
COHOMOLOGY OF COHERENT SHEAVES

K. H. PARANJAPE AND V. SRINIVAS

The basic source for these lectures is Hartshorne's book [Ha], particularly Chap-

ter III. Following the conventions in this book, we will assume that all schemes

under consideration are Noetherian, unless speci�ed otherwise. Our treatment

more or less follows that in [Ha], except that we make use of spectral sequences

to modify and \simplify" certain arguments.

1. Cohomology on affine schemes

The goal of this section is to discuss two basic results on cohomology for a�ne

schemes. The �rst is the following vanishing theorem.

Theorem 1.1. Let X = SpecA be a Noetherian a�ne scheme (i.e., A is a

commutative Noetherian ring). Let F be a quasi-coherent sheaf of O

X

-modules

on X. Then H

i

(X;F) = 0 for all i > 0.

Proof. Recall that any quasi-coherent sheaf F on the a�ne scheme X = SpecA

is of the form

f

M , where M is the A-module of global sections of F . Also recall

that the stalk at x 2 X of

f

M is the localization M

}

, where } is the prime ideal

in A corresponding to x 2 SpecA. A sequence

F ! G ! H

of quasi-coherent sheaves is exact if and only if the corresponding sequence of

A-modules

H

0

(X;F)! H

0

(X;G)! H

0

(X;H)

is exact. We recall why: the sheaf sequence is exact precisely when its sequence of

stalks is exact for each x 2 X, which is the same as saying that the localizations

at all primes } of the sequence of global sections is exact; but for a sequence of

A-modules, exactness at all such localizations is equivalent to exactness for the

sequence itself.

The basic lemma needed to prove Theorem 1.1 is the following.

Lemma 1.2. Let I be an injective A-module,

e

I the associated quasi-coherent

O

X

-module. Then

e

I is 
asque; in particular, H

i

(X;

e

I) = 0 for all i > 0.

Proof. We must show that for any open set U � X = SpecA, the restriction

I = �(X;

e

I)! �(U;

e

I) is surjective. We �rst see that this is true for U = D(f) =

SpecA

f

, for any f 2 A.
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Suppose for simplicity that f is a non zero-divisor. Then applying the functor

Hom

A

(�; I) to the exact sequence

0! A

f

�! A! A=fA! 0

the injectivity of I implies that multiplication by f on I is surjective. This

immediately implies that I ! I 
 A

f

= I

f

is surjective.

In general, even if f is a zero divisor, there exist n such that Ann (f

n

) =

Ann (f

n+m

) for all m > 0 (since A is Noetherian, and fAnn (f

n

)g

n�1

is an as-

cending chain of ideals). Clearly f is a non zero-divisor on A=Ann (f

n

). Hence

multiplication by f is surjective on I

0

= Hom

A

(A=Ann (f

n

); I) � I, and so

I

0

! I

0

f

is surjective. Since f

n

I � I

0

� I, we have that I

0

f

= I

f

, and so I ! I

f

is

also surjective.

Now consider the case of an arbitrary open subset U � SpecA. We use Noe-

therian induction on Y = supp I, where supp I is the subset of primes } of

A with I

}

6= 0 (the overbar denotes Zariski closure). If Y is a point, then

e

I

is a skyscraper sheaf; hence it is 
asque. In general, we may as well assume

U \ Y 6= ; (or else �(U;

e

I) = 0, which is a trivial case). Then we can �nd

f 2 A such that D(f) = SpecA

f

� U has non-empty intersection with U \ Y .

If s 2 �(U;

e

I), choose t 2 I such that s j

D(f)

= t j D(f) (we can do this because

I ! I

f

= �(D(f);

e

I) is surjective). Replacing s by s � t j

U

, we may assume

s j

D(f)

= 0. Thus, if

J = fa 2 I j f

n

a = 0 for some n > 0g = ker(I ! I

f

);

then s 2 �(U;

e

J) � �(U;

e

I).

Now Y

0

= supp J satis�es Y

0

\ D(f) = ;, so Y

0

� Y is a proper subscheme.

Thus, to complete the proof by induction, it su�ces to observe that J is also an

injective A-module. The proof of this, using the Artin-Rees lemma, is left as an

exercise to the reader.

We can now easily complete the proof of Theorem 1.1. Let F =

f

M be any

quasi-coherent O

X

-module. Let

0!M ! I

0

! I

1

! � � �(1.1)

be a resolution of M by injective A-modules. Then we have an associated exact

sequence of quasi-coherent O

X

-modules

0!

f

M !

e

I

0

!

e

I

1

! � � �(1.2)

where the sheaves

e

I

j

are all 
asque. Hence there are canonical isomorphisms

between the cohomology module H

j

(X;

f

M) and the cohomology modules of the

complex

0! �(X;

e

I

0

)! �(X;

e

I

1

)! � � �

which is just the complex

0! I

0

! I

1

! � � �
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This complex has H

0

equal to M , and vanishing H

j

for j > 0, from the exact

sequence (1.1).

The second result is a characterization of Noetherian a�ne schemes, essentially

due to Serre.

Theorem 1.3. Let X be a Noetherian scheme. ThenX is a�ne () H

1

(X; I) =

0 for any coherent sheaf of ideals I � O

X

.

Proof. If X is a�ne, the higher cohomology of any quasi-coherent sheaf vanishes,

in particular H

1

of any coherent ideal sheaf vanishes.

So assume H

1

(X; I) = 0 for any coherent ideal sheaf I � O

X

. The goal is

to prove X = SpecA where A = �(X;O

X

). If U = SpecB is any a�ne open

subset of X, the ring homomorphism A = �(X;O

X

) ! �(U;O

X

) = B induces

a morphism U = SpecB ! SpecA. These locally de�ned morphism are easily

seen to patch together to give a morphism X ! SpecA. We will show that this

is an isomorphism.

We �rst show thatX can be covered by open subsets of the formX

f

, for suitable

f 2 A = �(X;O

X

), where X

f

= fx 2 X j f(x) 6= 0g; here f(x) denotes the image

of f in the residue �eld k(x). Let x 2 X be a closed point, and U = SpecB an

a�ne open neighbourhood of x in X, with complement Y = X n U (with its

reduced structure). Then Y [ fxg determines a reduced closed subscheme of X.

There is an exact sequence of sheaves

0! I

Y [fxg

! I

Y

! (i

x

)

�

k(x)! 0

where the �rst two terms are the respective ideal sheaves, and (i

x

)

�

k(x) is a

skyscraper sheaf at x with stalk k(x). Since H

1

(X; I

Y [fxg

) = 0, we can lift

1 2 k(x) = �(X; (i

x

)

�

k(x)) to a global section f 2 �(X; I

Y

) � �(X;O

X

) = A.

In other words, we can �nd f 2 A = �(X;O

X

) with f(x) = 1, and so x 2 X

f

;

further, f vanishes on Y , so X

f

� U , i.e., X

f

= U

f

= SpecB

f

.

We claim that the natural map A

f

! B

f

, induced by A ! �(X

f

;O

X

) = B

f

,

is an isomorphism (this will imply that X ! SpecA is an open immersion).

First, suppose a 2 ker(A ! B

f

). Then for any a�ne open SpecC = V � X,

the image of a in C

f

= �(V \ X

f

;O

X

) vanishes, hence the image of a in C is

annihilated by a power of f . Covering X by a �nite number of such open sets V ,

we see that a 2 �(X;O

X

) = A is annihilated by a power of f ; thus, A

f

! B

f

is injective. Also, similarly, if W � X is any open subset, then any element

of ker �(W;O

X

) ! �(W \ X

f

;O

X

) is annihilated by a power of f . Next, let

a 2 �(X

f

;O

X

) = B

f

. We claim that for some n > 0, af

n

is in the image of

�(X;O

X

) = A ! B

f

. The restriction of a to �(V \ X

f

;O

X

) = C

f

is such that

f

n

a lifts to C = �(V;O

X

) for some n. A �nite number of such open sets V

i

cover X, so we may assume(after increasing n if needed) that f

n

a j

V \X

f

lifts to

a

i

2 �(V

i

;O

X

) for each i. We have that

a

ij

= a

i

j

V

i

\V

j

�a

j

j

V

i

\V

j

2 �(V

i

\ V

j

;O

X

)

has zero restriction to V

i

\ V

j

\ X

f

; hence we can �nd m > 0 with f

m

a

ij

= 0

for all i; j. Now the collection of sections f

m

a

i

2 �(V

i

;O

X

) patch up to a unique
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global section of O

X

which lifts f

n+m

a. We have now shown that A

f

! B

f

is

surjective as well.

Thus X has an open cover by open subschemes of the form X

f

= SpecA

f

,

each of which is a�ne, and the natural map X ! SpecA is an open immersion

whose image is the union of these open subsets SpecA

f

. Since X is Noetherian,

this open cover of X has a �nite subcover, say X

f

1

; : : : ; X

f

r

. Then the functions

f

1

; : : : ; g

r

have no common zeroes on X. So the sheaf map O

�r

X

! O

X

, given by

(g

1

; : : : ; g

r

) 7! g

1

f

1

+ � � �+ g

r

f

r

for any local sections g

1

; : : : ; g

r

, is a surjection of

sheaves, giving an exact sequence

0! F ! O

�r

X

! O

X

! 0:

The sheaf O

�r

X

has a �ltration by the subsheaves O

�i

X

for 0 � i � r, included

through the �rst i summands. The induced �ltration F \ O

�i

X

of F has graded

pieces which are isomorphic to ideal sheaves. Hence by induction on i, we

have H

1

(X;F \ O

�i

X

) = 0, and for i = r this is just H

1

(X;F) = 0. Hence

�(X;O

�r

X

) ! �(X;O

X

) is surjective, in other words, A

�r

! A, (a

1

; : : : ; a

r

) 7!

P

i

a

i

f

i

, is surjective. Hence f

1

; : : : ; f

r

generate the unit ideal in A, and so

SpecA

f

1

; : : : ; SpecA

f

r

cover SpecA.

2.

�

Cech cohomology and the cohomology of projective space

We �rst review the basics of

�

Cech cohomology. Recall that if U = fU

0

; � � � ; U

n

g

is a �nite open cover of a topological space X, then for any sheaf F of abelian

groups on X, we have an associated

�

Cech complex

�

C

�

(U ;F) with terms

�

C

p

(U ;F) =

Y

0�i

0

<���<i

p

�n

F(U

i

0

\ � � � \ U

i

p

);

and di�erential maps �

p

:

�

C

p

(U ;F)!

�

C

p+1

(U ;F) given by

(�

p

�)

i

0

;::: ;i

p+1

=

p+1

X

j=0

(�1)

j

�

i

0

;::: ;

b

i

j

;::: ;i

p+1

j

U

i

0

\���\U

i

p+1

;

where

b

i

j

means that the index i

j

is omitted. Then (

�

C

�

(U ;F); �

�

) is a complex,

called the

�

Cech complex of F with respect to U , whose cohomology groups are

called the

�

Cech cohomology groups of F with respect to U , and are denoted by

�

H

i

(U ;F).

There is a natural map

�

H

i

(U ;F) ! H

i

(X;F) for each i (compare [Ha], III,

(4.4)). This is constructed as follows. For any open V � X, let F

V

denote the

sheaf j

�

j

�1

F , where j : V ,! X is the inclusion (this is non-standard, temporary

notation!). Then the same formula for the

�

Cech di�erential gives rise to a complex

of sheaves

�

C

�

(U ;F) with terms

�

C

p

(U ;F) =

Y

0�i

0

<���<i

p

�n

F

U

i

0

\���\U

i

p

:

One also has a natural augmentation F !

�

C

�

(U ;F).
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Lemma 2.1. The complex of sheaves

0! F !

�

C

0

(U ;F)!

�

C

1

(U ;F)! � � �

is a resolution of F , whose complex of global sections is the

�

Cech complex

�

C

�

(U ;F).

Proof. The lemma is proved by showing that the complex of stalks at any point

is chain contractible; the details are left to the reader as an exercise.

Now if 0 ! F ! I

�

is any injective resolution of F , the universal property

of injectives gives rise to a map (unique up to chain homotopy) of complexes of

sheaves

�

C

�

(U ;F)! I

�

, over the identity map on F . The induced maps between

complexes of global sections gives rise to the desired maps

�

H

i

(U ;F)! H

i

(X;F).

From the de�ning properties of a sheaf, one sees at once that

�

H

0

(U ;F) !

H

0

(X;F) is always an isomorphism; with a little more work, one sees also that

�

H

1

(U ;F)! H

1

(X;F) is injective for any sheaf of abelian groups F .

Proposition 2.2. (Leray's theorem) Let F be a sheaf of abelian groups on X,

and U = fU

0

; : : : ; U

n

g an open covering such that H

j

(U

i

0

\ � � � \ U

i

p

;F) = 0 for

all fi

0

; : : : ; i

p

g and all j > 0. Then the natural maps

�

H

i

(U ;F)! H

i

(X;F) are

isomorphisms.

Proof. We give a proof using spectral sequences (other proofs are possible as well).

Let 0! F ! I

�

be a 
asque resolution. Then for any open U � X, the complex

�(U; I

�

) computes H

�

(U;F j

U

).

The

�

Cech complexes of the I

q

determine a double complex of abelian groups

C

p;q

=

�

C

p

(U ; I

q

);

with augmentations

�

C

p

(U ;F)! C

p;0

. From the hypotheses of Leray's theorem,

it follows that for each p, the sequences

0!

�

C

p

(U ;F)! C

p;0

! C

p;1

! � � �

are exact (the cohomology group of this complex in any degree i > 0 is

Y

0�i

0

<���<i

p

H

i

(U

i

0

\ � � � \ U

i

p

;F);

which is given to vanish). Hence, one of the spectral sequences for the dou-

ble complex C

p;q

degenerates at E

2

, and the natural maps H

p

(

�

C

�

(U ;F)) !

H

p

(Tot(C

�

;

�

)) are isomorphisms for all p.

On the other hand, there are augmented complexes

0! H

0

(X; I

q

)! C

0;q

! C

1;q

! � � �

which may be viewed as obtained by taking global sections in the exact sequence

(lemma 2.1) of sheaves

0! I

q

!

�

C

�

(U ; I

q

):

By construction,

�

C

p

(U ; I

q

) is 
asque for each p � 0. Hence all sheaves in the

above sequence are 
asque, so that the corresponding sequence of global sections

is exact. This implies that the second spectral sequence for the double complex
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C

p;q

degenerates at E

2

, and the natural maps H

p

(H

0

(X; I

�

)) ! H

p

(Tot(C

�

;

�

))

are also isomorphisms. Note that H

p

(H

0

(X; I

�

))

�

=

H

p

(X;F) by de�nition.

The resulting isomorphism between the

�

Cech and derived functor cohomology

of F is given by the natural map between these, since we may choose I

�

to be an

injective resolution of F , in which case Tot(

�

C

�

(U ; I

�

)) is also an injective resolu-

tion of F , such that the augmentation map

�

C

�

! Tot(

�

C

�

(U ; I

�

)) is a morphism

of complexes lifting the identity map on F .

Corollary 2.3. Let X be a Noetherian separated scheme, U = fU

0

; : : : ; U

n

g an

open covering by a�ne open subsets U

i

= SpecA

i

. Then for any quasi-coherent

sheaf F of O

X

-modules, the canonical maps

�

H

i

(U ;F) ! H

i

(X;F) are isomor-

phisms for all i. In particular, H

i

(X;F) = 0 for all i > n and all quasi-coherent

sheaves F .

Proof. Since X is separated, the intersection of any �nite number of a�ne open

subsets of X is again an a�ne open set. Hence by Theorem 1.1, any quasi-

coherent sheaf F of O

X

-modules satis�es the hypotheses of Leray's theorem

(Theorem 2.2). The vanishing assertion is obvious for the

�

Cech cohomology,

since

�

C

i

(U ;F) = 0 for all i > n.

For example, if A is a Noetherian ring, then on P

n

A

, any quasi-coherent sheaf has

vanishing cohomology in degrees > n, since P

n

A

has a covering by n + 1 a�ne

open subsets.

Apart from its theoretical signi�cance, the above corollary is one of the basic

tools in making concrete calculations with cohomology. We illustrate this by de-

termining the cohomology on P

n

A

of the sheafO

P

n

A

(r), for any integer r. Recall that

P

n

A

= ProjA[X

0

; : : : ; X

n

] is obtained from a polynomial algebra over A in n + 1

variables, with the standard grading. Let S = A[X

0

; : : : ; X

n

] = �

r�0

S

r

, where S

r

is the homogeneous component of degree r; we may view S as Z-graded with van-

ishing homogeneous components of negative degree. For any r 2 Z, let S(r) de-

note the ring S, considered as a graded S-module with S(r)

t

= S

r+t

; then O

P

n

A

(r)

is the corresponding quasi-coherent (in fact coherent, even invertible) sheaf

g

S(r).

