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We recall “basic Lie theory." Take g = sl2(C), with generators X,Y,H as usual. We have [A,B] :=
AB −BA and (A,B) := tr(AB). This bilinear form is invariant in the sense that

([A,B], C) + (B, [A,C]) = 0.

We let h := CH and we have [X,Y ] = H, [H,X] = 2X and [H, Y ] = −2Y ; this is the adjoint
representation. If V is a g-module and λ ∈ C, we define V λ = {v : Hv = λv} i.e. the λ-eigenspace.
If w ∈ V λ then we say w has weight λ.
Proposition 1. 1) V =

⊕
λ∈C

V λ. 2) If v has weight λ then Xv has weight λ+ 2.

The proof is easy.

Primitive Weights

V a g-module. Then e ∈ V is called primitive of weight λ if He = λe and Xe = 0. Not all V have
primitive vectors, but the ones we’ll be interested in will. They always exist for finite-dimensional
V or for quotients of Verma modules.

Structure Theorem

V ∋ e as above. Define e−1 = 0 and en = Y ne/n! for n ≥ 0. Then

Hen = (λ− 2n)en

Y en = (n+ 1)en+1

Xen = (λ− n+ 1)en−1

for n ≥ 0.

As a corollary we see that the en are linearly independent (as long as they’re nonzero) since
they are eigenvectors for H with distinct eigenvalues. Further if λ = m ∈ Z≥0 then e0, . . . , em



are independent and em+1 = 0. Now define Wm := C{e1, . . . , em}. Then Wm is g-stable and
irreducible. In the case of sl2 we in fact have Wm

∼= Symm(C2). There is in this case an
isomorphism

Wm ⊗Wn
∼=

n⊕
i=0

Wm+n−2i

but in general such a decomposition follows “Littlewood-Richardson" rules, and is more compli-
cated.

Now let’s be more general, and let g be a (finite-dimensional) Lie algebra over C. We define a
“Cartan form" B : g× g → C, which is invariant in the same sense as above form. One way to
define such a B is by

B(X,Y ) := tr(adX · adY ).

Definition/Theorem. We say that g is semisimple if the above B is nondegenerate.

Definition. g is simple if 1) it is nonabelian, 2) it has no nontrivial proper ideals.

Corollary (of definition). g = [g, g] if simple (or semisimple, because of the next theorem).

Theorem. g is semisimple iff it is a product of simple Lie algebras.

Exercise: g is semisimple iff the adjoint representation is faithful.

Definition. Let g be a semisimple Lie algebra and X ∈ g. 1) X is nilpotent if adX is nilpotent. 2)
X is semisimple if adX is semisimple (i.e. diagonalizable).

Theorem (Jordan Decomposition). For any X ∈ g we can uniquely write 1) x = xs + xn where
xs, xn are semisimple, nilpotent, respectively. 2) [xs, xn] = 0.

Theorem. Jordan decomposition is preserved by any representation.

Theorem. Finite-dimensional representations of semisimple Lie algebras are completely reducible.
This can be proved via Weyl’s Unitarian Trick, or algebraically with cohomology (since it amounts
to showing that an Ext group vanishes). This theorem can also fail when working over positive
characteristic fields.

Theorem. If g is a semisimple Lie algebra and h is a maximal subalgebra consisting of semisimple
elements (easy check - this is automatically nonzero), then 1) h is abelian, 2) h is self-centralizing,
3) Root space decomposition:

g := h
⊕

0 ̸=α∈Φ⊂h∗

gα.

Now there is no unique maximal such subalgebra, but we can say something. Properties of h: 1)
B|h is nondegenerate, 2) All Cartan Subalgebras are conjugate by the group ead g (the group of
inner automorphisms), 3) gα are all 1-dimensional.

The Φ above is called a root system. We will prove the 1) above statement that h is abelian. To do
this, we’ll show that the eigenvalues of adX are all zero, for given X ∈ h. So suppose adX(y) = ay



for a ̸= 0. This would say ady(X) = −ay. Now y is an eigenvector for ady of zero eigenvalue.
Since ady is semisimple, we can write x =

∑
aivi where vi are eigenvectors of ady. But then get

ady(X) is nonzero eigevectors, contradiction.

Root Systems

1) Φ ̸∋ 0, and spans h∗.

2) α ∈ Φ =⇒ −α ∈ Φ.

3) sα(x) := x − 2 (x,α)
(α,α)

α, where sα : h∗ → h∗. Then sα preserves Φ. (the inner product here is
coming from the above B having nondegenerate restriction to h∗).

4) 2(β,α)
(α,α)

∈ Z.

Say that a root system is reduced if ±α are the only proportional roots in the system.

Bases of Root Systems

1) S ⊂ Φ such that S is a basis of h∗

2) If β ∈ Φ then β =
∑
α∈S

mαα where mα all have same sign.

Theorem. A base S always exists!

Example of sln. Then the Cartan can be taken to be diagonal matrices, and the dual h∗ is
determined by what it does on n − 1 (independent) elements, which can be chosen nicely. Then
Φ = {Li − Lj : i ̸= j} and the base is S = {Li − Li+1}.
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From now on g is a semisimple finite-dimensional Lie algebra, with h a Cartan subalgebra. Recall
last time we had invariant bilinear forms on g, such as the Killing form, which had nondegenerate
restriction to h. Note (α, α) ̸= 0 for α ∈ Φ so the above definition of sα makes sense. We will
prove the fourth property of root systems above.

Proposition. 1) For α, β ∈ Φ have [gα, gβ] ⊂ gα+β. 2) If x ∈ gα with α ̸= 0 then adg x is
nilpotent. 3) If α + β ̸= 0 then gα and gβ are orthogonal with respect to the bilinear form ( , ).

The proof of 1) follows from the definitions and the Jacobi identity. 2) is an immediate corollary
of 1). The proof of 3) is also simple computation.

Let ϕ : h → h∗ be the iso coming from the invariant nondegenerate form; write tα for ϕ−1(α).



Proposition (slα2 -triples). 1) α ∈ Φ, x ∈ gα and y ∈ g−α. Then [x, y] = (x, y)tα. 2) Let hα := 2tα
(α,α)

.
Given xα ∈ gα, there exists a unique yα ∈ g−α such that [xα, yα] = hα, and also h−α = −hα.

To prove 1) it suffices to show that both are same after applying (h,−), and using that α(h) =
(tα, h) by definition, then using nondegeneracy. We omit proof of 2).

(xα, yα, hα) spans the slα2 -triple. Suppose β ̸= ±α, and let M =
∑
i∈Z

gβ+iα. Then M is a finite-

dimensional module for slα2 . Now (β + iα)(hα) = β(hα) + 2i, and this is an integer because it is
a weight for an sl2-representation. Thus the Cartan integers are integers. Moreover, since in the
above we increase by 2, we see that 0 or 1 can’t both appear and either can appear only once.
It follows that M is actually irreducible as an slα2 -module. (We’re implicitly using that this root
system is reduced so that gα are 1-dimensional). It follows that we must have an unbroken string
β+ rα, . . . , β− qα of roots (and no others of this form). These are the highest and lowest weights,
respectively. In fact β + rα = −(β − qα); applying this to hα gives β(hα) = q − r. Note this is
also 2(β,α)

(α,α)
.

Let Φ be a root system and S a base. Call elements of S simple [positive] roots, denoted α1, . . . , αℓ

with ℓ := rank(Φ) = dim h. We remark that 2(αi,αj)

(αj ,αj)
=: aij defines the “Cartan matrix.” From this

matrix one can form the adjacency graph (this is the underlying graph of the Dynkin diagram).
Can put an arrow towards the longer root (if applies).

Proposition. If β ∈ Φ and {α1, . . . , αℓ} simple roots. Then β =
∑

ciαi with ci ∈ Q.

Proof. Apply (−, αj) then divide by (αj, αj) and multiply by 2. Get a system of linear equations
with integer entries. The inverse of a matrix with integer entries has rational entries.

Remark. The Q-span EQ of the αi also has rank ℓ.

If λ, γ ∈ h∗ then (λ, γ) = tr(ad tλ ad tγ) by definition. What is action of ad tλ on g? Well looking
at the root space decomposition, it acts by 0 on the h summand, and acts by multiplication by
α(tλ) by each root space gα. Hence

(λ, γ) =
∑
α∈Φ

(λ, α)(γ, α)

and in particular
(λ, λ) =

∑
α∈Φ

(λ, α)2.

Now for any β ∈ Φ we compute 1
(β,β)

=
∑
α∈Φ

(β,α)2

(β,β)2
and deduce that (β, β) ∈ Q. Thus the form gives

EQ ×EQ → Q, and THIS is positive definite (it wouldn’t have made sense / been easy to see this
over C where a sum of squares need not be positive).

Proposition. Let Φ be the root system in h∗, and define α∨ = 2tα
(α,α)

(formerly called hα).
Then Φ∗ = {α∨ : α ∈ Φ} is a root system in h. We call elements of Φ∗ coroots. (proof omit-
ted/postponed).



Definition 1. The root lattice Q is the Z-span of Φ. The coroot lattice Q∨ is the Z-span of Φ∗.
The weight lattice P is the λ ∈ h∗ such that λ(α∨) = 2(λ, α)/(α, α) ∈ Z for all α ∈ Φ. It is the
lattice dual of Q∨. Similarly the coweight lattice P∨ is the lattice dual to Q, namely the h ∈ h
such that α(h) ∈ Z for all α ∈ Φ.

We have (α∨, α) = 2 but in general (α, α) may only be a half-integer. We have inclusions Q∨ ⊂
P∨ ⊂ h and Q ⊂ P ⊂ h∗. Given a choice of base, get “fundamental weights," which are by
definition ω1, . . . , ωℓ such that ωi(α

∨
j ) = δij.

Representations of g

Let P+ = {λ ∈ P : (λ, α) ∈ Z≥0}. Then finite-dimensional irreducible representations (up to iso)
correspond 1-1 to elements of P+. This is the theory of primitive weights, quotients of Verma
modules.
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Recommended (French) Reference: Espaces Fibres Algebriques by Serre, 1958.

Last time we defined the root lattice Q as the Z span of the simple roots α1, . . . , αℓ. Similarly
we defined the coroot lattice as the span of the simple coroots α∨

1 , . . . , αℓ where α∨ = 2tα/(α, α)
and tα is by definition the image of α under the isomorphism h ∼= h∗. We also defined the weight
lattice P ⊂ h∗ to be those λ such that λ(α∨

i ) ∈ Z for all i, and similarly the coweight lattice
P∨ ⊂ h to be those H such that α(H) ∈ Z for all α ∈ Φ. In other words, P∨ is the lattice dual
of Q. We have inclusions Q ⊂ P ⊂ h∗ and Q∨ ⊂ P∨ ⊂ h. We also defined the set of dominant
integral weights to be P+ = {λ ∈ P : 2(λ, α)/(α, α) ∈ Z≥0} i.e. < λ, α >∈ Z≥0.

Now we have a bijection between finite dimensional irreps of g and P+, where V is sent to the
weight of its highest weight vector, and in the other direction one takes the quotient of the Verma
module. But there’s a more direct construction of the representations than as quotients of (infinite
dimensional) Verma modules.

Example. Consider sln. Let Hi = eii and εi be the dual of Hi (i.e. in the usual sense of vector
spaces). Then h is the C-span of Hi − Hn, for i = 1, . . . , n − 1. Our form can be taken to be
(Hi −Hn, Hj −Hn) = 2δij where (A,B) = tr(AB). In this case we have

Φ = {εi − εj : 1 ≤ i ̸= j ≤ n}

Φ+ = {εi − εj : i < j}
S = {εi − εi+1 : i = 1, . . . , n− 1}

and we write αi for εi − εi+1. Then α∨
i = Hi − Hi+1 for i = 1, . . . , n − 1. And also we can

take as basis for P the vectors wi = (
i∑

j=1

εj) − i
n
(

n∑
j=1

εj), and check that wi(α
∨
j ) = δij so that the



dual of this basis for P is a basis for Q∨. Also check P/Q ∼= Z/n. We’ll see this corresponds to
automorphisms of the affine dynkin diagram. Then Vw1 = Cn i.e. the standard representation,

and more generally Vwi
=
∧iCn. For a general integral weight λ =

n∑
i=1

aiwi with ai ≥ 0, what is

Vλ? Let vwi
be highest weight vectors in Vwi

. Now take Syma1Cn ⊗ · · · ⊗ Syman−1
∧n−1Cn and

set vλ = v⊗a1
1 ⊗ . . .⊗ v

⊗an−1

n−1 . Then we claim that 1) h · vλ = λ(h)vλ, i.e. is a vector of the correct
weight. and 2) vλ is a primitive vector (so a vector of highest weight, i.e. killed by gα for α > 0),
and Vλ is the irreducible component of V containing vλ.

Now we change gears to groups! A motivating question - given a representation of the Lie algebra,
how do I get a representation of the group? Let G be a connected complex Lie group (though the
following statements will be true of them as algebraic groups).

Definition. G is (complex) semisimple if g = Lie(G) is semisimple.

Given (cartan) subalgebra h ⊂ g there exists H ⊂ G with corresponding Lie algebra h.

Theorem. H is a closed subgroup of G and H is a product of C∗, so a complex torus.

Recall the character lattice X(H). Recall the exponential map e : h → H mapping x 7→ exp(2πix).

Theorem. e is a homomorphism, is surjective, and has discrete kernel Γ(G), and we have the
property Q∨ ⊂ Γ(G) ⊂ P∨. Also π1(G) = Γ(G)/Q∨.

G is simply connected iff Γ(G) = Q∨ and is adjoint iff Γ(G) = P∨. In particular the connected Lie
groups G with a given Lie algebra correspond one to one with subgroups of P∨/Q∨, in particular
it’s finite.

Example. sl2. Then P∨ = Z < H1− 1
2
(H1+H2) > and Q∨ = Z < H1−H2 >. The quotient is Z/2,

and PGL2 = SL2/{±1}. Wm = SymmC2 are all SL2-modules, but not all are PGL2-modules.
For this need m to be even.

For a more complicated example, consider 0 → Z/2 → Spin(2n+1) → SO(2n+1) → 0. We know
SO(2n + 1) ↪→ SL(2n + 1), so any representation of SL(2n + 1) can restrict to SO(2n + 1) but
the restriction is reducible generally; and will break up into “half-spin" representations. In this
sense the representation will have a “square root" which will be a representation of Spin(2n+ 1)
but NOT of SO(2n+ 1).

