
SHEAF THEORY

1. Adjoint functors and limits

Let C and D be categories and let F : C → D andG : C → D be (covariant)
functors.

Definition 1. 1. A natural transformation T : F → G is the following
data: for each object A in C we have an arrow T (A) : F (A)→ G(A) in
D, such that if f : A→ B is an arrow in C then the following diagram
commutes

F (A)
F (f)
−−−→ F (B)

T (A) ↓ ↓ T (B)

G(A)
G(f)
−−−→ G(B)

2. A natural isomorphism is a natural transformation T : F → G such
that for all objects A of C the morphism T (A) : F (A) → G(A) is an
isomorphism.

3. Two categories C and D are equivalent if there exists functors F : C →
D and G : D → C such that both composites are natural isomorphisms
to the respective identity functors. In this case F and G are called
equivalence of categories.

Example Let R be a commutative ring and let R−mod be the category
of R-modules. Let G : R−mod → R−mod be the functor defined by
G(M) = (M∗)∗ where M∗ = HomR(M,R). Then there exists a natural
transformation T : IdR−mod → G which is a natural isomorphism if R = k is
a field and if we restrict our attention to the subcategory of finitely generated
R-modules.

Let F : C → D and G : D → C be two contravariant functors. Then
we get two functors from Dop × C to the category of sets, Sets given by
(A,B) 7→ HomC(G(A), B) and (A,B) 7→ HomD(A,F (B)) where A is an
object of D and B is an object of C.

Definition 2. Let F, G be as in the above paragraph. (G,F ) is said to form
an adjoint pair of functors if there exists a natural isomorphism between the
above two functors from Dop × C to Sets. In this case, G is said to be a left
adjoint of F, and F is said to be a right adjoint of G.

Example Let R be a commutative ring and let N ∈ R−mod. Then
the functors (. ⊗ N,HomR(N, .)) form an adjoint pair i.e. there exists a
natural isomorphism HomR(M ⊗N,P ) ∼= HomR(M,HomR(N,P )) for any
R-modules M and P.
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Problem 1. 1. Show that any two left adjoints (or any two right ad-
joints) of a functor are isomorphic.

2. LetAb be the category of abelian groups and let F : Ab→ Sets be the
forgetful functor. Then show that F has a left adjoint G : Sets→ Ab

given by G(S) = Free abelian group on S.
3. Similarly, let SAb be the category of commutative semigroups and let
F : Ab→ SAb be the forgetful functor. Then show that F again has
a left adjoint K : SAb→ Ab where K(A) is the Grothendieck group
of A.

Let F : C → D and G : D → C be two functors such that (G,F ) is an
adjoint pair. If A is an object of D, then there exists a bijection of sets

HomC(GA,GA) ∼= HomD(A,FGA).

Let the identity map on GA,1GA, correspond to ηA : A → FGA under the
above bijection. It can be shown that ηA satisfies the following universal
property: if f : A → FB is any morphism in D then there exists a unique
morphism g : GA → B such that f = Fg · ηA (i.e. f factors through ηA in
this sense). We have an analogous map ψB : GFB → B for any object B of
C and ψB has a similar universal property.

Limits Let I be a small category (i.e. the objects of I form a set) and
let C be any category. A diagram in C indexed by I is a functor I → C.
The diagrams in C indexed by I form a category CI whose morphisms are
natural transformations between two functors from I to C. The category C
can be thought of as the subcategory of CI of constant functors.

Definition 3. Let F ∈ CI . A direct limit of F is defined to be an object of
A of C together with a morphism (i.e. a natural transformation) η : F → A
in CI (where A is treated as the constant functor) which is universal among
such morphisms i.e. given any other object B of C and any morphism
θ : F → B there exists a unique morphism f : A → B in C such that
f · η = θ. We write this as lim−→ a∈IF (a) = A. An inverse limit is defined as
above by reversing all arrows.

Let (I,≤) be a directed set. Then I can be thought of as a category as
follows: the objects of I are the elements of the set I and for a, b ∈ I we
define HomI(a, b) to consist of one morphism a → b if a ≤ b and empty
otherwise. The definition of direct and inverse limit for this particular I is
probably the one which the reader is more familiar with.

Examples to be given

Problem 2. Let I be a small category. Let F : C → D be a functor which
has a left adjoint. Then F preserves direct limits over I. Similarly, if a
functor has a right adjoint then it preserves inverse limits over I. This gives
another proof that tensoring is right exact while the Hom functor is left
exact.
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Presheaves and Sheaves

The concept of a sheaf provides a systematic way of keeping track of local
algebraic data on a topological space.

Definition 4. Let X be a topological space. A presheaf F of abelian groups
on X consists of the data

1. for every open subset U ⊆ X, an abelian group F(U) and,
2. for every inclusion V ⊆ U of open subsets of X, a morphism of abelian

groups ρUV : F(U)→ F(V ) (called restriction maps) satisfying,
(a) F(φ) = 0, where φ is the empty set,
(b) ρUU is the idenitity map F(U)→ F(U), and
(c) if W ⊆ V ⊆ U are three open subsets, then ρUW = ρVW · ρUV .

The definition may be rephrased using the language of categories as fol-
lows. For any topological space X, let T op(X) denote the category whose
objects are the open subsets of X and whose only morphisms are the inclu-
sion maps. Hence, HomT op(X)(V,U) is empty if V is not a subset of U, and
HomT op(X)(V,U) has just one element (the inclusion map) if V ⊆ U. Then,
a presheaf may also be defined as a contravariant functor from the category
T op(X) to the category Ab of abelian groups.

One can define a presheaf of rings, a presheaf of sets or, more generally,
a presheaf with values in any category C, by replacing the words ”abelian
group” in the above definition by ”ring”, ”set”, or ”object of C” respectively.
We will usually stick to the case of abelian groups.

If F is a presheaf on X, then F(U) is referred to as the group of sections
of the presheaf F over the open set U, and an element s ∈ F(U) is called
a section. We sometimes use the notation Γ(U,F) (and later, H0(U,F))
to denote the group F(U). We also use the notation s|V for ρUV (s) where
s ∈ F(U).

A sheaf is roughly speaking a presheaf whose sections are determined by
local data. The precise definition is as follows.

Definition 5. A presheaf F on a topological space X is a sheaf if it satisfies
the following supplementary conditions

1. if U is an open set, if {Vi} is an open covering of U, and if s ∈ F(U)
is an element such that s|Vi

= 0 for all i, then s = 0 (”a section is
globally zero if it is locally zero”).

2. if U is an open set, if {Vi} is an open cover of U, and if there exists
elements si ∈ F(Vi) for each i with the property that for each i we
have si|Vi∩Vj

= sj|Vi∩Vj
, then there is an element s ∈ F(U) such that

s|Vi
= si for all i (”local sections patch to give a global section”). Note

that the previous condition implies that this s is unique.

Definition 6. A presheaf is called a monopresheaf if it satisfies the first
sheaf condition above i.e., a section which is locally zero must be globally
zero.
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Examples

1. Let X be a topological space. For any open set U ⊆ X, let F(U) be
the ring of continuous real-valued functions on U, and for each V ⊆ U,
let ρUV : F(U) → F(V ) be the restriction map in the usual sense.
Then F is a sheaf (of rings) as continuity is a local condition. More
generally, we could have replaced R by any topological space Y and
considered for each U ⊆ X the set of continuous functions from U to
Y, thus defining a sheaf of sets.

2. Let X, Y be differentiable manifolds. For an open U ⊆ X, define F(U)
to be the set of differentiable functions from U to Y. The restriction
maps are again the usual restriction maps. This is again a sheaf because
differentiability is a local condition.

3. The sheaf of regular functions OX (with usual restriction maps) on a
variety X over a field k

4. The sheaf of holomorphic functions HX (with usual restriction maps)
on a complex manifold X.

5. Let X be a topological space and π : E → X be a real vector bundle
on X. Define F(U) to be the ring of continuous sections on U with
the usual restriction maps (in this case, a continuous section on U
means a continuous map s : U → E|U such that π · s = IdU ). This is
again a sheaf of rings called the sheaf of sections of a vectorbundle. We
could have similarly considered vectorbundles on smooth manifolds,
algebraic varieties etc.

6. Let X, Y be topological spaces and let F(U) = continuous maps from
U to Y which have relatively compact image. This is a presheaf, in
fact a monopresheaf, which is not a sheaf.

7. Let X be a topological space. For U ⊆ X let F(U) = the vector space
of locally constant real-valued functions on U modulo the constant
functions on U. This is a presheaf which may not be a sheaf because if
U is not connected then there may exist sections on U which are locally
zero but not globally zero (hence F is not even a monopresheaf).

8. Let X be a topological space and G an abelian group. Define the
constant presheaf associated to G on X to be the presheaf F(U) = G
for all U 6= φ, with restriction maps being the identity. The constant
presheaf is in general not a sheaf.

9. Let X and G be as in the previous example. The constant sheaf GX ,
associated to G onX is defined as follows. Give G the discrete topology.
Let GX(U) be the group of continuous maps from U to G and the ρUV

be the usual restriction maps. Then GX is a sheaf. If U is a connected
set then GX(U) ∼= G hence the name ”constant sheaf”. If U is an open
set whose connected components are open (which is true for a locally
connected space) then GX(U) is a direct product of copies of G, one
for each connected component of U. This is a special case of the first
example.
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Definition 7. Let F be a presheaf on X and P be a point on X. The stalk
FP of F at P is defined to be the direct limit of the groups F(U) for all open
sets U containing P via the restriction maps ρUV i.e. FP = lim−→ P∈UF(U).
Thus an element of FP is represented by a pair (U, s) where U is an open
neighbourhood of P and s ∈ F(U). Two such pairs (U, s) and (V, t) define
the same element of FP if and only if there is an open neighbourhood W of
P with W ⊆ U ∩V such that s|W = t|W . Thus elements of the stalk FP are
germs of sections of F at the point P.

Definition 8. If F and G are presheaves on X, a morphism of presheaves
φ : F → G consists of a morphism of abelian groups φ(U) : F(U) → G(U)
for each open set U such that whenever V ⊆ U is an inclusion, the following
diagram

F(U)
φ(U)
−−−→ G(U)

ρUV ↓ ↓ ρ
′

UV

F(V )
φ(V )
−−−→ G(V )

commutes, where ρ and ρ
′

are the restriction maps for F and G respectively.
If F and G are sheaves then a morphism of sheaves φ : F → G is a morphism
from F to G considering both F and G as presheaves. An isomorphism is a
morphism which has a two-sided inverse.

Let ZX denote the constant sheaf on X associated to Z. Then for any
sheaf F of abelian groups on X, the sheaf morphisms Hom(ZX ,F) can be
indentified with the global sections F(X) of F .

We can now talk of the category of presheaves, PSh(X), and the category
of sheaves, Sh(X), on X, whose objects are presheaves (or sheaves) on X
and whose morphisms are morphisms between presheaves (or sheaves). We
will later see that Sh(X) is an abelian category.

A morphism φ : F → G of presheaves on X induces a morphism φP :
FP → GP on the stalks for every point P ∈ X. The following proposition is
false for presheaves and illustrates the local nature of sheaves.

Proposition 1. Let φ : F → G be a morphism of sheaves on a topological
space X. Then φ is an isomorphism if and only if the induced map on the
stalks φP : FP → GP is an isomorphism for every P ∈ X.

Proof. It is clear that φP is an isomorphism for every P ∈ X if φ is an
isomorphism. So we have to prove the converse. Assume that φP is an
isomorphism for every P ∈ X. It is enough to show that for every open
subset U of X, φ(U) : F(U) → G(U) is an isomorphism. We first prove
that φ(U) is injective for every U ⊆ X. Suppose s ∈ F(U) is such that
φ(U)(s) ∈ G(U) is zero. Then, for every point p ∈ U, φP (sP ) ∈ GP which
is the image of φ(U)(s) in GP is zero. Since φP is injective for every P we
have that sP = 0 in FP for each P ∈ U. sP = 0 means that s and 0 have
the same image in FP , hence there is an open neighbourhood WP ⊆ U of
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P such that s|WP
= 0. U is covered by the neighbourhoods WP as we vary

P ∈ U and so by the first sheaf property we have that s = 0. This proves
that φ(U) is injective for every U.

We now show that φ(U) is surjective for every U ⊆ X. Suppose that
t ∈ G(U). Let tP ∈ GP be its germ at P. Since φP is surjective we can
find sP ∈ FP such that φP (sP ) = tP . Let sP be represented by a section
s(P ) on a neighbourhood VP ⊆ U of P. Then φ(VP )(s(P )) and t|VP

are two
elements of G(VP ) whose germs at P are the same. Hence replacing VP by a
smaller neighbourhood of P if necessary we may assume that φ(VP )(s(P )) =
t|VP

in G(VP ). U is covered by VP as we vary P ∈ U and on each VP we
have a section s(P ) ∈ F(VP ). IF P and Q are any two points of U then
s(P )|VP∩VQ

= s(Q)|VP∩VQ
since they are both sections of F(VP ∩ VQ) which

are sent by φ to t|VP∩VQ
and φ has already been proved to be injective. Now

by the second sheaf property, there is a section s ∈ F such that s|VP
= s(P )

for every P ∈ U. Now φ(s) and t are two sections of G(U) such that for
each P ∈ U we have φ(s)|VP

= t|VP
. Hence again by the first sheaf property

applied to φ(s)− t we get that φ(s) = t. Hence φ(U) is surjective for all U
and the proof is complete.

Definition 9. Let φ : F → G be a morphism of presheaves. The presheaf
kernel of φ, presheaf cokernel of φ and presheaf image of φ are defined to
be the presheaves given by U 7→ ker(φ(U)), U 7→ coker(φ(U)) and U 7→
im(φ(U)) respectively.

We note that if F and G are sheaves then the presheaf kernel of φ is a
sheaf. But the presheaf cokernel and the presheaf image need not be sheaves
in general even if F and G are sheaves (why?). This leads us to the definition
of the sheafification of a presheaf (also known as the sheaf associated to a
presheaf).

Proposition 2. Given a presheaf F there is a sheaf F+ and a morphism
θ : F → F+ with the property that for any sheaf G and any morphism
φ : F → G there is a unique morphism ψ : F+ → G such that φ = ψ.θ.
Furthurmore the pair (F+, θ) is unique upto unique isomorphism.

Proof. For any open set U ⊆ X, let F+(U) be the set of functions s from U
to the union ∪P∈UFP of the stalks of F over the points of U such that

1. for each P ∈ U, s(P ) ∈ FP

2. for each P ∈ U, there is a neighbourhood V ⊆ U of P and an element
t ∈ F(V ) such that for all Q ∈ V the germ tQ of t at Q is equal to
s(Q).