By construction, there is a canonical homomorphism S

r

! �(P

n

A

;O

P

n

A

(r)). Recall

that if M is a Z-graded S-module, and h 2 S is a homogeneous element, then

M

(h)

denotes the 0-th homogeneous component of the (also Z-graded) localization

M

h

. Thus D

+

(P

n

A

) = Spec S

(h)

form a basis, consisting of a�ne open sets, for the

Zariski topology on P

n

A

= ProjS.

Theorem 2.4. Let A be a Noetherian ring.

(a) The canonical homomorphism S

r

! �(P

n

A

;O

P

n

A

(r)) is an isomorphism for

all r. In particular, �(P

n

A

;O

P

n

A

(r)) = 0 for r < 0, and is a free A-module of

rank

�

n+r

r

�

for r � 0.

(b) H

i

(P

n

A

;O

P

n

A

(r)) = 0 for all 0 < i < n and all r 2 Z.

(c) H

n

(P

n

A

;O

P

n

A

(�n� 1)) is a free A-module of rank 1, and the natural maps

H

n

(P

n

A

;O

P

n

A

(�n� 1� r))


A

�(P

n

A

;O

P

n

A

(r))! H

n

(P

n

A

;O

P

n

A

(�n� 1))

�

=

A

are perfect pairings between free A-modules.
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Proof. The idea is the compute the

�

Cech cohomology groups with respect to the

standard a�ne open covering U = fU

i

g

n

i=0

, where

U

i

= D

+

(X

i

) = SpecA[X

0

=X

i

; : : : ; X

n

=X

i

]; 0 � i � n:

For 0 � i

0

< i

1

< : : : < i

p

� n, we have

U

i

0

\ � � � \ U

i

p

= SpecA [X

i

=X

j

j i 6= j; and j 2 fi

0

; : : : ; i

p

g] = SpecS

(X

i

0

���X

i

p

)

:

Next, one identi�es the sections ofO

P

n

A

(r) on U

i

0

\� � �U

i

p

with the A-submodule

of homogeneous elements of degree r in the Z-graded A-algebra

S

X

i

0

���X

i

p

= S[

p

Y

j=0

X

�1

i

j

]:

Let

e

U

i

= SpecS[X

�1

i

], which is an open subscheme of SpecS = A

n+1

A

. Consider

the

�

Cech complex for the structure sheaf O

X

for the a�ne open cover

e

U = f

e

U

i

g

n

i=0

of X = SpecS n V (X

0

; : : : ; X

n

), where V (X

0

; : : : ; X

n

) = SpecS=(X

0

; : : : ; X

n

) is

the closed subscheme determined by the ideal S

+

= (X

0

; : : :X

n

). The terms in

this complex are of the form

�

C

p

(

e

U ;O

X

) =

Y

0�i

0

<���<i

p

�n

�(

f

U

i

0

\ � � � \

f

U

i

p

;O

X

) =

Y

0�i

0

<���<i

p

�n

S

x

i

0

���x

i

p

:

Note that this is a complex whose terms are Z-graded A-algebras, and the dif-

ferentials are graded A-linear maps. The subcomplex of homogeneous elements

of degree r is identi�ed with

�

C

�

(U ;O

P

n

A

(r)), as noted earlier. There is also an

augmentation

S !

�

C

0

(

e

U ;O

X

) =

n

Y

i=0

S

X

i

;

induced by the diagonal inclusion.

We claim that

0! S !

�

C

0

(

e

U ;O

X

)! � � � !

�

C

n

(

e

U ;O

X

)! 0(2.1)

is exact, except for the surjectivity of

�

C

n�1

(

e

U ;O

X

) !

�

C

n

(

e

U ;O

X

). This will

imply (a) and (b) of Theorem 2.4, on considering the homogeneous subcomplex

of degree r, for each r 2 Z. In fact the above complex can be considered as a

direct limit of the augmented Koszul complexes

K

m

= K(X

m

0

; : : : ; X

m

n

) = (0! S ! S

�n+1

! � � � ! S

�

(

n+1

p

)

! � � � ! S ! 0)

(2.2)

where K

m

! K

m+1

is induced as follows:

(K

m

)

p

= S

�

(

n+1

p

)

=

Y

0�j

1

<���<j

p

�n

S

and (K

m

)

p

! (K

m+1

)

p

is multiplication byX

j

1

� � �X

j

p

on the (j

1

; : : : ; j

p

)-component.

One veri�es that this commutes with the di�erentials in the Koszul complex.

Since X

m

0

; : : : ; X

m

n

form a regular sequence on the polynomial algebra S, each

of the Koszul complexes is exact except at the right end point, and H

n+1

(K

m

) =
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S=(X

m

0

; : : : ; X

m

n

). By exactness of direct limits, we conclude that the complex

(2.1) is exact except at the right end point (proving (a) and (b) of the theorem),

and the cokernel of the last arrow is

lim

�!

m

H

n+1

(K

m

):

Going back to the

�

Cech complex (2.1) itself, the last term is just S

X

0

���X

n

=

A[X

0

; X

�1

0

; : : : ; X

n

; X

�1

n

], the Laurent polynomial algebra, which is the free A-

module with basis

Q

n

i=0

X

a

i

i

for all a

0

; : : : ; a

n

2 Z. The penultimate term of (2.1)

is

�

n

i=0

S

X

0

���

c

X

i

���X

n

;

where `

c

X

i

' means that the variable X

i

is omitted. The di�erential (the last map

in (2.1)) is the alternating sum of the natural inclusion maps. Clearly the cokernel

is a free A-module with basis X

�a

0

0

� � �X

�a

n

n

with all a

i

> 0, which we can rewite

as the set of all monomials M(b

0

; : : : ; b

n

) = (X

0

� � �X

n

)

�1

� (

Q

n

i=0

X

b

0

0

� � �X

b

n

n

)

�1

,

where b

0

; : : : ; b

n

range over all non-negative integers. Keeping track of the grad-

ing, M(b

0

; : : : ; b

n

) is homogeneous of degree �n � 1 � (

P

i

b

i

). Thus the coho-

mology module H

n

(P

n

A

;O

P

n

A

(�n�1�r)) is a free A-module with basis consisting

of all monomialsM(b

0

; : : : ; b

n

) satisfying

P

i

b

i

= r (in particular, the set of such

monomials is non-empty precisely when r � 0).

The pairing

H

0

(P

n

A

;O

P

n

A

(r))


A

H

n

(P

n

A

;O

P

n

A

(�n� 1� r))! H

n

(P

n

A

;O

P

n

A

(�n� 1))(2.3)

is determined as follows: a global section of O

P

n

A

(r) determines a maps of sheaves

O

P

n

A

! O

P

n

A

(r), and hence by tensoring a sheaf map

O

P

n

A

(�n� 1� r)! O

P

n

A

(�n� 1);

and thus also an A-linear map on n-th cohomology modules

H

n

(P

n

A

;O

P

n

A

(�n� 1� r))! H

n

(P

n

A

;O

P

n

A

(�n� 1)):

Identifying a global section of O

P

n

A

(r) with a homogeneous polynomial of degree

r, multiplication by this polynomial on the terms of the

�

Cech complex (2.1)

determines the action on the cohomology modules. Clearly H

0

(P

n

A

;O

P

n

A

(r)) has a

basis of monomialsM

0

(b

0

; : : : ; b

n

) = X

b

0

0

� � �X

b

n

n

where b

i

� 0,

P

i

b

i

= r. Identify

H

n

(P

n

A

;O

P

n

A

(�n � 1)) with A using the basis element [

Q

n

i=0

X

�1

i

], the image of

the corresponding monomial M(0; : : : ; 0). Then fM

0

(b

0

; : : : ; b

n

)g is visibly the

dual basis, with respect to the pairing (2.3), to the monomials fM(b

0

; : : : ; b

n

)g,

since

M(b

0

; : : : ; b

n

) �M

0

(c

0

; : : : ; c

n

) =

�

[

Q

n

i=0

X

�1

i

] if b

i

= c

i

for all i,

0 otherwise.



COHOMOLOGY OF COHERENT SHEAVES 9

3. Finite generation of cohomology and related results

In this section we discuss three basic results on cohomology of coherent sheaves:

the �nite generation theorem, the Serre vanishing theorem for ample invertible

sheaves, and Serre's criterion for ampleness (a sort of converse to Serre's vanishing

theorem).

All of these results depend on the following lemma on quasi-coherent sheaves,

which has been established earlier in the lectures on schemes. Let X be a Noe-

therian scheme, L an invertible O

X

-module, s 2 �(X;L), and let X

s

= fx 2 X j

s(x) 6= 0g, where s(x) denotes the image of s in the 1-dimensional k(x)-vector

space L

x




O

X;x

k(x). Then X

s

is an open subset of X, which determines an open

subscheme. The global section s gives an O

X

-linear map L

�1

! O

X

, whose im-

age is a coherent ideal sheaf, corresponding to a closed subscheme Y of X, which

we call the scheme of zeroes of s. Then X

s

= X n Y . As usual we denote L


n

by

L

n

.

Lemma 3.1. Let X, L, s 2 �(X;L) be as above. Let F be a coherent sheaf on

X.

(a) If t 2 ker(�(X;F)! �(X

s

;L)), then s

n

t = 0 2 �(X;F 
 L

n

).

(b) If t 2 �(X

s

;F), then for some n � 0, the section s

n

t 2 �(X

s

;F 
 L

n

) lies

in the image of �(X;F 
 L

n

), i.e., s

n

t extends to a global section.

Theorem 3.2. Let X be a projective scheme over a Noetherian ring A, and

O

X

(1) a very ample invertible sheaf on X relative to SpecA. Let F be a coherent

sheaf on X.

(a) For each i � 0, H

i

(X;F) is a �nitely generated A-module.

(b) (Serre's Vanishing Theorem) There exists an n

0

� 0 (depending on (X;O

X

(1))

and F) such that for any n � n

0

, i > 0, we have H

i

(X;F(n)) = 0.

Proof. Let i : X ,! P

r

A

be a projective embedding such that O

X

(1) = i

�

O

P

r

A

(1).

Then i

�

is exact, and for each j � 0 we have

H

j

(X;F(n)) = H

j

(P

r

A

; i

�

(F(n))) = H

j

(P

r

A

; (i

�

F)(n)):

Hence we reduce to proving the Theorem for coherent sheaves F on X = P

r

A

.

We �rst show that for any coherent sheaf F on P

r

A

, we have that H

r

(P

r

A

;F) is

�nitely generated, and H

r

(P

r

A

;F(n)) = 0 for all large n. Now F(m) is generated

by its global sections, for any su�ciently large m. Fix such a value of m. Since

P

r

A

is Noetherian and F(m) is coherent, a �nite number of global sections su�ce

to generate F(m), giving rise to a surjection of sheaves O

�N

P

r

A

! F(m). This is

turn induces a surjection O

P

r

A

(�m)

�N

! F , say with kernel G, giving rise to an

exact sequence

0! G(n)! O

P

r

A

(n�m)! F(n)! 0

for each n 2 Z. Now H

i

(P

r

A

;H) = 0 for all i > r and all quasi-coherent sheaves

H (Corollary 2.3). Hence from the exact cohomology sequence

� � � ! H

r

(P

r

A

;O

P

r

A

(n�m)

�N

)! H

r

(P

r

A

;F(n))! H

r+1

(P

r

A

;G(n))! � � �
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we conclude using Theorem 2.4 that H

r

(P

r

A

;F(n)) is a �nitely generated A-

module for all n, and that for su�ciently large n (in fact n � m � r), we have

H

r

(P

r

A

;F(n)) = 0.

Now we proceed by descending induction on i to show that for any coherent F ,

we have that H

i

(P

r

A

;F) is �nitely generated, and if i > 0, then H

i

(P

r

A

;F(n)) = 0

for all su�ciently large n. We have already dealt with the case i = r. Apply-

ing this to G, we conclude using the earlier part of the same cohomology exact

sequence

� � � ! H

i�1

(P

r

A

;O

P

r

A

(n�m)

�N

)! H

i�1

(P

r

A

;F(n))! H

i

(P

r

A

;G(n))! � � �

combined with Theorem 2.4, that H

i�1

(P

r

A

;F(n)) is always �nitely generated,

and if i� 1 > 0, vanishes for all large enough n.

Corollary 3.3. Let X be an integral projective scheme over and algebraically

closed �eld k. Then H

0

(X;O

X

) = k, or in other words, any global regular func-

tion on X is a constant.

Proof. Since X is an integral projective k-scheme, R = H

0

(X;O

X

) is an integral

domain, containing k. By Theorem 3.2, R is a �nite dimensional vector space.

Hence R must be a �nite extension �eld of k, and since k =

�

k this means R =

k.

De�nition 3.4. X be a projective scheme over a �eld k, or more generally an

Artinian ring A. Then for any coherent sheaf F on X, we can de�ne its Euler

characteristic

�(X;F) = �(F) =

X

i�0

(�1)

i

`(H

i

(X;F)) 2 Z;

where `(M) denotes the length of any �nite A-module.

Note that if

0! F

0

! F ! F

00

! 0

is any exact sequence of coherent sheaves, then

�(X;F) = �(X;F

0

) + �(X;F

00

);

from the long exact sequence of cohomology modules

0! H

0

(X;F

0

)! H

0

(X;F)! H

0

(X;F

00

)! H

1

(X;F

0

)! � � � ! H

n

(X;F

00

)! 0;

where n = dimX, which is a �nite exact sequence of modules of �nite length, for

which the alternating sum of the lengths must vanish.

If O

X

(1) is a very ample invertible sheaf on X relative to A, then we can also

consider the numerical function

H(X;F)(n) = �(X;F(n)); 8 n 2 Z:

Theorem 3.5. Let F be a coherent sheaf on X, which is projective over SpecA,

where A is an Artinian local ring. Let O

X

(1) be a very ample invertible sheaf on

X. We then have the following.
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(a) There is a polynomial P (t) 2 Q [t] such that

H(X;F)(n) = P (n) 8 n 2 Z:

We call P (t) the Hilbert polynomial of the sheaf F . The degree of P equals

the dimension of supp (F).

(b) If i : X ,! P

N

k

, and O

X

(1) is the resulting very ample sheaf, then P (t) is

the Hilbert polynomial of the homogeneous coordinate ring R(X) of X; more

generally, if M is any �nite graded R(X)-module, and F =

f

M , then P (t)

coincides with the Hilbert polynomial of M (that is, H(X;F)(n) = `(M

n

)

for all large n.)

Proof. If

0! F

0

! F ! F

00

! 0

is an exact sequence of coherent sheaves, then H(X;F)(n) = H(X;F

0

)(n) +

H(X;F

00

)(n) for all n 2 Z. Hence if (a) of the Theorem holds for any two of F ,

F

0

, F

00

, then it holds for the third. If F =

f

M for a �nite graded R(X)-module

M , then M

n

�

=

H

0

(X;F(n)) for all large enough n, since we know that

(�

n�0

H

0

(X;F))e= F ;

and any two �nite, graded R(X)-modules determining the same sheaf F must

coincide in large enough degrees. Hence H(X;F)(n) = P (n) holds for all large

enough n, where P (t) is the Hilbert polynomial of any such M (in particular, the

Hilbert polynomials of di�erent possible such modules M coincide).

We now show that H(X;F)(n) = P (n) for all n, by Noetherian induction on

suppF , and then by descending induction on n. If suppF is a point, then F is

a skyscraper sheaf, so that H(X;F)(n) is a constant function, which coincides

with a polynomial function P (n) for large n; then P (t) must be a constant, and

H(X;F)(n) = P (n) holds for all n.

In general, let s 2 R(X)

1

� �(X;O

X

(1)) be a section which is non-zero in the

stalk of O

X

(1) at every associated point of the sheaf F (recall that the associated

points of F are points of the subset S � X such that, for any a�ne open U =

SpecA, with F j

U

=

f

M , the set S \ U consists of the associated primes of M).

Then multiplication by s de�nes an injective sheaf homomorphism F(�1)! F ,

with cokernel G say. From the exact sequence 0 ! F(�1) ! F ! G ! 0, it

follows thatH(X;F)(n�1) = H(X;F)(n)�H(X;G)(n). Since G is not supported

at any associated point of F , which includes the generic points of suppF , we have

that suppG ( suppF is a proper closed subscheme. Hence H(X;G)(n) = Q(n)

for all n 2 Z, for a suitable polynomial Q(t). Since H(X;F)(n) = P (n) for all

large n, we must have Q(t) = P (t)�P (t� 1). Hence by descending induction on

n, we conclude that H(X;F)(n) = P (n) for all n 2 Z.

Corollary 3.6. In the above situation,

`(H

0

(X;F(n)))� P (n) =

X

i�1

(�1)

i�1

`(H

i

(X;F(n))):
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Thus the non-agreement of the Hilbert function and Hilbert polynomial is ac-

counted for by non-vanishing higher cohomology groups.

Remark 3.7. IfX is a non-singular projective variety over a �eld k, the Riemann-

Roch theorem of Grothendieck-Hirzebruch gives a formula for the polynomial P (t)

using intersection theory on X, in terms of the Chern classes of F and of the sheaf

of K�ahler di�erentials 


1

X=k

.