Finite-dimensional irreps of g biject with finite-dimensional irreps of G where G is simply con-
nected. But what about if G is not simply connected?

G simply connected, H ⊂ G a Cartan subgroup (i.e. has Lie algebra a Cartan subalgebra) then
e : P = {λ ∈ h∗ : λ(α∨

i ) ∈ Z} → X(H) is an iso. We define X(H)+ to be the image of P+. More
generally, if H ⊂ G is a Cartan in any Lie group, and λ ∈ P+ then Vλ is a (finite dimensional
irreducible) representation of G iff exp(2πiλ) ∈ X(H). I.e. the representation Vλ of g lifts to a
representation of G iff this condition holds.

This ends what we want to say about representations of Lie algebras and Lie groups. Now recall



the definition of the positive and negative nilpotent parts
⊕
α>0

gα =: n+ and similarly n−. Then a

Borel subalgebra b is defined to be h
⊕

n+.

Theorem. 1) [b, b] = n+. 2) b is solvable. 3) (Borel-Morozov) Every solvable subalgebra of g is
conjugate (under exp ad g) to a subalgebra of b. In particular b is a maximal solvable subalgebra.

Next time - suppose F ⊂ G is closed. Then what is G/F?
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Today we’ll (hopefully) describe G/B as an algebraic variety and state the Borel-Weil-Bott The-
orem. Let G be a connected, semisimple, simply connected, complex algebraic group. Maximal
solvable subgroups of G are called Borel subgroups. H ⊂ B ⊂ G with H a Cartan and B a Borel.
We can write B = H n [B,B]. The unipotent radical U of B is [B,B]. Or can define as the Lie
subgroup whose Lie algebra is n+ in yesterday’s notation.

Theorem. If λ ∈ X(H)+ ∼= P+ = {λ ∈ P : λ(α) ≥ 0} (recall the iso was exp 2πiz) i.e. a dominant
integral weight, then let V (λ) be the irreducible G-module with highest weight λ. Then there
exists a line in V (λ) which is B-stable, and H acts on this line by λ.

(This really just the group-theoretic restatement of the definition of highest weight vector on the
Lie algebra side).

Properties of the Group G

Let N = NG(H) and W = N/H. Then W acts by conjugation on H. Recall that we defined for
every root (in particular every simple root) Lie subalgebras

slαi
2 = gαi

⊕ g−αi
⊕ Cα∨

i ⊂ g.

We have a map slαi
2 → G sending antidiag(1,−1) 7→ s̄i.

Theorem. 1) s̄i ∈ NG(H). 2) Let si be the image in W . Then W is generated by the set
S = {s1, . . . , sℓ} where ℓ = rank g. 3) W acts on h∗ (by differentiating its action on H and
identifying the Lie algebra and its dual) by the formula si(β) = β − 2(β,αi)

(αi,αi)
αi.

Theorem (Tits). The 4-tuple (G,B,N, S) forms a Tits system. That is, 1) H = B ∩ N , 2) S
generates W , 3) B,N generate G, 4) siBsi ̸⊂ B for all i, 5) BsiB ·BwB ⊂ BsiwB

∪
BwB.

Theorems. 1) Bruhat Decomposition - G =
⨿

w∈W
BwB. 2) G ⊃ P ⊃ B, and for I ⊂ {1, . . . , ℓ} set

PI =
⨿

w∈{si:i∈I}
BwB. Then P = PI for some I.

Also P ⊃ B =⇒ p ⊃ b =⇒ p = b
⊕
α>0

gα
⊕
i∈I

g−αi



Theorem. Let F be a closed subgroup of G and V an F -variety. Let E := G×F V = (G× V )/∼
where (gf, v) ∼ (g, fv). Then E is a G-variety (action of G is the obvious one on the left). 2)
If V = {pt} then G ×F V = G/F , set-theoretically. 3) E → G/F mapping [(g, v)] 7→ [g] has
set-theoretic fibers V . 4) If V an F -module then E → G/F is a vector bundle.

Recall the definition of vector bundles.

Corollary. f : G/F → Y is a morphism iff f ◦ π : G → Y is a morphism.

To show G/B is a variety then, it suffices to show B is closed in G. Suppose not, and let B̄ be
the closure (in the Zariski topology). Then B̄ is also a group. It suffices now to show that B̄ is
solvable. It is easy to see (for any group) that [B̄, B̄] ⊂ [B,B]. It follows that Dn(B̄) ⊂ Dn(B)
for all n, and B is solvable, so done.

Now we want to show that G/B is a projective variety. So let λ ∈ X(H)+ and let G → P(Vλ) by
g 7→ [gv] where v is (any, since they differ by scalars) highest weight vector. This factors through
B by the above, and then gives an injective morphism with closed image. To see this, first let P
be the stabilizer of {vλ} so P ⊃ B so P = PI for some I. Then we argue that I is empty, because
if not, then there is an si ∈ PI . But then si(λ) is given by our previous formula, which (by Lie
group theory) is never equal to λ. (essentially because the Weyl group acts on the Weyl chambers
simply transitively), and hence si do not preserve vλ, contradiction. So it is indeed injective.

To see that X = f(G/B) is closed, suppose not and let X̄ be the closure. Now G acts on X̄ and
stabilizes X̄ −X. Therefore this complement is also B-stable. It is a union of closed G-orbits (so
a union of projective varieties, so is projective; this is general theory). The Borel Fixed Points
Theorem says that if Z is a projective variety and F is a solvable group acting on it, then there’s a
fixed point. But B having a fixed point in X̄−X is a contradiction since B has a unique preserved
line in Vλ. QED.

Also have to prove the inverse is a morphism (will discuss next time, after next week).

This argument fails in positive characteristic.

Lecture 5: 9/23/14

Let’s recall some things (it’s been a week!)

Let F ⊂ G closed, then we defined G×F X to be G×X/∼ where (gf, x) ∼ (g, fx) where F acts
on the left on X. Then G×F X is a G-variety and G×F X → G/F = G×F {pt} is an isotrivial
fibration with fiber X.

Corollary. If V is an F -module then G ×F V → G/F is a vector bundle (meaning VB in the
Zariski topology). Also G/F is an algebraic variety.

Theorem. B is closed.



Theorem. Let G → P(Vλ) and let vλ be a highest weight vector; B acts on [vλ] ∈ P(Vλ) trivially.
Hence get f : G/B → P(Vλ). Then 1) f is injective, and 2) f has closed image X.

Now we must show that in fact the inverse is a morphism, i.e., that G/B is isomorphic to X
(hence projective). This follows from the following more general fact, since X is smooth (being
the orbit of a G-action).

Theorem. f : Y → Z a bijective morphism between irreducible algebraic varieties. Suppose Z is
normal. Then f is an isomorphism.

Example. G = SLn and B the upper triangular matrices. Let V = Cn. Then define Fl(V ) to be
the set of complete flags in V . This has a transitive G-action, and the stabilizer of the standard
flag is B. In particular if n = 2 we realize SL2/B as P1(C).

We have an obvious map Fl(V ) →
n−1∏
i=1

Gr(i,Cn); it is injective, and called the Plucker Embedding.

The map is simply taking each subspace of the flag. This embedding leads to equations that carve
out the flag variety; they are very combinatorial, and called Plucker coordinates.

Anyway, let λ ∈ X(H) = {λ : H → C×} a character on the torus. Last time showed that
B = H n [B,B]. So characters of H are equivalent to characters of B. So regard λ as a map
B → C×. From there we defined the line bundle Lλ defined as

π : G×B C−λ → G/B

where we recall the total space is {(g, x) ∈ G × C}/∼ where (gb, x) ∼ (g, λ(b)−1x)}. Now let
H0(G/B,Lλ) be the space of global sections. G acts on this by the rule

(g · σ)(g′B) := gσ(g−1g′B)

and similarly all the higher H i have a G-action.

Borel-Weil-Bott Theorem

Let G be simply-connected.

1) λ ∈ X(H)+ then there is a G-module isomorphism H0(G/B,Lλ) ∼= V ∗
λ

2) (Bott) Let w ∗ λ := w(λ+ ρ)− ρ for w ∈ W and ρ := 1
2

∑
α∈R+

α. Then Hp(G/B,Lw∗λ) is V (λ)∗

if p = ℓ(w) and is 0 otherwise.

Note that w ∗ λ is not dominant anymore in general, i.e. does not lie in the dominant Weyl
chamber.

Consider the special case of this theorem when G = SL2 and G/B = P1. Then we may can take
λ = ω1 = α/2. Then V (λ) is the standard representation, and can think of V (λ)∗ as C[x]⊕ C[y].
On P1 this is exactly H0(P1,O(1)). Also H i(P1,O(1)) = 0 for i ≥ 1, e.g. by Serre duality.



Before we begin the proof proper, let’s begin with the following easy construction:

G×F V → G/F

and using G → G/F we can get a pullback diagram, hence getting Xf
f−→ G ×F V and Xf is a

vector bundle over G. In fact, Xf
∼= G× V .

To see this, note first that Xf = {([g, x], g1) ∈ (G×F V )×G : π1([g, x]) = π2(g1)}. We construct a
map G×V → Xf by mapping (g, v) 7→ ([g, v], g). In the other direction we note that ([g, v], g1) =
([g1b, v], g1) = ([g1, bv], g1), since g = g1b (since the projections agree), and so we map this to
(g1, bv). QED.

Exercise. More generally, if F ⊂ G is closed and G acts on a vector space M , then G ×F M ∼=
G/F ×M over G/F .

We now apply this to our situation of Lλ. Let L̃λ be the associated (trivial) bundle π̃ : G ×
C−λ → G. We can take a section of this latter to be σ(g) = (g, f(g)) where f : G → C−λ.
So H0(G, L̃) ∼= k[G] ⊗ C−λ

∼= k[G]. Get a B-action on these functions in the tensor product
by b · f(g) = λ(b)−1f(gb). This says, in other words, that our section should satisfy σ(gB) =
[g, f(g)] = [gb, f(gb)] = [g, bg(gb)] = [g, λ(b)−1f(gb)]. This can be summarized by saying that

H0(G/B,Lλ) ∼= H0(G, L̃λ)
B.

Now G×G acts on k[G]. The Peter-Weyl Theorem and Tannaka-Krein Duality. We have an iso
of G×G-modules:

k[G] ∼=
⊕

µ∈X(H)+

V ∗
µ × Vµ.

The iso can be described by Φµ(f ⊗ v)(g) = f(gv) and taking Φ =
∑

Φµ to be the iso. Now
k[G] ⊗ C−λ has a G × B-action on each factor (on the second factor, just have G-factor act
trivially). Hence H0(G, L̃)B ∼= (k[G] ⊗ C−λ)

B; g · f(x) = f(g−1x); the G-action commutes with
the B-action. Hence we can take decompositions before or after invariants. Thus as left G-modules
we have an iso

H0(G, L̃)B ∼=
⊕

µ∈X(H)+

V ∗
µ ⊗ (Vµ ⊗ C−λ)

B =
⊕

µ∈X(H)+

V ∗
µ ⊗ (Cµ ⊗ C−λ) ∼= V ∗

λ .
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Today we’ll talk about the Bott part of BWB. But first!

Equivariant Vector Bundles

Suppose G acts on X and V is an algebraic VB over X. V is said to be equivariant with the G
action if G× V → V over G×X → X commutes, and also g : Vx → Vgx is a linear isomorphism.
For example, the line bundles G×B C−λ → G/B defined last time.



Equivariant VBs on G/B

The arguments below would actually work for B any closed subgroup.

Let V be a B-module. Then we construct Ṽ := G ×B V → G/B and this is a G-equivariant
VB. Going in the other direction, if we take any V → G/B any G-equivariant VB, then V |B is
a B-module (V being G-equivariant implies it is B-equivariant, and hence V |B is B equivariant).
These two operations are inverses to each other, and establish a bijection between the set of finite
dimensional B-modules (up to iso) and G-equivariant VBs on G/B.

A special case is that equivariant line bundles on G/B correspond 1-1 to characters B → C×

(moduli equivalence on both sides).

Theorem. Suppose G is simply connected. Then the category of equivariant line bundles on
G/B is equivalent (via the forgetful functor) to the category of line bundles on G/B.

For proof, see Jacob Lurie’s website; search for BWB theorem.

Recall example - SL2/B = P1 and if λ = aω1 for a ≥ 0 then H0(SL2/B,Lλ) ∼= V ∗
λ = Syma(C2)∗

equals the degree a homogeneous polynomials on C2 equals H0(P1,OP1(a)).

Let ρ be the half sum of positive roots as usual; it also equals
∑

ωi (the sum of all the fundamental
dominant weights). Then ρ(α∨

i ) = 1 for all i since ωi(α
∨
i ) = δij. We define Lλ := Lλ−ρ.

Let X be a smooth curve of genus g. KX is the sheaf of differentials; it has degree 2g − 2. If
X = P1 then g = 0 so degKX = −2. If g = 1 then the degree is 0 and this corresponds to elliptic
curves not having any holomorphic differentials.

Theorem. Let E → S be a P1-bundle, and let L → E be a line bundle, such that for all s we
have degL|Es= n ≥ −1. Then we have

H i(E,L) ∼= H i+1(E,L⊗Kn+1).

Here K is the relative canonical bundle (i.e. on every fiber you get KX). The proof works by
applying the Leray-Serre spectral sequence to the fibration 0 → P1 → E → S and showing
Ep,q

2 = 0.

How do we apply this? Let αi be a simple root and Pi the minimal parabolic containing B. Then
have 0 → Pi/B → G/B → G/Pi → 0. Here Pi/B is just SL

(i)
2 /(SL

(i)
2 ∩B) = P1 (since the Lie

algebra of Pi is b+g−αi
and use the exponential map). We’re now in a position to apply the above

theorem.

Theorem. Let αi be a simple positive root and suppose λ(α∨
i ) ≥ 0, with λ in the weight

lattice P . Then Hp(X,Lλ) ∼= Hp+1(X,Lsi(λ)) where X = G/B and si is the Weyl group element
corresponding to αi. (in the original writeup, we incorrectly had si ∗ λ here).

The theorem follows from the following claim. Lsi∗λ ∼= Lλ ⊗K
degLλ

|P1
+1.

Before we prove this claim, let us use it to complete the proof of BWB. Rewriting this theorem
in our old language, it says the following.



Theorem’. Let αi be a simple root and µ(α∨
i ) ≥ −1 (here thinking of µ as λ− ρ). If p ≥ 0 then

Hp(G/B,Lµ) ∼= Hp+1(G/B,Lsi∗µ).

