such that x ∈ Ui. Thus sections of a vector
bundle of rank n are natural generalizations of vector valued functions.

Now a connection on f : V → X is a rule for differentiating sections of the
bundle on any open set U with respect to local coordinate functions on the base
space X . It is convenient to state this using sheaf theory; thus, let V∞ denote
the sheaf (on X) of C∞ sections of f : V → X , so that V∞(U) is the C-vector
space of sections on U , and the restriction homomorphisms V∞(U) → V∞(U ′)
(for open sets U ′ ⊂ U) are given by restriction of functions. The holomorphic
sections of the bundle clearly yield a subsheaf V of V∞. Clearly V∞ is a sheaf
of modules over the sheaf AX of C∞ (complex valued) functions on X ; hence
it is also a module over the sheaf OX of holomorphic functions, such that V is
an OX -submodule.

Now a C∞ connection on V is defined to be a sheaf homomorphism

∇ : V∞ → A1
X ⊗AX V∞,

where A1
X is the sheaf of C∞ 1-forms, such that the formula (called the Leibniz

Rule)
∇(f s) = f∇(s) + s⊗ df

holds, for any section s ∈ V∞(U), and any C∞ function f on U . Here df
denotes the exterior derivative of f , which is a C∞ 1-form; if z = x + iy is a
local holomorphic coordinate, then df = ∂f

∂xdx + ∂f
∂y dy). The connection ∇ is

said to be a holomorphic connection if it restricts to a sheaf homomorphism

V → Ω1
X ⊗OX V

(recall Ω1
X is the sheaf of holomorphic 1-forms).

Let {(Ui, ϕi)} be data giving the local trivialization of the bundle, and let
s1, . . . , sn be the sections of f : V → X corresponding under ϕi to (the constant
vector-valued functions determined by) the standard basis of Cn. Then an
arbitrary section s of the bundle on any open set U ⊂ Ui is uniquely expressible
as a linear combination

s =

n∑

j=1

fjsj |U .
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Here fj are continuous functions on U , which are C∞, or holomorphic, if s is a
C∞ section, or a holomorphic section, respectively. From the Leibniz rule, ∇(s)
is determined by the values of ∇(sj), 1 ≤ j ≤ n. We can further uniquely write

∇(sj) =

n∑

k=1

ωjk ⊗ sk,

where ωjk are C∞ 1-forms on Ui; then ∇ is completely determined by the n×n
matrix of 1-forms ω = [ωjk], called the connection matrix of ∇ with respect to
the chosen trivialization of V on Ui. Clearly ∇ is a holomorphic connection
precisely when the ωjk are holomorphic 1-forms.

It is a simple computation with the Leibniz rule to show that if ∇1, . . . ,∇r

are C∞ connections on a bundle f : V → X , and f1, . . . , fr are C∞ functions
with f1 + · · · + fr = 1, then ∇ = f1∇1 + · · · + fr∇r is also a C∞ connection.
Now using partitions of unity, one deduces that any C∞ vector bundle has a
C∞ connection.

A connection ∇ on a vector bundle f : V → X is called flat if one can find
local trivializations {Ui, ϕi)} such that the connection matrices [ωjk] are all 0.
This is easily seen to be equivalent to the condition that the matrix entries of the
transition functions gij(x) are locally constant (i.e., constant on each connected
component of Ui). From the theory of covering spaces, one then sees that such
a structure on f : V → X is equivalent to the bundle being of the form Vρ,
arising from a representation of the fundamental group ρ : π1(X, x) → GL n(C),
as described earlier.

The condition of flatness, as described, depends on the choice of the special
local trivializations. More intrinsically, it can be described using the curvature.
First, we can define an action of ∇ on A1

X ⊗AX V∞ by

∇(ω ⊗ s) = dω ⊗ s− ω ∧∇(s).

Here, dω is the exterior derivative of ω, and if locally we have an expression
∇(s) =

∑
j ηj ⊗ sj , then ω ∧ ∇(s) denotes

∑
j(ω ∧ ηj) ⊗ sj . One verifies that

ω ∧ ∇(s) is well-defined by these local expressions.
For any C∞ connection ∇, define its curvature F∇ by

F∇ : V∞ → A2
X ⊗AX V∞,

F∇(s) = ∇ ◦∇(s).