Theorem 3.8. Let X be proper over a Noetherian a�ne scheme SpecA, and L

an invertible sheaf on X. Then L is ample on X if and only if, for each coherent

sheaf F on X, we have H

i

(X;F 


O

X

L

n

) = 0 for all i > 0 and all su�ciently

large n.

Proof. If L is ample, choose m so that L

m

is very ample, and apply Serre's

vanishing theorem to F
L

i

for 0 � i � m�1. We deduce thatH

i

(X;F
L

n

) = 0

for all i > 0 for all su�ciently large n.

Conversely, suppose the above cohomology vanishing assertion holds. By the

de�nition of ampleness, we must show that, for any coherent F , the sheaf F
L

n

is

globally generated for all large enough n. Let x 2 X be a closed point,M

x

� O

X

its maximal ideal sheaf. We have an exact sheaf sequence

0!M

x

F ! F ! F 
 k(x)! 0;

where F 
 k(x) denotes the skyscraper sheaf at x associated to the �nite dimen-

sional k(x)-vector space F

x




O

X;x

k(x). Tensoring wih L

n

and taking cohomology,

we see that for large n,

H

0

(X;F 
 L

n

)! F

x




O

X;x

L

n

x




O

X;x

k(x)

is surjective, since H

1

(X;M

x

F 
 L

n

) = 0. By Nakayama's lemma, this means

that global sections of F 
 L

n

generate the O

X;x

-module F

x




O

X;x

L

n

x

at the

chosen point x, for all large n (how large may depend on x). Thus, the quotient

of F 
 L

n

by the O

X

-submodule generated by global sections is not supported

at x. Since the support of this quotient is closed, the global sections of F 
 L

n

generate the sheaf in an open neighbourhood of x, for all su�ciently large n (how

large may depend on x, and the neighbourhood may depend on the chosen n).

Apply this to F = O

X

; then there is an n

0

and a neighbourhood V of x on

which L

n

0

is generated by its global sections. Choose n

1

and neighbourhoods U

i

of x, 0 � i < n

0

, such that global sections of (F
L

i

)
L

n

1

generate this sheaf on

U

i

. Then global sections of F
L

m

generate this sheaf on U

x

= V \U

0

\� � �\U

n

0

�1

,

for all m � n

1

, since we may write any such m as qn

0

+ i + n

1

for some q � 0

and 0 � i < n

0

, so that F 
 L

m

= (F 
 L

i+n

1

) 
 (L

n

0

)

q

is a tensor product of

two sheaves, each of whose global sections generate it on U

x

.

Now since X is Noetherian, a �nite number of such U

x

cover X.

4. Serre Duality

We begin with a discussion of Ext groups and sheaves. We let Ab denote the

category of abelian groups. If X is a scheme, (or more generally any ringed space
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(X;O

X

)), and F is any O

X

-module, we have two left exact exact functors de�ned

on the category Mod(X) of O

X

-modules, namely

Hom

O

X

(F ;�) :Mod(X)! Ab; G 7! Hom

O

X

(F ;G);

and

Hom

O

X

(F ;�) :Mod(X)!Mod(X); G 7! Hom

O

X

(F ;G):

The �rst functor is obtained from the second by composition with the global

section functor �(X;�). We de�ne

Ext

i

(F ;�) :Mod(X)! Ab

to be the i-th right derived functor of Hom

X

(F ;�). Similarly de�ne

Ext

i

O

X

(F ;�) :Mod(X)!Mod(X)

to be the i-th right derived functor of Hom

O

X

(F ;�).

Lemma 4.1. For any open set U � X,

Ext

i

O

X

(F ;G) j

U

= Ext

i

O

U

(F j

U

;G j

U

):

Proof. For �xed F , both sides (considered as functors in G) give �-functors

Mod(X)!Mod(U), which coincide for i = 0. The functor G 7! Ext

i

O

X

(F ;G) j

U

vanishes if G is injective, since Ext

i

O

X

(F ;G) = 0 in that case. Hence it is a uni-

versal �-functor.

On the other hand, we claim that if G is injective, then G j

U

is an injective object

of Mod(U). To see this, let j : U ! X be the inclusion; if 0 ! Q ! R is an

exact sequence inMod(U), and f : Q ! G j

U

is given, then j

!

(f) : j

!

Q ! j

!

(G j

U

)

composed with the inclusion j

!

(G j

U

) ,! G gives rise to a map

e

f : j

!

Q ! G. Since

0 ! j

!

Q ! j

!

R is exact in Mod(X), and G is injective, we can extend

e

f to a

map j

!

R ! G. the restriction of this map to U is the desired extension R ! G j

U

of f .

As a consequence, we also have Ext

i

O

U

(F j

U

;G j

U

) = 0 for injective G. Hence

it is also a universal �-functor.

Lemma 4.2. For any F 2Mod(X), we have:

(a) Ext

0

O

X

(O

X

;F) = F

(b) Ext

i

O

X

(O

X

;F) = 0 for all i > 0

(c) Ext

i

O

X

(O

X

;F) = H

i

(X;F).

Proof. Since Ext

0

coincides with Hom , (a) is clear. Since the identity functor is

exact, its derived functors vanish, which gives (b). Since Hom

O

X

(O

X

;�) coin-

cides with the global sections functor �(X;�), the derived functors of these two

functors must coincide as well.

Lemma 4.3. If 0 ! F

0

! F ! F

00

! 0 is a short exact sequence in Mod(X),

then for any G 2 Mod(X) there are long exact sequences, functorial in G,

0! Hom

O

X

(F

00

;G)! Hom

O

X

(F ;G)! Hom

O

X

(F

0

;G)! Ext

1

O

X

(F

00

;G)

! Ext

1

O

X

(F ;G)! � � �
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0!Hom

O

X

(F

00

;G)!Hom

O

X

(F ;G)!Hom

O

X

(F

0

;G)!

Ext

1

O

X

(F

00

;G)! Ext

1

O

X

(F ;G)! � � �

Proof. Since Hom

O

X

(�; I) is exact for any injective sheaf I, we see that if

0 ! G ! I

�

is an injective resolution, then we have a short exact sequence

of complexes

0! Hom

O

X

(F

00

; I

�

)! Hom

O

X

(F ; I

�

)! Hom

O

X

(F

0

; I

�

)! 0:

The corresponding long exact sequence in cohomology gives the desired exact

sequence of Ext groups. To get the analogous sequence of Ext sheaves, we remark

that if I is injective, then so is I j

U

for any open U (see the proof of lemma 4.1), so

that Hom

O

X

(�; I) is an exact functor, and a similar argument applies again.

Lemma 4.4. Let � � � ! E

2

! E

1

! E

0

! F ! 0 be a resolution of an O

X

-

module F by locally free O

X

-modules E

j

of �nite rank. Then for any O

X

-module

G, we have isomorphisms of functors

Ext

i

O

X

(F ;G)

�

=

H

i

(Hom

O

X

(E

�

;G))

(on the right, H

i

denotes the i-th cohomology sheaf of the complex of O

X

-modules).

Proof. Both sides give �-functors (in the variable G) on ModX, which clearly

agree for i = 0, by the left exactness of Hom . If G is injective, the left side

vanishes, and because Hom

O

X

(�;G) is exact in this case, the right side vanishes

as well. Hence both �-functors are universal, and must coincide.

For example, on a scheme X which is quasi-projective over a Noetherian ring,

any coherent sheaf is a quotient of a localy free sheaf of �nite rank, and so we

can always �nd such a resolution for any coherent sheaf F .

Lemma 4.5. Let E be a locally free O

X

-module, and let E

_

= Hom

O

X

(E ;O

X

).

Then for any O

X

-modules F , G we have natural isomorphisms for all i � 0

Ext

i

O

X

(F 
 E ;G)

�

=

Ext

i

(F ; E

_




O

X

G);

Ext

i

O

X

(F 
 E ;G)

�

=

Ext

i

(F ; E

_




O

X

G)

�

=

Ext

i

O

X

(F ;G)


O

X

E

_

:

Proof. First consider the claim for Ext . Both sides of the formula de�ne �-

functors which agree for i = 0, and for injective G, the left side vanishes for

all i > 0. On the other hand, the functor Hom

O

X

(�; E

_


 G) is isomorphic to

Hom

O

X

(�


O

X

; E ;G), which is exact (since G is injective); hence E

_




O

X

G is

also injective, and the right side of the formula is 0 as well. Thus both sides of

the formula de�ne universal �-functors, which must hence coincide.

For Ext , the argument is very similar, again using the fact that the three �-

functors agree for i = 0 and all vanish for i > 0 when G is injective (for the middle

sheaf, this is because E

_




O

X

G is also injective as noted above).

The above lemmas have all been in the situation of an arbitrary ringed space.

We now prove a lemma which is valid in a more geometric situation. It allows

one to make connections between the Ext groups and sheaves and notions in

commutative algebra, like depth, projective dimension, etc.
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Lemma 4.6. Let X be a Noetherian scheme and F a coherent sheaf on X. Then

for any O

X

-module G, and any point x 2 X, we have isomorphisms for all i � 0

Ext

i

O

X

(F ;G)

x

�

=

Ext

i

O

X;x

(F

x

;G

x

):

Proof. The question is local, so we may assume X = SpecA is a�ne, where A

is a Noetherian ring, and F =

f

M for some �nitely generated A-module M . Let

A

x

= O

X;x

. Let E

�

! M ! 0 be a free resolution of M , so that

f

E

�

!

f

M ! 0

is a locally free O

X

-resolution of

f

M . Let E

i;x

= E

i




A

A

x

, M

x

= M 


A

A

x

. We

have a natural isomorphism

Hom

O

X

(

e

E

i

;G)

x

�

=

Hom

A

x

(E

i;x

;G

x

);

since E

i

is a free A-module of �nite rank. Since a free A

x

-resolution of M

x

may be used to compute the Ext groups Ext

i

A

x

(M

x

;�), the lemma follows using

lemma 4.5.

Exercise 4.7. Let X = SpecA, where A is Noetherian, and let M , N be A

modules with M �nitely generated. Then

Ext

i

O

X

(

f

M;

e

N) = Ext

i

A

(M;N)

and

Ext

i

O

X

(

f

M;

e

N) =

^

Ext

i

A

(M;N):

In particular, Ext

i

O

X

(

f

M;

e

N) is quasi-coherent, and is coherent if N is also �nitely

generated. This implies that on any Noetherian scheme, if F is coherent and G

is quasi-coherent, then Ext

i

O

X

(F ;G) is quasi-coherent, and is coherent whenever

G is coherent.

Proposition 4.8. Let X be a projective scheme over a Noetherian ring A, and

O

X

(1) a very ample invertible sheaf on X. Let F , G be coherent O

X

-modules.

Then there exists n

0

(depending on F , G and i) such that for any n � n

0

, we

have

Ext

i

O

X

(F ;G(n)) = �(X; Ext

i

O

X

(F ;G(n))):

Proof. Fix F . Now Hom

O

X

(F ;�) = �(X;�) � Hom

O

X

(F ;�) is a composition

of functors, and for injective G, one veri�es easily that Hom

O

X

(F ;G) is 
asque,

hence �(X;�)-acyclic. Hence there is a Grothendieck spectral sequence

E

p;q

2

= R

p

�(X;�) (R

q

Hom

O

X

(F ;�)(G)) =) R

p+q

Hom

O

X

(F ;�)(G);

which we unravel to be

E

p;q

2

= H

p

(X; Ext

q

O

X

(F ;G)) =) Ext

p+q

O

X

(F ;G):

Apply this to F , and the twist G(n) of G. We compute that, by lemma 4.5,

Ext

q

O

X

(F ;G(n))

�

=

Ext

O

X

(F ;G)(n):

Hence from Serre's vanishing theorem (Theorem 3.2(b)), we have that for all

su�ciently large n (how large depends on F ;G and q)

H

p

(X; Ext

q

O

X

(F ;G(n))) = 0 8 p > 0:
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Thus, �xing i, we can choose n

0

such that for all n � n

0

, we have E

p;q

2

= 0 for all

p > 0 and q � i. Now the relevant part of the spectral sequence degenerates at

E

2

, giving isomorphisms

E

0;i

2

�

=

E

0;i

1

�

=

Ext

i

O

X

(F ;G(n)):

But E

0;i

2

= �(X; Ext

i

O

X

(F ;G(n))).

We recall also some results from commutative algebra.

Lemma 4.9. Let A be a ring, and M be a �nite A-module.

(a) M is projective () Ext

1

A

(M;N) = 0 for all modules N .

(b) M has projective dimension � n () Ext

i

A

(M;N) = 0 for all i > n, for

all modules N .

(c) If (A;m) is a regular local ring of dimension n, then every �nite A-module

M has projective dimension � n, and A=m has projective dimension exactly

n. In general, the projective dimension of M is n � depthM . We have

pd

A

M � n () Ext

i

A

(M;A) = 0 for all i > n.

Proof. Let

0! N ! F !M ! 0(4.1)

be exact with F a free A-module. If Ext

1

A

(M;N) = 0, then this sequence is split

exact, andM is projective. Conversely, ifM is projective, Hom

A

(M;�) is exact,

and so its derived functors Ext

i

A

(M;�) vanish. This proves (a). The proof of (b)

is by induction on the projective dimension of M ; if M is not projective, then in

the above exact sequence (4.1), the projective dimension of N is pd

A

M � 1. If

we already know the vanishing of Ext

i

(N;�) for i > pdM � 1, then from the

long exact sequence of Ext's, we deduce that Ext

i

(M;�) = 0 for i > pdM .

We now discuss the proof of (c). Recall that if (A;m) is a regular local ring of

dimension n, then m is generated by n elements, say a

1

; : : : ; a

n

. Then the asso-

ciated graded ring gr

m

A = �

i�0

m

i

=m

i+1

is a quotient of the symmetric algebra

on m=m

2

, which is a polynomial algebra over k = A=m on the n elements which

are the images of a

1

; : : : ; a

n

in m=m

2

. It is easy to see that for any quotient of

a polynomial algebra k[X

1

; : : : ; X

n

] by a non-zero homogenous ideal, the Hilbert

polynomial has degree < n (it su�ces to consider the quotient by a homoge-

nous principal ideal). Since from dimension theory, dimA = n is the degree of

the Hilbert polynomial of gr

m

A, we conclude that gr

m

A

�

=

k[X

1

; : : : ; X

n

] is a

polynomial algebra over k. Using this, one can prove (left to the reader) that

a

1

; : : : ; a

n

form a regular sequence on A, so that the residue �eld k = A=m has a

�nite, free resolution by the Koszul complex K

A

(a

1

; : : : ; a

n

). Using this complex,

we compute at once that Tor

A

i

(k; k) = 0 for i > n, and is

�

=

k if i = n. In

particular, k has projective dimension n. Hence Tor

A

i

(M; k) = 0 for all i > n,

for any �nite A-module M . Considering a minimal free resolution F

�

! M , we

have that rankF

i

= dim

k

Tor

A

i

(M; k), and so conclude that pd

A

M � n.

Now we show depthM + pd

A

M = n for any �nite A-module M . We do this

by induction on depthM . If depthM = 0, there is an exact sequence

0! k !M !M

0

! 0
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and since pdM

0

� n, we have Tor

A

n+1

(M

0

; k) = 0, and from the long exact

sequence of Tor's we see that Tor

A

n

(M; k) 6= 0. Hence pd

A

M � n, and so it must

be equal to n. If depthM > 0, then choose a non zero-divisor a 2 nm on M to

get an exact sequence

0!M

�a

!M !M=aM ! 0

Then depthM=aM = depthM�1, by standard properties of depth. If pd

A

M=aM =

r (necessarily > 0), then Tor

A

r+1

(M=aM; k) = 0 and Tor

A

r

(M=aM; k) 6= 0, as seen

by considering a minimal free resolution of M=aM . We have an exact sequence

Tor

A

r+1

(M=aM; k)! Tor

A

r

(M; k)

�a

! Tor

A

r

(M; k)! Tor

r

(M=aM; k)

! Tor

A

r�1

(M; k)

�a

! Tor

A

r�1

(M; k)

Since multiplication by a is the zero map on Tor

A

i

(�; k), we deduce that Tor

A

r

(M; k) =

0, and Tor

A

r�1

(M; k) 6= 0. Hence pd

A

M = r � 1.

Finally, we show that if Ext

i

A

(M;A) = 0 for i > n, then pd

A

M � n. Let N be

any �nite A-module. We see easily by induction on pd

A

N that Ext

i

A

(M;N) = 0

for all i > n. Now the criterion in (b) applies.

We now prove the Serre Duality Theorem for coherent sheaves on a projective

scheme over a �eld. We �rst consider the case of projective space itself; then we

reduce the general case to this case. If V is a k-vector space, let V

_

denotes the

dual vector space Hom

k

(V; k).

Theorem 4.10. Let k be a �eld, X = P

n

k

= Proj k[X

0

; : : : ; X

n

]. Let !

X

=

n

^




1

X=k

.

(a) H

n

(X;!

X

)

�

=

k; we �x such an isomorphism.

(b) For any coherent sheaf F on X, the natural pairing

Hom

O

X

(F ; !