F+ is a sheaf and there is a natural morphism θ : F → F+ got by sending
s 7→ {P 7→ sP } where s ∈ F(U). One can now show that θ has the universal
property as described in the statement of the proposition. We note that for
any point P ∈ X, FP

∼= F+
P via θ and that if F was a sheaf then F+ is
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isomorphic to F via θ. The uniqueness of F+ is a formal consequence of the
universal property of F+.

Definition 10. F+ is called the sheaf associated to the presheaf F or the
sheafification of the presheaf F .

F+ is the best possible sheaf that can be got from F . To imagine how we
got F+ from F , note that in the proof of the above proposition we identified
sections which have the same restrictions (by considering the function P 7→
sP given by a section s) and then added all things which could be patched
together thus making F+ satisfy both sheaf conditions. In our examples,
the constant sheaf is the sheafification of the constant presheaf (associated
to the same group). Also the sheafification of the presheaf in example 7 is
the zero sheaf.

Sheafification can also be defined as an adjoint functor as follows. Let
PSh(X) and Sh(X) denote the categories of presheaves and sheaves on X.
Every sheaf is a presheaf hence we have an inclusion functor i : Sh(X) →
PSh(X). Sheafification of a presheaf gives a functor a : PSh(X) → Sh(X)
i.e. a(F) = F+. Then the sheafification functor is the left adjoint of
the inclusion functor because by definition we have HomPSh(X)(F , i(G)) =
HomSh(X)(a(F),G) where F is a presheaf and G is a sheaf.

Definition 11. 1. A subsheaf of a sheaf F is a sheaf F
′

such that for
every open set U ⊆ X, F

′

(U) is a subgroup of F(U) and the restriction

maps of the sheaf F
′

are induced by those of F . It follows that for every
P ∈ X, F

′

P is a subgroup FP .
2. If φ : F → G is a morphism of sheaves then we define the kernel sheaf

of φ, denoted by Ker(φ), to be the presheaf kernel of φ (which is a
sheaf). Thus Ker(φ) is a subsheaf of F .

3. A morphism of sheaves φ : F → G is defined to be injective if Ker(φ) =
0.

One can easily show that φ : F → G is injective, if and only if, φ(U) :
F(U) → G(U) is injective for every open set U ⊆ X, if and only if φP :
FP → GP is injective for every P ∈ X.

Definition 12. If φ : F → G is a morphism of sheaves then we define
the image sheaf of φ, denoted by Im(φ), to be the sheaf associated to the
presheaf image of φ.

By the universal property of the sheafification, there is a natural map of
sheaves Im(φ) → G. This map is injective (since it is injective at the level
of stalks) and hence Im(φ) can be identified with a subsheaf of G.

Definition 13. A morphism φ : F → G of sheaves is defined to be surjective
if Im(φ) = G.

If φ : F → G is a surjective morphism of sheaves then the maps on sections
φ(U) : F(U) → G(U) may not be surjective for all open subsets U ⊆ X.
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The converse is of course true. It is also true that φ : F → G is a surjective
morphism of sheaves, if and only if, φP : FP → GP is surjective for all P ∈ X,
if and only if, for every open set U ⊆ X and for every s ∈ G(U) there is a
covering {Vi} of U and elements ti ∈ F(Ui) such that φ(Vi)(ti) = s|Vi

for all
i (the last condition says that sections of G can be lifted over smaller open
sets).

An example of a surjective morphism of sheaves φ : F → G and an open
set U ⊆ X such that φ(U) : F(U) → G(U) is not surjective is as follows.
Let X be the complex numbers with the complex topology. Let HX be the
sheaf of holomorphic functions on X and let H∗

X be the sheaf of invertible
(nowhere zero) holomorphic functions on X. Let φ denote the exponential
map defined from HX → H

∗
X by sending a holomorphic function f on U to

exp(f). Then this is a surjective map of sheaves as locally the exponential
map has an inverse (the logarithm) but clearly the map on global sections
is not surjective (on non-simply-connected open subsets).

It follows (by considering the maps at the level of stalks) that a morphism
of sheaves is an isomorphism, if and only if, it is both injective and surjective.

Definition 14. A sequence of sheaves · · · → F i−1 φi−1

−−−→ F i φi

−→ F i+1 → · · ·
is said to be exact if for every i, Ker(φi) = Im(φi−1).

Thus a sequence 0 → F
φ
−→ G is exact, if and only if, φ is injective.

Similarly, a sequence F
φ
−→ G → 0 is exact, if and only if, φ is surjective.

One can also show that, a sequence of sheaves is exact, if and only if, the
corresponding sequence of stalks at P is exact for all P ∈ X.

Definition 15. Let F
′

be a subsheaf of F . The quotient sheaf F/F
′

is

defined to be the sheaf associated to the presheaf U 7→ F(U)/F
′

(U). It

follows that for every point P ∈ U the stalk (F/F
′

)P is the quotient FP /F
′

P .

If F
′

is a subsheaf of F then there is a short exact sequence of sheaves

0→ F
′

→ F → F/F
′

→ 0.

Conversely, if 0 → F
′

→ F → F
′′

→ 0 is a short exact sequence of sheaves
then F

′

is isomorphic to a subsheaf of F and F
′′

is isomorphic to the quotient
of F by this subsheaf.

Definition 16. Let φ : F → G be a morphism of sheaves. The cokernel
sheaf of φ, denoted by Coker(φ), is defined to be the sheaf associated to the
cokernel presheaf of φ.

One can easily show that if φ : F → G is a morphism of sheaves then
Im(φ) ∼= F/Ker(φ) and Coker(φ) ∼= G/Im(φ).

All sheaves discussed so far have been on a single topological space. We
now define some operations on sheaves associated with a continuous map
from one topological space to another.

Definition 17. Let f : X → Y be a continuous map of topological spaces.
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1. For any sheaf F on X, we define the direct image sheaf f∗F on Y by
f∗F(V ) = F(f−1(V )) for any open set V ⊆ Y.

2. For any sheaf G on Y, we define the inverse image sheaf f−1G on X to
be the sheaf associated to the presheaf U 7→ lim−→ f(U)⊆V G(V ) where U
is any open set of X and the limit is taken over all open sets V of Y
containing f(U).

f∗ is a functor from Sh(X) to Sh(Y) and f−1 is a functor from Sh(Y) to
Sh(X). For any sheaf F onX there is a natural map of sheaves f−1f∗F → F ,
and for any sheaf G on Y there is a natural (i.e. functorial) map of sheaves
G → f∗f

−1G. Using these maps one can show that there is a natural bijection
of sets, for any sheaf F on X and any sheaf G on Y,

HomX(f−1G,F) = HomY (G, f∗F)

This proves that f−1 is a left adjoint of f∗ and that f∗ is a right adjoint of
f−1.

Let Z ⊆ X is a subspace of X and let F be a sheaf on X. Let i denote
the inclusion map Z → X. Then we denote the sheaf i−1F by F|Z and call
it the restriction of F to Z.

Definition 18. Let F , G be sheaves of abelian groups on X.

1. For any open set U ⊆ X the set Hom(F|U ,G|U ) of morphisms of the
restricted sheaves has a natural structure of an abelian group. One
can show that the presheaf U 7→ Hom(F|U ,G|U ) is a sheaf, which is
defined to be the sheaf hom of F to G. It is denoted by Hom(F ,G).

2. The presheaf U 7→ F(U) ⊕ G(U) is a sheaf. It is called the direct sum
of F and G and is denoted by F ⊕ G. It plays the role of direct sum
and direct product in the category of sheaves of abelian groups on X.

3. Let {Fi} be a direct system of sheaves and morphisms on X. The
direct limit of {Fi}, denoted by lim−→Fi, is defined to be the sheaf as-
sociated to the presheaf U 7→ lim−→Fi(U). This is a direct limit in the
category Sh(X) i.e., it has the following universal property: given a
sheaf G and a collection of morphisms Fi → G compatible with the
maps of the direct system, there exists a unique map lim−→Fi → G
such that the original map Fi → G is obtained by composing Fi →
lim−→Fi → G. If X is a noetherian topological space, then the presheaf
U 7→ lim−→Fi(U) is already a sheaf (a topological space is noether-
ian if it satisfies the descending chain condition for closed subsets,
this notion will be discussed in more detail later on). In particular,
Γ(X, lim−→Fi) = lim−→Γ(X,Fi).

4. Let {Fi} be an inverse system of sheaves on X. The presheaf U 7→
lim←−Fi(U) is already a sheaf. It is called the inverse limit of the system
{Fi} and is denoted by lim←−Fi. It has the universal property of an
inverse limit in the category Sh(X).

5. Let F , G be sheaves of abelian groups on X. Then the sheaf associated
to the presheaf U 7→ F(U) ⊗Z G(U) is called the tensor product of F
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and G. It satisfies the universal property of a tensor product in the
category Sh(X).

For any open subset U ⊆ X the functor Γ(U, .) from Sh(X) to the cat-
egory of abelian groups, Ab, is a left exact functor. This means that if
0 → F

′

→ F → F
′′

is an exact sequence of sheaves then 0 → Γ(U,F
′

) →

Γ(U,F) → Γ(U,F
′′

) is an exact sequence of groups. The functor Γ(U, .)
as has been shown earlier need not be exact (as surjectivity may fail). We
also mention in this context, that the functors Hom(F , ·) and f∗ from the
category of sheaves to itself are left exact whereas the tensor functor F ⊗ ·
from the category of sheaves to itself is right exact.

Definition 19. A sheaf F on a topological space X is said to be flasque
(or flabby) if for every inclusion V ⊆ U of open sets, the restriction map
F(U) → F(V ) is surjective. A constant sheaf on an irreducible topological
space is flasque.

Some of the properties of flasque sheaves are given below. If F
′

is a flasque
sheaf and there is a short exact sequence of sheaves 0→ F

′

→ F → F
′′

→ 0
then for any open set U ⊆ X the sequence of abelian groups 0→ F

′

(U)→

F(U) → F
′′

(U) → 0 is also exact. If F
′

and F are flasque sheaves in

the above short exact sequence then so is F
′′

. Finally, if f : X → Y is
a continuous map then it is trivial to observe that f∗F is flasque if F is
flasque. All these properties are easy to prove except the first one. To
prove the first one note that the only thing we have to prove is that the
map F(U) → F

′′

(U) is surjective. Let α ∈ F
′′

(U) be a section over U. We
know that sections can be locally lifted so let V ⊆ U be an open subset and
β ∈ F(V ) such that β maps to α|V . If V = U we are done so assume V 6= U.
Let p ∈ U be a point such that p is not in V. Then there exists an open
subset W ⊆ U such that p ∈ W and a section γ ∈ F(U) which lifts α over
W. If we can show that β and γ can be modified so that they patch over
V ∩W and still map to α then we have extended the lift of the section α to
a bigger set and we are done by using Zorn’s Lemma. So it remain to show
that β and γ can be modified to patch over V ∩W and this is where we use
the fact that F

′

is flasque. Consider the section δ = β− γ over V ∩W. This
can be considered as a section of F

′

(V ∩W ) and hence can be lifted by the

flasque property to a section θ over F
′

(W ). Now consider the two sections
β ∈ F(V ) and (γ + θ) ∈ F(W ). It is easy to see that they patch and map
to α so we are done.

Definition 20. Let F be a sheaf on X. The sheaf of discontinuous sections
of F , denoted by C0(F), is defined as follows. For each open set U ⊆ X
C0(F)(U) is the set of maps s : U → ∪p∈UFP such that for each P ∈ U,
s(P ) ∈ FP . There is a natural injective map F → C0(F). It is also clear
that C0(F) is a flasque sheaf.

Definition 21. Given a sheaf F on X there exists a canonical resolution
of F by flasque sheaves called the Godemont resolution. In other words,
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there exists an exact sequence to sheaves 0 → F → C0(F) → C1(F) → ...
where Ci(F), for each i, is a flasque sheaf. The Godemont resolution is
defined as follows. C0(F) is the sheaf of discontinuous sections of F as
defined above. Define C1(F) to be the sheaf of discontinuous sections of
the sheaf G0 where G0 is the cokernel of the morphism F → C0(F). Note
that there is natural map C0(F) → C1(F) which is the composition of the
maps C0(F) → G0 → C1(F). We now define Ci(F) inductively by the same
procedure. Assume that Cj(F) has been defined for all j < i. Let Gi−1 be
the cokernel of the map Ci−2(F)→ Ci−1(F). Then Ci(F) is defined to be the
sheaf of discontinuous sections of the sheaf Gi−1 and there is a natural map
Ci−1(F)→ Ci(F). The way the sequence is constructed it is obvious that it
is exact at every stage. It is also clear by construction that each Ci(F) is a
flasque sheaf.

Definition 22. Let F be a sheaf on X. Let s ∈ F(U) be a section over an
open set U. The support of s, denoted by Supp(s), is defined to be the set
{P ∈ U |sP 6= 0} where sP denotes the germ of s in the stalk FP . Supp(s) is
a closed subset of U (because sP = 0 is by definition an open condition). We
define the support of F , denoted by Supp(F), to be the set {P ∈ U |FP 6= 0}.
This need not be a closed subset of X.

We define skyscraper sheaves to illustrate the notion of support. Skyscraper
sheaves are so named because they are supported only on the closure of a
point.

Definition 23. Let X be a topological space, let P be a point, and let G be
an abelian group. The skyscraper sheaf on X associated to G and supported
on P̄ (the closure of the point P ) is denoted by iP (G) and is defined by
iP (G)(U) = G if P ∈ U and 0 otherwise. The stalk of iP (G) is G at every
point Q ∈ P̄ and is 0 elsewhere. If i : P̄ → X denotes the inclusion map then
the sheaf iP (G) could also have been defined as i∗(GP ) where GP denotes
the constant sheaf on P associated to the group G.

We can also talk about sections having support in a closed subset. This
will later lead to the definition of cohomology with supports.

Definition 24. Let Z be a closed subset of X and let F be a sheaf on
X. We define ΓZ(X,F) (also denoted by H0

Z(X,F) to be the subgroup
of Γ(X,F) cosisting of all sections whose support is contained in Z. The
presheaf V 7→ ΓV ∩Z(V,F|V ) is actually a sheaf. It is called the subsheaf of
F with supports in Z and is denoted by H0

Z(F).

If U = X − Z and j : U → X denotes the inclusion map then there is an
exact sequence of sheaves on X

0→H0
Z(F)→ F → j∗(F|U ).

Furthurmore, if F is flasque then the map F → j∗(F|U ) is surjective.
We now introduce the concept of extending a sheaf by zero.
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Definition 25. Let X be a topological space, let Z be a closed subspace
of X and let U = X − Z be the complement of Z. Let i : Z → X and
j : U → X denote the two inclusion maps.