One verifies by using the Leibniz rule that for any C∞ function f on an open
set U , and any section s on U , we have

F∇(fs) = fF∇(s).

This means that F∇ determines a ‘2-form valued endomorphism’ of V∞.
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Clearly, F∇ = 0 if ∇ is flat. Conversely, Frobenius’ theorem on ‘total dif-
ferential equations’ (or ‘integrable distributions in the tangent bundle’) implies
that if F∇ = 0, then ∇ is flat. The idea is that if s1, . . . , sn is a basis of
sections of the bundle on some open set U , then we can change the trivializa-
tion on U , giving a new basis tj =

∑
k ajk(x)sk, 1 ≤ j ≤ n, for any function

[ajk(x)] : U → GL n(C). One obtains a differential equation expressing the
condition on the functions aij(x) such that with respect to the new basis tj ,
the connection matrix vanishes; now the integrability condition, under which
Frobenius’ theorem guarantees (at least) a local solution ajk(x), boils down to
the given condition F∇ = 0.

We remark here that, locally, F∇ is a matrix of 2-forms. The trace of this
local matrix yields a 2-form, which one can show is independent of the choice of
the local trivialization (this reduces to the fact that the trace of a matrix equals
that of any conjugate matrix). Hence we can associate to ∇ the invariant

i

2π

∫

X

Tr (F∇).

Remarkably, this turns out to be an integer, called the (first) Chern class of the
vector bundle f : V → X .

Another remark is that for a holomorphic connection ∇, the curvature F∇

would be given locally by a matrix of holomorphic 2-forms, i.e., is 0, on a
Riemann surface. Hence such a vector bundle is associated to a representation
of the fundamental group. Conversely, any vector bundle Vρ associated to a
representation of π1(X, x) is holomorphic, and carries an obvious holomorphic
(flat) connection.

Now suppose n = 1, so that we are dealing with line bundles, and with char-
acters of π1(X, x). The group of characters of π1(X, x) is seen to be isomorphic
to H1(X,C∗) = H1(X,C)/H1(X,Z). From the exact sequence (2.3), there is a
natural surjection H1(X,C) → H1(X,OX), with kernel H0(X,Ω1

X), and hence
an exact sequence

0 → H0(X,Ω1
X) → H1(X,C∗) → J(X) → 0.

The map H1(X,C∗) → J(X) →֒ H1(X,O∗
X) (induced by C

∗ ⊂ O∗
X , as the

subsheaf of constant functions) associates to a flat line bundle the corresponding
holomorphic line bundle. From the exponential sequence, there is a boundary
map

H1(X,O∗
X) → H2(X,Z) = Z

corresponding to the degree map on divisors, with kernel J(X).
We may interpret this as follows: every line bundle of degree 0 on X is

associated to a character, and hence, by what we mentioned earlier, carries a
holomorphic (flat) connection. This is not unique, however; one can change the
connection by adding to it a holomorphic 1-form. This is consistent with the
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fact that any two preimages in H1(X,C∗) of a given point of J(X) differ by the
addition of a holomorphic 1-form.

One way to make the character of π1(X, x) associated to such a line bundle
unique is to choose it to be unitary, that is, taking values in the unitary group
U (1), which is the unit circle in C

∗. Now the group of unitary characters of
π1(X, x) is the subgroup H1(X,U(1)) ⊂ H1(X,C∗); clearly the composite

H1(X,U(1)) → H1(X,C∗) → J(X)

is an isomorphism of groups.
This suggests one way to determine a distinguished class of vector bundles of

rank n, namely the bundles which are determined by a representation of π1(X, x)
into the unitary group U (n) ⊂ GL n(C). Note that when X has genus 0 or 1,
the fundamental group is either trivial or abelian, so there are no irreducible
unitary representations of π1(X, x) for n > 1.

The celebrated theorem of M. S. Narasimhan and C. S. Seshadri (see [NS])
gives an algebraic characterization of those bundles which arise in this way:
they are precisely the stable vector bundles of rank n and degree 0, in the sense
of the geometric invariant theory of D. Mumford. In particular, they show
that the (coarse) moduli space M(n) of stable bundles (of rank n and degree
0) is identified with the space of irreducible representations of π1 into U (n); in
particular, the space of representations, which depends only on the fundamental
group, hence the underlying topological space of X , in fact has a structure of
a Zariski open subset of a projective algebraic variety, induced by the Riemann
surface structure of X .