X

)


k

H

n

(X;F)! H

n

(X;!

X

)

�

=

k

is a perfect pairing between �nite dimensional vector spaces.

(c) For each i � 0 there is a natural isomorphism, functorial in F ,

Ext

i

O

X

(F ; !

X

)

�

=

H

n�i

(X;F)

_

;

which for i = 0 is the pairing in (b).

Proof. One has the \Euler exact sequence"

0! 


1

X=k

! O

X

(�1)


k

H

0

(X;O

X

(1))! O

X

! 0;

from which, by taking determinants, one obtains

!

X

=

n

^ 


1

X=k

�

=

n+1

^ (O

X

(�1)


k

H

0

(X;O

X

(1))

�

=

O

X

(�n� 1):

Now (a) follows from Theorem 2.4. Since an O

X

-linear map F ! !

X

induces a

k-linear map H

n

(X;F)! H

n

(X;!

X

), we have a pairing as described in (b). To

see that it is perfect, �rst note that if F = O

X

(r) for some r, or a direct sum of

such sheaves, then Theorem 2.4 gives the perfection of the pairing. Now we may

write F as a cokernel of a map �

i

O

X

(n

i

) ! �

j

O

X

(m

j

) for suitable integers n

i

,

m

j

(why?). We also have H

i

(X;G) = 0 for any coherent sheaf G and any i > n
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(this follows from Corlooary 2.3), so that H

n

(X;�) is right exact, and we have a

presentation

�

i

H

n

(X;O

X

(n

i

))! �

j

H

n

(X;O

X

(m

j

))! H

n

(X;F)! 0

This gives rise to a commutative diagram with exact rows

0

//
H

n

(X;F)

_ //
�

j

H

n

(X;O

X

(m

j

))

_ //
�

i

H

n

(X;O

X

(n

i

))

_

0

//
Hom

O

X

(F ; !

X

)

//

OO

�

j

Hom

O

X

(O

X

(m

j

); !

X

)

//

OO

�

i

Hom

O

X

(O

X

(n

i

); !

X

)

OO

The middle and right hand vertical arrows are isomorphism, and hence so is the

left vertical arrow. This proves (b).

To prove (c), note that both sides de�ne contravariant �-functors on the abelian

category of coherent sheaves on X, which coincide in degree 0, by (b). Now for

any r >> 0, we have (using lemmas 4.2 and 4.5, and the Serre Vanishing theorem)

Ext

i

O

X

(O

X

(�r); !

X

)

�

=

H

i

(X;!

X

(r)) = 0 8 i > 0:

We can �nd a surjection O

X

(�r)

�N

� F for any su�ciently large r (this just

means F(r) is globally generated). Also note that H

n�i

(X;O

X

(�r)) = 0 for

all i > 0 and r > 0. This implies that both of our contravariant �-funcotrs are

co-e�aceable, and hence both are universal, and thus isomorphic.

We now consider the general case. We begin with a de�nition.

De�nition 4.11. Let k be a �eld, and let X be a proper scheme of dimension n

over Spec k. A dualizing sheaf on X is a coherent sheaf !

�

X

, together with a trace

map t : H

n

(X;!

�

X

)! k, such that for all coherent sheaves F on X, the pairing

Hom

O

X

(F ; !

�

X

)


k

H

n

(X;F)! H

n

(X;!

�

X

)

t

�! k

is a perfect pairing between �nite dimensional vector spaces.

Since (!

�

X

; t) is de�ned by a universal property, it is easy to see that it is unique

up to unique isomorphism.

Proposition 4.12. Let i : X ,! P

N

k

be a closed subscheme of codimension r.

Then

!

�

X

= i

�

Ext

r

O

P

N

k

(i

�

O

X

; !

P

N

k

)

is a dualizing sheaf for X.

Proof. We �rst show that for any coherent O

X

-module F , we have

E

s

= Ext

s

O

P

N

k

(i

�

F ; !

P

N

k

) = 0 8 s < r:

It su�ces to prove that E

s

(m) has no global sections for all large enough m.

From lemma 4.8, this is equivalent to showing that Ext

s

P

N

k

(i

�

F(�m); !

P

N

k

) = 0

for s < r. By Serre duality for P

N

k

(Theorem 4.10), this amounts to showing

H

N�s

(P

N

k

; i

�

F(�m)) = 0. But H

j

(P

N

k

; i

�

F(�m))

�

=

H

j

(X;F(�m)) for all j,

and N � s > N � r = dimX, so H

N�s

(X;F(�m)) = 0 as desired.
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Now we note that for any O

X

-module F and O

P

N

k

-module G, we have

Hom

O

X

(F ; i

�

Hom

O

P

N

k

(i

�

O

X

;G)) = Hom

O

P

N

k

(i

�

F ;G):

Also if G is injective inMod(P

n

k

), then i

�

Hom

O

P

N

k

(i

�

O

X

;G) is injective inMod(X).

Hence there is a Grothendieck spectral sequence

E

p;q

2

= Ext

p

O

X

(F ; i

�

Ext

q

O

P

N

k

(i

�

O

X

;G)) =) Ext

p+q

P

N

k

(i

�

F ;G):

Applying this to G = !

P

N

k

and using that E

p;q

2

= 0 for all q < r and all p (since

i

�

Ext

q

O

P

N

k

(i

�

O

X

; !

P

N

k

) = 0), we deduce that

E

0;r

2

�

=

E

0;r

1

�

=

Ext

r

O

P

N

k

(i

�

F ; !

P

N

k

)

�

=

H

N�r

(P

N

k

; i

�

F)

_

�

=

H

N�r

(X;F)

_

:

On the other hand, we have

E

0;r

2

= Hom

O

X

(F ; i

�

Ext

r

O

P

N

k

(i

�

O

X

; !

P

N

k

) = Hom

O

X

(F ; !

�

X

):

Hence we have constructed an isomorphism of (contravariant, vector space valued)

functors in F between H

N�r

(X;F)

_

and Hom

O

X

(F ; !

�

X

).

We now give a more concrete description of !

�

X

is some cases.

Proposition 4.13. Let i : X ,! P

N

k

be a closed, local complete intersection

suscheme which is purely of codimension r, and let I be the ideal sheaf of X in

P

N

k

, so that

r

^ I=I

2

is an invertible O

X

-module. Then

!

�

X

�

=

(

r

^ I=I

2

)

�1




O

X

i

�

!

P

N

k

:

In particular, if X is non-singular (i.e., smooth over k) of dimension n = N � r,

then

!

�

X

�

=




n

X=k

=

n

^ 


1

X=k

:

Proof. If A is a Noetherian ring, I � A a complete intersection of height r, gen-

erated by a regular sequence x

1

; : : : ; x

r

, then the Koszul complex K

A

(x

1

; : : : ; x

r

)

gives an A-free resolution of A=I, such that the dual complex (obtained by ap-

plying Hom

A

(�; A)) is isomorphic to K

A

(x

1

; : : : ; x

n

), up to reindexing suitably.

In particular, we compute that Ext

i

A

(A=I; A) = 0 for i 6= r, and Ext

r

A

(A=I; A)

�

=

A=I. One computes immediately that, identifying

r

^ I=I

2

with A=I using the

generator x

1

^ � � � ^ x

r

, the resulting isomorphism ExtHom

A=I

(

r

^ I=I

2

; A=I) is

independent of the choice of the regular sequence x

1

; : : : ; x

r

generating I.

Thus, if X ,! P

N

k

is a local complete intersection subscheme purely of codi-

mension r, then (using 4.7) we obtain an isomorphism

Ext

r

O

P

N

k

(i

�

O

X

;O

P

N

k

)

�

=

i

�

Hom

O

X

(

r

^ I=I

2

;O

X

):

Now !

�

X

= Ext

r

O

P

N

k

(i

�

O

X

; !

P

N

k

) has the description stated in the Proposition, by

lemma 4.5.
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If X is non-singular of dimension n = N � r, then 


1

X=k

is a locally free O

X

-

module of rank r. We have an exact sequence of K�ahler di�erentials

0! I=I

2

! i

�




1

P

N

k

=k

! 


1

X=k

! 0:

Taking determinants, and noting that the determinant of 


1

P

N

k

=k

is just !

P

N

k

, we

deduce that




n

X=k

�

=

(

r

^ I=I

2

)

�1




O

X

i

�

!

P

N

k

�

=

!

�

X

:

Now we prove the Serre duality theorem for more general projective k-schemes.

Theorem 4.14. Let X be a projective scheme over an of dimension n over a

�eld k, and let (!

�

X

; t) be a dualizing sheaf and trace map for X. Let O

X

(1) be a

very ample invertible sheaf on X.

(a) For all j � 0, there are natural tranformations of contravariant functors (in

F)

�

j

: Ext

j

(F ; !

�

X

)! H

n�j

(X;F)

_

;

such that �

0

is given by the dualizing property of !

�

X

.

(b) the following are equivalent:

(i) X is Cohen-Macaulay and equidimensional,

(ii) for any locally free E on X, we have H

j

(X; E(�q)) = 0 for all j < n

and q >> 0,

(iii) the natural transformations �

j

are isomorphisms.

Proof. For each j, we may identify H

n�j

(X;F)

_

with

H

n�j

(P

N

k

; i

�

F)

_

�

=

Ext

j+r

O

P

n

k

(i

�

F ; !

P

n

k

):

In the spectral sequence

E

p;q

2

= Ext

p

O

X

(F ; i

�

Ext

q

O

P

N

k

(i

�

O

X

; !

P

N

k

)) =) Ext

p+q

O

P

N

k

(i

�

F ; !

P

N

k

);

we have E

p;q

2

= 0 if q < r = N � n = codimX, as seen in the proof of Proposi-

tion 4.12. The natural transformations in (a) are then just the edge homomor-

phisms

Ext

j

O

X

(F ; !

�

X

) = E

j;r

2

� E

j;r

1

,! Ext

j+r

O

P

n

k

(i

�

F ; !

P

n

k

):

Now we show that any of the three conditions in (b) is equivalent to

Ext

q

O

P

N

k

(i

�

O

X

; !

P

N

k

) = 0 8 q 6= r:(4.2)

From the spectral sequence, and Serre duality for P

N

k

, the above vanishing state-

ment (4.2) does imply (iii), since we will have E

p;q

2

= 0 for q 6= r, giving isomor-

phisms (where r = N � n)

Ext

j

O

X

(F ; !

�

X

)

�

=

Ext

r+j

P

N

k

(i

�

F ; !

P

N

k

):
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Next, if the duality assertion (iii) holds, then for any locally free E , H

j

(X; E(�q))

is dual to

Ext

n�j

O

X

(E(�q); !

�

X

)

�

=

H

n�j

(X; E

_


 !

�

X

(q)):

By the Serre vanishing theorem, we deduce (ii). Now, assuming (ii), we have that

for any locally free E on X, any integer j < n, and q >> 0, we have

0 = H

j

(X; E(�q))

_

�

=

H

j

(P

N

k

; i

�

E(�q))

_

�

=

Ext

N�j

O

P

N

k

(i

�

E(�q); !

P

N

k

)

�

=

Ext

N�j

O

P

N

k

(i

�

E ; !

P

N

k

(q))

�

=

H

0

(P

N

k

; Ext

n�j

(i

�

E ; !

P

N

k

)(q)):

Now any coherent sheaf G on P

N

k

with H

0

(P

N

k

;G(q)) = 0 for q >> 0 must satisfy

G = 0. Taking E = O

X

, we deduce that the vanishing assertion (4.2) must

hold. Finally, we note that the stalk of Ext

q

O

P

N

k

(i

�

O

X

; !

P

N

k

) at any point x 2 X

is isomorphic to Ext

q

O

P

N

k

;x

(O

X;x

;O

P

N

k

;x

) (since !

P

N

k

is an invertible sheaf). By

lemma 4.9(c), we deduce that (4.2) is equivalent to

pd

O

P

N

k

;x

O

X;x

= r;

which in turn is equivalent to

depth

O

P

N

k

;x

O

X;x

= dimO

P

N

k

;x

� r � dimO

X;x

:

But we always have depthO

X;x

� dimO

X;x

. Hence this last condition can hold

only if

dimO

P

N

k

;x

� r = dimO

X;x

;

(which is the same as saying that X is equidimensional), and all the local rings

O

X;x

have depth equal to their dimension, i.e., are Cohen-Macaulay.

Corollary 4.15. Let X be an equidimensional Cohen-Macaulay projective k-

scheme of dimension n and E a locally free sheaf on X of �nite rank. Then

there are isomorphisms

H

i

(X; E)

_

�

=

H

n�i

(X;Hom

O

X

(E ; !

�

X

))

�

=

H

n�i

(X; E

_




O

X

!

�

X

):

Proof. This is Theorem 4.14 combined with Lemma 4.5.

Remark 4.16. From (b) of the above Theorem, ifX is purely n-dimensional and

Cohen-Macaulay, we have a perfect duality betweenH

i

(X;F) and Ext

n�i

O

X

(F ; !

�

X

).

Even without the Cohen-Macaulay hypothesis, one can get a similar duality as-

sertion between H

i

(X;F) and Ext

n�i

(F ; !

�

X

), where !

�

X

is a certain complex of

injective O

X

-modules, and Ext

i

are the hyper-ext groups (hyperderived functors

of Hom ) of pairs of complexes. One takes

!

�

X

= i

�

Hom

O

P

N

k

(i

�

O

X

;J

�

);

where J

�

is an injective resolution of !

P

N

k

. Thus !

�

X

is a complex ofO

X

-injectives,

which is well-de�ned up to homotopy (because J

�

is), and whose cohomology

sheaves are the sheaves i

�

Ext

j

O

P

N

k

(i

�

O

X

; !

P

N

k

). The spectral sequence used in the
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proofs of Proposition 4.12 and Theorem 4.14 gets re-interpreted as a spectral

sequence for hyper-ext groups. Such a complex !

�

X

is called a dualizing complex

for X.

Remark 4.17. In fact Serre duality is true for equidimenional Cohen-Macaulay

proper k-schemes. The proof in this case is more di�cult; see [Ha3].

Proposition 4.18. (Lemma of Enriques-Severi-Zariski) Let X be an integral

normal projective scheme over k of dimension � 2, and O

X

(1) a very am-

ple invertible sheaf on X. Then for any locally free O

X

-module E, we have

H

1

(X; E(�q)) = 0 for all q >> 0.

Proof. As in the proof of Theorem 4.14(b), the normality of X implies that

Ext

j

O

P

N

k

(i

�

O

X

; !

P

N

k

) = 0 for j � N � 1. From the spectral sequence, we then

obtain (for q >> 0, using Serre vanishing)

Ext

N�1

P

N

k

(i

�

O

X

(�q); !

P

N)

�

=

H

0

(X; i

�

Ext

j

O

P

N

k

(i

�

O

X

; !

P

N

k

)(q)) = 0:

By duality on P

N

k

we obtain the desired vanishing statement for H

1

.

Corollary 4.19. Let X be an integral normal projective scheme of dimension

� 2 over an algebraically closed �eld k, and let D � X be the support of an

e�ective ample divisor on X. Then D is connected.

Proof. We have H

0

(X;O

X

) = k. It su�ces to show that, for a suitable scheme

structure on D, we have H

0

(D;O

D

) = k. Choose a scheme structure on D so

that D is an e�ective Cartier divisor, which is a su�ciently high multiple of a

very ample divisor on X { �rst choose a strcuture D

0

which is an ample Cartier

divisor, then a multiple D

1

= mD

0

which is very ample, then a su�ciently

high multiple D = qD

1

. Then by Proposition 4.18, we have H

1

(X;O

X

(�D)) =

H

1

(X;O

X

(�qD

1

)) = 0. Hence from the long exact sequence in cohomology for

the exact sheaf sequence

0! O

X

(�D)! O

X

! i

�

O

D

! 0

(where i : D ,! X) we get that k = H

0

(X;O

X

)! H

0

(D;O

D

) is surjective.

Corollary 4.20. Let X be an integral normal projective variety of dimension

� 2 over an algebraically closed �eld k, and let D be the support of an ample

divisor on X. Then

�

alg

1

(D)! �

alg

1

(X)

is surjective.

Proof. From the de�nition of the algebraic fundamental group, it su�ces to prove

that if f : Y ! X is a connected algebraic covering space (i.e., Y is conencted,

and f is �nite, 
at and unrami�ed), then for the induced pull-back covering space

D �

X

Y ! D, D �

X

Y is connected. But Y is again an irreducible normal k-

scheme of �nite type, and the pull-back to Y of any ample Cartier divisor on X

is ample on Y . Hence Y is also projective, and D�

X

Y � Y is the support of an

ample divisor, hence by Corollary 4.19 it is connected.
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We use the Serre duality theorem to discuss the Riemann-Roch theorem for

non-singular projective curves. Recall that a non-singular projective curve X

over an algebraically closed �eld k is an integral projective k-scheme of dimension

1. The rational functions k(X) on X form a �eld, which is a �nitely generated

extension �eld of k of transcendence degree 1, and the points of X are in bijection

with the discrete valuation rings of k(X) which contain k (see [Ha], Chapter 1,

x6), where the point x is associated to the discrete valuation ringO

X;x

{ we regard

k(X) as O

X;�

where � is the generic point of x; since x lies in the closure of �, there

is a natural homomorphism O

X;x

! O

X;�

, which is an inclusion O

X;x

,! k(X) as

a discrete valuation subring containing k, with quotient �eld k(X).