1. Let F be a sheaf on Z. We call the sheaf i∗F the sheaf obtained by
extending F by zero outside Z. This is because the stalk (i∗F)P is FP

if P ∈ Z and 0 if P is not in Z.
2. Let F be a sheaf on U. Define j!(F) to be the sheaf on X associated to

the presheaf V 7→ F(V ) if V ⊆ U and V 7→ 0 otherwise. We call j!(F)
to be the sheaf obtained by extending F by zero outside U. Again, the
stalk (j!(F))P is equal to FP if P ∈ U and is 0 if P is not in U.

If F is a sheaf on X and Z, U are as above then there is a short exact
sequence of sheaves on X,

0→ j!(F|U )→ F → i∗(F|Z)→ 0

This follows by considering the corresponding sequence of stalks and using
the properties given in the definition of extension by 0.

We now define the notion of a family of supports, this more general notion
will be used when we define cup products in a later section.

Definition 26. Let X be a topological space. A family of supports for X
is a collection Φ of subsets of X such that

1. if A ∈ Φ then A is a closed subset of X,
2. if A ∈ Φ, B ⊆ A and B is closed then B ∈ Φ,
3. if AB ∈ Φ then A ∪B ∈ Φ.

φ is said to be a paracompactifying family of supports if in addition Φ satisfies

1. if A ∈ Φ then A is paracompact,
2. if A ∈ Φ then there exists B ∈ Φ such that A ⊂ B◦ where B◦ = the

interior of B.

Examples 1) Φ = all closed subsets of X.
2) Let X be a Hausdorff space. Then let Φ = all compact subsets of X.

If X is locally compact then Φ is also paracompactifying.
3) Let Z ⊆ X be a closed subset. Let Φ = ΦZ = all closed subsets of Z.

Definition 27. LetX be a topological space, F be a sheaf of abelian groups
on X and let Φ be a family of supports on X. Then the group of sections of
F with supports in Φ, ΓΦ(X,F) (also denoted by H0

Φ(X,F)) is defined to
be the set {s ∈ F(X)|supp(s) ∈ Φ}.

Lemma 1. The functor ΓΦ : Sh(X)→ Ab is left exact.

Proof.

We will now discuss affine schemes and then ringed spaces. Affine schemes
(and varieties) are examples of a somewhat bizarre but important class of
spaces called noetherian topological spaces. Since we will be considering
mainly such spaces in this workshop we will give the relevant definitions.
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Definition 28. A topological space X is called noetherian if it satisfies
the em descending chain condition for closed subsets: for any sequence
Y1 ⊇ Y2 ⊇ · · · of closed subsets of X, there is an integer r such that
Yr = Yr+1 = · · · .

Let k be a field and let A
n
k = kn be the affine n-space over k. Let A =

k[x1, · · · , xn] be the polynomial ring in n variables. A polynomial in n
variables can be thought of as a function from A

n
k to k. A subset Y of

A
n
k is said to be an algebraic set if there exists a subset T ⊆ A such that

Y = {p ∈ A
n
k |f(p) = 0∀f ∈ T}. We define the Zariski topologyon A

n
k by

taking the open subsets to be the complements of algebraic sets, it can be
easily checked that this forms a toplogy. An

k is a noetherian topological space
(this depends on the fact that A is a noetherian ring). It also happens to be
the first example of an affine variety. A nonempty subset Y of a topological
space X is said to be irreducible if it cannot be expressed as the union of
Y = Y1 ∪ Y2 of two proper subsets, each of which is closed in Y (the empty
set by definition is not considered to be irreducible). Now an affine variety
is an irreducible closed subset of An

k with the induced Zariski topology. All
affine varieties are also noetherian topological spaces. It can be easily shown
that every open cover of a noetherian topological space has a finite subcover.
Noetherian topological spaces are usually never Hausdorff, in fact it is easy
to see that a Hausdorff, noetherian toplogical space must be a finite set
with the discrete topology. Noetherian topological spaces also satisfy the
following property which we write in the form of a proposition.

Proposition 3. In a noetherian topological spaceX, every nonempty closed
subset Y can be expressed as a finite union Y = Y1 ∪ · · · ∪ Yr of irreducible
closed subsets Yi. If we require that no Yi contains any other Yj in this
decomposition then the Yi are uniquely determined. They are called the
irreducible components of Y.

This immediately yields the following corollary,

Corollary 1. Every algebraic set in A
n
k can be expressed uniquely as a union

of varieties, no one containing another.

We lastly define the notion of dimension of a topological space which will
be appear in the statement of Grothendieck’s theorem.

Definition 29. If X is a topological space, we define the dimension of X
(denoted by dim X) to be the supremum of all integers n such that there
exists a chain Z0 ⊂ Z1 ⊂ · · · ⊂ Zn of distinct irreducible closed subsets
of X. We define the dimension of an affine variety to be it dimension as a
topological space.

One can show that the dimension of An
k is n. This follows from the fact that

the dimension of an algebraic set Y is the same as the dimension of it’s affine
coordinate ring A(Y ) (to be defined in a moment) and the affine coordinate
ring of An

k is k[x1, · · · , xn] whose dimension is n. Now for the definition of
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the affine coordinate ring of an algebraic set Y. By definition Y ⊂ A
n
k for

some n. Define the ideal of Y, I(Y ) = {f ∈ k[x1, · · · , xn]|f(p) = 0∀p ∈ Y }.
We define the affine coordinate ring of Y to be the ring k[x1, · · · , xn]/I(Y ),
it can be shown to be independent of the embedding of Y in A

n
k . The affine

coordinate ring of an algebraic set is a special kind of a ring, namely it
is a finitely generated k-algebra with no nilpotent elements. The affine
coordiante ring of an affine variety is in addition an integral domain. The
converse of both these statements are also true, i.e. any such ring is the
affine coordinate ring of an algebraic set or an affine variety. Given a finitely
generated k algebra with no nilpotent elements and under the assumption
that k is an algebraically closed field, we can recover the affine algebraic set
by considering the maximal ideals of the coordinate ring, these correspond
to the points on the variety. We have the notion of a regular function on
an affine algebraic set which forms a sheaf of rings on it (as discussed in
the examples of sheaves). All these notions will be discussed in full detail
in other lectures of this workshop, hence we have been very brief. Now by
considering the prime ideals of a general ring (instead of maximal ideals) we
are led to our next topic, affine schemes.

We now discuss another example of a noetherian topological space, namely
the spectrum of a ring A. We will then define a sheaf of rings on this space
and call it an affine scheme and denote it by Spec(A). This construction
parallels the construction of affine varieties (as has been loosely mentioned
in the previous paragraph). Let A be a commutative ring with identity. As
a set, define Spec(A) to be the set of all prime ideals of A. Let I be any
ideal of A, then we define the subset V (I) ⊆ Spec(A) to be the subset of
all prime ideals which contain I. Next we define a topology on Spec(A) by
taking the subsets of the form V (I) to be the closed subsets. It can again
be checked easily that these sets satisfy the axioms of a topology. We now
define a sheaf of rings O on Spec(A). For every prime ideal p ⊆ A, let Ap be
the localization of A at p. For any open set U ⊆ Spec(A), we define O(U)
to be the set of functions s : U →

∐
p∈U Ap such that s(p) ∈ Ap for each

p and (again for each p ∈ U) there is a neighbourhood V of p contained
in U and elements a, f ∈ A such that for each q ∈ V we have f not in q

and s(q) = a/f in Aq (i.e. s is locally a quotient of elements of A). It is
clear then that this is a sheaf of rings on Spec(A). We give a far cleaner
definition of O by just considering a basis of open sets as follows. To give the
data fo a sheaf F on a space X it is enough to specify F(U) and restriction
maps where U ranges over a basis B of open subsets of X. The sheaf axioms
then force the vales of F on other open sets and other restriction maps.
Now we use the basis of open sets D(f) for f ∈ A where D(f) consists of
those prime ideals of A which do not contain the element f. It can be easily
checked that this forms a basis of Spec(A). Now define O(D(f)) = Af . If
D(f) ⊆ D(g) for f, g ∈ A then fn ∈ (g) for some n, hence there is a natural
map O(D(g)) = Ag → Af = O(D(f)) which is our rstriction map. This
finishes the cleaner definition of O.
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The spectrum of a ring A is defined to be the pair consisting of the topo-
logical space Spec(A) together with the sheaf of rings O defined above. We
also note that Γ(Spec(A),O) = A.

Definition 30. 1. A ringed space is a pair (X,OX ) consisting of a topo-
logical space X and a sheaf of rings OX on X. A morphism of ringed
spaces from (X,OX) to (Y,OY ) is a pair (f, f#) of a continuous map
f : X → Y and a map f# : OY → f∗OX of sheaves of rings on Y.

2. A ringed space (X,OX ) is a locally ringed space if for each point P ∈ X
the stalk OX,P is a local ring. A morphism of locally ringed spaces

is a morphism (f, f#) of ringed spaces such that for each P ∈ X

the induced map (discussed below) f#P : OY,f(P ) → OX,P is a local

homomorphism of local rings. The map f#P is defined as follows, given

P ∈ X the morphism f# : OY → f∗OX induces a homomorphism of
rings OY (V ) → OX(f−1(V )) for every open set V ⊆ Y. As V ranges
over all the open neighbourhoods of f(P ), f−1(V ) ranges over a subset
of the neighbourhoods of P. Taking direct limits we get a map

OY,f(P ) = lim−→ VOY (V )→ lim−→ VOX(f−1(V ))

and the latter limit maps to the stalk OX,P . Thus we have an induced

map f#P : OY,f(P ) → OX,P .

We have the following proposition

Proposition 4. 1. If A is a ring, then (SpecA,O) is a locally ringed
space.

2. If φ : A → B is a homoorphism of rings, then φ induces a natural
morphism of locally ringed spaces

(f, f#) : (SpecB,OSpec(B))→ (SpecA,OSpec(A)).

3. If A and B are rings, then any morphism of locally ringed spaces from
SpecB to SpecA is induced by a homomorphism of rings φ : A → B
as above.

The morphism f : SpecB → SpecA mentioned in the proposition is
given by f(p) = φ−1(p) (for each p ∈ SpecB) which is easily checked to be
continuous. Also we can localize φ to get local homomorphism of local rings
φp : Aφ−1(p) → Bp which is precisely the map f# at the level of stalks.

Definition 31. Let (X,OX ) be a ringed space. A sheaf of OX -modules or
an OX -module is a sheaf F on X, such that for every open set U ⊆ X the
group F(U) is an OX(U)-module and for each inclusion of open sets V ⊆ U
the restriction homomorphism F(U)→ F(V ) is compatible with the module
structures via the ring homomorphism OX(U) → OX(V ). A morphism of
OX-modules F → G is a morphism of sheaves such that for every open set
U ⊆ X the map F(U) → G(U) is a homomorphism of OX(U)-modules.
Hence we have defined a category, denoted byMod(X) of OX -modules and
morphisms between them. Mod(X) will also turn out to be an abelian
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category. A sheaf of abelian groups can be considered as an OX -module by
taking OX to be the constant sheaf ZX .

As an example of sheaves of modules we briefly discuss the case of sheaves
of modules on Spec(A). Let A be a commutative ring with identity as before
and let M be an A-module. One can define a sheaf of modules on SpecA,
M̃ , which is associated to M. This is done as follows. For each prme ideal
p of A let Mp be the localization of M at p which will be the stalks of M̃
at p. For any basic open set of SpecA of the form D(f) for f ∈ A define

M̃(D(f) =Mf the localization of M at the multiplicative set {1, f, f2, · · · }.

This is enough to specify the sheaf of modules M̃ by an earlier comment.
In particular, Γ(SpecA, M̃ ) =M.

The kernel, cokernel and image of a morphism of a sheaf of OX -modules
is again a OX -module. If F

′

is a subsheaf of OX -modules of an OX -module
F then the quotient sheaf F/F

′

is an OX-module. Any direct sum, direct
product, direct limit or inverse limit of OX -modules is an OX-module. If F
and G are two OX-modules then the group of OX -module morphisms from
F to G is denoted by HomOX

(F ,G).

Definition 32. 1. A sequence of OX-modules and morphisms is exact if
it is exact as a sequence of sheaves of abelian groups.

2. If F and G are twoOX -modules then the presheaf U 7→ HomOX |U (F|U ,G|U )
is a sheaf called the sheaf Hom and is denoted by HomOX

(F ,G). This
is also an OX -module.

3. The tensor product of two OX-modules is defined to be the sheaf as-
sociated to the presheaf U 7→ F(U) ⊗OX(U) G(U) and is denoted by
F ⊗OX

G.
4. An OX -module F is said to be free if it is isomorphic to a direct sum

of copies of OX . F is said to be locally free if X can be covered by
open sets U such that F|U is a free OX |U -module. If F is locally free
then the rank of F on such an open set is the number of copies of
OX ’s needed (finite or infinite). If X is connected then the rank of a
locally free sheaf is constant. A locally free sheaf of rank one is called
invertible.

5. A sheaf of ideals on X is defined to be a sheaf of OX -modules I which
is a subsheaf of OX . Hence for every open set U, I(U) is an ideal of
OX(U).

Definition 33. 1. Let f : (X,OX ) → (Y,OY ) be a morphism of ringed
spaces. If F is an OX -module, then f∗F is an f∗OX -module. Since
there exists a morphism f# : OY → f∗OX of sheaves of rings on Y
this gives f∗F a natural structure of an OY -module. This is called the
direct image of F by the morphism f.

2. Let G be a sheaf of OY -modules. Then f−1G is an f−1OY -module. By
the adjointness property of f−1 there exists a morphism f−1OY → OX

of sheaves of rings on X. The inverse image of G, f∗G is defined to be
the tensor product sheaf f−1G⊗f−1OY

OX . Thus f
∗G is an OX-module.
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One can show that the functors f∗ and f∗ are adjoint functors between
the categories of OX -modules and OY -modules. Hence for any OX -module
F and for any OY -module G, there is a natural isomorphism of groups

HomOX
(f∗F ,G) ∼= HomOY

(F , f∗G).

We have the following proposition about sheaves of modules on SpecA.

Proposition 5. Let A → B be a homomorphism of rings and let f :
SpecB → SpecA be the corresponding map at the level of Specs. Then,

1. the map M → M̃ is an exact, fully faithful functor from the category
of A-modules to the category of OSpec(A) modules,

2. if M and N are two A-modules, then (M ⊗A N) ∼= M̃ ⊗OSpec(A)
Ñ

3. if {Mi} is any family of A-modules, then (⊕Mi)̃ ∼= ⊕M̃i,

4. for any B-module N we have f∗(Ñ ) ∼= (AN )̃ where AN means N
considered as an A-module,

5. for any A-module M we have f∗(M̃ ) ∼= (M ⊗A B)̃.