We recall briefly the definition of a stable vector bundle. If f : V → X is
a holomorphic vector bundle of rank n, define its degree to be that of the line

bundle
n∧ V , and its slope to be µ(V ) = deg(V )/n. Then V is stable if for any

non-zero proper sub-bundle W ⊂ V (this notion has the obvious meaning) we
have µ(W ) < µ(V ). If deg(V ) = 0, then V is stable ⇔ any proper subbundle
has negative degree. In passing, we remark here that for any holomorphic vector
bundle V , we have deg(V ) = c1(V ) ∈ Z; this perhaps motivates why in general,
the complex number c1, defined as an integral, should give an integer valued
invariant of a bundle, independent of the chosen connection.

One proof12 of the Narasimhan-Seshadri theorem is by finding a special
connection on any stable vector bundle f : V → X . Recall that the curvature
F∇ is, with respect to any local trivialization, a matrix of holomorphic 2-forms.
From the uniformization theorem, the Riemann surfaceX (which has genus≥ 2)
is covered by the unit disk, and hence supports a unique 2-form ω which pulls
back to a constant multiple the volume form on the disk for the Poincaré metric.
This 2-form is naturally associated to the unique metric with constant negative
curvature on X . Now one may try to find connections ∇ on X whose curvature

12This approach, using ‘gauge theory’, is due to S. Donaldson [Do1], motivated by ideas of
Atiyah and Bott.
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F∇ is locally given by a ‘scalar’ matrix, all of whose diagonal entries are Cω, for
some constant C, and with vanishing off-diagonal entries (then by computing
c1, one sees that C = (2πi)µ(V )). When deg(V ) = 0, such a connection is
clearly flat (since we must have C = 0).

To find this distinguished connection (which is also required to satisfy certain
additional conditions13), one first chooses an arbitrary one, then tries to modify
it by adding a section of A1

X ⊗AX (V∞)∗⊗V∞, which is locally just a matrix of
1-forms; then the condition we want to achieve is, locally, a differential equation
for the entries of this matrix of 1-forms. This equation is thought of as analogous
to Einstein’s field equations in general relativity; hence, the connection sought is
now called an Einstein-Hermitian connection. Subsequently, there has been a lot
of work on finding such connections14 on bundles in other contexts (for example,
S. Donaldson has constructed such connections on appropriate vector bundles
on complex projective manifolds of arbitrary dimension [Do2], and analogous
results for compact Kähler manifolds have been obtained by Uhlenbeck and Yau
[UY]).

It is interesting to ask if the variety M(n) has properties analogous to the
Jacobian J(X). The detailed geometry of M(n) is still under investigation,
though many interesting results are known. For example, M(n) is non-compact
except for n = 1. However, one can find a projective compactification M(n),
such that the boundary points have the following description. Define a vector
bundle V to be semi-stable if for any proper subbundle W , we have µ(W ) ≤
µ(V ) (this corresponds to a semi-stable point as in [GIT]). Then any semi-
stable V has a canonically defined filtration {F iV } by sub-bundles, such that
µ(V ) = µ(F iV ) = µ(F iV/F i+1V ), and each graded piece F iV/F i+1V is stable.
Define 2 semi-stable bundles V, V ′ to be S-equivalent if their associated graded
bundles (with respect to the canonical filtrations) are isomorphic. Seshadri
proved that boundary points of M(n) correspond to S-equivalence classes of
semi-stable bundles of rank n and degree 0.

Another interesting point is that, unlike in the case of line bundles, the
moduli spaces M(n, d) of stable vector bundles of a fixed rank n and varying
degree d can be non-isomorphic, for different d, in general. Narasimhan and
Seshadri characterize stable vector bundles of rank n and degree d as arising
from certain particular classes of irreducible representions of π1(X−{x0}, x) →
U(n); using this, they show for example that M(n, d) is compact if n and d are
relatively prime. Ramanan and Narasimhan showed that in this case, M(n, d)
is a non-singular projective algebraic variety.