A divisor on X is an element of the free abelian group Div (X) on closed

points of X; the degree of a divisor D =

P

i

n

i

x

i

(with n

i

2 Z, x

i

2 X) is the

integer degD =

P

i

n

i

. If f 2 k(X) n f0g, then we can associate to it the divisor

(f)

X

=

P

x

ord

x

(f)x, where ord

x

denotes the normalized discrete valuation on

k(X) associated to the closed point x (only �nitely many of the integers ord

x

(f)

are non-zero, so the sum does de�ne a divisor).

We have an invertible sheaf O

X

(D) associated to any divisor D on X, and

this induces an isomorphism between the Picard group of isomorphism classes of

invertible sheaves on X, and the divisor class group of linear equivalence classes

of divisors (a divisor is linearly equivalent to 0 if it is of the form (f) for some

f 2 k(X) n f0g).

If ! 2 


1

k(X)=k

is non-zero, one can similarly associate to it a divisor as follows:

for each closed point x 2 X, choose a generator !

x

of the free O

X;x

-module




1

O

X;x

=k

. Since O

X;x

has quotient �eld k(X), we have




1

k(X)=k

= 


1

O

X;x

=k




O

X;x

k(X) � 


1

O

X;x

=k

;

and so ! = f

x

!

x

for a unique f

x

2 k(X); if we make a di�erent choice of !

x

, the

coe�cient f

x

is replaced by uf

x

for some unit u 2 O

X;x

. De�ne K

X

= div (!) =

P

x

ord

x

(f

x

). Clearly div (f!) = (f)

X

+div (!) for any non-zero f 2 k(X); hence

the linear equivalence class of K

X

is clearly well-de�ned. It is called the canonical

divisor class on X. Any such divisor K

X

is called a canonical divisor on X; it

determines an isomorphism O

X

(K

X

)

�

=




1

X=k

= !

X

.

Theorem 4.21. Let X be a non-singular projective curve over an algebraically

closed �eld k, and K

X

a canonical divisor. Then for any divisor D on X, we

have

dim

k

H

0

(X;O

X

(D))� dim

k

H

0

(X;O

X

(K

X

�D)) = degD + 1� g;

where g = dim

k

H

0

(X;


1

X=k

) is the genus of X.

Proof. We have O

X

(K

X

)

�

=

!

X

, and so O

X

(K

X

� D)

�

=

O

X

(D)

�1


 !

X

. By

Serre duality applied to O

X

and O

X

(D), we then have g = dim

k

H

1

(X;O

X

),

and dim

k

H

0

(X;O

X

(K

X

� D)) = dim

k

H

1

(X;O

X

(D)). Thus, the Theorem is

equivalent to the statement:

�(O

X

(D)) = dim

k

H

0

(X;O

X

(D))� dim

k

H

1

(X;O

X

(D))(4.3)
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= degD + 1� g = degD + �(O

X

):

Let D =

P

i

n

i

x

i

be any divisor, and de�ne jjDjj =

P

i

jn

i

j. We prove (4.3) by

induction on jjDjj. If jjDjj = 0, then D = 0, and O

X

(D) = O

X

, and degD = 0,

so (4.3) holds trivially. For any D

1

, let D

2

= D

1

+x, and consider the exact sheaf

sequence

0! O

X

(D

1

)! O

X

(D

2

)! i

x�

k(x)! 0;

where i

x�

k(x) is the skyscraper sheaf with stalk k(x) at x. The associated exact

sequence in cohomology gives

�(O

X

(D

2

)) = �(O

X

(D

1

)) + �(i

x�

k(x)) = �(O

X

(D

1

)) + 1:

Hence (4.3) holds for D

1

() it holds for D

2

. Now choosing x suitably and

taking D = D

1

or D = D

2

, we deduce (4.3) by induction on jjDjj.

Corollary 4.22. If X is as above, degK

X

= 2g� 2 and dim

k

H

1

(X;


1

X=k

) = 1.

For any non-zero f 2 k(X), we have deg(f)

X

= 0.

Proof. By Serre duality for 


1

X=k

we have dim

k

H

1

(X;


1

X=k

) = dim

k

H

0

(X;O

X

) =

1. Since dim

k

H

0

(X;


1

X=k

) = g, the Riemann-Roch theorem for O

X

(K

X

) implies

degK

X

= 2g�2. Finally, if D = (f)

X

, then O

X

(D) = O

X

, so the Riemann-Roch

theorem implies degD = deg 0 = 0.

5. Higher direct images

If f : X ! Y is a morphism, and F is a coherent sheaf on X, then we

may want to study the cohomology of the restrictions of F to the �bers of f .

Ideally, one would like to have a quasi-coherent sheaf F

i

on Y , such that for

any point y 2 Y , if X

y

= X �

Y

Spec k(y) is the scheme theoretic �ber, then

(F

i

)

y


 k(y) = H

i

(X

y

;F 
O

X

y

).

In general, it is impossible to �nd such a sheaf F

i

(one situation where this

is possible, called the base change theorem, is discussed later). In general, the

nearest substitute is the i-th higher direct image sheaf R

i

f

�

F , mentioned in the

sheaf theory lectures.

De�nition 5.1. Let f : X ! Y be a continuous map of topological spaces, and

F a sheaf of abelian groups on X. The i-th direct image sheaf R

i

f

�

F is the

value on F of the i-th derived functor of the left exact functor f

�

:Mod(Z

X

)!

Mod(Z

Y

).

Thus, if we have an injective resolution 0 ! F ! I

�

, then R

i

f

�

F is the i-th

cohomology sheaf of the complex

0! f

�

I

0

! f

�

I

1

! � � �

For example, if Y is a point, so that sheaves of abelian groups on Y are identi�ed

with abelian groups, then f

�

becomes identi�ed with the global section functor,

and R

i

f

�

become the i-th cohomology functor H

i

(X;�).



COHOMOLOGY OF COHERENT SHEAVES 25

Lemma 5.2. If F is any sheaf of abelian groups on X, then R

i

f

�

F is the sheaf

on Y associated to the presheaf

U 7! H

i

(f

�1

(U);F j

f

�1

(U)

):

Proof. Let H

i

(X;F) denote the sheaf associated to the above presheaf. Both

fR

i

f

�

g

i�0

and fH

i

(X;�)g

i�0

form �-functors Mod(Z

X

) ! Mod(Z

Y

), which

agree for i = 0. If I is injective, then R

i

f

�

I = 0 for i > 0 by the de�nition of

derived functors, while the above presheaf is 0, because I j

f

�1

(U)

is 
asque, for

all U . Hence both �-functors are universal, and must coincide.

Corollary 5.3. If V � Y is open, then

R

i

f

�

F j

V

= R

i

(f j

V

)

�

F j

f

�1

(V )

:

Corollary 5.4. If F is 
asque, then R

i

f

�

F = 0 for i > 0. Hence R

i

f

�

may be

computed using 
asque resolutions (e.g. the Godement resolution).

Corollary 5.5. If f : (X;O

X

) ! (Y;O

Y

) is a morphism of ringer spaces, then

the i-th derived functor of f

�

: Mod(O

X

) ! Mod(O

Y

) coincides with R

i

f

�

,

restricted to O

X

-modules.

Proof. Any injective resolution in Mod(O

X

) is a 
asque resolution as well.

The following is slightly weaker than a similar result in [Ha] but is su�cient

for our purpose.

Proposition 5.6. Let f : X ! Y be a morphism of between Noetherian sepa-

rated schemes.

1. If Y = SpecA is a�ne, then for any quasi-coherent O

X

-module F , we have

R

i

f

�

F =

^

H

i

(X;F):

2. In general, if F is quasi-coherent, then R

i

f

�

F is quasi-coherent.

Proof. The case with Y a�ne implies the general case. So assume Y = SpecA.

There is in any case a map

^

H

i

(X;F)! R

i

f

�

F . For h 2 A, let U = SpecA

h

be the

corrersponding basic open set. We claim H

i

(f

�1

(U);F j

f

�1

(U)

) = H

i

(X;F) 


A

A

h

. Assuming the claim, lemma 5.2 implies that

^

H

i

(X;F) ! R

i

f

�

F is an iso-

morphism on stalks, hence an isomorphism.

To prove the claim, let U = fU

0

; : : : ; U

n

g be an a�ne open cover of X, where

U

i

= SpecB

i

, and consider the

�

Cech complex

�

C

�

(U ;F), which computes the

cohomology groups H

i

(X;F). Then V

j

= U

j

�

Y

U = SpecB

i




A

A

h

determines

an a�ne open cover V = fV

0

; : : : ; V

n

g of V = f

�1

(U), and the corresponding

�

Cech complex for F j

f

�1

(V )

is just

�

C(V;F j

V

)

�

=

�

C(U ;F)


A

A

h

:

Since localization is exact, the cohomology groups of

�

C(U ;F)


A

A

h

are just the

localizations H

i

(X;F)


A

A

h

.

As a corollary to the proof, we also get the following.
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Corollary 5.7. Let f : X ! Y a morphism of separated Noetherian schemes,

and U = fU

0

; : : : ; U

n

g be an a�ne open cover of X. Then for any quasi-coherent

sheaf F on X,

R

i

f

�

F = i-th cohomology sheaf of f

�

�

C

�

(U ;F).

Proof. Using the fact that, sinceX, Y are separated, f

�1

(V )\U is a�ne whenever

U � X, V � Y are a�ne open subsets, the proof is reduced to the case Y is

a�ne, which we treat as above.

Another corollary is as follows, whose conclusion is expressed in words by saying

that \cohomology commutes with 
at base change".

Corollary 5.8. Suppose we have a pull-back square of separated Noetherian schemes

W

q

! X

g # # f

Z

p

! Y

where f is proper and g is 
at. Then for any coherent sheaf F on X, there is are

canonical isomorphisms

p

�

R

i

f

�

F

�

=

R

i

g

�

q

�

F ; 8 i � 0:

Proof. The proof reduces at once to the case when Y = SpecA, Z = SpecB

are a�ne. Now if U = fU

0

; : : : ;U

n

g is an a�ne open cover of X, then V =

fV

0

; : : : ; V

n

g is one of W , where

V

i

= Z �

Y

U

i

= q

�1

(U

i

)

�

=

U

i

�

SpecA

SpecB:

The corollary amounts to the assertion that H

i

(W; q

�

F )

�

=

H

i

(X;F)


A

B. This

is true because

�

C

�

(V; q

�

F) =

�

C

�

(U ;F)


A

B, and B is 
at over A.

One of the basic results on higher direct images is the following coherence

theorem, which is an elaboration of Theorem 3.2.

Theorem 5.9. Let f : X ! Y be a proper morphism of Noetherian schemes.

Let O

X

(1) be a very ample invertible sheaf on X relative to Y , and let F be a

coherent O

X

-module.

(a) For all n >> 0, the natural map f

�

f

�

F(n)! F(n) is surjective.

(b) For all i � 0, R

i

f

�

F is a coherent sheaf on Y .

(c) For all i > 0 and all n >> 0, we have R

i

f

�

F(n) = 0.

Proof. The result is local on Y , since Y is Noetherian, hence quasi-compact. So

we may assume Y is a�ne. Now the result follows from Proposition 5.6 and

Theorem 3.2.

Exercise 5.10. (Projection Formula) Let f : X ! Y be a morphism of ringer

spaces, F an O

X

-module, and E a locally free O

Y

-module of �nite rank. Prove

that there are natural isomorphisms for all i � 0

R

i

f

�

(f

�

E 


O

X

F)

�

=

E 


O

Y

R

i

f

�

F :

We now brie
y discuss the Leray spectral sequence.
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Theorem 5.11. (Leray Spectral Sequence) Let f : X ! Y be a continuous map

between topological spaces, and F a sheaf of abelian groups on X. Then there is

a spectral sequence

E

p;q

2

= H

p

(Y;R

q

f

�

F) =) H

p+q

(X;F):

In particular, we have a functorial �ve term exact sequence of low degree terms

0! H

1

(Y; f

�

F)! H

1

(X;F)! �(Y;R

1

f

�

F)! H

2

(Y; f

�

F)! H

2

(X;F):

Proof. If I is an injective sheaf on X, it is 
asque, and hence so is f

�

I (in fact f

�

I

is injective), hence �(Y;�)-acyclic. Hence there is a Grothendieck spectral se-

quence of composite functors, which is just the Leray spectral sequence described

above. To get the �ve term exact sequence, note that E

1;0

2

= E

1;0

1

, while there is

an exact sequence

0! E

0;1

1

! E

0;1

2

! E

2;0

2

! E

2;0

1

! 0

(in other words, E

p;q

3

= E

p;q

1

for (p; q) = (0; 1) or (2; 0)). Since the limit of the

spectral sequence is the sequence of groups H

i

(X;F), the group H

1

(X;F) �ts

into an exact sequence

0! E

1;0

1

! H

1

(X;F)! E

0;1

1

! 0;

and there is a 3-step �ltration

0 � F

2

H

2

(X;F) � F

1

H

2

(X;F) � F

0

H

2

(X;F) = H

2

(X;F)

where F

2

H

2

(X;F) = E

2;0

1

, F

1

=F

2

�

=

E

1;1

1

and F

0

=F

1

�

=

E

0;2

1

. In particular, there

is an inclusion E

2;0

1

,! H

2

(X;F), giving a map E

2;0

2

! H

2

(X;F). Combining

the above, we get an exact sequence

0! E

1;0

2

! H

1

(X;F)! E

0;1

2

! E

2;0

2

! H

2

(X;F);

which is the �ve term exact sequence.

Corollary 5.12. Let f : X ! Y be an a�ne morphism between Noetherian

schemes, and let F be quasi-coherent on X. Then

(a) R

i

f

�

F = 0 for all i > 0, and

(b) there are natural isomorphisms H

i

(Y; f

�

F)

�

=

H

i

(X;F).

Proof. We �rst prove (a). From lemma 5.2,it su�ces to observe that if U � Y is

a�ne, then since f

�1

(U) = V is also a�ne (since f is a�ne) and so H

i

(V;F j

V

) =

0. This proves (a). For (b), note that the Leray spectral sequence has E

p;q

2

= 0

for q > 0, and hence degenerates at E

2

giving isomorphisms

H

i

(Y; f

�

F) = E

i;0

2

�

=

E

i;0

1

�

=

H

i

(X;F):

Remark 5.13. In a similar way, if f : X ! Y is any continous map, and F

a sheaf with R

i

f

�

F = 0 for i > 0, the Leray spectral sequence implies that

H

i

(Y; f

�

F)

�

=

H

i

(X;F).
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One application of the Leray Spectral Sequence is to the extension of the Co-

herence Theorem 3.2(b) to proper morphisms. The proof uses the Chow Lemma,

which states that for any proper morphism g : X ! S of Noetherian schemes,

there exists a projective morphism h : Z ! S, and a morphism of S-schemes

p : Z ! X, such that for some open dense subscheme U � X, the morphism

p

�1

(U) ! U is an isomorphism. The following proof is prototypical of proofs of

results for proper morphisms, by reduction to the case of projective morphisms.

Theorem 5.14. Let f : X ! Y be a proper morphism between Noetherian

schemes, and F a coherent sheaf on X. Then R

i

f

�

F is coherent on Y for all

i � 0.

Proof. Since the property is local on Y , we reduce to the case Y = SpecA is a�ne.

Now we are reduced to proving H

i

(X;F) is a �nite A-module, for any coherent

F . We do this by Noetherian induction on supp (F), the closed subscheme of X

determined by the (coherent) annihilator ideal sheaf of F . If supp (F) is a closed

point x, then the residue �eld k(x) is a �nitely generated A-algebra, hence a �nite

A-module; since F is a skyscraper sheaf whose stalk is a �nite dimensional k(x)-

vector space, we have that H

0

(X;F) is a �nite A-module, and H

i

(X;F) = 0 for

i > 0. Next, if i : supp (F) ! X is the inclusion, then F = i

�

i

�

F , and we have

H

i

(X;F) = H

i

(supp (F); i

�

F). So we may assume X = supp (F).

By Chow's Lemma, we can �nd a morphism p : Z ! X such that the composi-

tion g = p�f : Z ! Y is projective, and for an open dense U � X, the morphism

p

�1

(U) ! U is an isomorphism. From lemma 5.2, the natural map F ! p

�

p

�

F

has kernel an cokerel supported on the complement of U , and the higher direct

images R

i

p

�

p

�

F are also supported on the complement of U . By Noetherian in-

duction, we thus know that this kernel and cokernel, as well as the higher direct

images R

i

p

�

p

�

F , have cohomology modules on X which are �nite A-modules.

In particular, from suitable long exact sequences of cohomology modules, we are

reduced to proving that H

i

(X; p

�

p

�

F) is a �nite A-module for all i.