Corollary. Hp(G/B,Lµ) ∼= Hp+ℓ(w)(G/B,Lw∗µ). When w = si this gives the previous theorem.
The proof is basically by induction on length.

At this point the BWB theorem will follow immediately - we have that

Hj(G/B,Lλ) ∼= Hj+ℓ(w0)(G/B,Lw0∗λ)

where w0 is the longest element in W . We observe that ℓ(w0) = dimG/B. But then we’re done
since cohomology vanishes above the top dimension.

Recall last time we did the Bruhat decomposition G =
⨿

BwB. Then G/B =
⨿

BwB/B
similarly. We define Xw = BwB/B to be the open Schubert cells, which are isomorphic to Cℓ(w).
This implies the above dimension observation. This gives a CW complex structure on G/B. A
Schubert variety is by definition the closure of Xw in G/B. We can then ask what happens if
we restrict Lλ to a Schubert variety, and in particular what the cohomology H0 of this is. This
is more tricky since the Schubert varieties are not smooth in general. But there is a formula for
dimH0(X̄w, Lλ|X̄w

) given by the Demazure Character Formula.

Okay so Lsi∗λ = Lsi∗λ−ρ = L−(2ρ−λ)−(α∨
i ,λ)αi

= Lλ ⊗ (Lαi)⊗(λ,α∨
i ).

Lecture 7: 9/30/14

Recall our our P1-bundle from last time, and the notation there. If Lλ is our line bundle on
G/B then degLλ|Pi/B:= λ(α∨

i ). We have the example for SL2 in which Laω1 = OP1(a) and
aω1(α

∨) = a · 1. Also H0(SL2/B, Laω1) = H0(P1,OP1(a)). And K = L−αi
is the relative ample

canonical bundle on G/B. We’ve defined Lλ = Lλ−ρ. Recall the theorem(s) from last time. We
must prove the following.

Theorem. If E → S is a P1-bundle and L → E has degL|P1= n ≥ −1 then

Hp(E,L) ∼= Hp+1(E,L⊗Kn+1)

Proof. We NTS that Ls(λ) = Lλ⊗KdegLλ+1. Well Lλ = Lλ−ρ and degLλ
| Pi/B = (λ−ρ)(α∨

i )+1 =

λ(α∨
i ) − ρ(α∨

i ) + 1 = λ(α∨
i ). Next, Lsi(λ)−ρ = Lλ−ρ ⊗ L−αi

= Lλ−ρ ⊗ L−λ(α∨
i )αi

= Lλ−ρ−λ(α∨
i )αi

=
Lλ−λ(α∨

i )αi−ρ and the subscript here equals si(λ)− ρ.

Okay now take λ ∈ P+ with λ(α∨
i ) > 0 for all i (can think of this as meaning we lie in the interior

of the chamber, i.e., not on any wall). We have G/B → P(Vλ) and the image is the orbit G · [vλ].
We know that the stabilizer of [vλ] contains B, and that they must in fact be equal. But this
equality used the inequality λ(α∨

i ) > 0 to deduce that si(λ) ̸= λ since λ(α∨
i ) ̸= 0 for all i.

Construction. Take λ ∈ P+ and take G → P(Vλ) as usual. Then we have the stabilizer of
[vλ] again containing B but perhaps being bigger. We call this stabilizer Pλ. Then we have



G/Pλ
∼= G[vλ]. Find i ∈ {1, . . . , ℓ} such that si ∈ Pλ: these are precisely the i such that si(λ) = λ.

Equivalently, λ(α∨
i ) = 0.

For example, SLr+1 and ωj we must find i such that ωj(α
∨
i ) = 0. The set I in this case is

{1, 2, . . . , j − 1, j + 1, . . . , ℓ}.

General Algebraic-Geometry exercise. Suppose we have X ↪→ P(V ) smooth. Let L = OX(1)
(i.e. the pullback to X of O(1)). We have H0(P(V ),OP(V )(1)) = V ∗

1) ϕ : V ∗ → H0(X,OX(1)) is onto. (here we’re just pulling back global sections, which of course
we can do).

2) If X is not contained in a hyperplane, then ϕ is an iso.

3) f : G/Pλ ↪→ P(Vλ) is not contained in a hyperplane. Hint - use the G-action (if it lies in
one hyperplane argue that it lies in multiple ones, then in all of them via transitivity, and get a
contradiction).

Let L = f ∗O(1). We have H0(G/Pλ, L) ∼= V ∗
λ . This looks like a BWB theorem!

We have G/B → G/Pλ. Whenever we have a map X → Y with fibers irreducible projective
variety, and take the pushforward f∗OX = OY . This because there are no nonconstant functions
on projective varieties.

Projection Formula. Thus we have f∗(f
∗L)−L⊗ f∗OG/B = L for any line bundle L on G/Pλ.

Exercise (alg geo again). H0(G/B, f ∗L) ∼= H0(G/Pλ, L).

Applying this observation to our line bundle Lλ and the previous fact, take G/B
π−→ G/Pλ ↪→ P(Vλ)

and we get
V ∗
λ = H0(G/Pλ, f

∗O(1)) = H0(G/B, π∗f ∗O(1))

and now observe π∗f ∗O(1) = Lλ. This can be shown because G-equivariant line bundles are
determined by their characters.

Example. If G = SLr write λ =
r−1∑
i=1

aiωi. Then Vλ ⊂
⊗

Symai(
∧iCr).

We have a big commutative diagram, in which the top row is G/B ↪→
r∏

i=1

Gr(i,Cr), (we don’t

really need this part), the second row is

G/Pλ →
r∏

i=1

Gr(di,Cr) →
∏

P(
di∧
,Cr) →

∏
P(Symai

di∧
Cr) → P(

r⊗
i=1

Symai

di∧
Cr)

(here the product is over some subset of the indices; we repeat di ai-times). Here we’re using the
Veronese and Segre embeddings (multiple times). The last row is P(Vλ) → P(

⊗r
i=1 Sym

ai
∧di Cr)

One can also find this in Fulton’s Young Tableaux (chapter 9). Here di is equal to i if ai ̸= 0 and
is 0 otherwise.



The simple part that we care about is that we get a map G/B →
∏

Gr(di,Cr) over the third row.

Gives example of reading λ from a Young diagram, and thus giving a (partial) flag.

Pulling/pushing the line bundles around this diagram, we can basically write everything in terms
of products of O(1)’s. We’ll now explain how. G/B is the full flag variety, with line bundle Lλ.
There are multiple projections p1, . . . , pr onto the particular subspaces in a given flag. We define
O(1) → Gr(r, V ) to be the dual of the top exterior power of the universal vector bundle (so this

will be the one that has sections). We take
r⊗

i=1

((p∗iO(1))⊗ai) = Lλ by chasing the diagram; we

conclude H0(G/B,Lλ) ∼= V ∗
λ . All this was for SLr; one can do it for the other classical groups -

see Fulton and Harris.

NEW TOPIC!

Pick positive integers n ≥ r. Consider young diagrams λ1, . . . , λm having at most r rows and at
most n − r columns (recall these give weights for SLr; we’ll often think of them this way). |λi|
denotes the number of boxes in the diagram. Further impose that

∑
|λi|= n(n − r). Meanwhile

λT
i correspond to SLn−r-representations.

Theorem (Strange Duality). dim(
m⊗
i=1

Vλm)
SLr = dim(

m⊗
i=1

VλT
m
)SLn−r .

In fact the LHS vector space is the dual of the RHS one. It is called strange duality because it
does not work (directly) for other groups - one needs to use something other than invariants. This
story connects with moduli spaces of vector bundles and of genus g curves with n marked points,
Hodge theory, and some accidental isomorphisms.

Lecture 8: 10/2/14

Reference: http://imrn.oxfordjournals.org/content/2004/69/3709.full.pdf (Belkale’s article on In-
variant Theory of GLn and intersection theory of Grassmannians )

We begin with the strange duality described last time. There will be some combinatorics. The
above isomorphism is not analogously true for other Lie groups, like symplectic ones. For other
groups, one needs to use Conformal Blocks; and this leads to interesting information about the
geometry of (i.e. vector bundles over) moduli spaces of curves of given genus with n marked
points, Nef divisors, Mori Dream conjecture...

Anyway, take λ to be a Young diagram with at most r rows and n− r columns. That is, n− r ≥
λ1 ≥ λ2 ≥ . . . ≥ λr. We then define ia = (n − r) + a − λa, so that i(λ) = {i1 < i2 < . . . < ir} ⊂
[n] = {1, . . . , n}. Consider Gr(r, n), λ, and a fixed full flag F • : 0 ⊂ F1 ⊂ . . . ⊂ Fn = Cn. Then
we define the open Schubert cell to be

Ω0
λ(F

•) = {V ∈ Gr(r, n) : dim(V ∩ Fk) = a where ia ≤ k < ia+1}



and the closure of this is (either in the Zariski topology or the ordinary)

Ωλ(F
•) = {V ∈ Gr(r, n) : dim(V ∩ Fia) ≥ a}

Reference: Flag Varieties by Lakshmibai and Justin Brown (last chapter).

Now take a vector space V of dimension n, and the affine variety X = V ⊕r, thought of as n × r
matrices. Then define π : X →

∧r V by (v1, . . . , vr) 7→ v1 ∧ . . . ∧ vr. Let i = {i1 < . . . ir} ⊂ [n].
Then we define vi = (ei1 , . . . , eir) where we’ve chosen some basis. We then have

π : X\D → P(
r∧
V ).

Next define Ω0
i(λ) = {A ∈ Mn×r : rankA = r and it has a certain row echelon form } and the

closure of this is then those matrices such that aij = 0 for i > ij. With sufficient staring, one finds
that this description is the same as the former.

Facts/theorem: Ωλ = Ω
0

λ and Ωλ is the disjoint union of the Ω0
µ such that µ ≥ λ. Also Ωλ\Ω0

λ is
the disjoint union of those Ωµ such that µ is obtained from λ by adding one box.

Theorem (Lesieur). We have dim(
r⊗

i=1

Vλi
)SL(r) = #

m∩
i=1

Ω0
λi

, subject to
∑

|λi|= r(n− r).

To see this, note that if Ωλ for λ having the restricted number of rows columns as above, then
the collection of [Ωλ] form an additive basis of H∗(Gr(r, n)). Hence there are formulas Ωλ ∗Ωµ =∑

cνλ,µΩνc where νc is the Young diagram corresponding to the complement of ν (in the r by n− r
box). On the representation theory side we have Vλ⊗Vµ =

∑
dνλ,µVνc and the theorem claims that

the c’s equal the d’s. This is in the realm of the “Geometric Horn Problem.” There’s an algorithm
(but no hope for a closed formula) to compute the dνλ,µ. A better question is simply: when is it
nonzero? By the theorem it’s the corresponding question for the c’s (so an intersection question)
and then one tries an inductive process reducing to smaller Grassmannians. The result is called
the Horn Inequalities. On Fulton’s webpage there’s a survey paper relating to this.

We have the duality Gr(r, n) ∼= Gr(n−r, n) sending V ⊂ W to ker[W ∗ → V ∗]. The correspondence
of their Schubert classes is Ωλ ↔ ΩλT . We deduce from the isomorphism of cohomology rings
that we have [Ωλ1 ] ∗ · · · ∗ [Ωλr ] = [ΩλT

1
] ∗ · · · ∗ [ΩλT

m
] and each side here computes the two sides

of the dimension formula of the strange duality theorem, so we’re done. Now can we do this
story geometrically? We have the whole BWB apparatus, so let’s use it. Let V ∈ Gr(r,W ),
where dimW = n. Then the tangent space at V is TVGr(r,W ) = Hom(V,W/V ). Further,
TVΩ

0
λ(F

•) = {ϕ ∈ Hom(V,W/V ) : ϕ(Ea) ⊂ Gia−a}. Here if F is a flag on W , then we get induced
flags on V and W/V , called E• and G•. We have (exercise) an iso of complete flag varieties
f : Fl(W ) ∼= Fl(W ∗) by E• 7→ E∗

•

Exercise. For Λ ∈ Yr,n−r i.e. Young diagram as above. Let Lλ be the BWB line bundle. Then show
that f ∗L

E∗
•

λ
∼= LE•

λc . This map intertwines SL(W ) and SL(W ∗) actions. This duality corresponds
to the outer involution on SLn that we know exists from its Dynkin diagram.



Now let V and Q be vector spaces of dimensions r and n− r (think of Q = W/V ), and then form
Fl(V )m × Fl(Q)m ⊃ D, D a divisor as follows. We have flags (F i

•) and (Qi
•), for 1 ≤ i ≤ m,

and say the corresponding 2m-tuple (F ,Q) ∈ D if there exists nonzero ϕ : V → Q such that
ϕ(F k

a ) ⊂ Giak−a where we recall ik ↔ λk.

We’ll finish next time.

Lecture 9: 10/7/14

We continue to go through Prakash’s paper (reference given last lecture).

Recall we have partitions λ and λc (in the r × n − r box), and f : Fl(W )
∼=−→ Fl(W ∗) mapping

E• 7→ E∗
• , and f ∗Lλ = Lλc . Define on Fl(V ) the line bundle

Li = (
i∧
Ṽi)

∗

where Ṽi is the (rank i) vector bundle on Fl(V ) that associates to a flag 0 ⊂ V1 ⊂ . . . ⊂ Vn = V
the vector space Vi. Now if λ =

∑
aiωi then define

Lλ =
⊗

L⊗ai
i .

We know H0(GL(n)/B, Lλ) ∼= V ∗
λ . The theorem of Lesieur is that

dim(
⊗

Vλi
)SL(r) = #

{∩
Ω0

λi

}
∈ Gr(r, n)

where
∑

|λi|= r(n− r). Note here that we’re using the Schubert cells and not Schubert varieties
(the latter are not smooth so intersection is more subtle, and we can’t use tangent spaces as our
technique). Weak strange duality says ((

⊗
Vλi

)SL(r))∗ ∼= (
⊗

VλT
i
)SL(n−r).

Recall our description above of the tangent spaces to open Schubert cells. Let V,Q be vector
spaces of dimension r and s = n− r. Let λ ∈ Yr,s and (F•, G•) ∈ Fl(V )×Fl(Q). We define a line
bundle fiberwise by

Pλ|(F•,G•)= {ϕ ∈ Hom(V,Q) : ϕ(Fa) ⊂ Gia−a}.
This is a subbundle of the trivial vector bundle Hom(V,Q). Consider the quotient bundle
Hom(V,Q)/Pλ. If the quotient map is s, then (exercise) we can describe for which pair of flags
we have s = 0 (on the corresponding fiber).