Cohomology of Sheaves

We first state some results from homological algebra before going into the
definition of sheaf cohomology.

Definition 34. An exact category C is a category with zero objects, kernels,
cokernels and such that the natural map Coim(f) → Im(f), for f any
morphism between two objects of C, is an isomorphism.

Definition 35. An additive category C is a category with a zero object such
that

1. for any pair (X,Y ) of objects of C, HomC(X,Y ) has a structure of an
abelian group and the composite law is bilinear with respect to this
group structure.

2. C has direct sums.

Definition 36. A functor F : C → D between two additive categories C
and D is said to be additive if for any pair of objects (X,Y ) of C the map
induced by F on the morphisms, HomC(X,Y ) → HomD(F (X), F (Y )) is a
homomorphism of groups.

Definition 37. A category C is said to be abelian if it is both exact and
additive.

Examples The following are abelian categories

1. The category of abelian groups, Ab.
2. The category of modules over a fixed ring A, denoted byMod(A).
3. The category of sheaves of abelian groups, Sh(X), on a topological

space X.
4. The category of sheaves of OX-modules, Mod(X), on a ringed space

(X,OX )
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Definition 38. Let C be an abelian category. A complex A· in C is a collec-
tion of objects Ai, i ∈ Z and morphisms di : Ai → Ai+1 such that di+1 ·di = 0
for all i. If the objects Ai are specified only in a certain range then we set
Ai = 0 for all other i. A morphism of complexes f : A· → B· is a set of
morphisms f i : Ai → Bi for each i, which commute with the coboundary
maps di.

Definition 39. The ith cohomology object hi(A·) of the complex A· is de-
fined to be ker(di)/im(di−1).

If f : A· → B· is a morphism of complexes then f induces a natural map
hi(f) : hi(A·)→ hi(B·). If 0→ A· → B· → C · → 0 is a short exact sequence
of complexes then there are natural functorial maps δi : hi(C ·) → hi+1(A·)
(called connecting homomorphisms) giving rise to a long exact sequence

· · · → hi(A·)→ hi(B·)→ hi(C ·)
δi
−→ hi+1(A·)→ · · ·

Definition 40. Two morphisms of complexes f, g : A· → B· are said to be
homotopic (written as f g) if there is a collection of morphisms ki : Ai →
Bi−1 for each i such that f − g = dk + kd. The collection of morphisms
k = (ki) is called a homotopy operator.

Lemma 2. Two homotopic morphisms f and g induce the same morphism
on the cohomology objects hi(A·)→ hi(B·) for every i.

Definition 41. A covariant functor F : C → D from an abelian category
to another is said to be left exact if F is an additive functor and if for every
short exact sequence

0→ A
′

→ A→ A
′′

→ 0

in C, the sequence

0→ FA
′

→ FA→ FA
′′

is exact in D. If we write a 0 on the right instead of the left we say that
F is right exact. If F is both left and right exact, then we say that it is
exact. If only the middle part FA

′

→ FA→ FA
′′

is exact then we say that
F is exact in the middle. For a contravariant functor, we have analogous
definitions. For example, a contravariant functor F : C → D is left exact if
F is additive and for every short exact sequence as above, the sequence

0→ FA
′′

→ FA→ FA
′

is exact in D.

Examples If C is an abelian category and A is a fixed object of C then
the functor Hom(A, .) defined by B 7→ Hom(A,B) is a covariant left exact
functor from C toAb and the functorHom(., A) defined by B 7→ Hom(B,A)
is a contravariant left exact functor from C to Ab.

Definition 42. An object I in an abelian category C is said to be injective
if the functor Hom(., I) is an exact functor. An injective resolution of an
object A of C is a complex I ·, defined in degrees i ≥ 0, together with a
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morphism ǫ : A→ I0, such that Ii is an injective object of C for each i ≥ 0
and such that the sequence

0→ A
ǫ
−→ I0 → I1 → · · ·

is exact.

Definition 43. An abelian category C is said to have enough injectives if
every object of C is isomorphic to a subobject of an injective object.

Problem 3. 1. Let Ab be the category of abelian groups. Show that an
abelian group A if and only if A is a divisible abelian group. Show
that Ab has enough injectives.

2. Let F : A → B be an additive functor between two abelian categories.
Assume that F has a left adjoint G such that G is an exact functor.
Then show that F preserves injectives.

3. In the previous situation assume that A has enough injectives. As-
sume furthur that for each B ∈ B the natural map B → FGB is a
monomorphism. Then prove that B has enough injectives.

If C has enough injectives then every object has an injective resolution.
Furthurmore, it can be proved that any two injective resolutions are homo-
topy equivalent.

Proposition 6. Let 0 → A → C· be a resolution of A and let 0 → B →
I0 → I1 → · · · be a complex with Ij injective for all j (here all objects
belong to an underlying abelian category C). Then any map f : A → B
extends to a chain map f· : C· → I· which is unique upto homotopy.

By a complex in the following corollary we mean one which is bounded
below.

Corollary 2. 1. Any map from an exact complex to a complex of in-
jectives is null-homotopic (i.e. is homotopic to the zero morphism).
In particular, an exact complex of injectives is contractible (i.e. the
identity and zero maps are homotopic).

2. Any two injective resolutions of an object are homotopy equivalent.
3. If 0 → A → I· and 0 → B → J· are injective resolutions of A and B

respectively and if f : A → B then there exists f· : I· → J· which is
compatible with f and which is unique upto homotopy.

Definition 44. Let C be an abelian category with enough injectives and let
F : C → D be a covariant left exact functor to another abelian category. We
define the right derived functors RiF (for i ≥ 0) of F as follows. For each
object A of F choose and fix an injective resolution I · of A. Then we define
RiF (A) = hi(F (I ·)).

Theorem 1. Let C be an abelian category with enough injectives and let
F : C → D be a covariant left exact functor to another abelian category D.
Then,
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1. For each i ≥ 0, RiF as defined above is an additive functor from C
to D. Furthurmore, it is independent (upto natural isomorphisms of
functors) of the choices of the injective resloutions made.

2. There is a natural isomorphism F ∼= R0F.
3. For each short exact sequence in C, 0 → A → B → C → 0 and for

each i ≥ 0 there is a natural morphism δi : RiF (C) → Ri+1F (A)
(again called connecting homomorphisms) such that we obtain a long
exact sequence

· · · → RiF (A)→ RiF (B)→ RiF (C)
δi
−→ Ri+1F (A)→ · · ·

4. Given a morphism between two short exact sequences in C

0 → A → B → C → 0
↓ ↓ ↓

0 → A
′

→ B
′

→ C
′

→ 0

the δ’s give a commutative diagram

RiF (C)
δi
−→ Ri+1F (A)

↓ ↓

RiF (C
′

)
δi
−→ Ri+1F (A

′

)

5. For each injective object I of C and for each i > 0 we have that
RiF (I) = 0.

Proof. For every object A of C choose and fix an injective resolution A→ I ·A
of A. As above we define RiF (A) = hi(F (I ·A)). If A, B are objects of C
and f : A → B a morphism then there exists a chain map f · : I ·A → I ·B
which is compatible with f and unique upto homotopy. Hence F (f ·) :
F (I ·A) → F (I ·B) is welldefined upto homotopy and we thus have a map
RiF (f) : RiF (A) → RiF (B). It is easy to check that Ri is an additive
functor for every i. It is independent of the choices made follows from the
properties of injective resolutions stated before. Also it is easy to see that
there exists a natural transformation F → R0F which is an isomorphism by
using the fact that F is left exact. Next, if J is an injective object of C then
0→ J → I ·J is an exact complex of injectives and hence is contractible. This
means that RiF (J) = 0 for all n > 0. So to finish the proof of the thoerem
we have to show that if 0 → A → B → C → 0 is a short excat sequence in
C then there exists a functorial long exact sequence

0→ R0F (A)→ R0F (B)→ R0F (C)→ R1F (A)→ · · ·

To prove this we first claim that there exists the following commutative
diagram with exact rows and columns.
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0 0 0
↓ ↓ ↓

0 → A → I0A → I1A → · · ·
↓ ↓ ↓

0 → B → I0A ⊕ I
0
C → I1A ⊕ I

1
C → · · ·

↓ ↓ ↓
0 → C → I0C → I1C → · · ·

↓ ↓ ↓
0 0 0

We see that all the columns of this diagram except the left most one are
split exact. Hence there exists an exact sequence of complexes

0→ F (I ·A)→ F (I ·B)→ F (I ·C)→ 0.

This yields a long exact sequence of cohomology objects which we claim is
the long exact sequence in the statement of this theorem. To see this we
observe that there exists a chain homotopy equivalence

I ·A ⊕ I
·
C → I ·B

such that the I ·A → I ·A ⊕ I
·
C → I ·B is compatible with the map A→ B

and there exists another chain homotopy equivalence

I ·B → I ·A ⊕ I
·
C

such that I ·B → I ·A ⊕ I
·
C → I ·C is compatible with the map B → C.

Hence we have the long exact sequence

0→ R0F (A)→ R0F (B)→ R0F (C)→ R1F (A)→ · · ·

The whole process is functorial hence given a commutative diagram of
two short exact sequences, the induced maps commute with the boundary
maps. This finishes the proof of the theorem.

Definition 45. With F : C → D as in the previous theorem, an object J
of C is called F -acyclic if RiF (J) = 0 for all i > 0. The last conclusion of
the theorem states that injective objects are F -acyclic.

Proposition 7. Let F : C → D as in the theorem. Suppose there is an
exact sequence

0→ A→ J0 → J1 → · · ·

where each J i is F -acyclic (J · is defined to an F -acyclic resolution of A).
Then, for each i > 0 there is a natural isomorphism RiF (A) ∼= hi(F (J ·)).

There are analogous definitions of projective objects, projective resolutions,
an abelian category with enough projectives and the left derived functors
of a covariant right exact functor. One can also talk about the derived
functors of a contravariant functor - the right derived functors of a left
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exact contravariant functor using projective resolutions and the left derived
functors of a right exact contravariant functor using injective resolutions.

We next discuss the notion of a δ-functor and a universal property of
derived functors.

Definition 46. Let C and D be abelian categories. A (covariant) δ-functor
from C to D is a collection of functors T = (T i)i≥0 together with a morphism

δi : T i(A
′′

)→ T i+1(A
′

) for each short exact sequence 0→ A
′

→ A→ A
′′

→
0 in C and for each i ≥ 0 such that:

1. For each short exact sequence in C as above there is long exact sequence

0→ T 0(A
′

)→ T 0(A)→ T 0(A
′′

)
δ0
−→ T 1(A

′

)→ · · · → T i(A)→ T i(A
′′

)
δi
−→ T i+1(A

′

)→ · · ·

2. For each morphism of one short exact sequence (as above) into another

0→ B
′

→ B → B
′′

→ 0, the δ’s give a commutative diagram

T i(A
′′

)
δi
−→ T i+1(A

′

)
↓ ↓

T i(B
′′

)
δi
−→ T i+1(B

′

)

Definition 47. A δ-functor T = (T i) : C → D is said to be universal if given
any other δ-functor S = (Si) : C → D and given any morphism of functors
f0 : T 0 → S0, there exists a unique sequence of morphisms f i : T i → Si for
each i ≥ 0 starting with the given f0 which commute with the δi for each
short exact sequence. Note that by definition if F : C → D is a covariant
additive functor then there can exist at most one (upto unique isomorphism)
universal δ-functor T with T 0 = F. If such a T exists then the T i are called
the right satellite functors of F. A δ-functor T = (T i) is augmented over F if
it is a δ-functor T = (T i) together with a natural transformation ǫ : F → T 0.

Definition 48. An additive functor F : C → D is said to be effaceable if
for each object A of C there is a monomorphism u : A → M for some M
such that F (u) = 0. F is said to be coeffaceable if for each A there exists an
epimorphism u : N → A such that F (u) = 0.

Theorem 2. Let T = (T i)i≥0 be a covariant δ-functor from C to D. If T i

is effaceable for each i > 0 then T is universal.

Proof. Suppose (Si)i≥0 is another δ-functor from C to D and F0 : T0 → S0
is a natural transformation. We first construct for any object A of C a
morphism T1(A) → S1(A). Choose a monomorphism i : A → M such that
T1(i) = 0. Then we have the follwoing diagram whose top row is exact and
bottom row is a complex.

T0(A) → T0(M) → T0(Coker(i))
δ0−→ T1(A) → 0

F0(A) ↓ F0(M) ↓ ↓ F0(coker(i))
S0(A) → S0(M) → S0(coker(i)) → S1(A)
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Therefore we have a map T1(A) → S1(A) making the above diagram
commutative. We now show that this map is independent of the choices
made in defining it. Suppose we have a diagram of exact rows

0 → A
i
−→ B → C → 0

f ↓ ↓ ↓ g

0 → A
′ i

′

−→ B
′

→ C
′

→ 0

where T1(i) = T1(i
′

) = 0
Then we have the following commutative diagram (cube2) where all faces

except the front face commute.

T0(C) S0(C)

T1(A)

t
t
t
t
t
t
t
t
t

S1(A)

t
t
t
t
t
t
t
t
t

T0(C
′

) S0(C
′

)

T1(A
′

)

✉
✉
✉
✉
✉
✉
✉
✉
✉

S1(A
′

)

✉
✉
✉
✉
✉
✉
✉
✉
✉

Since the map T0(C)→ T1(A) is onto, hence the front face commutes too.

In particular if we take A = A
′

and f = IdA, then this proves that the two
maps T1(A)→ S1(A) induced from the two sequences are the same. Finally

if i : A → B and i
′

: A → B
′

are two maps with T1(i) = T1(i
′

) = 0 then

these two maps can both be compared to the third map (i, i
′

) : A→ B⊕B
′

to prove that the map T1(A) → S1(A) is independent of the choices made
in the defining it. Call the map T1(A)→ S1(A) as F1(A).

We next show the functoriality of the map F1(A). Let f : A → A
′

be a
map, we want to show that the following diagram (*) commutes

T1(A)
F1(A)
−−−→ S1(A)

T1(f) ↓ ↓ S1(f)

T1(A
′

)
F1(A

′

)
−−−−→ S1(A

′

)

Choose monomorphisms i : A → B and i
′

: A
′

→ B
′

such that T1(i) =

T1(i
′

) = 0. We have the following commutative diagram

0 → A
(i,i

′

·f)
−−−−→ B ⊕B

′

→ coker(i, i
′

· f) → 0
↓ ↓ ↓

0 → A
′

→ B
′

→ coker(i
′

) → 0
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The rows of the above diagram are clearly exact and we also have that
T1(i, i

′

· f) = 0 alongwith T1(i
′

) = 0. Hence by the earlier computation our
claim is true i.e. the diagram (*) commutes.