In the Leray spectral sequence

E

s;t

2

= H

s

(X;R

t

p

�

p

�

F) =) H

s+t

(Z; p

�

F);

the limit terms H

n

(Z; p

�

F) are �nite A-modules, since Z ! Y = SpecA is

projective, and p

�

F is coherent. Hence all the E

s;t

1

terms are �nite A-modules;

hence E

s;t

r

is a �nite A-module for each s; t and all su�ciently large r. Further,

we are given (the Noetherian induction hypothesis) that E

s;t

2

= H

s

(X;R

t

p

�

p

�

F)

is a �nite A-module whenever t > 0. From the exact sequences

E

i�r�1;r

r

! E

i;0

r

! E

i;0

r+1

! 0

we conclude by descending induction on r that E

i;0

r

is a �nite A-module for all

i � 0 and all r � 2. The �nite generation of E

i;0

2

= H

i

(X; p

�

p

�

F) is the desired

conclusion.
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6. Some relations between coherent sheaf cohomology and local

cohomology

If A is a Noetherian ring, I an ideal, and M an A-module, let

H

0

I

(M) = fm 2 M j I

n

m = 0 for some n > 0g:

Recall that the local cohomology module H

i

I

(M) is de�ned to be the value on M

of the i-th derived functor of M 7! H

0

I

(M). By de�nition, this means that for

any injective resolution 0!M ! J

�

,

H

i

I

(M) = i-th cohomology of H

0

I

(J

�

):

By de�nition, the local cohomology depends only on the radical of I.

The category of A-modules is equivalent to the category of quasi-coherent

sheaves on X = SpecA. If Z � X is the subscheme de�ned by the ideal I

(or equivalently the coherent ideal sheaf

e

I), then we have a natural identi�cation

�

Z

(X;

f

M)

�

=

H

0

I

(M):

Lemma 6.1. Let A, I be as above. For any A-module M , we have natural iden-

ti�cations for all i � 0

H

i

Z

(X;

f

M)

�

=

H

i

I

(M):

Proof. If 0 ! M ! J

�

is an injective resolution, then by lemma 1.2, 0 !

f

M !

f

J

�

is a 
asque resolution, and 
asque sheaves are acyclic for cohomology with

support. Hence

H

i

Z

(X;F)

�

=

H

i

(�

Z

(X;

f

J

�

))

�

=

H

i

(H

0

I

(J

�

))

�

=

H

i

I

(M):

Corollary 6.2. Let U = SpecA n Spec (A=I). There is an exact sequence

0! H

0

I

(M)!M ! H

0

(U;

f

M j

U

)! H

1

I

(M)! 0;

and natural isomorphisms

H

i

(U;

f

M j

U

)

�

=

H

i+1

I

(M) 8 i > 0:

Proof. There is a long exact sequence of cohomology with supports

0! H

0

Z

(X;

f

M)! H

0

(X;

f

M)! H

0

(U;

f

M j

U

)! H

1

Z

(X;

f

M)! H

1

(X;

f

M)

! H

1

(U;

f

M j

U

)! H

2

Z

(X;

f

M)! � � �

from which the corollary follows immediately, since on the a�ne scheme X, we

have H

0

(X;

f

M) =M and H

i

(X;

f

M) = 0 for i > 0 (Theorem 1.1).

The above corollary provides the basic link between local cohomology modules

de�ned in commutative algebra and the cohomology theory of quasi-coherent

sheaves. We will illustrate how this is useful in one important situation.

Let R = �

n�0

R

n

be a graded ring, where A = R

0

is Noetherian, each R

n

is

a �nite A-module, and R is a �nitely generated A-algebra. Let R

+

� R be the

\irrelevant graded ideal", i.e., R

+

= �

n>0

R

n

= kerR ! A. Let X = ProjR be
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the associated projective A-scheme. IfM = �

n2Z

M

n

is a graded R-module, there

is an associated quasi-coherent sheaf

f

M on X. If F =

f

M , we let F(n) denote

the sheaf

^

M(n), where M(n) is the graded R-module with underlying R-module

M and shifted grading M(n)

r

=M

n+r

. If R is generated by R

1

as an A-algebra,

then O

X

(1) is an invertible sheaf on X, and F(n)

�

=

F 


O

X

O

X

(1)


n

.

Theorem 6.3. In the above situation, there is a natural exact sequence

0! H

0

R

+

(M)!M ! �

n2Z

H

0

(X;F(n))! H

1

R

+

(M)! 0;

and there are natural isomorphisms

H

i+1

R

+

(M)

�

=

�

n2Z

H

i

(X;F(n)):

Proof. Let Y = SpecR, U = SpecR n SpecA, where we regard SpecA as the

subscheme de�ned by the ideal R

+

. There is a canonical morphism of A-schemes

f : U ! X, given on points by associating to a prime ideal } � A the prime

ideal e} generated by all homogenous elements in }; provided R

+

6� } (i.e., if

} 2 U � Y ), this homogeneous prime ideal does not contain R

+

and is hence a

point of ProjR.

At the level of schemes, the morphism f may be de�ned as follows: if h 2 R

+

is

a homogeneous element, we have an a�ne open subset Y

h

= SpecR

h

� Y , as well

as an a�ne open subset D

+

(h) = SpecR

(h)

, where R

(h)

is the subring of elements

of degree 0 in the Z-graded ring localization R

h

. Note that Y

h

� U , and U is

covered by such open subsets. The morphism Y

h

! D

+

(h) is that determined by

the incusion R

(h)

� R

h

as the subring of elements of degree 0.

One sees easily that the diagrams

Y

h

1

h

2

! Y

h

i

# #

D

+

(h

1

h

2

) ,! D

+

(h

i

)

commute for each i, where Y

h

1

h

2

= Y

h

1

\ Y

h

2

, and so these locally de�ned

morphisms patch together to de�ne f : U ! X. One veri�es further that

f

�1

(D

+

(h) = Y

h

(this just says h 62 e} () h 62 }), so f is an a�ne morphism.

Now let

e

F denote the quasi-coherent sheaf on Y associated to the R-moduleM

(ignoring the grading). The R

h

-module of sections of

e

F on Y

h

is justM

h

, which is

a Z-graded module over the Z-graded ring R

h

. Notice that by de�nition of F(n),

the R

(h)

submodule of homogeneous elements of degree n in M

h

is naturally

identi�ed with the R

(h)

-module of sections of F(n) on D

+

(h). Thus, we have a

canonical isomorphism of quasi-coherent sheaves on X,

f

�

(

e

F j

U

)

�

=

�

n2Z

F(n):

Since f is an a�ne morphsim, R

i

f

�

e

F = 0 for all i > 0, and so by the Leray spec-

tral sequence for f : U ! X and the sheaf

e

F , we have a canonical identi�cation

H

i

(U;

e

F j

U

)

�

=

H

i

(X; f

�

e

F j

U

)

�

=

�

n2Z

H

i

(X;F(n)):

Now the Theorem follows from Corollary 6.2.
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Note that the local cohomology modules H

i

R

+

(M) carry natural gradings, for

example as a consequence of the above Theorem.

Corollary 6.4. In the above situation, we have an exact sequence of �nite A-

modules for each n 2 Z

0! H

0

R

+

(M)

n

!M

n

! H

0

(X;F(n))! H

1

R

+

(M)

n

! 0;

and isomorphisms

H

i+1

R

+

(M)

n

�

=

H

i

(X;F(n)):

Example 6.5. Let X � P

N

k

be a projective scheme, and R = �

n�0

R

n

the ho-

mogeneous coordinate ring of X. Then from Theorem 6.3, we have

H

0

R

+

(R) = 0;

H

1

R

+

(R)

�

=

coker (R ,! �

n2Z

H

0

(X;O

X

(n)));

H

i+1

R

+

(R)

�

=

�

n2Z

H

i

(X;O

X

(n)):

Thus, if X is a normal projective variety, so that the a�ne cone SpecR is normal

except perhaps at the vertex V (R

+

), then the normality of the cone (i.e., of R)

is equivalent to the vanishing of H

1

R

+

(R), or equivalently, to the surjectivity for

each n of the natural maps

H

0

(P

N

k

;O

P

N

k

(n))! H

0

(X;O

X

(n));

whose image is just R

n

� H

0

(X;O

X

(n)).

On the other hand, the condition that R is Cohen-Macaulay is equivalent to

this surjectivity, together with the vanishing result

H

i

(X;O

X

(n)) = 0 8 i < dimX; 8 n 2 Z:

For example, let E be a smooth projective plane curve of degree 3 (an elliptic

curve), and X = E�E its Segre embedding in P

8

k

. The homogeneous coordinate

ring of X is then easily seen to be normal, but it is not Cohen-Macaulay, since

H

1

(X;O

X

) 6= 0.

Lemma 6.6. In the situation of Theorem 3.5, suppose M is a �nite graded

R(X)-module, and F the corresponding coherent sheaf on X. Let P (t) be the

Hilbert polynomial of M (and hence also of F). Then

P (n)� `(M

n

) =

X

i�0

(�1)

i�1

`(H

i

R

+

(M)

n

):

Proof. Since P (n) = �(F(n)) =

P

i�0

(�1)

i

`(H

i

(X;F(n)), the lemma follows

from Corollary 6.4.

The above lemma deals with the case of sheaves on a projective scheme over an

Artinian ring. There is another situation where one has a siimilar result, which

is proved by reduction to the Artinian case. Let (A;m) be a Noetherian local

ring, I an m-primary ideal. Let R(I) = �

n�0

I

n

be the Rees algebra of I, and

let X = ProjR(I) be the blow-up scheme of I. If M is any �nite A-module, we

can associate to it a �nite graded R(I)-module M

�

= �

n�0

I

n

M , and hence a
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coherent sheaf F =

g

M

�

on X. Since X ! SpecA is an isomorphism over the

punctured spectrum, we deduce that for each n � 0, we have

(i) the kernel and cokernel of the natural map M ! H

0

(X;F) are supported

at m, i.e., have �nite length, and

(ii) the A-modules H

i

(X;F(n)) for i > 0 are supported at m.

We also have, associated to M , a polynomial P (t) 2 Q [t] (the Hilbert-Samuel

polynomial) with the property that P (n) = `(M=I

n

M) for all n >> 0. Since

`(M=I

n

M) =

n�1

X

j=0

`(I

j

M=I

j+1

M);

the existence of a Hilbert-Samuel polynomial as above follows from the exis-

tence of one for the �nite graded module �

n�0

I

n

M=I

n+1

M over the graded ring

R(I)=R(I)

+

= �

n�0

I

n

=I

n+1

(to which Theorem 3.5 applies).

Theorem 6.7. (Johnston-Verma-Trivedi) For any �nite A-moduleM , with Hilbert-

Samuel polynomial P (t) 2 Q [t], we have

P (n)� `(M=I

n

M) =

X

i�0

(�1)

i�1

`(H

i

R(I)

+

(M

�

)

n

) 8 n � 0:

Proof. Let Q(n) =

P

i�0

(�1)

i�1

`(H

i

R(I)

+

(M

�

)

n

). For n >> 0, we have Q(n) = 0,

from Corollary 6.4, because

(i) the graded R(I)-modulesM

�

and �

n�0

H

0

(X;F(n)) coincide in high enough

degrees (both graded modules determine the same coherent sheaf F on X);

this implies the terms in Q(n) for i = 0; 1 vanish for n >> 0

(ii) H

i

(X;F(n)) = 0 for i � 1 and n >> 0 by Serre vanishing, so the terms in

Q(n) for i � 2 vanish.

On the other hand, `(M=I

n

M) = P (n) for large n, since P (t) is the Hilbert-

Samuel polynomial ofM relative to I. Hence the formula in the Theorem is valid

for n >> 0.

Let gr

I

M = �

n�0

I

n

M=I

n+1

M , which is a �nite graded module over gr

I

A =

R(I)=R(I)

+

. There is an exact sequence of graded R(I)-modules

0! N !M

�

! gr

I

M ! 0;

where N = �

n�0

I

n+1

M is a graded submodule of M

�

(1) such that the graded

quotient M

�

(1)=N is concentrated in degree �1, and vanishes in other degrees.

Hence

e

N =

^

M

�

(1) = F(1), and we have an associated exact sequence of coherent

sheaves on X

0! F(1)! F ! G ! 0;

where G =

^

gr

I

M . The sequence of graded modules gives rise to a long exact

sequence of (graded) local cohomology modules

0! H

0

R

+

(N)! H

0

R

+

(M

�

)! H

0

R

+

(gr

I

M)! H

1

R

+

(N)! � � � :
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Restricting to the homogeneous components of degree n, where n � 0, we get a

corresponding bounded exact sequence of A-modules of �nite length. Hence we

obtain a formula

Q(n)�Q(n + 1) =

X

i�0

(�1)

i

`(H

i

R

+

(gr

I

M))

n

):

On the other hand, by lemma 6.6, we have

�(G(n))� `(gr

n

I

M) =

X

i�0

(�1)

i�1

`(H

i

R

+

(gr

I

M))

n

) = Q(n+ 1)�Q(n):

But `(gr

n

I

M) = `(R=I

n+1

M)� `(R=I

n

M) = P (n+1)�P (n), for large n. Hence

�(G(n)) = P (n+ 1)� P (n) for all n 2 Z (in other words, P (t+ 1)� P (t) is the

Hilbert polynomial for G). This means

P (n+ 1)� `(M=I

n+1

M)� P (n) + `(M=I

n

M) = Q(n + 1)�Q(n):

Hence if the Theorem holds for n+ 1, then it also holds for n.

7. The formal function theorem

In this section we discuss the Formal Function Theorem and some applications.

Theorem 7.1. Let f : X ! Y be a proper morphism, and F a coherent sheaf

on X. Let y 2 Y , and let X

n

= X �

Y

SpecO

Y;y

=m

n

y

, where m

y

� O

Y;y

is the

maximal ideal; let i

n

: X

n

,! X be the given closed immersion. Then there is a

canonical isomorphism

(R

i

f

�

F)

y




O

Y;y

b

O

Y;y

�

=

lim

 �

n

H

i

(X

n

; i

�

n

F);

where

b

O

Y;y

is the m

y

-adic completion of O

Y;y

.

Proof. We will consider only the case of projective morphisms, though the result

holds more generally for proper morphisms (the proper case can be reduced to

the projective case, as in the proof of Theorem 5.14.

We �rst reduce to the case Y = SpecA, where A is Noetherian local, and y is

the closed point. Then R

i

f

�

F =

^

H

i

(X;F). We may further make the (
at) base

change to Spec

b

A; if

b

X = X �

SpecA

Spec

b

A, � :

b

X ! X, and

b

f :

b

X ! Spec

b

A,

then (Corollary 5.8) we have

H

i

(

b

X; �

�

F)

�

=

H

i

(X;F)


A

b

A;

and also

b

X

n

�

=

X

n

. Hence we further reduce the proof of the Theorem to the case

when A =

b

A. Now we must show that

H

i

(X;F)! lim

 �

n

H

i

(X

n

; i

�

n

F)

is an isomorphism.

Since X is projective over A, we may embed it as a closed subscheme of some

P

N

A

. Let A

n

= A=m

n

, where m is the maximal ideal of A. Then X \P

N

A

n

= X

n

is

realized as a closed subscheme of P

N

A

n

. Replacing F and i

�

n

F by their direct images
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on P

N

A

and P

N

A

n

respectively, which doesn't change the corresponding cohomology

modules, we may assume without loss of generality that X = P

N

A

.

Now we prove the Theorem by descending induction on i. First, the Theorem

clearly holds for the sheaves O

P

N

A

(r) for all r 2 Z, by Theorem 2.4 applied to P

N

A

and P

N

A

n

.

Next, we show that the Theorem holds for i = N for any coherent F . We have

a presentation

O

P

N

A

(�a)

�p

! O

P

N

A

(�b)

�q

! F ! 0;

which remains exact on applying i

�

n

. This gives corresponding presentations

H

N

(P

N

A

;O

P

N

A

(�a))

�p

! H

N

(P

N

A

;O

P

N

A

(�b))

�q

! H

n

(P

N

A

;F)! 0;

and an inverse system of similar presentations for H

N

(P

N

A

n

; i

�

n

F), for each n. Note

that the cohomology modules H

i

(P

N

A

n

; i

�

n

F) are modules of �nite length, for any

coherent F , any i � 0 and any n > 0. We now make use of the following lemma

(the proof is left as an exercise!).

Lemma 7.2. Let

0! A

n

! B

n

! C

n

! 0

be an inverse system of exact sequences of A-modules of �nite length. Then

0! lim

 �

n

A

n

! lim

 �

n

B

n

! lim

 �

n

C

n

! 0

is exact.

Thus, the functor lim

 �

n

is exact on the category of inverse systems of A-modules

of �nite length. Applying this lemma to the inverse system of presentations for

H

N

(P

N

A

n

; i

�

n

F), we see that the Theorem is valid for F , for i = N .