How can we identify Hom(V,Q)/Pλ as a line bundle? We can think of it as (coming from) a
divisor. To do this, let λ1, . . . , λn ∈ Yr,s with

∑
|λi|= rs. Let F• be an n-tuple of flags and

similarly for G•. Then we define a vector bundle P̃λi
(F•,G•) := Pλi

(F i
•, G

i
•). Then we have (at

each fiber)

Hom(V,Q) →
n⊕

i=1

Hom(V,Q)/Pλi
(F•,G•)



(and we’re really getting a vector bundle map). Write this as a map V S−→ W . Then since the two
vector spaces / bundles have the same dimension (as we’ll soon show), we can take the determinant
of S and view det(S) as an element of (

∧
V)∗

⊗∧
W ...So we’re getting a section of a line bundle,

and since it’s not the trivial line bundle the section will vanish at some points; the vanishing set
is our divisor!

How can we describe this divisor D ⊂ Fl(V )n × Fl(W )n? Well (F 1
• , . . . , F

n
• , G

1
•, . . . , G

n
• ) ∈ D iff

there exists 0 ̸= ϕ ∈ Hom(V,Q) such that ϕ(F k
a ) ⊂ Gk

ik(a)−a for all k = 1, . . . , n where λk ↔ ik.
Now all these line bundles are GL(V ) and GL(Q)-equivariant, and so any point in D has its whole
orbit in D.

The claim above (that the two bundles have the same rank) follows from showing that Wλi
has

rank |λi|.

We can view detS as an element of

(
n⊗

i=1

H0(Fl(V ), Lλi
))SL(r)

⊗
(

n⊗
i=1

H0(Fl(T ), LλT
i
))SL(n−r)

and then using BWB and Leiseur this is a map V
SL(r)
Λ → V

SL(s)

ΛT . Here we write Λ for the vector
of λi’s.

BREAK!

Now let Pλ(a)(F•, G•) = {ϕ ∈ Hom(V,Q) : ϕ(Fj) ⊂ Gij − j for j = 1, . . . , a}. So that Pλ(0) =
Hom(V,Q) and Pλ(r) = Pλ. This again gives us a (bunch of) bundle as before. We have a SES

Pλ(a+ 1) → Pλ(a) → Hom(Fa+1/Fa, Q/Gia+1−(a+1))

and the dimension of the RHS term is λa+1 so the claim we made earlier can be proved by induction.

Okay moving on. Note that if we have a SES of VBs (or vector spaces) then the Det of the middle
is the product of the dets of the sub and quotient. It follows that detP (a + 1) = detP (a) ⊗
detHom(Fa+1/Fa, Q/Gia+1−(a+1))

∗ where the Hom is the same as before. We need to understand
this term; it equals det((Fa+1/Fa)

∗ ⊗ Q/Gia+1−(a+1)). Now use the fact that det(V ⊗ W ) ∼=
(detV )⊗ rankW ⊗ (detW )⊗ rankV ...we then use some induction...get the answer.

To recapitulate, we’re trying to show (and the above arguments result in showing) that det(V∗ ⊗
W) ∼= LΛ ⊗ LΛT .

Now let’s talk some abstract algebraic geometry. Let X,Y be varieties (don’t really even need
smooth). Suppose we have L1 � L2 → X × Y where by definition the box product of line
bundles is p∗1L1 ⊗ p∗2L2. Assume that h0(X,L1) = h0(Y, L2) = m (i.e. same dimensions of global
sections). Suppose that x1, . . . , xm ∈ X and y1, . . . , ym ∈ Y such that s(xi, yj) = δij for a section
s ∈ H0(X × Y, L1 � L2).

Exercise: THEN 1) s(xa, ∗) form a basis of H0(Y, L2). Similarly s(∗, yb) form a basis of H0(X,L1).
(these are well-defined up to constant; just choose to be 1). This sets up a duality isomorphism
(i.e. perfect pairing) betwen the H0 spaces.



Remark - this can be done for X, Y being stacks.

We apply the theorem to Fl(V )n/SL(V ) × Fl(Q)n/(SL(Q)) with line bundles LΛ and LΛT . If
we can prove that our element detS above has the desired property, then we’ll be done! We
remark that Prekash’s paper (listed above) does not talk about strange duality, but the other
paper (coauthored by Swarnava) does.
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Suppose V ↪→ W → W/V = Q with r = dimV and s = dimW/V . We were studying
Fl(V )×Fl(Q). We defined, for every point (F•, G•) in this product, a vector space Pλ(F•, G•) ⊂
Hom(V,Q), and these pasted together to give a vector bundle. We also studied X × Y where
X = Fl(V )n and Y = Fl(Q)n, giving a map of vector bundles on X × Y as

Hom(V,Q)⊗OX×Y →
n⊕

i=1

(Hom(V,Q)⊗OX×Y )/Pλi

We realized the kernel of this as coming from the divisor D described above.
Proposition.

O(D) ∼= (Lλi
⊗ · · ·Lλn)� (LλT,c

1
⊗ . . .⊗ LλT,c

n
)

as vector (line) bundles on X × Y

Call LΛ and LΛT,c these two factors. Let s ∈ H0(X,LΛ)
SL(V ) ⊗H0(Y, LΛT,c)SL(Q).

Theorem.

a :
n∩

i=1

Ω0
λi
(Ei

•) → H0(X,LΛ)
SL(V )

defined by a(M) = D(M) ⊂ Fl(V )n (defined below). Then 1) D(M) is not equal to all of Fl(V )n

and 2) a maps distinct Schubert cells to linearly independent sections.

Parts one and two here tell us we have an injection, and then Leiseur’s theorem will tell us the
dimensions are equal and hence this is actually an iso. Really the codomain here should be the
projectivization of the H0 (since only getting lines, not specific vectors). Or equivalently, we could
take the C-span of the domain.

Recall that these Schubert cells being intersected are sitting inside some G(r,W ). So a point in
such a cell is an r-dimensional vector space, hence (noncanonically) isomorphic to V . So choose
an isomorphism of M with V . We know M ∈ Ω0

λi
(Ei

•) where Ei
• is a full flag in W . Let F (Ei

•)
denote the induced flag on M , hence on V via the iso chosen. So we’re getting a point in Fl(V )n.
Let Q = W/M and let G(Ei

•) denote the induced flag on W/M .

Using the chosen iso of M with V , we let D(M) be the divisor D ⊂ Fl(V )n. Recall this works by
fixing flags (any, but might as well choose the induced one) Gi

• ∈ Fl(Q), i = 1, . . . , n and then using
the above construction of a divisor on Fl(V )n×Fl(Q)n to (via restriction) getting one on Fl(V )n.



We claim that the point corresponding to M in Fl(V )n, namely M̃ := (F (E1
•), . . . , F (En

• )) is not
in D (this proves part 1 of the theorem). If it were, then we’d have a ϕ ̸= 0, but transversality of
the intersection implies the intersection of the tangent spaces is zero, and we’re done.

For the 2nd part of the theorem, we argue as follows. Let M ̸= M ′. Then we claim M̃ ′ ∈ D(M).
This will imply the desired linear independence, because there’s a point (really as many points
as we need) where all but one of the sections vanishes. To prove the claim, note that we have
Fa(E

j
•)(M

′) ⊂ Ej
a(W ) → Gi(λ)(a)−a(E

j)(W/M) by definition of induced flags. The composition
gives our desired ϕ. In other words, we have a canonical map 0 → M ′ → W → W/M → 0. This
is the zero map iff M = M ′.

This proves strange duality, and a geometrization of Lesieur’s theorem. That is, #
∩

Ω0
λi

≤
dim(

⊗
Vλi

)SL(r). We can say (using the last big from last time) that the two relevant spaces are
naturally dual vector spaces.

New topic! (just until the end of this class, in 7 minutes...)

Aside: Generic Strange Duality

Let SUC(r) be the (coarse) moduli space of semistable vector bundles of rank r on a smooth curve
C with trivial determinant. (semistable means it doesn’t have a subbundle with greater slope,
where slope is something like the ratio of the degree and rank. The reason to care comes from
GIT. See the “Hilbert-Mumford Criterion." Stable VBs means that subbundles should always have
strictly less slope).

Recall the Euler characteristic of a VB V is deg V + rank(V )(1 − g). Since detV = 1 we know
deg V = 0. Let L ∈ Jg−1(C), a line bundle of degree g − 1. Then χ(V ⊗ L) = deg(V ⊗ L) +
rank(V )(1 − g) = rank(V ) deg(L) + rank(V )(1 − g) = 0. So we can now define a “theta divisor"
θL = {V ∈ SUC(r) : h

0(V ⊗ L) ̸= 0}.

1) θL is a divisor in SUC(r).

2) L = O(θL) is independent of L ∈ Jg−1(C).

3) Pic(SUC(r)) = ZL.

We’ll soon move on to affine Kac-Moody stuff.

Lecture 11: 10/14/14

Reference for some of this is Mumford’s Abelian Varieties, and Tate Lectures on Theta I, II, III
by Nori and Ramanujam (not Ramanujan).

Let g ≥ 2 and C a smooth projective curve of genus g. Then Jg−1 is the set of degree g − 1 line
bundles on C. We have, for a fixed line bundle L of degree g − 1 on C, a map J(C)

fL−→ Jg−1(C)



by E 7→ E ⊗ L. Here J(C) is the Jacobian. On Jacobians we have Theta functions. We take a
theta divisor θ = {E : h0(E ⊗ L) > 0} ⊂ J(C). Theta functions are by definition global sections
of the line bundles (on the Jacobian) associated to these divisors. We have O(kθL) := O(θL)

⊗k.
Have h0(J(C),O(kθL)) = kg.

...For Cg/Γ to be a projective variety we also need a “Riemann Bilinear form..."

We let SUC(r) be the set of semistable vector bundles V on C with rankV = r and detV = OC .
Recall that semistability means that for all subbundles W ⊂ V we have

degW
rankW

:= µ(W) ≤ µ(V).

References: 1) Newsted “Intro to Moduli and Orbit Spaces" and 2) Seshadri, Le-Poties (French
book).

Example. On P1, the bundle O(−1) ⊕O(1) is unstable because the whole thing has slope 0 but
the subbundle O(1) has slope 1.

Since we’re assuming detV is trivial, the semistability condition just means that subbundles have
degree 0. So we now (more generally) let θL = {E ∈ SUC(r) : h

0(E⊗L) > 0} where L ∈ Jg−1(C).
We let L = O(θL).
Theorem. 1) L is independent of L (i.e. there’s a canonical isomorphism).

2) For generic L ∈ Jg−1, θL is a (usually nonsmooth...) divisor in SUC(r) (for some choices it
will be the whole space).

3) L is the “determinant of cohomology."

4) Pic(SUC(r)) = ZL.

5) dimSUC(r) = (dimSLr) ∗ (g − 1).

We will not prove this.

QUESTION. What is h0(SUC(r),L⊗k)? We’ve seen the answer above for Jacobians - was just
kg. It was conjectured by the Verlinde brothers (by physicists) (and later proved) to be(

r

r + k

)g

∗
∑

µ∈Yr,k

(
sin < µ+ ρ, α >

(k + r)

)2−2g

where Yr,k are the Young diagrams with at most r rows and at most k columns. Note this is
not even clearly an integer! In RCFT, [TUY], using Kac-Moody theory gave spaces “Conformal
Blocks" ν+

Λ (slr, C, k) where Λ = (λ1, . . . , λn) and λi ∈ Yr,k.
Proposition. 1) ν+

Λ (g, k) → M̄g,n is a VB (with fiber over C equal to ν+
Λ (g, C, k))

2) “Factorization." This relates conformal blocks of a curve and its normalization.

3) Have a flat projective connection on ν+
Λ (g, k) → M0,n (due to KZ, WZW, Hitchin).



Since the dimensions are equal (the Verlinde formula) it’s reasonable to ask if the spaces are
actually isomorphic. The theorem (due to a number of people) is the following. H0(SUC(r),L⊗k)
is canonically isomorphic (up to constants) to ν+

0 (slr, C, k).

THE MORAL HERE IS THAT STUDYING INFINITE-DIMENSIONAL LIE ALGERBAS CAN
TELL YOU ABOUT THE GEOMTRY OF FINITE-DIMENSIONAL THINGS.

Let UC(k) be the set of semistable VBs on a smooth curve of rank k and degree k(g − 1). We
then define a theta divisor θk = {E ∈ UC(k) : h

0(E) > 0} - note there’s no cohice of L here. We
define a map

(E,F ) 7→ (E ⊗ F ) : SUC(r)× UC(k)
τ−→ UC(kr)

noting that deg(E ⊗ F ) = rank(E) deg(F ) = r ∗ k ∗ (g − 1) as required. We let Mk = O(θk) be
the line bundle associated to this theta divisor.
Theorem. τ ∗Mkr

∼= L⊗k �M⊗r
k as line bundles on SUC(r)× UC(k). Also

τ ∗Sθkr ∈ H0(SUC(r),L⊗k)
⊗

H0(UC(k),M
⊗r
k )

where S is the canonical divisor. Then we get the “Strange Duality" map

SD : H0(SUC(r),L⊗k)∗
τ∗Sθkr−−−−→ H0(UC(k),M

⊗r
k ).

This is an iso (proved by Belkale geometrically; Swarnava investigated it via representation theory).

Definition. Let g = 0, and λi ∈ Yr,k for 1 ≤ i ≤ n. Choose n distinct complex numbers zi,
denote the vector of them by z. We define an operator on VΛ :=

⊗
Vλi

by

Tz(v1 ⊗ · · · ⊗ vn) =
n∑

i=1

ziv1 ⊗ · · · ⊗ xθvi ⊗ · · · ⊗ vn

where 0 ̸= xθ ∈ gθ is arbitrary (up to scalars) and θ is the longest root. THEN set

νΛ(g, k, z) :=
VΛ

gVΛ + imT k+1
z

this is a quotient of the coinvariants V/gV . Note we also have a surjective map from the k + 1
guys to the k guys.

We have surjective (because it is so on fibers) map of VBs over X := M̄0,n by OX ⊗ VΛ/gVΛ →
VΛ(g, k). Here the coinvariants are viewed as a trivial bundle with coinvariants as fibers. The
bundle VΛ(g, k) (really its determinant) is basepoint-free so we get a map of M̄0,n to the Grass-
mannian Grassquot(VΛ/gVΛ) by C 7→ (VΛ/gVΛ 7→ VΛ|C). Note that the zi here are the marked
points.