We now show compatibility with δ, i.e. if 0→ A→ B → C → 0 is a short
exact sequence then we want to show that the following diagram commutes

T0(C)
δ0−→ T1(A)

F0(C) ↓ ↓ F1(A)

S0(C)
δ1−→ S1(A)

Choose a monomorphism i : B → B
′

such that T1(i) = 0. Then there
exists a commutaive diagram

0 → A
f
−→ B → C → 0

|| ↓ i ↓

0 → A
i·f
−→ B

′

→ C
′

→ 0

with exact rows and such that T1(i · f) = 0.
Consider the following diagram (cube3) all of whose faces commute apart

from the back face.

T0(C) T1(A)

T0(C
′

)

✉
✉
✉
✉
✉
✉
✉
✉
✉

T1(A)

✈
✈
✈
✈
✈
✈
✈
✈
✈

S0(C) S1(A)

S0(C
′

)

✉
✉
✉
✉
✉
✉
✉
✉
✉

S1(A)

✈
✈
✈
✈
✈
✈
✈
✈
✈

Since the map S1(A)→ S1(A) is the identity and in particular injective the
back face commutes too. Hence we have proved compatibility with δ. We
are done by induction as Fi are now constructed step by step.

Corollary 3. Assume that C has enough injectives. Then for any left exact
functor F : C → D the derived functors (RiF )i≥0 form a universal δ-functor
with F ∼= R0F. Conversely, if T = (T i)i≥0 is any universal δ-functor then
T 0 is left exact, and the T i are isomorphic to RiT 0 for each i ≥ 0.

We now apply all these abstract homological algebra results to define
sheaf cohomology. We first show that the categories Mod(X) and Sh(X)
have enough injectives.
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Proposition 8. If A is a ring (not necessarily commutative) then every
A-module is isomorphic to a submodule of an injective A-module.

Proof. Let G : A−mod → Ab be the forgetful functor. We have earlier
mentioned that G is exact and has a right adjoint (exercise) denoted by
F : Ab → A−mod where FM = HomAb(A,M) with the A-module
structure given by (af)(s) = f(sa). Hence, the category A−mod has
enough injectives.

Proposition 9. Let (X,OX ) be a ringed space. Then the categoryMod(X)
has enough injectives.

Proof. Let F be a sheaf of OX -modules. For each point x ∈ X choose
an injection Fx → Ix where Ix is an injective OX,x-module. Let I be
the sheaf

∏
x∈X j∗(Ix) where j denotes the inclusion x in X for each point

x and Ix is considered as a sheaf on the one-point space {x}. We claim
that there exists a natural injective map F →֒ I and the sheaf I is an
injective OX -module. This is because, for any sheaf G of OX -modules, we
have HomOX

(G,I) =
∏
HomOX

(G, j∗(Ix)) ∼=
∏
HomOX,x

(Gx, Ix). The first
equality follows from the definition of the direct product and the second one
because j∗ is a right adjoint of j∗. Hence we have a natural map F → I
by putting together all the maps Fx → Ix and this map is clearly injective.
Secondly, the functor HomOX

(·,I) as shown above is the compositon of two
functors, the first one being the functor G 7→

∏
x∈X Gx (which is an exact

functor) followed by the functor HomOx,X
(·, Ix) which too is exact as Ix is

an injective Ox,X -module. Thus the functor HomO(·,I) is exact which is
the same as saying I is an injective OX -module. This finishes the proof.

By considering OX to be the constant sheaf of rings Z we have the fol-
lowing corollary.

Corollary 4. If X is any topological space, then the category Sh(X) of
sheaves of abelian groups on X has enough injectives.

We now define sheaf cohomology.

Definition 49. Let X be any topological space. Let Γ(X, ·) be the global
section functor from Sh(X) to Ab. We define the cohomology functors
H i(X, ·) to be the right derived functors of Γ(X, ·). For any sheaf F , the
groups H i(X,F) are called the cohomology groups of F (this justifies the
notation H0(X,F) made at the beginning for F(X)). Even if X and F have
some additional structure (for example if X is a ringed space and F is an
OX-module) we always take cohomology groups in this sense regarding F
as a sheaf of abelian groups on a topological space X.

Recall that a sheaf F on X is said to be flasque if for every inclusion of
open sets V ⊆ U, the restriction maps F(U)→ F(V ) is surjective.

Lemma 3. If (X,OX ) is a ringed space, then any injective OX module is
flasque.
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Proof. For any open subset U ⊆ X let OU denote the sheaf j!(OX |U ) which
is the restriction of OX to U and then extended by zero outside U to X.
Let I be an injective OX -module and let V ⊆ U be an inclusion of open
sets. We want to show that I(U) → I(V ) is surjective. We have an inclu-
sion OV →֒ OU of sheaves of OX -modules. Since I is injective we have a
surjection Hom(OU ,I) ։ Hom(OV ,I). We are done with the observation
that Hom(OU ,I) = I(U) and similarly for V.

The next proposition proves that flasque sheaves are acyclic for the functor
Γ(X, ·). Hence, for example, we could have used the Godemont resolution of
a sheaf to calculate it’s cohomology.

Proposition 10. If F is a flasque sheaf on a topological space X, then
H i(X,F) = 0 for all i > 0.

Proof. Let F be a flasque sheaf of abelian groups. Since Sh(X) has enough
injectives, there exists an injective sheaf I and an injection F →֒ I. Let G
be the quotient, hence we have a short exact sequence of sheaves,

0→ F → I → G → 0.

G is a flasque sheaf since F and I are flasque. Since F is flasque we have a
short exact sequence

0→ Γ(X,F)→ Γ(X,I)→ Γ(X,G)→ 0.

Also, H i(X,I) = 0 for i > 0 since I is injective. Now using the long exact
sequence of cohomology groups we have, H1(X,F) = 0 and H i+1(X,F) ∼=
H i(X,G) for i ≥ 1. Since G is also flasque we are done by induction.

If we take an injective resolution of anOX -module in the categoryMod(X)
then each term is flasque and hence acyclic (by the above propositions) and
so this resolution computes the usual cohomology groups (meaning treat-
ing the sheaf as an element of Sh(X)). We write this in the form of a
proposition.

Proposition 11. Let (X,OX ) be a ringed space. Then the derived functors
of the functors of the functor Γ(X, ·) fromMod(X) to Ab coincide with the
cohomology functors H i(X, ·).

Theorem 3. (Grothendieck’s theorem) Let X be a noetherian topological
space of dimension n. Then for all i > n and for all sheaves of abelian
groups F on X, we have H i(X,F) = 0.

This is analogous to the theorem that singular cohomology on a (real)
manifold of dimension n vanishes in degrees i > n. To prove the theorem we
need some other results which we prove first.

Lemma 4. Let X be a noetherian topological space. Then, a direct limit of
flasque sheaves on X is flasque.
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Proof. Let Fi be a directed system of sheaves. Since, for each i and for any
inclusion of open sets V ⊆ U, Fi(U) → Fi(V ) is surjective and lim−→ is an
exact functor, we have that lim−→Fi(U)→ lim−→Fi(V ) is also surjective. Since
X is noetherian, lim−→Fi(U) = (lim−→Fi)(U) for any open set, and so lim−→Fi is
a flasque sheaf.

Proposition 12. Let X be a noetherian topological space and let (Fi) be
a direct system of sheaves of abelian groups. Then there are natural isomor-
phisms for each p ≥ 0,

lim−→Hp(X,Fi)→ Hp(X, lim−→Fi)

i.e. cohomology commutes with direct limits on a noetherian topological
space.

Proof. For each i, there is natural map Fi → lim−→Fi, which induces a map
on cohomology and by taking the direct limit of these maps we get the
map lim−→Hp(X,Fi)→ Hp(X, lim−→Fi). For p = 0 this result has already been
proved. We prove the general case by considering the category IndI(Sh(X)),
consisting of all directed systems of sheaves of abelian groups on X indexed
by I. This is an abelian category. We have a natural tranformation for each
p of δ-functors from IndI(Sh(X)) to Ab

lim−→Hp(X, ·)→ Hp(X, lim−→·)

(They are δ-functors as lim−→ is an exact functor).
Both of these functors agree for p = 0 so to prove that they are the same

it is enough to show that both are effaceable δ-functors. So let Fi be a
directed sytem of sheaves of abelian groups on X. For each i, let C0(Fi) be
the sheaf of discontinuos sections of Fi. Then for each i there is a natural
inclusion Fi →֒ C

0(Fi) and C
0(Fi) is a flasque sheaf. The C0(Fi) also forms

a direct system indexed by the same set I and we obtain a monomorphism
u : (Fi) → (C0(Fi)) as objects in the category IndI(Sh(X)). Since C0(Fi)
are all flasque sheaves, we have that Hp(X, C0(Fi)) = 0 for p > 0 and so
lim−→Hp(X, C0(Fi)) = 0 for p > 0 which proves the functor on the left hand

side is effaceable for p > 0. Also, lim−→C
0(Fi) is a flasque sheaf (as a direct

limit of flasque sheaves is flasque on a noetherian topological space) and so
Hp(X, lim−→C

0(Fi)) = 0 for all p > 0 which proves that the functor on the
right hand side is also effaceable. This proves the proposition.

The above result shows that in particular cohomology commutes with
infinite direct sums. If Y ⊆ X is a closed subset and F is a sheaf of abelian
groups on Y then by definition H0(Y,F) = H0(X, j∗F) where j : Y → X
denotes the inclusion. Now, if J · is a flasque resolution of F on Y then so
is j∗J

· on X. Also for each i, Γ(Y,J i) = Γ(X, j∗J
i). Hence we have the

following proposition.



28 SHEAF THEORY

Proposition 13. Let Y ⊂ X be a closed subset, F a sheaf of abelian groups
on Y and let j : Y →֒ X denote the inclusion map. Then for any i ≥ 0 we
have H i(Y,F) = H i(X, j∗F).

We sometimes abuse notation and write j∗F as F as sheaf on X. We just
showed that there is no difference as far as cohomology groups are concerned.

Proof. (of Grothendieck’s Theorem) We will prove the theorem by induction
on n = dim(X) in several steps. First note that if j : Y →֒ X is a closed
subset and i : U →֒ X is the complement of Y then we have a short exact
sequence of sheaves (as discussed before)

0→ F|U → F → F|Y → 0

where F|U = i!(F|U ) and F|Y = j∗(F|Y ).
Step 1: We may reduce the theorem to the case when X is irreducible.

SupposeX is reducible and let Y be one of it’s irreducible components. Then
by the short exact sequence above, it will be sufficient to prove that for i ≥ n,
bothH i(X,F|Y ) andH

i(X,F|U ) are zero. This is true for Y because we are
assuming the thoerem to be true for irreducible spaces. It is true for U as F
can be considered as a sheaf on Ū and Ū has one less irreducible component
than X (and so by induction on the number of irreducible components and
the pervious proposition).

Step 2: The theorem is true for the case whenX is irreducible of dimension
0. In this case X is a point and Γ(X, ·) induces an equivalence of categories
between Sh(X) and Ab. In particular, Γ(X, ·) is an exact functor and so
H i(X,F) = 0 for all i > 0 and for all F .

Step 3: Let X be an irreducible space of dimension n. Let F be a sheaf
on X. Let B = ∪U⊆XF(U) and let A be the set of all finite subsets of B.
Then for each i ∈ A, let Fi be the subsheaf of F generated by the sections
in i over various open subsets of X. A is a directed set and F = lim−→Fi.
Hence to prove the theorem for F it will be enough to prove the theorem
for each Fi as cohomology commutes with direct limits in this situation. If
j is a subset of i we have a short exact sequence of sheaves

0→ Fj → Fi → G → 0

where G is sheaf generated by #(i− j) sections over suitable open sets of X.
Now, by induction on #(i) and the long exact sequence of cohomology we
may reduce the case of proving the theorem for F when it is generated by a
single section over some open set U ⊆ X. In such a case, F is a quotient of
ZU , the constant sheaf Z on U and then extended by zero outside U. Hence
we again have a short exact sequence of sheaves

0→R→ ZU → F → 0

where R is the kernel sheaf. Again using the long exact sequnce for coho-
mology, it is enough to prove the theorem for R and ZU as above.

Step 4: We prove the theorem for R as in the previous step. If R = 0 then
go to the next step. Else consider Rx which for each x ∈ U is a subgroup of
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Z. Let d be the least positive integer that occurs in any of these groups Rx.
Then, there is a nonempty open subset V ⊆ U such that R|V ∼= d ·Z|V as a
subsheaf of Z|V . Thus RV

∼= ZV and there exists a short exact sequence of
sheaves

0→ ZV → R→ R/ZV → 0.

The quotient R/ZV is supported on the closed subet Ū − V of X which has
dimension strictly less than n since X is irreducible. So by the induction
hypothesis we have H i(X,R/ZV ) = 0 for i ≥ n. So to prove the theorem for
R we have to prove it for ZV and use the long exact sequence for cohomology.

Step 5: We prove that H i(X,ZU ) = 0 for i > n and for any open subset
U ⊆ X. This will finish the proof of the theorem. Let Y = X − U. We have
an exact sequence of sheaves

0→ ZU → Z→ ZY → 0.

SinceX is irreducible, dim(Y ) < dim(X) and so by the induction hypothesis
we have that, H i(X,ZY ) = 0 for i ≥ n. Also, Z is a flasque sheaf on X as it
is a constant sheaf on an irreducible space so H i(X,Z) = 0 for i > 0. Hence
using the long exact sequence for cohomology we have the result.

Let Z be a closed subset of the topological space X and let F be a sheaf of
abelian groups on X. Recall that ΓZ(X,F) was defined to be the subgroup
of sections of Γ(X,F) whose support lie in Z. More generally, let Φ be a
family of supports on X and recall that we defined Γφ(X,F) to be those
sections whose support is contained in some element of Φ.We now define the
cohomology groups with support in Z and and more generally in Φ. Note
that it is easy to see that ΓZ(X, ·) and ΓΦ(X, ·) are left exact functors from
Sh(X) to Ab.

Definition 50. The right derived functors of ΓZ(X, ·) are denoted byH i
Z(X, ·)

and are defined to be the cohomology groups of X with supports in Z and
coefficients in a given sheaf. Similarly the right derived functors of ΓΦ(X, ·)
are defined to be the cohomology groups with support in Φ and are de-
noted by H i

Φ(X, ·). Note that if Φ = ΦZ = all closed subsets of Z, then
H i

ΦZ
(X, ·) = H i

Z(X, ·).