Now we proceed by descending induction on i. Choose an exact sequence

0! G ! O

P

N

k

(�a)

�r

! F ! 0

with a > 0. To simplify notation, let X = P

N

A

, and X

n

= P

N

A

n

. Let F

n

= i

�

n

F ,

G

n

= i

�

n

G. If the functors i

�

n

were exact, the proof would now be fairly simple: we

would have an exact sequence

0! H

N�1

(X

n

;F

n

)! H

N

(X

n

;G

n

)! H

N

(X

n

;O

X

n

(�a))

�r

! H

N

(X

n

;F

n

)! 0;

and isomorphisms

H

i

(X

n

;F

n

)

�

=

H

i+1

(X

n

;G

n

) 8 i < N � 1:

We have (unconditionally) an analogous exact sequence and isomorphism on X.

Taking inverse limits over n, we would get an exact sequence

0! lim

 �

n

H

N�1

(X

n

;F

n

)! lim

 �

n

H

N

(X

n

;G

n

)! lim

 �

n

H

N

(X

n

;O

X

n

(�a))

�r

(7.1)

! lim

 �

n

H

N

(X

n

;F

n

)! 0;
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and isomorphisms

lim

 �

n

H

i

(X

n

;F

n

)

�

=

lim

 �

n

H

i+1

(X

n

;G

n

) 8 i < N � 1:(7.2)

Now the result for H

N

for G, F and O

X

(�a) implies it for H

N�1

, for any coherent

F . Similarly, for any i < N�1, the result forH

i+1

for all coherent sheaves implies

it for H

i

for all coherent sheaves.

So our proof will be complete if, inspite of the failure of exactness of i

�

n

, we still

have (7.1) and (7.2). For this, we need to make use of a lemma.

Lemma 7.3. Let R be a Noetherian ring, I an ideal in R, and M a �nite R-

module. For each n > 0, there exists m > n such that the natural map

Tor

R

1

(M;R=I

m

)! Tor

R

1

(M;R=I

n

)

is zero.

Proof. Choose a presentation

0! N ! F !M ! 0

where F is free of �nite rank. Then Tor

R

1

(M;R=J) = (JF \N)=JN . So it su�ces

to show that for some m > n, the natural map

(I

m

F \N)! (I

n

F \N)

factors through the submodule I

n

N . This is an immediate consequence of the

Artin-Rees lemma.

Returning to our situation, we have exact sequences

0! i

�

n

T or

O

X

1

(F ; (i

n

)

�

O

X

n

)! G

n

! O

X

n

(�a)

�r

! F

n

! 0;

where for quasi-coherent F , G, the sheaf T or

O

X

i

(F ;G) is the quasi-coherent sheaf

such that for any a�ne open U = SpecA, with M = �(U;F), N = �(U;G), we

have

T or

O

X

i

(F ;G) j

U

=

^

Tor

A

i

(M;N):

We break up the above exact sequence into short exact sequences

0! i

�

n

T or

O

X

1

(F ; (i

n

)

�

O

X

n

)! G

n

!H

n

! 0;

0!H

n

! O

X

n

(�a)

�r

! F

n

! 0:

From lemma 7.3, it follows that

lim

 �

n

H

i

(X

n

; i

�

n

T or

O

X

1

(F ; (i

n

)

�

O

X

n

)) = 0 8 i:

Hence, using lemma 7.2 and appropriate long exact sequences in cohomology, we

deduce that

lim

 �

n

H

i

(X

n

;G

n

)

�

=

lim

 �

n

H

i

(X

n

;H

n

) 8 i:(7.3)

We have an inverse system of exact sequences

0! H

N�1

(X

n

;F

n

)! H

N

(X

n

;H

n

)! H

N

(X

n

;O

X

n

(�a))

�r

! H

N

(X

n

;F

n

)! 0;
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and isomorphisms

H

i

(X

n

;F

n

)

�

=

H

i+1

(X

n

;H

n

) 8 i < N � 1:

Taking inverse limits, using lemma 7.2 and (7.3), it follows that (7.1) and (7.2)

are valid, as desired.

We now proceed to give some applications of the Formal Function theorem.

An easy consequence is:

Corollary 7.4. Let f : X ! Y be a proper morphism between Noetherian

schemes. For each y 2 Y , with �ber X

y

= X �

Y

Spec k(y), the stalk (R

i

f

�

F)

y

vanishes for all i > dimX

y

.

Proof. It su�ces to prove the completion of this stalk vanishes, which is true from

Theorem 7.1 because all the terms in the inverse limit are 0.

Corollary 7.5. Let f : X ! Y be a proper morphism between Noetherian

schemes which is quasi-�nite (i.e., all set-theoretic �bers have �nite cardinality).

Then f is a �nite morphism.

Proof. Since f

�

O

X

is a coherent sheaf on Y , it su�ces to prove f is an a�ne

morphism. For this we may assume Y is a�ne, and have to show X is a�ne.

From Corollary 7.4, we have R

i

f

�

F = 0 for all i > 0, for all coherent F . Since Y

is a�ne, this is the same as saying H

i

(X;F) = 0 for all i > 0. Now by Serre's

criterion (Theorem 1.3), X is a�ne.

Theorem 7.6. (Connectedness Theorem) Let f : X ! Y be a proper morphism

with f

�

O

X

= O

Y

. Then all �bers of f are connected.

Proof. Let y 2 Y , and X

y

= X �

Y

Spec k(y) the �ber. Let X

n

be the subscheme

of Y de�ned by X

n

= X �

Y

SpecO

Y;y

=m

n

y

, where m

y

is the maximal ideal of

O

Y;y

. As a topological space, X

n

coincides with X

1

= X

y

. Hence, if X

y

is

not connected, �x a connected component Z, and let Z

n

be the corresponding

component of X

n

. We can �nd a unique function a

n

2 �(X

n

;O

X

n

) with a

n

j

Z

n

= 1

and a

n

j

X

n

nZ

n

= 0; clearly a

n

j

X

n�1

= a

n�1

. Hence the sequence fa

n

g determines a

well-de�ned element

a 2 lim

 �

n

H

0

(X

n

;O

X

n

)

�

=

(f

�

O

X

)

y




b

O

Y;y

�

=

b

O

Y;y

which is clearly a non-trivial idempotent element (i.e., a

2

= a with a 6= 0; 1).

Since

b

O

Y;y

is a local ring, this is a contradiction.

Corollary 7.7. (\Zariski's Main Theorem") Let f : X ! Y be a birational

proper morphism of Noetherian integral schemes, with Y normal. Then all �bers

of f are connected.

Proof. The problem is local on Y , so we may assume Y = SpecA is a�ne.

By Theorem 7.6, it su�ces to prove f

�

O

X

= O

Y

, which in this case means

�(X;O

X

) = A. If B = �(X;O

X

), then since f is birational, A and B have

the same quotient �eld. On the other hand, Theorem 3.2 implies B is a �nite

A-module. Hence B is integral over A, and since A is normal, B = A.
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Corollary 7.8. (Stein factorization) Let f : X ! Y be a proper morphism of

Noetherian schemes. Then we can uniquely (up to isomorphism) factorize f as

a composition f = g � h, with h : X ! Z, g : Z ! Y , such that g is �nite, and

h

�

O

X

= O

Z

(in particular, h has connected �bers).

Proof. De�ne Z = Specf

�

O

X

, and g; h to be the evident maps. Since f

�

O

X

is O

Y

-coherent, g is �nite; that h

�

O

X

= O

Z

follows because g

�

O

Z

= f

�

O

X

=

g

�

h

�

O

X

by construction, so that the natural map O

Z

! h

�

O

X

becoes an isomor-

phism on applying g

�

, with g �nite.

Proposition 7.9. Let X be a Noetherian scheme, Z � X a closed, local complete

intersection subscheme, and f : Y ! X the blow up of Z in X. Then R

i

f

�

O

Y

= 0

for all i > 0.

Proof. For simplicity, we assume X, Z (and hence also Y ) are regular; the proof

in the general case is a little more technical, and is left to the reader.

The question is local on X, so we may assume without loss of generality that

X = SpecA is a�ne, and Z = V (I) is a complete intersection, where I is

generated by a regular sequence a

1

; : : : ; a

r

2 A. Since R

i

f

�

O

Y

is a coherent

sheaf, it su�ces to show that for each closed point x 2 Z, the stalk (R

i

f

�

O

Y

)

x

vanishes.

Now the exceptional divisorE = f

�1

Z

�

=

P

r�1

Z

, as Z-schemes, and the conormal

sheaf to E in Y is O

P

r�1

Z

(1). This implies that for x 2 Z, the �ber

Y

x

= Y �

X

Spec k(x)

�

=

E �

Z

Spec k(x)

�

=

P

r�1

k(z)

:

Further, the conormal sheaf of Y

x

in E is a free O

Y

x

-module of rank s = dimZ

(this uses that Z is regular, which implies X is regular at points of Z). Hence if

I =m

x

O

Y

is the ideal sheaf of Y

x

in Y , where m

x

is the maximal idela of O

X;x

,

then the conormal sheaf I=I

2

of Y

x

in Y �ts into an exact sequence

0! O

�s

Y

x

! F ! O

Y

s

(1)! 0:

Since Y

x

�

=

P

r�1

k(x)

, this sequence must be split exact. Thus, Y

x

is a local complete

intersection in Y , with conormal sheaf O

�s

Y

x

�O

Y

x

(1).

Let Y

n

denote the subscheme de�ned by the ideal sheaf I

n

. Then Y

1

= Y

x

=

(Y

n

)

red

, and we have exact sequences

0! S

n

(I=I

2

)! O

Y

n+1

! O

Y

n

! 0;

where S

n

(I=I

2

) is the n-th symmetric power, which is a direct sum of invert-

ible sheaves �

i

O

P

r�1

k(x)

(t

i

) over a sequence of non-negative integers t

i

. Hence

H

i

(Y

x

; S

n

(I=I

2

)) = 0 for all i > 0. Since H

i

(Y

x

;O

Y

x

) = 0 for i > 0, we get

lim

 �

n

H

i

(Y

n

;O

Y

n

) = 0 8 n � 1; 8 i > 0:

By Theorem 7.1, we have that (R

i

f

�

O

Y

)

x

= 0 for all i > 0.
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8. Base Change and Semicontinuity

Let f : X ! Y be a proper morphism of Noetherian schemes, and F a co-

herent sheaf on X. The Formal Function Theorem gives relations between the

stalks of R

i

f

�

F and the cohomology along the �bers, where we have the take all

possible non-reduced structures on these �bers into account. The Base Change

and Semicontinuity theorems address the situation where F is assumed to be 
at

over Y , i.e., , for each x 2 X, the stalk F

x

is a 
at O

Y;f(x)

-module, where we

can (in appropriate situations) restrict attention to the scheme-theoretic �bers

themselves.

Since we are interested in comparing the stalks of R

i

f

�

F and the �ber coho-

mology of the restriction of F , we may assume without loss of generality that

Y = SpecA is a�ne.

We �rst discuss a criterion for 
atness.

Proposition 8.1. Let T be an integral Noetherian scheme, and F a coherent

sheaf on P

N

T

. Let f : P

N

T

! T be the structure morphism. For any t 2 T , let F

t

denote the restriction of F to P

N

k(t)

, and let P

t

(x) 2 Q [x] be the Hilbert polynomial

of F

t

. Then the following are equivalent.

(a) F is 
at over T .

(b) For all n >> 0, f

�

F(n) is a locally free sheaf on T .

(c) The Hilbert polynomial polynomial P

t

(x) 2 Q [x] is independent of the choice

of t 2 T .

Proof. The Theorem is local on T . So we may assume T = SpecA where A is a

Noetherian local domain.

For su�ciently large n, we have that R

i

f

�

F(n) = 0 (i.e., H

i

(P

N

T

;F(n)) = 0) for

all i > 0. Let U = fU

0

; : : : ; U

N

g be the standard a�ne open cover of P

N

T

= P

N

A

.

Then the

�

Cech complex

�

C

�

(U ;F(n)) determines an exact sequence of A-modules

0! H

0

(P

N

T

;F(n))!

�

C

0

(U ;F(n))!

�

C

1

(U ;F(n))! � � � !

�

C

N

(U ;F(n))! 0:

Now if F is 
at over T , so is F(n), so that

�

C

�

(U ;F(n)) is a complex of 
at

A-modules. The above exact sequence then implies H

0

(P

N

T

;F(n)) is also a 
at

A-module; since it is a �nitely generated module, it must be a free A-module of

�nite rank. This means f

�

F(n) is locally free. Conversely, if f

�

F(n) is locally

free for all n � n

0

, then M

n

= H

0

(P

N

T

;F(n)) is a free A-module of �nite rank

for each n � n

0

. The graded A[X

0

; : : : ; X

N

]-module M determined by M

n

= 0

for n < n

0

, M

n

= H

0

(P

N

T

;F(n)) for n � n

0

, has the properties that (i) M is a


at A-module (in fact a freee A-module) (ii) F =

f

M is the corresponding sheaf

on P

N

T

= ProjA[X

0

; : : : ; X

N

]. In particular, the A-module of sections of F on

U

i

is 
at over A, since it is a direct summand of M

X

i

, which is clearly a 
at

A-module (it is the direct limit of M

X

i

!M

X

i

!M

X

i

! � � � which is a direct system

of free A-modules). Thus, we have shown that (a) and (b) of the Proposition are

equivalent.

Let P

0

(x) 2 Q [x] denote the Hilbert polynomial of F on the generic �ber P

N

k(T )

,

where k(T ) is the quotient �eld of A. Let t 2 T be the closed point. We show

that (b) and (c) are equivalent to:



COHOMOLOGY OF COHERENT SHEAVES 39

(c

0

) the Hilbert polynomial P

t

(x) coincides with P

0

(x).

We �rst show (b) =) (c

0

). Let A

m

! A ! k be a presentation of the residue

�eld k of A. This determines a presentation

F

�m

! F ! i

�

F

t

! 0

where i : P

N

k

,! P

N

A

is the inclusion of the closed �ber. For all large n, this

induces (by the Serre vanishing theorem) a presentation

H

0

(P

N

A

;F(n))

�m

! H

0

(P

N

A

;F(n))! H

0

(P

N

k

;F

t

)! 0:

On the other hand, there is a similar presentation

H

0

(P

N

A

;F(n))


A

A

m

! H

0

(P

N

A

;F(n))! H

0

(P

N

A

;F(n))


A

k ! 0:

Comparing these, we deduce that for large n, we have that

H

0

(P

N

A

;F(n))


A

k

�

=

H

0

(P

N

k

;F

t

(n)):

Now by Nakayama's lemma,

M

n

= H

0

(P

N

A

;F(n)) is a free A-module () rank

A

M

n

= dim

k

M

n




A

k,

since A is a local domain. But rank

A

M

n

= P

0

(n) for large n, and

dim

k

M

n




A

k = dim

k

H

0

(P

N

A

;F

t

) = P

t

(n)

for all large n. Hence (c

0

) () (b). Clearly (c) =) (c

0

). So it su�ces to show

(b) =) (c). So assume (b), and let s 2 T be any point, and T

s

= SpecA

s

where A

s

= O

T;s

is the corresponding local ring. Let g : P

N

A

s

! P

N

A

be the

corresponding morphism. We have that H

i

(P

N

A

s

; g

�

F(n))

�

=

H

i

(P

N

A

;F(n))


A

A

s

,

since the Cech complex computing the cohomology of F(n) localizes to that

computing the cohomology of g

�

F(n). In particular, we reduce to the situation

when (b) holds, and s is the closed point of T , in which case we have already

proved that (c

0

) holds.

Proposition 8.2. (Mumford) Let f : X ! SpecA be a proper morphism, where

A is Noetherian, and let F be a coherent sheaf on X which is 
at over A. Then

there is a bounded complex

0! P

0

! � � � ! P

n

! 0;

where P

i

are projective A-modules of �nite rank, such that for any Noetherian

A-algebra B, if Y = X �

SpecA

SpecB, g : Y ! X, then there are isomorphisms

H

i

(Y; g

�

F)

�

=

H

i

(P

�




A

B);

functorial in B.

Proof. Fix an a�ne open cover U = fU

0

; : : : ; U

n

g os X. Then for any A-algebra

B, there is an induced a�ne open cover U

B

= fg

�1

(U

0

); : : : ; g

�1

(U

n

)g, where

g

�1

(U

i

) = U

i

�

SpecA

SpecB. Hence the

�

Cech complex

�

C

�

(U ;F) is such that there

are canonical isomorphisms

H

i

(Y; g

�

F)

�

=

H

i

(

�

C

�

(U ;F)


A

B):
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Since F is 
at over A, all terms in the

�

Cech complex

�

C

�

(U ;F) are 
at A-

modules. If P

�

,!

�

C

�

(U ;F) is a subcomplex of �nitely genrated projective A-

modules such that the the induced maops on cohomology modules are all iso-

morphisms, then the corresponding mapping cone is an exact sequence of 
at A-

modules, and so remains exact on tensoring with any A-algebra B. Forming the

mapping cone commutes with change of rings (in fact it commutes with the func-

tor on complexes associated to any additive functor between abelian categories).