Let Nef(M̄0,n) be the (cone of) divisors D such that D · C ≥ 0 for any 1-dimensional stratum
C (i.e. curves, but not necessarily smooth), modulo some equivalence (called “numerically even-
tually effective"). Nef(X) is actually the closure of the cone of ample divisors Ample(X). Also
basepoint-free divisors are Nef (but not conversely).



Conjecture - Nef(M̄0,n) is polyhedral - means given by a finite set of linear inequalities. This
is false in general, e.g. for Abelian surfaces with Picard rank at most 3. One reason to study
conformal blocks is to understand this cone. And to study conformal blocks we need infinite
dimensional Lie theory. With this motivation in mind (though we will never speak of it again) we
now turn our attention to toward this subject.

Lecture 12: 10/16/14

Let F be a field and V a vector space over F (not necessarily finite-dimensional). Recall the
definition of the tensor algebra: T 0V = F , T 1V = V, . . . , T nV = V ⊗n. Then we set T (V ) =⊕

T i(V ), and this is an associative algebra. T (V ) has the following universal property. If X is a
set and VX is vector space generated by X (i.e. with basis set indexed by X), then if X → A is
any vector space map, where A is any associative algebra, then there’s a unique map T (VX) → A
of associative algebras making the triangle commute.

Given any associative algebra A, it is naturally a Lie algebra, denoted L(A) under [x, y] = xy−yx.
In the other direction, we can associate to a Lie algebra its universal enveloping algebra U(L),
which is just the quotient of T (L) by the ideal generated by [x, y] − (x ⊗ y − y ⊗ x). If we
think of L as left-invariant vector fields, then U(L) is the invariant differential operators. From
this perspective it’s clear that we should have an injection L ↪→ U(L), though proving this is
nontrivial and uses the PBW theorem.
Theorem. If L → L(A) is a Lie algebra map, then there is a unique map U(L) → L(A) of
associative algebras making the triangle commute.
Corollary 2. Suppose W is an L-module. Then we get a unique map U(L) → End(W).

Consider the ideal Ĩ ⊂ T (L) generated by tensors of the form {a⊗ b− b⊗ a}. The corresponding
quotient is the symmetric tensors, Sym(L) = T (L)/Ĩ. Note Ĩ is graded/homogeneous. That is,
Ĩ =

⊕
(Ĩ
∩

T i(L)). There’s a filtration on U(L), viewed as differential operators, defined by Um(L)
being those operators of degree ≤ m. Then Um/Um−1 is isomorphic to degree m homogeneous
polynomials. There’s an obvious filtration Tm = T 0 ⊕ · · · ⊕ Tm, and we define Um = π(Tm) (this
coincides with the one in the previous paragraph). Multiplication induces Um × Un → Um+n.
We define Gm = Um/Um−1. Then we have Gm × Gn → Gm+n for the same reason. And finally,
we let G :=

⊕
Gm be the associated graded algebra. We have ϕm : Tm ↪→ Tm

π−→ Um → Gm.
Then ϕm is onto, because π(Tm\Tm−1) = Um\Um−1. Taking the direct sum of all these gives
a map T (L) →

⊕
Gm. This is trivial on Ĩ and we get a map ϕ : Sym(L) → G. The PBW

(Poincare-Birkoff-Witt) theorem says that ϕ is an iso of algebras.
Corollary 3. 1) If W ⊂ Tm(L) → Symm(L). Suppose W ∼= Symm(L). Then π(W ) is a
complement to Um−1 in Um.

2) L = T 1(L) = Sym1(L) and L → U(L) is 1-1.

3) Suppose H ⊂ L is a Lie subalgebra. Then we can extend this to a map U(H) → U(L) and U(L)
is a free U(H)-module. Suppose that {hs} is an ordered basis of H and that {hs, ℓt} is an ordered



basis of L extended from this. Then a basis for U(L) over U(H) can be expressed as monomials
in these.

Exercise. 1) U(L) = Sym(L) if L is abelian. 2) dimL < ∞ implies U(L) is a domain. 3) Let g be
the only nonabelian 2-dimensional Lie algebra. Then show directly that it embeds in U(g).

Free Lie Algebras

Let X be a set, and have a map X → L where L is a Lie algebra. Then there is a universal object
L(X) (coming with an inclusion X ↪→ L(X)) such that there exists a unique map L(X) → L
making the triangle commute. To see that this object exists, let AX be the free algebra on X;
note this is not associative. Then let I = {aa, (ab)c + (bc)a + (ca)b} for a, b, c ∈ AX . We define
L(X) = AX/I.
Proposition. U(L(X)) ∼= T (VX) as associative algebras.

The proof is by universality. That is, by taking X → L(X) → U(L(X)) and X → T (VX) we get
the two maps needed for the proposition.

We can also define L(X) as the Lie subalgera of T (VX) generated by X.

Lecture 13: 10/21/14

Today we recall the structure theory / classification of complex simple Lie algebras. Let Φ be a
root system of (g, h) where g is a fin-dim simple C-Lie algebra. Let S = {α1, . . . , αℓ} ⊂ Φ be the
simple positive roots. We have Φ∗ ⊂ h and S∗ = {α∨

1 , . . . , α
∨
ℓ }. We have (α, β) = |α||β|cos(ϕ).

We define n(α, β) = α(β∨) = (α, 2β/(β, β)) = 2(α, β)/(β, β). This is an integer by the definition
of a root system. We see that n(α, β)n(β, α) = 4 cos2(ϕ) and this has to be an integer, so this
integer can only be 0, 1, 2, 3, or 4.
Proposition. (α, β) ≤ 0 if α, β ∈ S and α ̸= β. In particular n(α, β) ≤ 0.
Corollary 4. n(α, β) ∈ {0,−1,−2,−3} for α, β ∈ S.

We define the Cartan matrix (n(α, β))α,β∈S.

Ex. the Cartan matrix for G2 has rows (2,−1) and (−3, 2), and for A3 (i.e. sl4) has rows
(2,−1, 0;−1, 2,−1; 0,−1, 2).

Recall how to use the Cartan matrix to construct the Dynkin diagram.

Write g = h⊕
⊕
α∈Φ

gα.

Theorem. We can choose generators ei ∈ gαi
, fi ∈ g−αi

such that [ei, fi] = α∨
i , and [α∨

i , ei] = 2ei
and [α∨

i , fi] = −2fi, where the αi are the simple positive roots.

Let n(ij) = n(αi, αj). Then we have ad(ei)
−n(ji)+1ej = 0 and ad(fi)

−n(ji)+1fj = 0.



Choose a set of symbols α∨
1 , . . . , α

∨
ℓ and e1, . . . , eℓ and f1, . . . , fℓ. Let F be the free Lie algebra

on these symbols. We define g to be F/∼ where ∼ corresponds to the above relations (the 3
“obvious" (Weyl) ones and the 2 Serre relations). Also assume the α∨

i commute with each other.
Theorem. g ∼= g as Lie algebras.

Verma Modules

Let λ ∈ h∗ and Cλ the 1-dimensional h-module where h acts by λ. Write g =
⊕

α∈Φ−
gα⊕h⊕

⊕
α∈Φ+

gα.

If X ∈ gα for α ∈ Φ+ then define an extension to the Borel subalgebra b ⊂ g by Xv = 0. Now we
have U(b) → U(g) making U(g) into a free U(b)-module, so we simply define

Mλ := U(g)⊗U(b) Cλ = Indg
bCλ

so Mλ
∼= U(n−) ⊗C Cλ, because we can write U(g) = U(n−) ⊗C U(b). This module is always

infinite-dimensional.

Now require that λ be a dominant integral weight, i.e., an element of P+ := {λ ∈ h∗ : λ(α∨
i ) ∈

Z≥0 ∀i}. Then there exists a (unique) maximal proper g-submodule Jλ such that Vλ = Mλ/Jλ is
finite-dimensional irreducible, and all finite-dimensional g-modules so arise.

Aside - can realize Jλ as kernel of a bilinear form on Mλ, called the Shapovalov form.

Aside - let g̃ be F/∼ where ∼ is just the Weyl relations (no Serre relations). Then the result
is infinite-dimensional, but we can construct the Verma module M̃λ just the same, though now
U(n−) is now a free Lie algebra. We have the obvious surjective map g̃ → g and this induces a
map M̃λ → Mλ.

Take λ1, . . . , λn ∈ P+(g). Now write
∑

λi =
∑

nαα, summing over the simple positive α and
nα ∈ Z≥0. Now if (Vλ1 ⊗ · · · ⊗ Vλn)

g ̸= 0 then (
⊗

Vλi
)0 ̸= 0 so (λ1 −

∑
nαα) + . . .+ λn −

∑
nαα

implies
∑

λi ∈ Q (the root lattice). Let M =
∑

nα. Let z1, . . . , zn ∈ C disinct. Then define

XM = {(t1, . . . , tM) ∈ CM : ti ̸= tj , ti ̸= zi}.

This is called a “hyperplane arrangement.” These are quite interesting and have a whole theory.
Let fij = ti − tj and aij = ti − zj. Consider the (differential graded) algebra AXM

generated by
dfij/fij and daij/aij (i.e. log forms). These are holomorphic forms on the hyperplane arragement.
On the boundary these have simple poles. Check that d of a log form is zero. The algebra
multiplication here is ∧; the grading is just the number of d’s in the expression. Now consider the
top degree (i.e. degree M) forms log ΩM

XM
in AXM

. Since log forms have d equal to zero, we get a
map log ΩM

XM
→ HM(X,C).

The following is badass.
Theorem (Schectman, Varchenko). (log ΩM

XM
)Σ ∼= (M̃λ1 ⊗ · · · ⊗ M̃λn)

∗
0 where Σ is a subgroup of

SM , namely Snα1
× · · · × Snαℓ

.



End Aside!

Let A = (aij) be an ℓ× ℓ matrix. We say A is a generalized Cartan matrix (GCM) if aii = 2 and
aij ≤ 0 if i ̸= j and aij = 0 iff aji = 0.
Definition 5. A realization of A is a triple (h,Π,Π∨) such that h is a vector space of dimension
ℓ+(ℓ−rankA), and Π = {α1, . . . , αℓ} ⊂ h∗, and Π∨ is similar. These are subject to the conditions:

i) αi are linearly independent.

ii) α∨
i linearly independent.

iii) < α∨
i , αj >= aij.

Note that in the finite-dimensional case the rank equals ℓ and h always has dimension ℓ. The
first obvious questions are of existence and uniqueness of realizations. We say 2 realizations are
isomorphic if there exists an iso ϕ : h → h′ such that ϕ : Π∨ → Π∨′ and ϕ∗ : Π′ → Π.
Theorem. Realizations exist and are unique up to iso.

The idea is to pick an arbitrary vector space V and choose elements of V and V ∗ satisfying i− iii;
this is easily done. Then it is shown that dimV ≥ ℓ + (ℓ − rankA). Then let h be the (span of
the) α∨

i together with the inverse image of the cokernel of A. (?)

We let g(A) be the quotient of the free Lie algebra generated by h, and ei, fi for 1 ≤ i ≤ ℓ modulo
the relations:

1) [h, h] = 0,

2) [h, ei] = αi(h)ei and [h, fi] = −αi(h)fi,

3) [ei, fj] = δijα
∨
i ,

4) (ad ei)
1−aij(ej) = 0 and

5) (ad fi)
1−aij(fj) = 0.

Then g(A) is called the Kac-Moody algebra associated to A.

Lecture 14: 10/23/14

Last time we defined a GCM, so let (aij) = A a GCM. Recall this means aii = 2 and aij = 0
iff aji = 0 and aij ≤ 0 for i ̸= j. We said a realization of A was a vector space h together with
ℓ linearly indepdendent vectors in h and in h∗, with some properties. We ended by defining the
Kac-Moody algebra g(A). This was invented in the 1960s; has found uses is physics etc. g(A) is
just a free Lie algebra on 2ℓ generators, modulo the 3 Weyl and 2 Serre relations.

Let n = n+ be the Lie subalgebra of g(A) generated by the ei and n− the Lie subalgebra generated
by the fi. We define the standard Borel b = h ⊕ n. We also write g̃(A) to be the quotient of



the same free Lie algebra by just the Weyl relations (omit the Serre relations). So we have the
obvious quotient g̃(A) → g(A).

Consider the Serre relation (ad ei)
(1−aij)(ej) = 0 for i ̸= j. If A = (2), which is the Cartan

matrix for sl2, then we’re looking at {e, f, α∨} with the relations [e, f ] = α∨ and [α∨, e] = 2e and
[α∨, f ] = −2f and actually the Serre relations are automatic so g̃(A) = g(A) in this case.

For 1 ≤ i ≤ ℓ, we let g(i) be the Lie subalgebra of g(A) generated by {ei, fi, α∨
i }. We do the same

thing for everything with tildes. The previous paragraph though shows that g(i) ∼= g̃(i) ∼= sl2.

Define a map
ω : F (A) → F (A)

by ei 7→ −fi and fi 7→ −ei and h 7→ −h for any h ∈ h. One can check that this is a Lie algebra
map and that ω preserves all 5 relations, hence descends to g(A) → g(A). This ω is called the
Cartan Involution (note it obviously squares to 1). It is easy to see that ω preserves h and switches
n±.

Take two disjoint subsets Y1 ∪ Y2 = {1, . . . , ℓ}, such that aij = 0 if i ∈ Y1 and j ∈ Y2. That is,
up to permutation we can write A as a block diagonal matrix. Then g(A) ∼= g(A1)⊕ g(A2) as Lie
algebras.

We define the root lattice Q =
ℓ⊕

i=1

Zαi ⊂ h∗ and Q+ to be the same with Z≥0. Note the root

lattice may not be full rank. We similarly define, for each α ∈ h∗ the spaces

gα := {x ∈ g(A) : [h, x] = α(h)x ∀h ∈ h}.

These can now be more than 1-dimensional (a priori they could even be infinite dimensional).
Theorem. (Kac-Serre). Assume A is indecomposable.

a) g = n− ⊕ h⊕ n.

b) n± =
⊕

α∈Q+\{0}
g±α.

c) dim gα < ∞

d) n+ is generated by the ei with the relation R4 (the Serre relation) (i.e. it’s a free Lie algebra
mod this one relation). Similarly for n−. (this part is used to prove a).

We omit the proof of this.