It is true that if 0 → F
′

→ F → F
′′

→ 0 is a short exact sequence of
sheaves and F

′

is flasque then

0→ ΓZ(X,F
′

)→ ΓZ(X,F)→ ΓZ(X,F
′′

)→ 0

is an exact sequence. More generally, if F is flasque then H i
Z(X,F) = 0 for

all i > 0. Also if U = X − Z then for any sheaf F on X, then there exists a
long exact sequence of cohomology groups

0→ H0
Z(X,F)→ H0(X,F)→ H0(U,F|U )→ H1

Z(X,F) · · ·

Other properties of the cohomology groups with supports are excision and
the existence of the Mayer-Vietoris sequence. Excision says that if V is
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an open subset of X containing Z then there are functorial isomorphisms
H i

Z(X,F)
∼= H i

Z(V,F|V ) for every i and every F . The Mayer Vietoris se-
quence is the following long exact sequence:

· · · → H i
Y ∩Z(X,F)→ H i

Y (X,F)⊕H
i
Z(X,F)→ H i

Y ∪Z(X,F)→ H i+1
Y ∩Z(X,F) · · ·

where Y and Z are two closed subsets of X.
We now define the higher direct images of a sheaf.

Definition 51. Let f : X → Y be a continuous map of topological spaces.
Then the higher direct image functors Rif∗ : Sh(X) → Sh(Y) are defined
to be the right derived functors of f∗. This makes sense as f∗ is left exact
and Sh(X) has enough injectives.

The higher direct image sheaves Rif∗F of a sheaf F is related to the
cohomology along the fibres of f.

Proposition 14. For each i ≥ 0 and each F ∈ Sh(X), Rif∗F is the sheaf
associated to the presheaf

V 7→ H i(f−1(V ),F|f−1(V ))

on Y.

Proof. We need the following lemma.

Lemma 5. If I is an injective object of Mod(X) then for any open set
U ⊆ X, I|U is an injective object ofMod(U).

Assuming the lemma we proceed as follows. Denote the sheaf associated
to the above presheaf by Hi(X,F). The functors Hi(X, ·) form a δ-functor
from Sh(X) to Sh(Y) since sheafification is an exact functor. So both
Hi(X, ·) and Rif∗(·) are δ-functors from Sh(X) to Sh(Y) which agree at
i = 0 since we have f∗F = H0(X,F) by definition. If we could prove both
are universal δ-functors then they would be naturally isomorphic proving
the proposition. Rif∗ is a derived functor hence universal. So it is enough
to show that Hi(X, ·) is an effaceable (and hence universal) δ-functor. Let I
be an injective sheaf on X. For any open V ⊆ Y we have by the lemma that
I|f−1(V ) is an injective sheaf on f−1(V ) (we apply the lemma by thinking

of X as a ringed space with the constant sheaf ZX).Hence Hi(X,I) = 0 for
i > 0 which proves it is effaceable. So we are through modulo the proof of
the lemma.

Proof. (of lemma) Let j : U → X denote the inlcusion. Then given an
inclusion F →֒ G inMod(U) and given a map F → I|U we get an inclusion
j!F →֒ j!G and a map j!F → j!(I|U) where j! is the extension by zero
functor. j!(I|U) is a subsheaf of I hence by compostion we have a map
j!F → I. I injective implies that this map extends to a map j!G → I.
Restricting to U now gives the required extension G → I|U .
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The proof of the following corollary is obvious.

Corollary 5. If V ⊆ Y is an open subset, then

Rif∗(F)|V = Rif
′

∗(F|f−1(V )

where f
′

: f−1(V )→ V is the restricted map.

The restriction of a flasque sheaf on an open subset is again flasque so we
have the following

Corollary 6. If F is a flasque sheaf on X, then Rif∗(F) = 0 for all i > 0.

Proposition 15. Let f : X → Y be a morphism of ringed spaces. Then
the functors Rif∗ can be calculated on Mod(X) as the derived functors of
f∗ :Mod(X)→Mod(Y ).

Proof. To calculate the derived functors of f∗ in the category Mod(X)
one uses resolutions by injective objects in Mod(X). An injective object
inMod(X) is flasque and hence f∗-acyclic so we are done.

Cup products

We now discuss the notion of cup products on the cohomology of sheaves.
Let Φ1 and Φ2 be two families of supports in X. Then Φ1 ∩ Φ2 is also a
family of supports. If F and G are sheaves on X then the natural map

F(X) ⊗ G(X)→ (F ⊗ G)(X)

induces a map
ΓΦ1(F)⊗ ΓΦ2(G)→ ΓΦ1∩Φ2(F ⊗ G)

(since supp(s ⊗ t) ⊆ supp(s) ∩ supp(t)). We first define cup products in
a general category theoretic set-up. Let C and D be abelian categories
admitting bilinear maps and tensor products (we do not give the exact
definition of abelian tensor categories but one can take C to be Sh(X) and
D to be Ab). Let (Si), (T i) and (U i) be δ-functors from C to D. Assume
that for every pair of objects (A,B) of the category C there is a natural map
ηA,B : S0(A) ⊗ T 0(B) → U0(A ⊗ B). By natural we mean that if (C,D) is
another pair of objects of C and if there are morphisms in C, f : A→ C and
g : B → D then the following diagram commutes

S0(A) ⊗ T 0(B)
ηA,B
−−−→ U0(A⊗B)

S0(f)⊗ T 0(g) ↓ ↓ U0(f ⊗ g)

S0(C)⊗ T 0(D)
ηC,D
−−−→ U0(C ⊗D)

Definition 52. Let C and D be abelian tensor categories and let (Si), (T i)
and (U i) be δ-functors from C to D. Assume the existence of ηA,B as in the
previous paragraph. A cup product for these functors and η is a natural map
for each pair (A,B) of objects of C and each pair of non negative integers
(p, q), ηp,qA,B : Sp(A)⊗T q(B)→ Up+q(A⊗B) satisfying the following axioms
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1. η0,0 = η
2. Let 0→ A

′

→ A→ A
′′

→ 0 be a short exact sequence in C. Let B be
another object of C. Consider the commutative diagram

A
′

⊗B → A⊗B → A
′′

⊗B → 0
↓ ↓ ↓

0 → C
′

→ C → C
′′

→ 0

where 0 → C
′

→ C → C
′′

→ 0 is another short exact sequence of
objects in C. Then the following diagram is commutative

Sp(A
′′

)⊗ T q(B)
δ⊗1
−−→ Sp+1(A

′

)⊗ T q(B)
↓ ↓

Up+q(C
′′

)
δ
−→ Up+q+1(C

′

)

where δ denotes the connecting homomorphisms and the vertical maps
are cupproducts composed with the maps due to the commutative
diagram between the sequences.

3. Let 0→ B
′

→ B → B
′′

→ 0 be an exact sequence of objects in C and
let A be a fixed object of C. Consider the commutative diagram

A⊗B
′

→ A⊗B → A⊗B
′′

→ 0
↓ ↓ ↓

0 → C
′

→ C → C
′′

→ 0

Let w stand for the map (Si) → (Si) which is (−1)p in dimension p.
Then we want the following diagram to commute

Sp(A)⊗ T q(B
′′

)
w⊗δ
−−→ Sp(A)⊗ T q+1(B

′

)
↓ ↓

Up+q(C
′′

)
δ
−→ Up+q+1(C

′

)

where again δ denotes the connecting homomorphisms and the vertical
arrows are the compositions of the cupproducts and the maps arising
from the maps between the exact sequences.

We now want to prove a theorem which implies that if cup products exist
then they are unique but for that we need to assume some extra hypothesis
for the category C. We assume that for any object A of C and the functors
(Si) and (T i) there is a short exact sequence

0→ A→ P → Q→ 0

in C (the short exact sequences for (Si) and (T i) may be different i.e. there
need not exist a common one) such that

1. Sj(P ) = 0 for j > 0 and T j(P ) = 0 for j > 0 (for the two corresponding
sequences, one for the S’s and the other for the T ’s).

2. for any B an object of C the sequence 0→ A⊗B → P⊗B → Q⊗B → 0
is exact.
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Note that this assumption is true for Sh(X) when both S and T are the
global section functor.

Theorem 4. Assume that the category C satisfies the hypothesis in the pre-
vious paragraph. Let (Si), (T i) and (U i) be δ-functors (as before) admitting
cup products. Let (Si

1), (T
i
1) and (U i

1) be another set of δ-functors admit-
ting cup products (denoted by ζA,B). Let a : S → S1, b : T → T1 and
c : U → U1 be natural transformations of functors such that the following
diagram commutes (for every pair (A,B) of objects in C),

S(A)⊗ T (B)
ηA,B
−−−→ U(A⊗B)

↓ a⊗ b ↓ c

S1(A)⊗ T1(B)
ζA,B
−−−→ U1(A⊗B

Then the unique extensions of a, b and c, (ai) : (Si)→ (Si
1), (b

i) : (T i)→
(T i

1) and (ci) : (U i)→ (U i
1) preserve cup products i.e. the following diagram

commutes (for every pair of objects (A,B) of C)

Sp(A)⊗ T q(B) → Up+q(A⊗B)
↓ ↓

Sp
1(A)⊗ T

q
1 (B) → Up+q

1 (A⊗B)

Proof. We use induction to prove this result. Let (p, q) denote the com-
mutativity of the diagram of the theorem for the case p, q. (0, 0) is true by
hypothesis. We now show that (p, q)⇒ (p+1, q) and (p, q)⇒ (p, q+1). Let
0→ A→ P → Q→ 0 be such that Sj(P ) = 0 for j > 0 and for any object
B of C the sequence 0→ A⊗ B → P ⊗B → Q⊗B → 0 is exact. We thus
obtain the following diagram

Sp(Q)⊗ T q(B) //

��

Sp+1(A)⊗ T q(B)

��

Sp
1(Q)⊗ T q

1 (B)
vv

❧
❧
❧
❧
❧
❧
❧
❧
❧
❧
❧
❧
❧
❧

//

��

Sp+1
1 (A)⊗ T q

1 (B)

uu

❦
❦
❦
❦
❦
❦
❦
❦
❦
❦
❦
❦
❦
❦

��

Up+q(Q⊗B) // Up+q+1(A⊗B)

Up+q
1 (Q⊗B) //

vv

❧
❧
❧
❧
❧
❧
❧
❧
❧
❧
❧
❧
❧

Up+q+1
1 (A⊗B)

uu

❦
❦
❦
❦
❦
❦
❦
❦
❦
❦
❦
❦
❦
❦

where we must show that the right-hand face commutes. By our assumptions
and by naturality all the other faces do. Therefore the diagram commutes as
far as paths starting from Sp(Q)⊗T q(B) are concerned. But since Sj(P ) = 0
and ⊗ is right exact we have that the map δ ⊗ Id is onto. Therefore the
right-hand face commutes. This proves the case (p, q) ⇒ (p, q + 1). The
argument for the other case is almost exactly the same except that we must
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take care of the signs and the map w⊗ δ replaces δ⊗ Id. Hence the theorem
is proved.

Definition 53. Let C be an abelian tensor category and let 0 → A0
d0−→

A1
d1
−→ · · · and 0 → B0

d
′

0−→ B1
d
′

1−→ · · · be complexes in C. The tensor
product of two such complexes A. and B. is defined to be the complex A.⊗B.

where (A. ⊗ B.)n = ⊕p+q=nAp ⊗ Bq and the differential δn : (A. ⊗ B.)n →

(A. ⊗B.)n+1 is defined by δn|Ap⊗Bq (a⊗ b) = dp(a)⊗ b+ (−1)pa⊗ d
′

q(b).

Let F be a sheaf on X and let

0→ F → C0(F)→ C1(F)→ · · ·

be the Godemont resolution of F by flasque sheaves. We have the following
results about this resolution which will be used to define cup products on
sheaves.

Lemma 6. For any F on X as above and for any x ∈ X the map Fx →
C0(F)x is a split inclusion.

Corollary 7. For any F on X as above and for any x ∈ X, 0 → Fx →
C·(F)x is contractible.

We now return to the genral situation and state the following lemma.

Lemma 7. Let C be an abelian tensor category and let 0 → A
ǫ
−→A0

d0−→ ·

and 0→ B
ǫ
′

−→ B0
d
′

0−→ · be contractible complexes. Then 0→ A⊗B
ǫ⊗ǫ

′

−−→→
A. ⊗B. is also contractible.

Proof.

The previous results now give us the following

Corollary 8. If F1 and F2 are two sheaves on X then 0 → F1 ⊗ F2 →
C·(F1)⊗ C

·(F2) is a resolution.

Now we define cup products for sheaves. Let C be the category of sheaves
Sh(X) on X and D be the category Ab of abelian groups. Let Φ1 and Φ2

be two families of supports and let Si = H i
Φ1
(X, ·), T i = H i

Φ2
(X, ·) and

U i = H i
Φ1∩Φ2

(X, ·). As before if F and G are sheaves then there is a natural
pairing ΓΦ1(X,F) ⊗ ΓΦ2(X,G) → ΓΦ1∩Φ2(X,F ⊗ G). Hence cup products
would now be pairings

Hp
Φ1
(X,F) ⊗Hq

Φ2
(X,G) → Hp+q

Φ1∩Φ2
(X,F ⊗ G).

The last theorem shows that if cup products exist then they are unique since
the assumption in the statement of the thoerem is satisfied for the category
Sh(X). This is because we may take the short exact sequence

0→ F → C0(F)→ G0 → 0
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where (as before) G0 is the quotient sheaf. The sheaf of discontinuous sec-
tions is flabby hence satisfies the first condition in the hypothesis. Also Fx is
a direct summand of C0(F)x for all points x ∈ X hence tensoring this short
exact sequence with any other sheaf gives another short exact sequence. We
now prove the main theorem which states

Theorem 5. There are cup products over the above functors and maps.