One topic which has attracted much interest recently is a formula (called the

13Basically, compatibility with a Hermitian metric, i.e., one wants a unitary connection.
14What we have implicitly described above is a projectively flat unitary connection; this

is the same as an Einstein-Hermitian connection for bundles on a Riemann surface, but in
higher dimensions, is a weaker notion, which seems to be the correct generalization. There
is a criterion in terms of Chern classes which characterizes bundles supporting a projectively
flat connections among those supporting Einstein-Hermitian ones; see [K].
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Verlinde formula) for the dimensions of spaces of ‘generalized theta functions’,
which may be described as analogues forM(n), M(n, d) and certain other simi-
lar spaces, of the ‘classical’ theta functions associated to Jacobians and abelian
varieties. The formula for the dimensions was predicted by Verlinde, a theoret-
ical physicist, from conformal field theory (in physics). It has been proved now
in many cases; for an introduction to these ideas, see [So].

We mention another interesting development, which has also had general-
izations in the higher dimensional theory. N. Hitchin (using also some ideas of
Donaldson) found an appropriate algebraic way of characterizing arbitrary irre-
ducible representations of π1(X, x) into GL n(C). His result is also (apparently)
motivated by considerations from physics.

Hitchin considers pairs consisting of a holomorphic vector bundle f : V → X ,
and a holomorphic section of Θ ∈ V∗⊗OX V⊗OX Ω1

X , which we may equivalently
regard as an OX -linear sheaf map V → V ⊗OX Ω1

X . (Unlike a holomorphic
connection, we stress that this map is OX -linear, and so does not satisfy the
Leibniz rule.) The section Θ is called a Higgs field, so a pair is also called a
Higgs bundle.

Hitchin defines such a pair (V,Θ) to be a stable pair if any non-zero proper
sub-bundle W of V , which is also Θ-invariant, has strictly smaller slope. One
the one hand, when Θ = 0, this reduces to the usual notion of stability. On the
other hand, if Θ is ‘complicated’, there may be no proper sub-bundle invariant
under Θ, and so the condition is trivially satisfied. At any rate, Hitchin proves
that there is a natural bijection (inducing a homeomorphism between the cor-
responding coarse moduli spaces) between stable pairs of rank n and degree 0,
and irreducible representations π1(X, x) → GL n(C), such that if ρ is the rep-
resentation associated to (V,Θ), then V ∼= Vρ. The distinct ρ giving rise to the
same V correspond to the different choices of Θ.

Hitchin’s work has been generalized by C. Simpson and others to study stable
pairs, and representations of the fundamental group, for higher dimensional
varieties, leading to many interesting results. One conclusion from Simpson’s
work which is easily stated is the following: SL n(Z) cannot be (isomorphic to)
the fundamental group of a projective algebraic manifold, for any n ≥ 3. A
recent paper, giving background and other references, is [Sim].

A Sheaves

For this section, a good reference is [W].

Definition: A sheaf of abelian groups on a topological space X is a rule F ,
which associates (i) to each open set U ⊂ X , an abelian group F(U) (called the
group of sections of F over U), with F(∅) = 0, and (ii) to every pair of open
sets V ⊂ U , a restriction homomorphism ρUV : F(U) → F(V ), such that for
W ⊂ V ⊂ U , we have ρV W ◦ ρUV = ρUW . Further, if U ⊂ X is open, and
{Ui}i∈I is an open cover of U , then the following properties must hold:
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(a) if s ∈ F(U) with ρUUi(s) = 0 for all i, then s = 0 (i.e., “a section which
vanishes locally is 0”);

(b) for i 6= j, let Uij = Ui ∩ Uj ; then given si ∈ F(Ui) for all i, such that
ρUiUij (si) = ρUjUij (sj) for all i, j with Uij 6= ∅, then there exists s ∈ F(U)
with ρUUi(s) = si (i.e., , “locally defined sections, which agree with each
other on the overlaps, patch up”).

A morphism of sheaves F → G is a homomorphism F(U) → G(U) for each
open set U , which is compatible with the restriction homomorphisms for the
two sheaves.

In a similar way, we may define sheaves of sets, sheaves of rings, sheaves of
modules over a sheaf of rings, etc. As a matter of notation, we may write “s |V ”
in place of “ρUV (s)”.

We mention a basic motivating example of a sheaf of abelian groups: if Y
is any abelian topological group, define F(U) to be the set of continuous maps
f : U → Y , with ρUV being given by restriction of mappings. Taking Y to be R
or C, with the Euclidean topology, we get the sheaves of continuous R-valued or
C-valued functions, respectively. On the other hand, taking Y to be a group A
with the discrete topology, we obtain the constant sheaf AX , with AX(U) = A
for any non-empty connected open set U .