Let ∆ be the 0 ̸= α ∈ Q such that gα ̸= 0. I.e. the set of roots. Similarly ∆+ = ∆ ∩ Q+ and
∆− = −∆+ and then ∆ is the disjoint union of ∆±. We say the αi, 1 ≤ i ≤ ℓ, are the simple
positive roots. Now for α ∈ ∆ ∪ {0} we can write α =

∑
nαi

αi with nαi
∈ Z≥0. We define the

height of α to be |α|=
∑

nαi
. We define the multiplicity of α to be multα = dim gα.

Exercise. (hint - use part d of theorem). If αi is simple then 1) multαi = 1 and 2) nαi ∈ ∆ iff
n = ±1.



Let Y ⊂ {1, . . . , ℓ}, possibly empty. Then let ∆Y := ∆ ∩ (
⊕
i∈Y

Zαi) and similarly ∆±
Y . We then

define
gY = h⊕ (

⊕
α∈∆Y

gα)

and
UY =

⊕
α∈∆\∆+

Y

gα

and similarly U−
Y . We also define standard parabolics

PY = gY ⊕ UY

and the opposite parabolic
P−
Y = gY ⊕ U−

Y

and these two are permuted by the Cartan involution. We call gY the Levi subalgebras and UY

the nilradical. If Y = {i} then the PY is called a minimal parabolic.

Last definition for today. We define si ∈ Aut(h∗) by si(χ) = χ − χ(α∨
i )αi. We have s2i = 1 and

we let the Weyl group of g(A) be the group generated by the si for 1 ≤ i ≤ ℓ. We’ll see later this
is still a Coxeter group, though it may be infinite.

EXAMPLE

Let R = C[t, t−1]. Then let g be a finite-dimensional Lie algebra. Let L(g) := g ⊗ C[t, t−1].
We give this the obvious bracket: [x ⊗ f, y ⊗ g] = [x, y] ⊗ fg. We now extend further and let
L̄(g) := (g⊗ C[t, t−1])⊕ C(t d

dt
). We let d = td/dt and define [x⊗ tm, d] = mx⊗ tm.

We next define L̂(g) as (what happens to be the unique nontrivial one, called the universal central
extension) the nontrivial central extension

0 → Cc → L̂(g) → L̄(g) → 0.

Write (as vector spaces) L̂ = L̄⊕Cc and define the bracket by 1) [L̄, c] = 0 and 2) [x⊗ f, y⊗ g] =
[x, y]⊗ fg+((x, y) rest=0 gdf/dt)c where (x, y) is the Cartan-Killing form. Then L̂(g) is called the
affine Kac-Moody algebra (Swarnava also calls it the untwisted affine KM algebra). L(g) is called
the Loop algebra (it is the Lie algebra of a loop group...?). Summing with Cc gives the affine Lie
algebra.
Theorem 6. L̂ IS a Kac-Moody algebra, that is, it is isomorphic to g(A) for some GCM A.

Idea of proof. We know that the g we started with is a Kac-Moody algebra associated to some
matrix A′, of size ℓ × ℓ. The A we want will be ℓ + 1 × ℓ + 1 with A as the lower-right chunk.
Well a00 = 2 is forced. For the rest, set a0j = −αj(θ

∨) where θ∨ is the coroot corresponding to θ,
the highest root of g (N.B. we don’t have a notion of highest root for general KM algebras). And
lastly set aj0 = −θ(α∨

j ).



We define Π∨ to be {c− θ∨, α∨
1 , . . . , α

∨
ℓ } and h(A) = h⊕Cc⊕Cd. We define δ ∈ h(A)∗ by having

it be zero on the first 2 summands and δ(d) = 1. That is, the dual element of d. With this we let
Π = {α0 := δ − θ, α1, . . . , αℓ}.

It is then not hard to show that A has corank 1.

We can write
L̂ = h(A)

⊕
0 ̸=j∈Z,k∈Z

tj ⊗ h
⊕
β∈Φ

tk ⊗ gβ

where Φ is the root system for the original g. The roots ∆ here are jδ for j ̸= 0, and kδ + β for
k ∈ Z and β ∈ Φ (the above is its root space decomposition). One can show mult(jδ) > 1 for all
j ̸= 0 and mult(jδ + β) = 1. We call roots with multiplicity >1 imaginary, and with multiplicity
=1 real. This phenomena does not happen in the finite-dimensional case.

Last thing: ∆+ = {jδ : j > 0} ∪ {kδ + β : k > 0, β ∈ Φ} ∪ {β ∈ Φ+}.

Lecture 15: 10/28/14

Recall last time we defined, for a GCM A, realizations (h,Π,Π∨), the Kac-Moody algebra g(A),
and g̃(A) the Kac-Moody algebra without Serre relations.
Definition 7. Let A be a GCM. We say A is symmetrizable if there exists a diagonal matrix
D = diag(ε1, . . . , εℓ) with εi ∈ Q such that D−1A is symmetric.

Writing out what this means in entries of the matrices gives ε−1
i aij = ε−1

j aji or aij
aji

= εi
εj

> 0 so
we can choose all εi > 0. Note we can multiply such a D by a scalar and it will still be such a
matrix. If given two such matrices D1, D2, with entries in Z, we write D1 ≤ D2 if ε1i ≤ ε2i for all
i. This is a partial ordering and it has minimal elements.

For any symmetrizable matrix A, there exists a minimal diagonal matrix D with integer entries
such that D−1A is symmetric. By this we mean that εi ∈ Z>0 for all i, and D is minimal wrt
the ordering. We will care about symmetrizable KMAs because only for them will we have a
W -invariant symmetric bilinear form (akin to the Killing form).
Proposition. Let W be the Weyl group of g(A), and assume A is symmetrizable. Then h carries a
W -invariant form, which is symmetric nondegenerate. This form extends to the whole Lie algebra.

Proof. Let h′ =
⊕

Cα∨
i . Choose a vector space complement h = h′⊕h′′. Now choose D minimal so

that D−1A is symmetric. Now set ⟨h′′, h′′⟩ = 0 and ⟨h, α∨
i ⟩ = ⟨α∨

i , h⟩ := αi(h)εi. We remark that
this is well-defined. To see that this is W -invariant, compute ⟨sjh1, sjh2⟩ = ⟨h1 − αj(h1)α

∨
j , h2 −

αj(h2)α
∨
j ⟩ = ⟨h1, h2⟩ − αj(h2)αj(h1)εj − αj(h1)αj(h2)εj + 2αj(h1)αj(h2)εj = ⟨h1, h2⟩ and done.

Note we’re using here that αj(α
∨
j ) = 2.

N.B. that h′′ is not unique, and our form depended on its choice.



Exercise 1. A is symmetrizable iff for all k and all subsets {i1, . . . , ik} ⊂ {1, . . . , ℓ}, we have
equality of products ai1i2ai2i3 · · · aiki1 = ai2i1ai3i2 · · · ai1ik
Exercise 2. A a GCM and h′ as in the proposition. Let ( , ) : h′ × h′ → C be a W -invariant
bilinear form (maybe not symmetric or nondegenerate, but NOT identically zero).

i) Then A is symmetrizable. Hint: let εi = (α∨
i , α

∨
i )/2 and compare (sjα

∨
i , sjα

∨
i ) = (α∨

i , α
∨
i ) to

get aijεj = ajiεi.

ii) The form ⟨ , ⟩ from the proposition is equal, up to a nonzero multiple, of ( , ). In particular, ( , )
is automatically nondegenerate, and the restriction of the proposition’s form to h′ is essentially
unique.
Theorem 8. Let g(A) be a symmetrizable KM algebra. Then there exists a form <,> on g(A)
such that

1) < [X,Y ], Z > + < Y, [X,Z] >= 0

2) <,> restricted to h is the same as the one defined in the previous proposition.
Proposition. We have

1) < gα, gβ >= 0 unless α + β = 0 for α, β ∈ ∆ ∪ {0}.

2) [X, Y ] =< X, Y > v−1(α) where X ∈ gα and Y ∈ g−α.

In 2) we’re using v : h ∼= h∗ defined by v(h)(h1) :=< h, h1 >

Proof. Now we define, for k ∈ Z,
gk =

⊕
gα

where we sum over all α ∈ ∆ ∪ {0} with |α|= k. We also set

g(N) =
N⊕

k=−N

gk

for N ≥ 0. For example g0 = h and g(0) = g0. We stated last time that gα is a line if α is simple,
and so we can define < fj, ei >=< ei, fj >= δijεi on g(1), and < g0, g±1 >= 0. We note that this
pairing restricts to g0 to give the previous pairing, as we desire.

So now we try to extend this inductively. We claim that for N ≥ 1, there exists a form <,>
on g(N) such that < gk1 , gk2 >= 0 unless k1 + k2 = 0 and |ki|≤ N , and satisfies condition 1)
whenever x, y, z, [x, y], [x, z] lie in g(N). Inductively, suppose we’ve done it for g(N − 1). For
x ∈ g±N and y ∈ g∓N , we write y =

∑
[ui, vi] where ui ∈ g(N − 1) and vi ∈ g(N − 1). Now note

that [x, ui] ∈ g(N − 1). Now define

< x, y >:=
∑

< [x, ui], y > .

We cite without (the horrible) proof the fact/theorem that this is well-defined.



In the case of affine KM algebras we can give a more intrinsic and transparent description of <,>.
So following last class’s example, let L̂(g) := g ⊗ C[t, t−1] ⊕ Cc ⊕ C(td/dt) and d = td/dt. We
defined the [, ] structure last time. This is a symmetrizable Lie algebra. The way this works is,
if D′ was the diagonal matrix symmetrizing the Cartan matrix for g (know exists since fin-diml),
then D = diag(1, D′) will symmetrize the GCM for L̂. The <,> on L̂ can be described directly:

< x⊗ p, y ⊗ q >=< x, y > res(t−1pq)

< Cc+ Cd, g⊗ C[t, t−1] >= 0

< c, c >=< d, d >= 0

< c, d >= 1

and note that the restriction of <,> to g inside L̂(g) is g’s <,>. Now h(A)∗ = h∗ ⊥ (Cδ ⊕ Cw0)
where δ is the dual element of d and w0 is defined by being zero on h+ Cd and w0(c) = 1.

End example.

Let g(A) be any KM algebra and S any ideal of g(A). We can write S =
⊕
α∈∆

(S ∩ gα)
⊕

(S ∩ h).

Let S1 be an ideal of g(A) such that S1∩h = 0., and S2 another such ideal. Then (S1+S2)]∩h = 0
still. So let R be the sum of all such ideals, so R ∩ h = 0. In some books the KM algebra is
defined to be g(A)/R. Everything we’ve done still goes through for this guy; for symmetrizable
KM algebras R = 0 so no issue.

Next time we’ll talk about the affine Weyl group.

Lecture 16: 10/30/14

Consider SL2(C[t, t−1]). So an element is a matrix pij ∈ C[t, t−1] with determinant 1. This is an
example of an “ind-group." Anyway, today we want to discuss affine Weyl groups. Consider the
Weyl group element rα for the finite guy (i.e. antidiagonal 1, 1). Note the way we’re writing it, it
is not normalizer mod centralizer (since it’s not in SL2). Consider also the matrices diag(ti, t−i).
Let T (i) be conjugation by this, viewed as an automorphism of sl2(C[t, t−1]).

For example, T (i) : (0, ta; 0, 0) 7→ (0, ta+2i; 0, 0). Now let S(i) = rαT (i) (multiplication of matri-
ces). Then S(i) also acts on the Lie algebra.
Definition 9. The Affine Weyl Group Aff(sl2) ⊂ Aut(sl2(C[t, t−1])) is the group generated by
the rα and T (i).

In this case the AWG is isomorphic to Z o Z/2.



Single Shift Automorphisms

Let µ ∈ P∨(g) (an element of the coroot lattice). We define an automorphism µ̃ on

ĝ = g⊗ C[t, t−1]⊕ Cc

where g corresponds to a finite dimensional semisimple Lie algebra, by setting

µ̃(Xα(n)) = Xα(α(µ) + n)

µ̃(h(n)) = h(n) + (< µ, h > ·c)δ0,n
where Xα(n) = Xα ⊗ tn, with Xα ∈ gα, and fixing c, and similarly for h(n) for h. Part of the
reason for this correction at n = 0 is coming from the fact that we’re dealing with a nontrivial
central extension. The image of the group map µ 7→ µ̃ : P∨ → Aut(g) gives the (abelian) lattice
part of the AWG.

Now recall Hii = eii (the matrix with 1 at ii and 0 elsewhere) and X1 := H1 − 1
n

∑
(Hii). Let

τ = τX1 = tX1 . Conjugation by τ is well-defined (though choosing different branches of logarithm
can change τ itself, since we’re using t1−1/n and t1/n). So we get a map cτ is an automorphism
of sl2(C[t, t−1]) (assuming n = 2), and if we choose µ = X1 then we’re basically getting a single
shift automorphism. The SSA’s are a somewhat nonstandard way of getting at AWGs, but it’s a
useful perspective for physics.

Note that the X1 above is in P∨ but not Q∨ and so does not contradict the next theorem (noting
that τ isn’t in the group since its t’s has fractional exponents).
Theorem. Let µ ∈ Q∨(g) where g is of classical type. Then τµ ∈ G(C[t, t−1]) where G is the
simply connected group with Lie algebra g.

Let Xi =
∑iHkk − i

n

∑n Hkk, and these are a basis for P∨. Then τXi
:= tXi ; though this doesn’t

quite make sense, conjugation by τXi
on sln ⊗C[t, t−1]is well-defined. It needs to be checked that

this conjugation will not accidentally introduce fractional powers of t.
Definition 10. The (general) AWG is Aff(W ) = W nZQ∨ ⊂ Aut(h∗). Here h is the Cartan of
the affine KM Lie algebra defined previously (so h = h◦⊕Cc⊕Cd). For h in the finite Cartan h◦,
we let Th ∈ Aut(h∗) by Th(λ) = λ+ λ(c)v(h)− [λ(h) + 1/2∗ < h, h > λ(c)]δ. Here v : h ∼= h∗ and
T gives an embedding of the finite Cartan into Aut(h∗). We define Twh = wThw

−1. This defines
the semidirect product and thus the AWG. Note we’re letting w act on h∗ by fixing c and d.

Lecture 17: 11/4/14

Extra long class today; none Thursday.

We’re working towards Category O - this will be the category of *reasonable* modules. Reference
- S. Kumar’s book.



Let T : V → V an operator on a vector space. We say T is locally finite if ∀v ∈ V, there exists a
finite dimensional subspace W ⊂ V such that v ∈ W and T (W ) ⊂ W . In other words, the orbit
of any vector under T spans a finite-dimensional space. We say that T is locally nilpotent if, in
addition, T |W is nilpotent.