Proof. Choose an injective resolution of F1 ⊗F2

0→ F1 ⊗F2 → I·

Then there exists a map of complexes

C·(F1)⊗ C
·(F2)→ I·

which is unique upto homotopy and which is compatible with the identity
map on F1 ⊗F2. We observed earlier that there exists map of complexes

ΓΦ1(C
·(F1))⊗ ΓΦ2(C

·(F2))→ ΓΦ1∩Φ2(C
·(F1)⊗ C

·(F2))

Therefore by composition we get a map of complexes

ΓΦ1(C
·(F1))⊗ ΓΦ2(C

·(F2))→ ΓΦ1∩Φ2(I·)

This induces maps

Hp
Φ1
(X,F1)⊗H

q
Φ2
(X,F2)→ Hp+q

Φ1∩Φ2
(X,F1 ⊗F2)

We claim that this is a cup product i.e. we will now show that

1. if 0 → F
′

1 → F1 → F
′′

1 → 0 is an exact sequence of sheaves and there
is a commutative diagram

F
′

1 ⊗F2 → F1 ⊗F2 → F
′′

1 ⊗F2 → 0
↓ ↓ ↓

0 → H
′

→ H → H
′′

→ 0

with exact rows, then the following diagram commutes

Hp
Φ1
(X,F

′′

)⊗Hq
Φ2
(X, calF 2) → Hp+1

Φ1
(X,F

′

1)⊗H
q
Φ2
(X,F2)

↓ ↓

Hp+q
Φ1∩Φ2

(X,H
′′

) → Hp+q+1
Φ1∩Φ2

(X,H
′

)

2. A similar functorial property in the second variable upto sign of (−1)p.

We will now prove the first property and end the proof of the theorem by
saying that the proof of the second property above is analogous. We prove
the first property as follows. Let

0→ F
′

1 ⊗F2 → I
′

·

0→ F1 ⊗F2 → I·

0→ F
′′

1 ⊗F2 → I
′′

·

0→H
′

→ J
′

·

0→H → J·
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0→H
′′

→ J
′′

·

be injective resolutions. We then have the following commutative diagram
whose top and bottom rows are exact and which commutes upto homotopy.

C·(F
′

1)⊗ C
·(F2) → C

·(F1)⊗ C
·(F2) → C

·(F
′′

1 )⊗ C
·(F2) →

↓ ↓ ↓

I
′

· → I· → I
′′

·

↓ ↓ ↓

0 → J
′

· → J· → J
′′

· → 0

Therefore we have the following diagram with exact rows which is homo-
topy commutative,

ΓΦ1(C
·(F

′

1))⊗ ΓΦ2(C
·(F2)) → ΓΦ1(C

·(F1))⊗ ΓΦ2(C
·(F2)) → ΓΦ1(C

·(F
′′

1 ))⊗ ΓΦ2(C
·(F2)) → 0

↓ ↓ ↓

ΓΦ1∩Φ2(I
′

· ) → ΓΦ1∩Φ2(I·) → ΓΦ1∩Φ2(I
′′

·

↓ ↓ ↓

0 → ΓΦ1∩Φ2(J
′

· ) → ΓΦ1∩Φ2(J·) → ΓΦ1∩Φ2(J
′′

· ) → 0

This gives the required commutative diagram in the first property.

The Leray spectral sequence

Let A, B and C be abelian categories each having enough injectives. Let
G : A → B and F : B → C be left exact functors. Recall that an object B
of B is said to be F -acyclic if RiF (B) = 0 for i > 0.

Theorem 6. (Grothendieck spectral sequence) With the notation as in the
above paragraph, assume that G sends injective objects of A to F -acyclic
objects of B. Then there exists a first quadrant (cohomological) spectral se-
quence (called the Grothendieck spectral sequence) for each A in A :

Epq
2 = (RpF )(RqG)(A)⇒ Rp+q(F ·G)(A).

The Leray spectral sequence is a special case of the Grothendieck spectral
sequence. Let f : X → Y be a continuous map of topological spaces. The
direct image sheaf functor f∗ : Sh(X) → Sh(Y) has a left adjoint f−1

which is exact. This imples that f∗ is left exact (seen before) and preserves
injectives (this is because Hom(·, f∗I) = Hom(f−1(·),I) and hence is exact
as it is the composition of an exact functor f−1 with the functor Hom(·,I)).
We now apply the Grothendieck spectral sequence to the following situation:
A = Sh(X), B = Sh(Y), C = Ab, G = f∗ and F = Γ(Y, f∗(·)). Note that
the composite in this case G · F = Γ(X, ·). Thus we have the following

Corollary 9. (Leray spectral sequence) Let f : X → Y be a continuous
map of topological spaces. Then there exists a spectral sequence (called the
Leray spectral sequence)

Epq
2 = Hp(Y,Rqf∗F)⇒ Hp+q(X,F).
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For the sake of completeness, we develop the the theory of spectral se-
quences upto the point where we can prove the above theorem. This topic
will also be done in much greater detail in other lectures in this workshop.
We start with the definition of an exact couple which is one way of defining
spectral sequences.

Definition 54. Let C be an abelian category and let D1, E1 be objects of
C. Let a1 : E1 → D1, b1 : D1 → D1 and c1 : D1 → E1 be morphisms
in C (the reasons for choosing the subscript will soon be clear). The data
(D1, E1, a1, b1, c1) is said to be an exact couple if the sequence

E1
a1−→ D1

b1−→ D1
c1−→ E1

a1−→ D1

is exact.

We denote an exact couple by the following diagram

D1
b1−→ D1

a1 տր c1
E1

Given an exact couple as above we get a new exact couple

D2
b2−→ D2

a2 տր c2
E2

as follows. First define d1 : E1 → E1 by

d1 = c1 · a1.

Then, d1 · d1 = c1 · (a1 · c1) · a1 = 0. Now define E2 = Ker(d1)/Im(d1)
and D2 ⊆ D1 by D2 = Im(b1). Hence, D2 = Ker(c1) ∼= D1/Ker(b1) =
D/Im(a1). We define b2 : D2 → D2 by b2 = b1|D2 . To define a2 we first
note that a1|Im(d1) = 0. This is because a1(Im(d)) = Im(d1 · a1) = 0.
We now define a2 : E2 → D2 to be the map induced a1|Ker(d1) (which
can be defined by the previous remark and which lands up in D2 because
a1(Ker(d1)) ⊂ Im(b1) = Ker(c1)). We finally define c2 : D2 → E2 by
c2(b1(x)) = c1(x) + Im(d1). This is well-defined because b1(x) = 0, if and
only if, x ∈ Im(a1), if and only if, c1(x) ∈ Im(c1 · a1) = Im(d1). One can
now check that,

Proposition 16. (D2, E2, a2, b2, c2) forms a new exact couple.

We skip the proof.

Definition 55. The new exact couple

D2
b2−→ D2

a2 տր c2
E2

is called the derived couple of the original one.
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Let

Dr
br−→ Dr

ar տր cr
Er

be the (r−1)th derived couple of the original one. Let dr = cr ·ar : Er → Er

and as before dr · dr = 0 and H(Er, dr) = Er+1.

Definition 56. Let the notation be as above. The collection of differen-
tial objects {(Er, dr)} is called the spectral sequence of the exact couple
(D1, E1, a1, b1, c1) that we started out with.

Problem 4. Show that

1. Dr = Im(br−1
1 ) ∼= D/Ker(br−1

1 ).

2. Er = a−1
1 (Im(br−1

1 ))/c1(Ker(b
r−1
1 )).

3. ar(x+ c1(Ker(b
r−1
1 ))) = a1(x) if x ∈ a

−1
1 (Im(br−1

1 )).

4. br(y) = b1(y) if y ∈ Im(br−1
1 ).

5. cr(b
r−1
1 (y)) = c1(y) + c1(Ker(b

r−1
1 )) for all y ∈ D1.

6. dr(x+ c(Ker(b
r−1
1 ))) is computed as follows: a1(x) ∈ Im(br−1

1 ) implies

a1(x) = br−1
1 (x) for some y ∈ D1. Then, dr(x + c1(Ker(b

r−1
1 ))) =

c1(y) + c1(Ker(b
r−1
1 )) for that y.

7. Denote a−1
1 (Im(br−1

1 )) by Zr and c1(Ker(b
r−1
1 )) by Br. Then,

E1 = Z1 ⊇ · · · ⊇ Zr ⊇ Zr+1 ⊇ Br+1 ⊇ Br ⊇ · · ·B1 = 0

We define, Z∞ = ∩rZr, B∞ = ∪rBr and the limit E∞ = Z∞/B∞.

We now discuss cohomological spectral sequences. Let {Am,n}(m,n)∈Z2

and {Em,n}(m,n)∈Z2 be families of objects in an abelian category C such that
for each p ∈ Z there are exact sequences

· · ·
hp,q−1
−−−−→ Ap+1,q−1 fp,q

−−→ Ap,q gp,q
−−→ Ep,q hp,q

−−→ Ap+1,q fp+1,q
−−−−→ Ap,q+1 gp+1,q

−−−−→ · · ·

Define D1 = ⊕p,qA
p,q and E1 = ⊕p,qE

p,q. Also define a1 : E1 → D1 by
a1 = ⊕p,qhp,q, b1 : D1 → D1 by b1 = ⊕p,qfp−1,q+1 (meaning it is fp−1,q+1

on it’s (p, q)th component) and finally c1 : D1 → E1 by c1 = ⊕p,qgp,q.
One can check that the above family of sequences yield an exact couple
(D1, E1, a1, b1, c1) as defined above. We note that in this case the objects
D1 and E1 are bigraded, and the maps a1, b1, c1 are morphisms which respect
this bigrading. We note down the bidegrees of these maps,

bideg(a1) = (1, 0),

bideg(b1) = (−1, 1)

and
bideg(c1) = (0, 0).

Hence Br and Zr, as defined in the problem above, are bigraded submodules
of E1 for all r (this is because they are defined in terms of a1, b1 and c1 as
in the problem) and Er = Zr/Br has a natural induced bigrading inherited
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from E1. Similarly, Dr = Im(br−1
1 ) ⊆ D1 is bigraded too, and the maps

ar, br, cr, dr are compatible with the bigradings with the following bidegrees:

bideg(ar) = (1, 0)

bideg(br) = (−1, 1)

bideg(cr) = (r − 1, 1 − r)

bideg(dr) = (r, 1 − r)

So dr is a map dr : E
p,q
r → Ep+r,q−r+1

r .

Definition 57. A cohomological spectral sequence is a bigraded spectral se-
quence with the above bigrading.

Example Let C · be a complex (in C) which comes equipped with a de-
creasing filtration {F pC ·} of subcomplexes. Let GrpFC

· = F pC ·/F p+1C ·.
Then there exists a short exact sequence of complexes

0→ F p+1C · → F pC · → GrpFC
· → 0.

This gives a long exact sequence of cohomology groups

· · · → Hp+q(F p+1C ·)→ Hp+q(F pC ·)→ Hp+q(GrpFC
·)→ Hp+q+1(F p+1C ·)→ · · ·

Let

Ap,q = Hp+q(F pC ·)

and

Ep,q = Hp+q(GrpFC
·)

One can check that this gives us an example of a cohomological spectral
sequence.

We now discuss the notions of convergence and limits of a (cohomological)
spectral sequence. Given the exact sequences of a cohomological spectral
sequence, we have the following sequence of objects and morphisms

· · ·
fn−q,q
−−−−→ An−q,q fn−q−1,q+1

−−−−−−−→ An−q−1,q+1 fn−q−2,q+2
−−−−−−−→ An−q−2,q+2 → · · ·

Define,

An = lim−→ qA
n−q,q

Then there exists a decreasing filtration F pAn = Im(Ap,n−p → An).
Assume that for each n ∈ Z we have,

1. there exists q1(n) ∈ Z such that fn−q,q : An−q+1,q−1 → An−q,q is an
isomorphism for all q ≥ q1(n),

2. there exists q0(n) ∈ Z such that An−q,q = 0 for all q ≤ q0(n).

The above are called the boundedness conditions of a cohomological spectral
sequence.

Under these assumptions we have the following lemma.

Lemma 8. For each (p, q) ∈ Z
2 there exists a positive integer r0(p, q) such

that for all r ≥ r0 = r0(p, q) we have
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1.
Zp,q
r = Zp,q

r+1 = · · · = Zp,q
∞

Bp,q
r = Bp,q

r+1 = · · ·B
p,q
∞

dp,qr = 0, dp−r,q+r−1
r = 0

Hence
Ep,q

r
∼= Ep,q

∞

2. There exists a natural isomorphism

Ep,q
∞
∼= F pAp+q/F p+1Ap+q = GrpFA

p+q

3. dp,q1 : Ep,q
1 → Ep+1,q

1 is given by the slanted arrow in the following
diagram

· · · → Ap,q → Ep,q → Ap+1,q → · · ·
ց

· · · → Ap+2,q−1 → Ap+1,q → Ep+1,q → · · ·

Definition 58. 1. A cohomological spectral sequence is said to be bounded
if there are only finitely many nonzero terms Ep,q

r for every fixed r (note
that the boundedness conditions above imply this).

2. A bounded cohomological spectral sequence is said to converge to A· =
{An}n if we are given a family of objects {An}n of C each having a finite
decreasing filtration F ·An as above such that, Ep,q

∞ = GrpFA
p+q. One

denotes a bounded convergence of a cohomological spectral sequence
by the following notation:

Ep,q
r ⇒ Ap+q.

Example Given a filtered complex {F pC ·}n∈Z assume that for each n ∈ Z

there exists p0 > p1 with F p0Cn = 0 and F p1Cn = Cn. Then one can check
that the boundedness assumptions for the cohomological spectral sequence
hold. One can then show that

An = Hn(C ·),

F pAn = Im(Hn(F pC ·)→ Hn(C ·)),

Ep,q
∞ = GrpFH

p+q(C ·)

Since,
Ep,q

1 = Hp+q(GrpFC
·)

it is said that spectral sequences interchange ”the grade” in cohomology.
We now disuss double complexes and spectral sequences arising out of

them.

Definition 59. 1. Let C be an abelian category as usual. A double com-
plex in C is a collection of objects {Cm,n}(m,n)∈Z2 together with maps

dm,n
1 : Cm,n → Cm+1,n

dm,n
2 : Cm,n → Cm,n+1

such that d21 = 0, d22 = 0 and d1 · d2 = d2 · d1.



SHEAF THEORY 41

2. The total complex of a double complex C ·,· as above is defined to
be a complex, Tot·(C ·,·), whose nth term is defined as Totn(C ·,·) =
⊕r+s=nC

r,s and whose differential δ : Totn(C ·,·) → Totn+1(C ·,·) is
given by δ|Cr,s = dr,s1 + (−1)rdr,s2 (one can check that δ2 = 0).

Double complexes with objects and morphisms from C form an abelian
category (with an obvious notion of morphism). If C is closed under direct
sums then Tot· is an exact functor from the category of double complexes
to the category of complexes in C.

We have the following boundedness condition: for each p ∈ Z, Cn,p−n = 0
for all but finitely many n. This is equivalent to the condition that Totn(Cr,s)
is a finite direct sum for every n.

Now consider the following two decreasing filtrations on Cr,s by sub-
double complexes.

1. F p
I (C

r,s) = Cr,s if r ≥ p and is 0 otherwise.
2. F p

II(C
r,s) = Cr,s if s ≥ p and is 0 otherwise.

Hence we get induced filtrations on Tot·(Cr,s)

1. F p
I (Tot

·(Cr,s)) = ⊕∞
r=pC

r,·−r

2. F p
II(Tot

·(Cr,s)) = ⊕∞
s=pC

·−s,s

The filtrations FI and FII give finite decreasing filtrations on Totn(Cr,s)
for each n ∈ Z (under the boundedness assumption).