If X is a differentiable manifold, we can similarly form the sheaf AX of C∞

complex-valued functions, or the sheaves Ak
X of complex valued C∞ differential

k-forms, for 0 ≤ k ≤ dimX . More or less by definition, if X is a Riemann
surface, then we are given a sheaf OX of holomorphic functions on X ; similarly,
one has the sheaf Ω1

X of holomorphic 1-forms on X , which is an OX -module.
We need the important notion of an exact sequence of sheaves. A sequence

of sheaves 0 → F → G → H → 0 on a space X is said to be exact if (i) for each
open set U in X ,

0 → F(U) → G(U) → H(U)

is an exact sequence of abelian groups, and (ii) for each open U , and each
s ∈ H(U), there exists an open cover {Ui}i∈I of U and elements si ∈ G(Ui)
with si 7→ ρUUi (s) for all i (i.e., , any s is ‘locally liftable’ to a section of G).
This somewhat complicated definition of the surjectivity of the map of sheaves
G → H is necessary, in order that, for example, the cokernel of a morphism of
sheaves is again a sheaf. It is a fact that the sheaves of abelian groups on a
topological space form an abelian category (i.e., direct sums of sheaves exist,
and any morhism has a well-defined kernel and cokernel, and factorizes uniquely
as a composition of a surjection followed by an inclusion). From the definitions,
one can show that exactness at B of a sequence of sheaves

A → B → C

means: the composite mapA → C is 0, and for any s ∈ B(U) with s 7→ 0 ∈ C(U),
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there exists an open cover {Ui} of U and si ∈ A(Ui) with si 7→ s |Ui∈ B(Ui).
Thus exactness may be verified locally on the space X .

One can perform certain operations on sheaves, analogous to those on abelian
groups or modules. For example, as mentioned above, we can define the direct
sum F ⊕ G by the standard universal property, which reduces to (F ⊕ G)(U) =
F(U)⊕ G(U). Next, Hom (F ,G)(U) = Hom (F |U ,G |U ) defines a sheaf, where
F |U denotes the restriction of F to an open set U ⊂ X (since any open
subset of U is also open in X , this restriction makes sense as a sheaf on U).
Similarly, if A is a sheaf of rings, and F , G are A-modules, then one can define
sheaves HomA(F ,G) and F ⊗A G, with the standard properties (for example,
if A is commutative, then the Hom-sheaf and the tensor product are again A-
modules); the definition of the tensor product is a bit subtle (like the definition
of a surjective map of sheaves), but sections of F ⊗A G are locally expressible
as sums

∑
i ai ⊗ bi with ai sections of F , and bi sections of G.

If F is a sheaf of abelian groups on a topological space X , and U = {Ui}i∈I

is an open cover of X , then we can define the Čech complex Č∗(U ,F), which
has terms

Čp(U ,F) =
∏

(i0,...,ip)∈Ip

F(Ui0 ∩ · · · ∩ Uip),

for p ≥ 0, and a differential

δp : Čp(U ,F) → Čp+1(U ,F),

given by
δp({ai0,...,ip}) = {bj0,...,jp+1},

bj0,...,jp+1 =

p+1∑

k=0

(−1)kaj0,...,jk−1,jk+1,...,jp+1 |Uj0∩···∩Ujp+1

(we verify at once that δp◦δp−1 = 0 for p > 0). Finally, we may define the groups
of Čech p-cocycles Žp(U ,F) = ker δp, p-coboundaries B̌p(U ,F) = im δp−1, and
the p-th Čech cohomology group

Ȟp(U ,F) =
Žp(U ,F)

B̌p(U ,F)
.

If V = {Vj}j∈J is another open cover which refines U , so that there is a map
f : J → I such that Vj ⊂ Uf(j) for each j ∈ J , then there is a map of complexes

f∗ : Č∗(U ,F) → Č∗(V ,F).

The induced homomorphism

Ȟp(U ,F) → Ȟp(V ,F)
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can be shown to be independent of the choice of the map f : J → I on index
sets. This allows one to take the direct limit over all open covers of X , to define
the (Čech) cohomology groups

Hi(X,F) = lim
−→

U

Ȟp(U ,F).