Let g(A) be a KM algebra and V a g(A)-module. We say V is a weight module if

V ∼=
⊕
λ∈h∗

Vλ

with dimVλ < ∞. V is called integrable if, in addition, all ei and fi (for 1 ≤ i ≤ ℓ) act locally
nilpotently.

Example/Theorem. g(A) is an integrable g(A)-module (by the adjoint action). This requires a
proof (which we maybe give later).

Suppose π : g → End(V ) with V integrable. Then we can define an automorphism

si(π) : V → V

si(π) := exp(πfi) ◦ exp(−πei) ◦ exp(πfi).

In this case one has
si(π)(Vλ) = Vsi(λ)

for λ ∈ h∗. Here the RHS si is from the Weyl group. As a corollary we see that for α ∈ ∆ we
have dim gα = dim g−α, since sα(α) = −α. The same holds for arbitrary roots.

We now wish to define the Casimir operator. What is it and why is it important? Consider
sl2(C) = Cf ⊕ Ch ⊕ Ce (identified with traceless 2 × 2 matrices). Let ϕ be the standard 2-
dimensional representation. Define a bilinear form β : sl2 × sl2 → C by β(x, y) = tr(ϕ(x)ϕ(y)) =
tr(xy). We get β(h, h) = 2 and β(e, f) = 1 so β is nondegenerate. We then define cϕ = h2/2 +
ef + fe inside the universal enveloping algebra. This element is in fact central: [cϕ, e] = [cϕ, f ] =
[cϕ, h] = 0 so cϕ =∈ Z(U(sl2)) [to be careful should say Z(ϕ(U(sl2)))]

More generally, let ϕ : g → End(V ) be a faithful representation of a simple finite-dimensional g
(e.g. the adjoint representation). Then we define a bilinear form β as above to be tr(ϕ(x)ϕ(y)).
This form is nondegenerate (exercise to see why). Let x1, . . . , xn be a basis of g and yi be the dual

basis wrt β. Let cϕ =
n∑

i=1

ϕ(xi)ϕ(yi) ∈ End(V ). Remark: cϕ is independent of the basis chosen

(basically because it acts by the identity), and tr(cϕ) = dim g = n. The Casimir operator is a key
ingredient in proving the complete reducibility of finite-dimensional modules for finite-dimensional
semisimple Lie algebras.

To do this for our KM algebras we’ll need an infinite sum, so we’ll work in a completion. Recall now
lecture 15. Assume g(A) is symmetrizable and define ḡ = g(A)/R. Then U(ḡ) =

⊕
d≥0 U(b̄−) ⊗

Ud(n̄) where g = b− ⊕ n. We define U(g) to be the same thing with
⊕

d≥0 replaced by
∏

d≥0. In
here (

∑
xd)(

∑
ym) =

∑
k≥0

∑
d,m(xdym)k. Remark - given k there are only finitely many d,m



such that (xdym)k ̸= 0, so this product on the completion of the universal enveloping algebra
makes sense.

We again have dim gα = dim g−α. Let {e1α, . . . , epαα } be a basis of gα and ei−α the dual basis of g−α

wrt the normalized invariant bilinear form on g (see lecture 15 - THIS is where we’re using the
assumption of symmetrizability). We similarly let u1, . . . , uk be a basis of h and ui be the dual
basis of h. Define

Ω0 :=
∑

uk
k

Ωα :=

pα∑
i=1

ei−αe
i
α

And we let the Kac-Casimir operator be

Ωρ := 2v−1(ρ) + Ω0 + 2
∑
α∈∆+

Ωα ∈ U(g)

Here ρ ∈ h∗ is such that < ρ, α∨
i >= 1 for all i. In the KM case ρ is not unique (not just the half

sum of positive roots). Problem is that the α∨
i may no longer span h. Again v : h ∼= h∗ is our iso

induced by <>.

CLAIM. Ωα is independent of the choice of basis xα :=
∑

i e
i
−α ⊗ eiα ∈ ¯g−α ⊗ ḡα ∼= End(ḡα) since

ḡ−α
∼= ḡα

∗. The definition then implies xα = Id. The following theorem now follows.
Theorem 11. Ω only depends on the choice of ρ.

Example. If dim g < ∞ and g simple, and ϕ : g → End(V ) a faithful represenation, we’ve
assigned objects cϕ and Ω ∈ U(g). These two differ by a scalar multiple (exercise). Basically
because invariant bilinear forms are unique up to scalars.
Theorem 12. Ω ∈ Z(U(g))

Proof. We must show Ω commutes with the generators. It is easy to see that it commutes with
h (the first two terms are obvious since they come from the Cartan; the last term is because
[h, e−α ⊗ eα] = 0). We NTS [Ω, eα] = 0.

Lemma 13. If α ̸= β. We know gα is dual to g−α (similarly for β). Let v ∈ g−α ⊗ gβ. Suppose
< v, e ⊗ f >= 0 for all e ⊗ f ∈ gα ⊗ g−β. Then v = 0 (note that such e ⊗ f were the only ones
that *could* have paired nontrivially with v).

For proof of the lemma see Kumar’s book.

Moving on, let α, β ∈ ∆ and let z ∈ gβ−α. Then

dim gα∑
s=1

es−α ⊗ [z, esα] =

dim gβ∑
t=1

[et−β, z]⊗ etβ

This is obvious for α = β so assume otherwise. CLAIM: let L and R be the LHS and RHS. Then

< L, e⊗ f >=< [z, e], f >



< R, e⊗ f >=< e, [f, z] >

where e⊗ f ∈ gα⊗g−β as before. Then the Weyl-group invariance plus the lemma implies L = R.

Proof of claim:
∑

s < es−α ⊗ [z, esα], e ⊗ f >=
∑

s < es−α, e >< [z, esα], f >=
∑

s < es−α, e ><
esα, [f, z] >=< e, [f, z] >. The other is similar.

Corollary now is that ∑
s

[es−α, [z, e
s
α]] = −

∑
t

[[z, et−β], e
t
β] ∈ g∑

s

es−α[z, e
s
α] = −

∑
t

[z, et−β]e
t
β ∈ U(g)

Now let Ω̄ = 2
∑

Ωα the last summand of Ω. Then [Ω̄, eαi
] is, after unwinding the definition,

[e−αi
, eαi

]eαi
+ 2

∑
αi ̸=α∈∆+

(
∑

s[e
s
−α, eαi

]esα +
∑

t[eαi
, et−α−αi

]etα+αi
) = −2v−1(αi)eαi

= −2 < αi, αi >

eαi
− 2eαi

v−1(αi). Here just using that [v−1(αi), eαi
] =< αi, αi >.

Next, compute, for x ∈ ḡα, [Ω0, x] = 2xv−1(α)+ < α, α > x. But v−1(α) = α∨
i /εi by definition

of the Cartan-Killing form. This then implies (compute) that 2 < ρ, αi >=< αi, αi >. Thus we
have that [2v−1(ρ) + Ω0, eαi

] = 2 < αi, αi > eαi
+ 2eαi

v−1(α).

Putting all these together implies [Ω, eαi
].

Lecture 18: 11/11/14

Plan for rest of semester is (among other things) going to hopefully hit affine Grassmannians. But
today we want to play with the Kac-Casimir operators that we constructed last time, and define
category O. Reference is chapters 1 and 2 of S. Kumar’s book.

Let g = g(A) be any KM algebra (we won’t assume symmetrizable today). We introduce a partial
order ≤ in h∗ by µ ≤ λ if λ− µ ∈ Q+ :=

⊕
Z≥0αi. This is the usual Bruhat order. Then we can

define the subsets h∗≤λ ⊂ h∗, whose meaning is obvious. For λ ∈ h∗ we let Cλ be the 1-dimensional
h-representation where h acts by λ. Now n acts trivially on any 1-dimensional representation, so
we extend Cλ trivially to a representation of b. We now define the Verma Module

M(λ) := U(g)⊗U(b) Cλ = U(n−)⊗C Cλ

where the second equality is via the PBW theorem [g = n− ⊕ b then U(g) = U(n−)⊗C U(b)] .

Properties. 1) M(λ) is an h-weight module, i.e.,

M(λ) =
⊕
µ∈h∗

(M(λ))µ

such that dimM(λ)µ < ∞. 2) If µ is a weight in M(λ) then µ ≤ λ.

For the latter, note that h(fivλ) = (fih+ [h, fi])vλ = (λ− αi)(h)(fivλ).



Definition 14. A Highest Weight Module is any quotient of a Verma Module.

Exercise. If L is a highest weight module, compute Endg(L). Hint - the action of an element is
determined by what it does to a highest weight vector (so the answer is: scalars).

Exercise. For sl2, if λ ∈ Z+, then the kernel of M(λ) → Vλ → 0 (Vλ being the unique irreducible
quotient) is of the form Mµ for some µ (exercise - µ = −λ− 2).

Remark. The category of highest weight modules is not semisimple.

We shall show that M(λ) has a unique irreducible quotient, and that this is the unique irreducible
highest weight module of weight λ. But first we define Category O, the category of “representations
that are not insane.”

Let O (for fixed g) be the category of g-modules M such that 1) M is an h-weight module:
M =

⊕
µ∈P (M)

Mµ with 0 < dimMµ < ∞. 2) There exists λ1, . . . , λk ∈ h∗ (depending on M) such

that P (M) ⊂
∪k

j=1 h
∗
≤λj

.

Easy remark. O is closed under submodules and quotient modules, as well as ⊕ and ⊗. But it is
not semisimple (since Verma modules don’t split).

The category O has an involution. Recall we defined the Cartan involution ω : g(A) → g(A), by
ei 7→ −fi, fi 7→ −ei, and h 7→ −h. We want to promote this to O. So if M ∈ O write M = ⊕Mµ,
and then define (note this is a restricted dual) M∗ := ⊕µ∈P (M)M

∗
µ (note the summands are finite-

dimensional). We let g act on this by (x · f)(v) = −f(ω(x)v). Then the map M 7→ M∗ gives
our involution of O. We remark that M∗

µ is of weight µ for M∗, though it would be −µ for the
contragredient.

For λ ∈ h∗, we now introduce eλ. Let A = Ah be the set of formal sums
∑

aλe
λ with aλ ∈ Z, such

that if a ∈ A then there exist λ1, . . . , λk (depending on a) such that aλ = 0 for λ ̸∈
∪k

i=1 h
∗
≤λi

.
We see that addition in Ah makes sense, and in fact there is a ring structure. By definition, the
multiplication is (∑

λ

aλe
λ

)
·

(∑
µ

aµe
µ

)
=
∑
θ∈h∗

( ∑
λ+µ=θ

aλbµ

)
eθ.

These sum and product operations are designed to capture the weights of the sum and tensor
product of two modules.
Definition 15. M ∈ O define

ch(M) :=
∑

λ∈P (M)

(dimMλ)e
λ ∈ A

Easy remarks. ch(M ⊗ N) = ch(M)ch(N) and ch(M ⊕ N) = ch(M) + ch(N) and ch(M∗) =
ch(M). (Note this last is NOT true for contragredient representations!) Also more generally
ch(M/N) = ch(M)− ch(N).
Proposition. If M(λ) has a proper (i.e. not 0 and not the whole thing) g-submodule, then there
is a unique maximal proper g-submodule M ′ ⊂ M(λ).



Corollary 16. M(λ) admits a unique irreducible quotient L(λ) = M(λ)/M ′.

Proof of Proposition. Suppose 0 ⊂ M1 ( M(λ). Let vλ be the unique highest weight vector (up
to scalars) of weight λ. Then vλ ̸∈ M ′. Now if 0 ( M ′, N ′ ( M then M ′ + N ′ is also proper (it
cannot contain vλ by considering the weight decompositions of the sum). So just let M ′ be the
submodule generated by all proper submodules.

Proposition. For any irreducible module L ∈ O, there exists a unique λ ∈ h∗ such that L ∼= L(λ).

Proof. Choose a maximal weight λ of L. This must be unique because L is irreducible. So have a
vλ ∈ L a unique (up to scalars) vector of weight λ. Now we can define a b-module map Cλ → L
by 1 7→ vλ. This then gives a (surjective) g-module map M(λ) → L. The previous corollary does
it. Uniqueness of λ is obvious.

Proposition. Let g′ = [g, g] and λ ∈ h∗. Then L(λ) is irreducible as a g′-module.

Proof. Suppose V ⊂ L(λ) is a g′-submodule. It suffices to prove that vλ ∈ V . Write 0 ̸= v =∑
vk ∈ V where vk ∈ L(λ)λk

(and in V ), and assume the λk’s are distinct. (in other words using
that V is a weight module). Choose v such that the quantity

∑
k|λ − λk| is minimal (for your

favorite choice of norm on the finite-dimensional vector space h∗). Now if λk ̸= λ for some k then
there exists j such that ejvk ̸= 0, and ej ∈ g′, so that ejvk ∈ V , and this will contradict minimality
of v, since ej pushes up the weight.

Next time we talk about the category of integrable representations (note the Verma modules are
not integrable in general).

Exercise. If g is simple finite-dimensional, and λ ∈ P+(g) (a dominant integral weight), then the
Casimir operator Ω : Vλ → Vλ acts by a scalar (by Schur’s Lemma). Compute this scalar. In
particular, do the case where λ is adjoint. (if you normalize the bilinear form properly, you’ll get
the “dual Coxeter number”).

We’ll see you get the same thing for integrable representations.

Lecture 19: 11/13/14

Last time we defined category O for KM algebras g(A). We also defined Verma modules M(λ) ∈ O,
and a ring A := Ah of characters. We defined, for M ∈ O, a character ch(M) ∈ A. We classified
the irreducible objects in O as the L(λ) = M(λ)/M ′, and we showed that L(λ) remain irreducible
as [g, g]-modules.

We wish now to contrast the behavior of g a fin-dim ss Lie algebra and g(A) a KM algebra. In
both cases we have M(λ) for λ in the respective Cartans. In the former case, when λ ∈ P+(g), we
got a finite-dimensional V (λ) as a quotient of the Verma module M(λ). We need corresponding



objects for g(A). At issue is that O is not semisimple, but this smaller category of *integrable
modules* will be.

So let (V, π) be an integrable g(A)-module. That is, ei and fi act locally nilpotently, and π is
an h-weight module (may not be in O because may not have the finitely-many λi’s bounding the
possible weights).
Definition 17. D := {λ ∈ h∗ :< λ, α∨

i >∈ Z≥0} (for all α∨
i ). I.e. this is P+(g(A)).