We now analyse the spectral sequences arising from these filtrations on the
Tot· complex. We have, GrpFI

(Totn(Cr,s)) ∼= Cp,n−p. The differential δ
′

on

GrpFI
(Totn) is induced by the one on Totn. One can easily see that the map

GrpFI
(Totn)

δ
′

−→ GrpFI
(Totn+1) is the map (−1)pdp,n−p

2 : Cp,n−p → Cp,n−p+1.
Thus, FI induces a spectral sequence whose E1 terms are

Ep,q
1 = Hp+q(Cp,·, (−1)·dp,·2 ).

Consider the complex (Cp,n, (−1)pdp,n2 ) where Cp,n is the term in degree
n. The E1 term is the cohomology of this complex obtained by shifting this
complex by p i.e. Cp,n is now the term in degree p+n. Thus with the natural
indexing (by n) on (Cp,n, (−1)pdp,n2 ) we have that

Ep,q
1 = Hq(Cp,·, dp,·2 ).

Lemma 9. With the notation as above the E1 differentials are computed as
as follows :

Ep,q
1 = Hq(Cp,·, dp,·2 )→ Hq(Cp+1,·, dp+1,·

2 ) = Ep+1,q
1

where the map on the cohomology groups is induced by d1 : Cp,· → Cp+1,·.
Hence the filtration FI gives rise to a spectral sequence

Ep,q
2 = Hp(Hq(Cr,s, d2), d1)⇒ Hp+q(Tot·(Cr,s)).

Similarly FII gives rise to a spectal sequence

Ep,q
2 = Hp(Hq(Cr,s, d1), d2)⇒ Hp+q(Tot·(Cr,s))
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Example Dolbeault Double Complex
Let X be a complex manifold and let Ep,qX be the sheaf of C∞ forms of

type (p, q) on X. We have maps δ : Ep,qX → Ep+1,q
X and δ : Ep,qX → Ep,q+1

X .

The Cauchy-Riemann equations imply that δ is OX-linear. The exterior
derivative d is defined by d = δ + δ. We then have,

Lemma 10. (Dolbeault’s Lemma) The sheaf sequence

0→ OX → E
0,0
X

δ
−→E0,1X

δ
−→ · · ·

is an exact sequence of sheaves.

Corollary 10. If F is a locally free OX-module then,

0→ F → F ⊗OX
E0,0X

1⊗δ
−−→ F ⊗OX

E0,1X

1⊗δ
−−→ · · ·

is a fine resolution of sheaves.

We form the double complex of sheaves Em,n
X with the two differentials

δ and (−1)nδ. We get an associated double complex of C vector spaces on
applying the global section functor Γ(X, ·). Consider the spectral sequence in
this case for the filtration FI . We have that Totn(Γ(Er,sX )) = ⊕r+s=nΓ(E

r,s
X )

= space of sections of C∞ n-forms on X with values in C. Therefore by De
Rham’s theorem we have that,

Hn(Tot·(Γ(Er,sX ))) = Hn(X,C).

Thus the spectral sequence is

Ep,q
1 = Hq(Γ(Ep,·X ), δ)⇒ Hp+q(X,C).

But by the corollary to Dolbeault’s lemma above tells us that (Ep,·X , δ) is
a fine resolution of Ωp

X = sheaf of holomorphic p-forms on X (note that,

Ep,qX = Ωp
X ⊗OX

E0,qX ). Putting these together we have the Hodge to De
Rham spectral sequence (also known as the Fröhlicher spectral sequence),

Ep,q
1 = Hq(X,Ωp

X)⇒ Hp+q(X,C).

The induced filtration on Hn(X,C) is called the Hodge filtration. If X is a
compact (complex manifold), we have thatHq(X,Ωp

X) is a finite dimensional
vector space over C for all p, q and hence

∑

p+q=n

dimC(H
q(X,Ωp

X)) ≥ dimC(H
n(X,C))

If X is a compact, Kähler complex manifold then Hodge theory implies that
the above inequality is actually an equality.

Let A be an abelian category and let C(A) be the category of complexes
in A. Let C+(A) ⊂ C(A) be the subcategory of complexes that are bounded
below. We have the following description of injective objects in C(A).
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Proposition 17. A complex I · is an injective object in C(A), if and only
if, it has the following form:

In = In0 ⊕ I
n
1

for every n where In0 and In1 are injective objects of A and dn : In → In+1

can be factored as

In ։ In1 →֒ I
n
0 .

Thus, I · = ⊕n∈Z(I
n
1 →֒ I

n+1
0 ), where the first term is in degree n and the

second term is in degree n+ 1.

Lemma 11. If A has enough injectives then so does the category C+(A).
In fact, if 0 → Cn → Cn+1 → Cn+2 → · · · is an object of C+(A) then
there exists an object I · of C+(A) which is injective in C(A) together with a
monomorphism C · → I · such that the induced maps Hn(C ·) → Hn(I ·) are
also monomorphisms. We also have that Ij = 0 for all j < n.

Corollary 11. If C · is an object of C+(A) then there exists a resolution

0→ C · → I0,· → I1,· → I2,· → ·

where Ij,· are injectives and such that for each n,

0→ Hn(C ·)→ Hn(Ij,·)

is an injective resolution.

Proof.

Definition 60. An injective resolution of a complex 0 → C · → Ij,· sat-
isfying the properties of the above corollary is called a Cartan-Eilenberg
resolution.

Consider the double complex {I ·,·} = {Im,n} associated to a Cartan-
Eilenberg resolution. Then there exists two spectral sequences

IE
p,q
1 = Hq(Ip,·)⇒ Hp+q(Tot·(Im,n))

and

IIE
p,q
1 = Hq(I ·,p)⇒ Hp+q(Tot·(Im,n)).

Consider the first spectral sequence. After fixing q the complexes of E1

terms look like

0 → E0,q
1 → E1,q

1 → E2,q
1 → · · ·

|| || ||
0 → Hq(I0,·) → Hq(I1,·) → Hq(I2,·) → · · ·

which is an injective resolution of Hq(C ·). Thus,
Ep,q

2 = Hq(C ·) if p = 0 and is 0 otherwise,
and hence,
Ep,q

∞ = Hq(C ·) if p = 0 and is 0 otherwise.

Therefore, Hq(Tot·(Im,n)) ∼= E0,q
∞
∼= Hq(C ·).
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We claim that this isomorphism is induced from a map of complexes
C · → Tot·(Im,n). In fact, we may regard C · as a double complex concen-
trated in the column p = 0. So the natural map of complexes C · → I0,·

can be thought of a map of double complexes C · → I ·,·. Hence we get an
induced map on the total complexes C · = Tot·(C ·) → Tot·(I ·,·). This is
compatible with a morphism between their Ith spectral sequences. Using
the fact that Ep,q

1 (C ·) = Hq(C ·) if p = 0 and is 0 otherwise, we get that
the map Ep,q

1 (C ·) → Ep,q
1 (I ·,·) is just the map Hq(C ·) → Hq(I0,·). Thus,

Ep,q
2 (C ·) ∼= Ep,q

2 (I ·,·) and we have proved our claim.
We now define hyperderived functors.

Definition 61. Let A be an abelian category with enough injectives and
let B be another abelian category. Let F : A → B be a left exact (covariant)
functor. Let C · be an object of C+(A). The n-th hyperderived functor of F,
R
nF (·), is a functor from C+(A) to B which is defined as follows:

R
nF (C ·) = Hn(F (Tot·(I ·,·))) = Hn(Tot·(F (I ·,·)))

where C · → I ·,· is a Cartan-Eilenberg resolution of C ·.

If f · : C · → D· is a morphism in C+(A) and

0→ C · → I0,· → I1,· → · · ·

and,

0→ D· → J 0,· → J 1,· → · · ·

are Cartan-Eilenberg resolutions of C · andD· respectively, then in particular
they are injective resolutions in (the abelian category) C+(A) and so there
exists a map of complexes Ip,· → Jp,· which is well defined upto homotopy.

Lemma 12. Let f ·,· : A·,· → B·,· and g·,· : A·,· → B·,· be two morphisms of
double complexes in A. Consider these as morphisms of complexes in C+(A),
Ap,· → Bp,· where Ap,· and Bp,· are objects of C+(A). Now suppose f, g are
homotopic. Then, Tot·(f ·,·) and Tot·(g·,·) are also homotopic.

Corollary 12. R
nF (C ·) is independent of the Cartan-Eilenberg resolution

and gives a well defined additive functor from C+(A) to B.

We now discuss the two spectral sequences for hyperderived functors
R
nF (C ·) = Hn(Tot·(F (I ·,·))). The E1 terms for the spectral sequence with

the IIth filtration is is IIE
p,q
1 = Hq(F (I ·, p), d1). We have that I ·,p is an

injective resolution for Cp and so Hn(F (I ·,p), d1) = RnF (Cp). Therefore we
have the following spectral sequence

Ep,q
1 = RqF (Cp)⇒ R

p+qF (C ·).

This is called the first spectral sequence for hyperderived functors.
The other spectral sequence is

IE
p,q
1 = Hq(F (Ip,·), d2)⇒ R

nF (C ·).
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(Ip,·, d2) has the following form:

Ip,q = Ip,q0 ⊕ I
p,q
1 ⊕ I

p,q
2

and d2 has the following form,

d2|Ip,q
0 ⊕Ip,q

1
= 0

and
d2 : I

p,q
2 → Ip,q+1

0

is an isomorphism.
(F (Ip,·), d2) has a similar description. In particular,

Hq(F (Ip,·), d2) ∼= F (Ip,q1 ) = F (Hq(Ip,·), d2).

But I ·,· is a Cartan-Eilenberg resolution and so Hq(Ip,·, d2) is an injective
resolution of Hq(C ·). Also the E1 differentials are just the differentials of
the complexes F (Hq(C ·)). Therefore, we have a spectral sequence,

IE
p,q
2 = R

pF (Hq(C ·))⇒ R
p+qF (C ·)

which is called the second spectral sequence for hyperderived functors. We
will use these two spectral sequences for hyperderived functors to prove the
Grothendieck spectral sequence theorem. But before that we make some
more remarks and definitions.

Definition 62. Let A = Sh(X) be the category of sheaves on a topological
space X, let B = Ab be the category of abelian groups and let F = Γ(X, ·)
be the global section functor. Then the nth hypercohomology group of F ·

is defined to be the group R
nF (F ·) and is denoted by H

n(X,F ·). The two
hypercohomology spectral sequences translate to the following two spectral
sequences in this case.

Ep,q
1 = Hq(X,Fp)⇒ H

p+q(X,F ·)

and
Ep,q

2 = HP (X,Hq(F ·))⇒ H
p+q(X,F ·).

Definition 63. Let f : X → Y be a map of topological spaces, let A =
Sh(X), B = Sh(Y) and F = f∗. Then the nth hyperdirect image sheaf of F ·

is defined to be the sheaf Rnf∗F
·. The hypercohomology group is a special

case of the hyperdirect image sheaf, when Y = point. In this case, we again
have two spectral sequences

Ep,q
1 = Rqf∗F

p ⇒ R
p+qf∗F

·

and,
Ep,q

2 = Rpf∗H
q(F ·)⇒ R

p+qf∗F
·.

The two spectral sequences for hyperderived functors are functorial for
maps of complexes. We have the following proposition.

Proposition 18. 1. If f · : C · → D· is a morphism of complexes such
that RpF q : RpF (Cq) → RpF (Dq) is an isomorphism for all p, q then
R
nf : RnF (C ·)→ R

nF (D·) is an isomorphism for all n.
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2. If f · : C · → D· is an isomorphism on cohomology objects (f · is then
said to be a quasi-isomorphism) then, Rnf : RnF (C ·) → R

nF (D·) is
an isomorphism for all n.

3. If f · and g· are maps C · → D· which are homotopic then R
nf = R

ng.
4. If 0→ C · → I0,· → I1,· → · · · is an injective resolution of C · in C+(A)

then there exists a natural isomorphism R
nF (C ·) ∼= Hn(Tot·(F (I ·,·))).

5. If 0 → C ·
1 → C ·

2 → C ·
3 → 0 is an exact sequence in C+(A) then there

exists a functorial long excat sequence

· · · → R
nF (C ·

1)→ R
nF (C ·

2)→ R
nF (C ·

3)→ rn+1F (C ·
1)→ ·

We now prove the existence of the Grothendieck spectral sequence as
stated in the theorem i.e., there exists a spectral sequence

Ep,q
2 = RpG(RqF (C))⇒ Rp+q(G · F )(C)

which is functorial for C in A where F : A → B and G : B → C are left
exact functors and we assume that for any injective object I of A we have
that RpG(F (I)) = 0 for all p > 0. This will, as earlier remarked, prove the
existence of the Leray spectral sequence.

Proof. Let 0→ C → I · be an injective resolution. Therefore, Rn(G·F )(C) =
Hn(G · F (I ·)). Consider the two spectral sequences for the hyperderived
functor RnG(F (I ·)). The first spectral sequence in this case is

Ep,q
1 = RqG(F (Ip))⇒ R

nG(F (I ·)).

By assumption, we have that Ep,q
1 = 0 if q 6= 0 since F (Ip) is G-acyclic for

all p > 0. For the nonzero E1 terms the differentials are the obvious maps
Ep,0

1 = G(F (Ip))→ G(F (Ip+1)) = Ep+1,0
1 . Therefore,

Rn(G · F )(C) = Hn(G · F (I ·)) = En,0
2 = En,0

∞ = R
n(G · F )(I ·)

The other E2 and hence E∞ terms (for q 6= 0 are 0. Now the second spectral
sequence for hyperderived functors is

Ep,q
2 = RpG(RqF (C)) = R

pG(Hq(F (I ·)))⇒ R
p+qG(F (I ·)) = Rp+q(G·F )(C)

by the above step. This is what we wanted to prove.

We also have the Leray spectral sequence with supports. Let f : X → Y,
Ψ be a family of supports on Y and let Φ = f−1(Ψ) = {Z ⊆ X|Z is closed
and f(Z) ⊆W for some W ∈ Ψ}. Let F = f∗ be as before and let G = ΓΨ.
Then G · F = Γφ and hence there exists a spectral sequence

Ep,q
2 = Hp

Ψ(Y,R
qf∗F)⇒ Hp+q

Φ (X,F).

Similarly, let f : X → Y and g : Y → Z be maps between topological
spaces. Let A = Sh(X), B = Sh(Y) and C = Sh(Z). Then there exists a
spectral sequence of sheaves,

Ep,q
2 = Rpg∗(R

qf∗F)⇒ Rp+q(g · f)∗(F)

for all F in Sh(X) and functorial in F .
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