Note that a 0-cochain for F with respect to the covering U = {Ui}i∈I is
a collection of sections ai ∈ F(Ui), for i ∈ I; it is a cocycle precisely when
the patching conditions ai |Ui∩Uj= aj |Ui∩Uj , for all i, j, are satisfied. Thus

Ȟ0(U ,F) ∼= F(X).
Similarly, a 1-cochain is a collection of sections aij ∈ F(Ui ∩ Uj). The 1-

cochain {aij} is a 1-cocycle ⇔ (i) aii = 0 for all i, (ii) aij = −aji for all i 6= j,
and (iii) for all distinct indices i, j, k, we have

aij |Ui∩Uj∩Uk
+ajk |Ui∩Uj∩Uk

= aik |Ui∩Uj∩Uk
.

These are very similar to the conditions satisfied by transition functions for
line bundles; in fact, if A∗

X is the sheaf of C∞ complex valued invertible func-
tions (the group operation being multiplication), then H1(X,A∗

X) is identified
with the group of (isomorphism classes of) C∞ line bundles on X , with tensor
product of line bundles as group operation; similarly, H1(X,C∗

X) is identified
with the group of flat line bundles, and H1(X,O∗

X) is identified with the group
of holomorphic line bundles.

One of the important technical results from sheaf theory is the following.

Lemma A.1 Let X be a paracompact Hausdorff space. Then for any short
exact sequence of sheaves of abelian groups

0 → F → G → H → 0

on X, there are boundary homomorphisms

δ : Hi(X,H) → Hi+1(X,F), ∀ i ≥ 0,

and a long exact sequence of Čech cohomology groups

0 → H0(X,F) → H0(X,G) → H0(X,H)
δ→ H1(X,F) → · · ·

· · · → Hi(X,F) → Hi(X,G) → Hi(X,H)
δ→ Hi+1(X,F) → Hi+1(X,G) → · · · .

Suppose further that X is locally contractible. Then for any abelian group A,
the sheaf cohomology groups Hi(X,AX), with coefficients in the constant sheaf
AX , are naturally isomorphic to the (singular) cohomology groups Hi(X,A) of
Algebraic Topology.
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Next, one has the notion of a fine sheaf: a sheaf F of abelian groups on
X is called fine if for any open cover U = {Ui}i∈I of X , there are sheaf maps
ψi : F → F such that, if supp (ψi) is the closure of the set of points {x ∈ X |
(ψi)x : Fx → Fx is non-zero}, then
(i) supp (ψi) ⊂ Ui for each i, and the collection of subsets {supp (ψi)}i∈I

forms a locally finite family of subsets of X

(ii) we have ∑

i∈I

ψi = 1F ,

where 1F denotes the identity endomorphism of F .

The usefulness of fine sheaves stems from the following result.

Lemma A.2 If F is a fine sheaf, then Ȟi(U ,F) = 0 for all i > 0, for any open
cover U of X; hence Hi(X,F) = 0 for all i > 0.

Corollary A.3 If
0 → F → A0 → A1 → · · ·

is an exact sequence of sheaves, where Ai is a fine sheaf for each i ≥ 0, then
there are natural isomorphisms

Hi(X,F) ∼=
ker

(
Ai(X) → Ai+1(X)

)

image (Ai−1(X) → Ai(X))
,

where the denominator is defined to be the trivial group if i = 0.

A basic example of a fine sheaf is the sheafAX of C∞ functions on a Riemann
surface (or more generally, on any C∞ differential manifold). The fineness
follows immediately from the existence of C∞ partitions of unity subordinate
to any covering of X . Since this is a sheaf of rings, we see also that any sheaf
of modules over AX is also fine, since multiplication by elements of a partition
of unity will give the desired endomorphisms ψi. This means, for example, that
sheaves of C∞ differential forms are fine.

This leads to a quick proof of the de Rham theorem.

Theorem A.4 (de Rham) If X is a C∞ manifold, then there are natural iso-
morphisms

Hi(X,C) ∼= closed C∞ i-forms

exact C∞ i-forms
.

The idea is to use the de Rham complex of sheaves

0 → CX → AX
d→ A1

X
d→ A2

X → · · · → An
X → 0,

where Ai
X is the sheaf of C∞ i-forms, n = dimX and d is the exterior derivative.

The local exactness of this sequence, i.e., the exactness of any closed form on
a disk in R

d, is called the Poincaré lemma; it may be proved using an explicit
integral formula. Now the Theorem becomes a particular case of Corollary A.3.
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