Hence P

�




A

B !

�

C

�

(U ;F) 


A

B also induces an isomorphism on cohomology

modules. The desired functoriality in B is manifest from the de�nition.

Hence, using Theorem 5.14, the Proposition follows from Lemma 8.3 below.

Lemma 8.3. Let A be a noetherian ring,

0!M

0

! � � � !M

n

! 0

a bounded complex of 
at A-modules, such that the cohomology modules H

i

(M

�

)

are �nite A-modules, for all i. Then there exists a complex of �nitely generated

projective A-modules

0! P

0

! � � � ! P

n

! 0

together with an injective map of complexes P

�

!M

�

which induces isomorphisms

on cohomology modules.

Proof. This is left as an exercise to the reader (see [Ha], III, Lemma 12.3).

We call a complex P

�

as above, associated to a coherent sheaf F on a proper

A-scheme X, a Mumford complex (relative to A) for F .

Theorem 8.4. (Semicontinuity Theorem) Let f : X ! Y be a proper morhism

of Noetherian schemes, and let F be a coherent sheaf on X which is 
at over Y .

For y 2 Y , let X

y

= X �

Y

Spec k(y) be the �ber over y, F

y

the poull-back of F

to a coherent sheaf on X

y

. Then for each i � 0, the function

y 7! dim

k(y)

H

i

(X

y

;F

y

)

is upper semicontinuous on Y , i.e., the subset of Y on which this function is � m

is closed, for each m � 0.

Proof. The theorem is local on Y , so we may assume Y is a�ne. Then by Propo-

sition 8.2, we are reduced to showing the following:

if 0! P

0

! � � � ! P

n

! 0 is a complex of �nitely generated projective modules

over a Noetherian ring A, then the function on SpecA de�ned by

} 7! dim

k(})

H

i

(P

�




A

k(}))

is upper semicontinuous, where k(}) is the residue �eld of A

}

. Further localizing,

we may assume P

i

are free A-modules.

If ' :! G is an A-linear map between free A-modules, then after choosing

bases, ' is determined by an r � s matrix M 2 M

r�s

(A), where r = rankF ,

s = rankG. The rank of '

}

= ' 


A

k(}) : F 


A

k(}) ! G 


A

k(}) is clearly

lower semicontinuous on SpecA, i.e., the set

f} 2 SpecA j rank'

}

� mg
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is closed, for each m, which is true because it is the subset of SpecA de�ned by

the vanishing of all minors of size m+ 1 of the associated matrix.

Applying this to the segment

P

i�1

'

i�1

�! P

i

'

i

�! P

i+1

of our complex P

�

of free modules, if a

i

= rankP

i

, then

f} 2 SpecA j dim

k(})

H

i

(P

�


 k(})) � m

=

[

a

i

�p�m

�

f} j rank ('

i

)

k(})

� a

i

� pg \ f} j rank ('

i�1

)

k(})

� p�mg

�

:

This is a closed subset of SpecA.

Corollary 8.5. With the same hypotheses as Theorem 8.4, assume Y is integral,

and suppose that for some i � 0,

y 7! dim

k(y)

H

i

(X

y

;F)

y

is a constant function on Y . Then R

i

f

�

F is locally free, and the natural maps

(R

i

f

�

F)

y




O

Y;y

k(y)! H

i

(X

y

;F

y

)

are isomorphism for all y.

Proof. We may assume Y = SpecA is a�ne, and there is a Mumford complex

(P

�

; '

�

) for F consisting of free A-modules of �nite rank, with rankP

i

= a

i

.

If m is the constant value of the function in the statement of the Corollary,

then we get that

m = a

i

� rank ('

i

)

k(})

� rank ('

i�1

)

k(})

:

Since the functions } 7! rank ('

i

)

k(})

and } 7! rank ('

i�1

)

k(})

are lower semicon-

tinuous, but their sum is constant, they must both actually be constant. This

means the image and kernel of '

i�1

and '

i

must be projective A-modules of �nite

rank, and hence so is the i-th cohomology module of P

�

. Thus R

i

f

�

F is locally

free on SpecA. Further, taking i-th cohomology commutes with tensoring with

any A-algebra B, in this situation; in particular letting B = k(}) for some prime

ideal }, we get that

H

i

(X

y

;F

y

)

�

=

H

i

(P

�




A

k(}))

�

=

H

i

(P

�

)


A

B

�

=

H

i

(X;F)


A

k(}):

We give an application of this corollary.

Corollary 8.6. Let Y be an integral scheme of �nite type over an algebraically

closed �eld, f : X ! Y be a proper, 
at morphism with integral �bers. Let L, M

be any invertible sheaves on X such that their restrictions to each �ber X

y

are

isomorphic. Then M = L 
 f

�

N for some invertible sheaf N on Y .
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Proof. ReplacingL by L


O

X

M

�1

, we reduce to the statement that if an invertible

sheaf L on X has trivial restriction to all �bers of f , then L

�

=

f

�

N for some

invertible sheaf N on Y . In fact, we will show this is true with N = f

�

L.

Since dim

k(y)

H

0

(X

y

;L

y

) = dim

k(y)

H

0

(X

y

;O

X

y

) = 1 for all closed points, by

Corollary 3.3, the semicontinuity theorem implies that dim

k(y)

H

0

(X

y

;L

y

) = 1

for all y, and by Corollary 8.5, f

�

L is a locally free sheaf, and hence an invertible

sheaf on Y (since the generic stalk of f

�

L is a 1-dimensional vector space over

the function �eld of Y ). Further, the map  

0

(y) : (f

�

L)

y

! H

0

(X

y

;L

y

) is an

isomorphism for all y. Since L

y

�

=

O

X

y

for all y, this means that the natural map

f

�

f

�

L ! L is surjective, hence an isomorphism.

We now give the statement of the technically important Base Change Theorem.

We do not give the proof here; see [Ha] III, Theorem 12.11.

Theorem 8.7. (Base Change Theorem) Let f : X ! Y be a proper morphism

of Noetherian schemes, and F a coherent sheaf on X, such that F is 
at over Y .

Let y 2 Y ; let X

y

be the �ber, and F

y

the pullback of F to X

y

.

(a) If the natural map

 

i

(y) : (R

i

f

�

F)

y


 k(y)! H

i

(X

y

;F

y

)

is surjective, then it is an isomorphism, and the same is true for all y

0

in

an open neighbourhood of y.

(b) Suppose  

i

(y) is surjective. Then:

(R

i

f

�

F is locally free in a neighbourhood of y) ()  

i�1

(y) is also surjective.

�

We give an application to illustrate how the Base Change Theorem is used.

Corollary 8.8. Let f : X ! Y and F be as above. Suppose H

i

(X

y

;F

y

) = 0

for some y. Then R

i

f

�

F vanishes in an open neighbourhood of y, and the map

 

i�1

(y) : (R

i�1

f

�

F)

y


 k(y)! H

i�1

(X

y

;F

y

) is an isomorphism.

9. Vanishing theorems, formal duality and applications

We �rst state some important vanishing theorems for the cohomology of certain

sheaves on non-singular projective varieties over an algebraically closed �eld k

of characteristic 0. Though these theorems now admit algebraic proofs using

characteristic p techniques, based on the results of Deligne and Illusie, the original

proofs are by reducing to the case k = C and using analytic methods. For a more

systematic discussion of this important topic, see the book [EV].

Theorem 9.1. (Kodaira Vanishing Theorem) Let L be an ample invertible sheaf

on a non-singular irreducible projective variety over a �eld k of characteristic 0.

Then H

i

(X;L

�1

) = 0 for all i < dimX, or equivalently H

i

(X;!

X


 L) = 0 for

all i > 0.

This can be generalized in two di�erent directions, as follows.
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Theorem 9.2. (Kodaira-Akizuki-Nakano Vanishing) With the same hypotheses

as Theorem 9.1, we have H

i

(X;


j

X=k


L) = 0, provided i+ j > dimX. Equiva-

lently, H

i

(X;


j

X=k


 L

�1

) = 0 for all i+ j < dimX.

Thus, we have a vanishing result for sheaves more complicated than invertible

sheaves. The equivalence of the tweo forms of the theorem follows from Serre

duality, since

Hom

O

X

(


i

X=k

; !

X

)

�

=




n�i

X=k

:

De�nition 9.3. Let L be an invertible sheaf on a proper variety X over a �eld

k.

(i) If for each morphism f : C ! X from an irreducible curve C, the degree of

the invertible sheaf f

�

L on C is non-negative, we say L is nef.

(ii) If for some constant A > 0, we have

dim

k

H

0

(X;L


n

) � An

dimX

for a sequence of integers n tending to in�nity, we say L is big.

Theorem 9.4. (Kawamata-Viehweg) Let X be a non-singular irreducible pro-

jective variety over an algebraically closed �eld k, and L an invertible sheaf on

X. Assume L is nef and big. Then H

i

(X;L

�1

) = 0 for i < dimX.

Thus we get the conclusion of Kodaira Vanishing with a weaker hypothesis on

L than ampleness. The case dimX = 2 of this result is due to C. P. Ramanujam.

Theorem 9.5. (Grauert-Riemenschneider Vanishing) Let f : X ! Y be a proper

birational morphism of irreducible varieties over a �eld k of characteristic 0,

where X is non-singular. Then R

i

f

�

!

X

= 0 for all i > 0.

Proof. The question is local on Y , so we may assume �rst that Y is a�ne, then

may replace Y by a normal projective compati�cation

�

Y . By Hironaka's theorem

on resolution of singularities, we can �nd a non-singular

�

X with a proper mor-

phism to

�

Y which extends the given map f . In other words, it su�ces to consider

the case when Y is projective.

First assume X is also projective. Let L be a very ample invertible sheaf on Y .

Then f

�

L is a nef and big (see De�nition 9.3) invertible sheaf on X. Hence by

Theorem 9.4, H

i

(X; f

�

L

�n

) = 0 for all i < n, or equivalentlyH

i

(X;!

X


f

�

L

n

) =

0 for all n > 0.

Consider the Leray spectral sequence

E

p;q

2

= H

p

(Y;R

q

f

�

!

X


 f

�

L

n

) =) H

p+q

(X;!

X


 L

n

):

By the projection formula (see 5.10), we have isomorphisms R

i

f

�

(!

X


 f

�

L

n

)

�

=

(R

i

f

�

!

X

)
L

n

, for all i � 0. Since L is ample on Y , Serre vanishing implies that

we have E

p;q

2

= 0 for p > 0, for all q, for all large n. Hence the spectral sequence

degenerates at E

2

and we have isomorphisms

H

0

(Y;R

i

f

�

(!

X

)
 L

n

)

�

=

H

i

(X;!

X


 f

�

L

n

) = 0 for i > 0.:

But (R

i

f

�

!

X

)
 L

n

is generated by its global sections, for all i, for large enough

n. Hence we must have R

i

f

�

!

X

= 0 for i > 0.
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If now X is merely proper over k, we may �nd a projective birational morphism

g : Z ! X such that f �g : Z ! Y is projective (and birational of course), and Z

is non-singular. In fact, if X

0

! X is a birational morphism with X

0

projective,

which exists by Chow's Lemma, we may (by Hironaka's theorem) take Z to be

a projective resolution of singularities of X

0

. The morphism g : Z ! X is a

projective birational morphism with Z non-singular and X normal (in fact non-

singular), so by the case already considered, we have R

i

g

�

!

Z

= 0 for all i > 0.

Also, we have a natural map g

�

!

X

! !

Z

which is an isomorphism over the open

subset where Z ! X is an isomorphism; now applying g

�

to this, we obtain an

inclusion !

X

,! g

�

!

Z

which is an isomorphism outside a codimension 2 subset of

X. Since !

X

is invertible and g

�

!

Z

is torsion-free, we must have !

X

= g

�

!

Z

.

Now consider the Grothendieck spectral sequence for the hihgher direct images

of a composition,

E

p;q

2

= R

p

f

�

�R

q

g

�

!

Z

=) R

p+q

�

(f � g)

�

!

Z

:

We have E

p;q

2

= 0 for q > 0 and all p, so that the spectral sequence degenerates,

and we have isomorphisms

E

i;0

2

= R

i

(f � g)

�

!

Z

= 0 8 i > 0;

where we have used the Theorem for f�g (which is a morphism between projective

varieties). But E

i;0

2

= R

i

f

�

(g

�

!

Z

) = R

i

f

�

!

X

.

We now state a duality theorem for cohomology with support, which will allow

us to get an equivalent form of Theorem 9.5 which is useful for applications.

Theorem 9.6. (Formal Duality) Let X be an irreducible non-singular proper

variety of dimension n over a �eld k, and let Y be a closed subset. Let I

Y

be

the ideal sheaf for the corresponding reduced subscheme of X. Let F be a locally

free sheaf of �nite rank on X. Then we have a functorial isomorphism of (not

necessarily �nite dimensional) k-vector spaces

lim

 �

m

H

i

(X;F 
O

X

=I

m

Y

)

�

=

Hom

k

(H

n�i

Y

(X;Hom

O

X

(F ; !

X

)); k):

Proof. We have natural isomorphisms

H

j

Y

(X;G) = lim

�!

m

Ext

j

O

X

(O

X

=I

m

Y

;G)

for any O

X

-module G, for all j. Indeed, both sides de�ne �-functors (in G) on

Mod(X), which vanish if G is injective (the cohomology with support vanishes

because G is 
asque), and are both hence universal �-functors. Since they coincide

when j = 0 (why?), they must coincide for all j.

Hence if V

_

= Hom

k

(V; k) for any k-vector space V , we have

H

j

Y

(X;G)

_

= lim

 �

m

Ext

j

O

X

(O

X

=I

m

Y

;G)

_

:

Apply this to G = Hom

O

X

(F ; !

X

) and j = n� i. Since F is locally free, we have

Ext

n�i

O

X

(O

X

=I

m

Y

;Hom

O

X

(F ; !

X

)

_

�

=

Ext

n�i

O

X

(F 
O

X

=I

m

Y

; !

X

)

_

�

=

H

i

(X;F 
O

X

=I

m

Y

)
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by Serre Duality on X (see Theorem 4.14 and 4.17). Substituting this in the

inverse limit formula for H

n�i

Y

(X;G)

_

, the result follows.

Corollary 9.7. Let f : X ! Y be a surjective morphism, with X non-singular

projective. Let y 2 Y be a closed point, with �ber X

y

. Then for any locally free

O

X

-module F of �nite rank, we have an isomorphism

H

i

X

y

(X;F)

_

�

=

(R

n�i

f

�

Hom

O

X

(F ; !

X

))

y




O

Y;y

d

O

Y;y

:

Proof. This is a consequence of formal duality for the subscheme X

y

of X, and

the Formal Function Theorem (Theorem 7.1.

Corollary 9.8. Let f : X ! Y be a birational proper morphism, where X is

non-singular and proper over a �eld k of characteristic 0. Then for any y 2 Y ,

we have that

H

i

X

y

(X;O

X

) = 0 8 i < n:

Proof. This follows from Theorem 9.5 and Corollary 9.8.

We give two applications of this.

Example 9.9. Let (A;m) be the local ring of a closed point on a normal variety

over a �eld of characterstic 0. Suppose that f : X ! SpecA is a resolution of

singularities, such that H

i

(X;O

X

) = 0 for all i > 0 (we then say SpecA has

rational singularities). Then A is Cohen-Macaulay.

Indeed, let Y = SpecA, X

y

� X the �ber over the closed point, U = Y n fmg,

V = X n X

y

= f

�1

(U). Since H

i

(X;O

X

) = 0 for i > 0 and Y is a�ne, we

have R

i

f

�

O

X

= 0 for i > 0. From the Leray spectral sequence, we deduce that

H

i

(U;O

U

) = H

i

(U; f

�

O

V

)

�

=

H

i

(V;O

V

) for all i. From the exact sequence

H

i

(X;O

X

)! H

i

(V;O

V

)! H

i+1

X

y

(X;O

X

)

and Corollary 9.8, we deduce that

H

i

(U;O

U

)

�

=

H

i

(V;O

V

) = 0

for 1 � i � n � 2. From Corollary 6.2, we deduce that H

i

m

(A) = 0 for 2 �

i � n � 1. Since A is normal, we deduce that A has depth n, and is hence

Cohen-Macaulay.

Example 9.10. Let (A;m) be the local ring of a closed point on a normal variety

of dimension n over a �eld k of characteristic 0. Assume the punctured spectrum

of A is regular. Let f : X ! SpecA be a resolution of singularities. Then we

have isomorphisms

H

i

(X;O

X

)

�

=

H

i+1

m

(A) 8 i � n� 2:

In particular A is Cohen-Macaulay () H

i

(X;O

X

) = 0 for 1 � i � n � 2

() R

i

f

�

O

X

= 0 for 1 � i � n� 2.

Indeed, in the notation of the previous example, we have V

�

=

U , so the same

argument applies, giving isomorphisms

H

i

(X;O

X

)

�

=

H

i

(V;O

V

)

�

=

H

i

(U;O

U

)

�

=

H

i+1

m

(A)

for 1 � i � n� 2.
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