For λ ∈ D\{0} we have M1(λ) ⊂ M(λ) defined as

M1(λ) := {fλ(α∨
i )+1

i ⊗ 1λ : 1 ≤ i ≤ ℓ}

where we recall that M(λ) = U(n−)⊗ Cλ.
Lemma 18. For 1 ≤ i, j ≤ ℓ we have ej · f

λ(α∨
i )+1

i ⊗ 1λ = 0.

Note that M1(λ) does not contain 1 ⊗ 1λ, so is a proper subset. The lemma implies that it is a
(proper) submodule. The lemma also says that M1(λ) has many highest-weight vectors.

Define Lmax(λ) = M(λ)/M1. In general this may be reducible (i.e. M ′ ) M1), but it is named
the maximal integrable highest-weight g(A)-module with highest weight λ.

Proof of Lemma. If i ̸= j then ej and fi commute, and ej kills 1λ (since it is a highest weight
vector in Cλ) so that case is easy. So suppose i = j = 1 (WLOG). By induction, one routinely
proves that e1f

n
1 = fn

1 e1 + nfn−1
1 (α∨

1 − n + 1). Now set n = λ(α∨
1 ) + 1 and just use that α∨

i acts
on 1λ by λ(α∨

i ).

So now let’s prove that Lmax(λ) is actually integrable. We remark that the Verma modules
themselves are not integrable since the fi need not act locally nilpotently (though the ei will since
they raise the weight). First we need the following.
Lemma 19. Let s be any Lie algebra and x ∈ s.

1) sx := {y ∈ s : ad(x)nyy = 0, ny ≥ 0} is a Lie subalgebra of s.

2) (V, π) an s-representation, then Vx := {v ∈ V : π(x)nvv = 0} ⊂ V is a representation of sx.

As an application, take x = fi ∈ g(A). Then sx = g(A) since the adjoint representation is
integrable. Let Li := {v ∈ Lmax(λ) : f v

i = 0, m = m(v)}. We have that 1λ ∈ Li and so
Li = Lmax(λ). This implies that fi acts locally nilpotently on Lmax(λ) (for all i). We also know
the ei’s act locally nilpotently (because they already did on the Verma module).
Proposition. Any integrable highest weight module is a quotient of Lmax(λ).

Proof. Let L = M(λ)/∼ be our integrable highest weight module. Recall the sl2-triple g(i) ↪→
g(A) generated by ei, fi, α

∨
i . We know L is (also) integrable as an g(i)-module. Let Lλ be the

(1-dimensional) weight space of L of weight λ. By integrability of the g(i)-module, the g(i)-module
generated by Lλ is finite-dimensional. This then requires that λ(α∨

i ) ∈ Z≥0. That is, λ ∈ D. We
can conclude that fλ(α∨

i )+1vλ = 0 in L. .

Corollary 20. Integrable, irreducible, highest weight g(A)-modules L(λ) correspond 1-1 to λ ∈ D.



We end today with the following proposition, which we don’t prove.
Proposition. M ∈ O. Then there exists a (possibly infinite) chain 0 = M0 ⊂ M1 ⊂ · · · ⊂ M of
g-modules such that M =

∪
Mi and Mi/Mi−1 is a highest weight module (that is, a quotient of

a Verma module) of weight λi. Further, if λi > λj then i < j. Finally, if λ ∈ P (M) then there
exists an r such that (M/Mr)λ = 0.

Plan now is to prove the Kac-Weyl character formula, and prove the semisimplicity of the subcat-
egory of integrable modules in O.

Lecture 20: 11/18/14

Proposition. V ∈ O and λ ∈ h∗. Then there is a filtration (which will not be unique) 0 = V0 ⊂
. . . ⊂ Vp = V such that, if we set Wi := Vi+1/Vi, at least one of the following holds (for each i):

1) Wi is irreducible of highest weight λi ≥ λ.

2) (Wi)µ = 0 for any µ ≥ λ.

Proof. Consider a(V, λ) :=
∑
µ≥λ

dimVµ where Vµ is the weight µ space of V . Suppose a(V, λ) = 0.

Then 0 = V0 ⊂ V1 = V works. So assume a(V, λ) > 0. Then choose a µ maximal in the Bruhat
order such that µ ≥ λ. Let W be the g-module spanned by vµ (a weight vector of weight µ).
So this is a Verma module. Now we have 0 ⊂ W ′ ⊂ W ⊂ V where W ′ is the maximal proper
submodule of W . Now observe that

a(W ′, λ) < a(V, λ)

a(V/W, λ) < a(V, λ)

and apply induction to the number a(V, λ), using that O is closed under subs and quotients.

Let µ ∈ h∗ and V ∈ O. Choose λ ≤ µ and let Fλ be a filtration as in the proposition. Note
that since our category is not semisimple, multiplicity doesn’t really make sense, so we need a
substitute.
Definition 21. [V : L(µ)]Fλ

:= #{i : Wi
∼= L(µ)}

Proposition. For V ∈ O we have

ch(V ) =
∑
ν≥λ

[V : L(ν)]Fλ
chL(ν) +Rλ

where Rλ =
∑

aθ(λ)e
θ ∈ Ah such that aθ(λ) = 0 if θ ≥ λ.

The two terms above are coming from the 2 possibilities in the previous proposition.

Remark. Consider another filtration F ′
λ′ where λ′ ≤ µ or λ = λ′. Then for all ν ≥ λ and ν ≥ λ′

we have [V : L(ν)]Fλ
= [V : L(ν)]F ′

λ′
. To see this, argue by contradiction and suppose ν0 is



maximal such that [V : L(ν0)]Fλ
̸= [V : L(ν0)]F ′

λ′
. By the definition of the filtration (equivalently,

the previous proposition), [V : L(ν0)]Fλ
is the coefficient of eν0 in ch(V ). This provides the

contradiction.
Definition 22. [V : L(µ)] ̸= 0 then we say that L(µ) is a component of V ; and the L(µ)’s are
subquotients of V .
Lemma 23. ch(V ) =

∑
µ∈h∗

[V : L(µ)]ch(L(µ))

Before proving this, we need to clarify a point. Suppose we have a family ai; =
∑
λ

ai(λ)e
λ of

elements of Ah. When does the sum
∑

ai make sense?
Definition 24. We say {ai} is a locally finite family if for any λ ∈ h∗ the set

Iλ := {i ∈ I : ai(λ) ̸= 0}

is finite

We claim that {[V : L(µ)]ch(L(µ))}µ∈h∗ is a locally finite family. This is necessary for the lemma
to make sense. So choose λ ∈ h∗. There are only finitely-many ν ≥ λ such that [V : L(ν)]Fλ

̸= 0.
And by definition [V : L(µ)] can only be nonzero for µ ≥ λ.

The proof of the lemma (now that we know it makes sense) is actually pretty obvious now.
Observe that ch(V ) =

∑
µ≥λ[V : L(µ)]Fλ

ch(L(µ)) + Rλ; meanwhile the RHS is
∑
µ≥λ

+
∑
µ>λ

of the

same expression; but we can do this for any λ! So this is ultimately a tautology.

Exercise (see p.152 in Kac’s book). ch(M(λ)) = eλ ·
∏

α∈∆+

(1− e−α)−multα where (1− e−α)−multα :=

(1 + e−α + e−2α + . . .)multα.
Proposition. M ∈ O is integrable iff all its components are integrable.

Proof. For the nonobvious direction, suppose towards a contradiction that M is not integrable.
Then there is a v ∈ M such that for some fixed i ∈ [1, ℓ], we have fm

i ̸= 0 for any m ∈ Z≥0. We
can assume WLOG that v is a highest weight vector (otherwise just push it up; it must have been
gotten by applying f ’s to a highest weight vector anyway) of weight λ0. Fix q ∈ Z+ large enough
such that λ0 + q′αi is not a weight of M for q′ ≥ q.

Claim. λ0 − kαi is not a weight of any component, for k ≥ q+ < λ0, α
∨
i >.

This claim implies that Mλ0−kαi
= 0. The weight of fk

i v will be λ0 − kαi, but then fk
i v = 0 and

this is a contradiction.

So we must prove this claim. Note that we haven’t used integrability of components yet. Since
exp of fi and ei thus make sense, we get an action of the Weyl group (as described previously).
Let L be a component. Now (by applying si) we get multλ0−kαi

L = multλ0+[k−<λ0,α∨
i >]αi

L. Now
use the definition of q and the assumption on k to get the claim.

Exercise. If M is integrable, then the restricted dual M∗ is also integrable (this immediate from
the proposition).



We can now state the Kac-Weyl character formula (in the symmetrizable setting).

Kac-Weyl Character Formula

(below equivalent to assume g(A) is symmetrizable.) Let L be an integrable g-module with highest
weight λ. Then

ch(L) :=

[∑
w∈W

ε(w)ew∗λ

]
·

 ∏
α∈∆+

(1− e−α)−multα

 ∈ A

where ∗ is the shifted action: w ∗ λ = w(λ+ ρ)− ρ and ε is the sign representation of W . Recall
also that mult(α) := dim gα. We remark that the reciprocal of the product appearing here equals
the

∑
w∈W ε(w)ew∗0.

NOTE we aren’t assuming L is irreducible here! But this means that we get the following awesome
corollary.
Corollary 25. Any integrable highest weight g-module is irreducible. In particular L(λ)max is
irreducible.

Lecture 21: 11/20/14

Let D :=
(∏

α∈∆+(1− e−α)multα
)
, and let L be an integrable g-module of highest weight λ. Then

today we shall prove

ch(L) =

[∑
w∈W ε(w)ew∗λ]

D

Proposition 2. g := g(A)/R, A is symmetrizable. Then Ω acts on M(λ) as multiplication by the
scalar < λ, λ+ 2ρ >= |λ+ ρ|2−|ρ|2.

Proof. Recall the definition of Ω := 2v−1(ρ)+
∑

uku
k +2

∑
α∈∆+ e−i

α eiα but this last term kills the
highest weight vecot. So we just need to compute Ω · 1λ. This is a direct computation.

Lemma 26. Let V be a highest weight g-module with highest weight λ. Then ch(V ) =
∑

cµM(µ),
where the cµ ∈ Z are some constants, and we sum over µ ≤ λ with < µ+ρ, µ+ρ >=< λ+ρ, λ+ρ >.

Proof. We omit bars on L(µ). Recall we know from last time that ch(V ) =
∑
µ∋h∗

[V : L(µ)]ch(L(µ)).

It is enough to prove the above for V = L(µ). Let s(λ) = {µ ∈ h∗ : µ ≤ λ, |µ + ρ|2= |λ + ρ|2}.
Since M(µ) ∈ O again, we can write ch(M(µ)) =

∑
aµ,θch(L(θ)) where we sum over θ ≤ µ with

|θ + ρ|2= |µ + θ|2. We know aµ,µ = 1 and that aµ,θ = 0 if θ > µ. So we have a lower triangular
unipotent matrix, so we can invert it and deduce

ch(L(θ)) =
∑

dµchM(µ)



where we sum over the µ subject to the same conditions.

Lemma 27. Let λ ∈ h∗ be such that < λ, α∨
i >≥ 0 for all 1 ≤ i ≤ ℓ. Then for any ν ∈ h∗ such

that

1) ν ≤ λ+ ρ,

2) < ν, ν >=< λ+ ρ, λ+ ρ >, and

3) < ν, α∨
i >≥ 0 for all i,

we have ν = λ+ ρ.

Proof. From 1) we can write ν = λ + ρ −
∑

niαi. Then plug this into 2) to deduce that 0 =
− <

∑
niαi, ν > − < λ + ρ,

∑
niαi >, and then this implies all ni are zero, using 3) and the

assumption on λ.

We now define an action of W on Ah. First note, for example, that if L is an integrable highest
weight module, then W permutes P (L), the set of weights appearing. We should have w(ch(L)) :=
w
(∑

µ∈P (M) dimVµe
µ
)
=
∑

µ∈P (µ) dimVµe
w(µ) = ch(L). So the action on the characters of highest

weight integrable modules is trivial. The action in general is defined by w(
∑

aλe
λ) :=

∑
aλe

w(λ).

Exercise. w(a1 · a2) = w(a1)w(a2). I.e. W acts by ring automorphisms on Ah.

Remark. It is nontrivial to extend Harish-Chandra’s theory to this “completed” ring Ah to study
the W -invariants.

We claim that w(eρ ·D) = ε(w)eρD. It is clearly enough to show that si(eρD) = −eρD. The only
fact needed is that si preserves ∆+\{αi}. Also note that multαi = 1 since αi is a simple root.
The rest is some fun simple algebra from the definitions.

Now we proceed with the proof of the main result.

Proof. This is equivalent to showing eρDch(L) =
∑

w∈W
ε(w)ew(λ). By a simple exercise we know

ch(M(µ)) = eλD−1. Plugging this, we get the LHS is equal to to

eρD
∑

µ≤λ, |µ+ρ|2=|λ+ρ|2
cµchM(µ) =

∑
µ≤λ, |µ+ρ|2=|λ+ρ|2

cµe
µ+ρ.

Now we compute both sides of the equality w(eρDch(L)) = ε(w)eρDch(L) independently. We can
rewrite ε(w)eρDch(L) =

∑
ν ε(w)cve

ν+ρ and w(eρDch(L)) =
∑

cµe
w(µ+ρ) (in both we’re summing

over guys ≤ λ with the same length condition as we’ve had). We see now that ν = w(µ+ρ)−ρ(=
w ∗ µ) ≤ λ. From the above, by comparing coefficients we have the following:

cµ = ε(w)cν if ν = w ∗ µ

But this is same as claiming that cµ = ε(w)cw∗µ for all w ∈ W . So now choose w0 = w(µ) such
that the height |λ − w0 ∗ µ| is minimal. By the following exercise and the previous Lemma, we



have w0 ∗ µ+ ρ = λ+ ρ. Thus λ = w0 ∗ µ = w0(µ+ ρ)− ρ so µ = w−1
0 (λ+ ρ)− ρ = w−1

0 ∗ (λ+ ρ).
Since w and w−1 have the same, combined with the fact that λ = w0 ∗ µ and cµ = ε(w0) gives us
the Kac-Weyl character formula.

Exercise. Let ν = w0 ∗ µ+ ρ. Then ν satisfies the 3 conditions for the previous lemma.
Corollary 28. Let M be an integrable module in O for g, then

M ≃ ⊕λ∈DL(λ)
[M :L(λ)]

Proof. Copy from the homework solutions


