GEOMETRIC INVARIANT THEORY AND MODULI PROBLEMS

M. S. NARASIMHAN

(notes written by A. Buraggina)

The main topic of this course is the construction of quotient spaces in algebraic
geometry. Indeed, moduli problems reduce to the problem of the existence of good
quotients of an algebraic variety acted on by an algebraic group. This is the subject
of geometric invariant theory.

§1. Algebraic actions.

Throughout the course we will work over the field of complex numbers C . Let G
be an algebraic group over C, that is, an algebraic variety provided with regular
morphisms p: G X G = G, e: {*} = G and ©: G — G satisfying the usual rules of
multiplication, identity element and inverse in a group (the fundamental examples
are the general linear group GL(n,C) and the special linear group SL(n,C)). A
(left) algebraic action of G over an algebraic variety X is, by definition, a regular
morphism

¢p:GxX - X

such that:
i) ¢(e,z) = z (e denotes the identity element in G) and
ii) ¢(g1,9(92,2)) = ¢(9192, ) for any g1,92 € G, z € X.
In the following we will suppress ¢ and write simply gz for ¢(g, z).
If z € X, the orbit of z under the action of G (for short, the G-orbit of z) is
the set defined as

Og(z) = {9z | g € G}

(we will write just O(z) if no confusion can arise about G, sometimes we will also
write Gz for Og(z)).

We would like to take the quotient of X by G. Naively, we may consider the
equivalence relation given by:

z ~z' <= 3 g€ G such that gz =z’

and try to endow the set theoretic quotient — which is just the set of orbits of G
in X — with a natural structure of an algebraic variety. In other words, we may
look for a variety Y and a surjective morphism 7 : X — Y such that the fibres
of m correspond exactly to the orbits of G in X. Unfortunately, this may not be
possible even in the simplest cases, as the following example shows.
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Example 1.1. Let X = C? and G = C* = GL(1,C), we make G act on X as

follows:
C*xC 5 C? (A (z,9)~ (Az,A7ly)

Thus the orbit of a point in C? is:
O((z,y)) = {(¢',y’) € C* | &'y’ = zy}, if zy # O;
O(("D’O)) = {y = O} \ {(Ov 0)}, if z # 0;
O((O’y)) = {.’D = O} \ {(01 0)}1 if y # 0 and
0((0,0)) = {(0,0)}.

Notice that O((0,y)) and O((z,0)) are not closed and their closures contain the
orbit O((0,0)). Consider now the map 7:C? — C defined by (z,y) — zy. It is
clearly a surjective morphism and it is constant on orbits. Indeed its fibre over a

point ¢ € C\ {0} is: '
71(e) = {(z,9) | ay = c} = O((1,9)),
while the fibre over zero consists of three orbits:
7~1(0) = 0((0,0)) UO((0,9)) U O((z,0))

Thus C parametrizes only the set of closed orbits.

Remark 1.2. Any morphism 7 : X — Y which is constant on orbits is also
constant — with the same values — on their closures, hence orbits whose closures
intersect lie in the same fibre of 7. This is one of the reasons why it may not
be possible to parametrize all orbits of a given action. We then have to weaken
slightly our request and look for a variety Y with a morphism 7 : X — Y which
provide the finest possible parametrization of the orbits of G in X, i.e. such that
any other morphism ¢ : X — Z constant on orbits factors through n. This leads
to the concept of categorical quotient:

Definition 1.3. Let X be an algebraic variety and G an algebraic group acting
on X. A categorical quotient for this action is a pair (Y,n), where Y is an &%
algebraic variety and w : X — Y is a G-invariant (i.e. constant on orbits) regular , 4.4
morphism verifying the following universal property: for any G-invariant morphism A~<v=
Y : X — Z, ¢ factors uniquely through m, that is, there exists a unique morphism o
v:Y — Z such that v = yo 7.

Notice that by the universal property a categorical quotient is unique up to
isomorphisms.

Still we do not know how we can take the quotient of X by G. To get a more
precise idea we should also consider the effect of the group action on the regular
functions on the variety X. Let G act algebraically on X and let A(X) be the ring
of regular functions X — C, then G acts in a natural way on A(X) by setting:

GxAX) = AX) (9. f)—gf

where gf is defined by:
9f(z) = f(g7 @)

for any £ € X (in this way we define a left action).
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Definition 1.4. We say that a function f € A(X) is invariant under the action
of G (or, G-invariant) if gf = f for any g € G. We put

AX)® ={fe A(X) | f=gf Vg€ G}.
This is in fact a subring of A(X).

Remark 1.5. It is easily seen that a function is invariant if and only if it is constant
on orbits. On the other hand, regular functions on a quotient space should be
functions on X which are constant on orbits. This suggests that a quotient space
should be associated with the ring of invariant functions on the variety. To illustrate

this, let us look again at Example 1.1:

Example 1.6. Consider the action of the group C* on C? defined in Example
1.1. The regular functions on C? are just the polynomial functions f: C? — C,
f = 3, a2y’ € Clz,y]l. The invariant functions are those polynomials such

that o
Zaija:’yj = Zaij/\’_Jw‘y-" VieC*
1,7 %]

that is, such that a,; = 0 for ¢ # j. These are precisely the polynomials in zy,
with which we can naturally associate a variety, the maximal spectrum Spec C[zy].
Moreover, the inclusion of C-algebras C[zy] — C[z,y] induces a map on the cor-
responding maximal spectra SpecClz,y] = C? — Spec C[zy], which is in fact a
quotient map, as we will see later.

Let us now deal with the general case. First we need some more notation and
basic facts about actions of algebraic groups.

Let X be an algebraic variety and G an algebraic group. To denote an (algebraic)
action of G on X we will write simply (X,G). With any x € X we associate the
orbit Og(z) C X and the isotropy group of G at z (or the stabiliser of z under
the action of ), defined as

G: ={g€ G| gz =z},
this is a closed subgroup of G. We also define a map
0, : G X g+ gz,

the orbit map at z, whose image is just the orbit Og(x). The fibres of o, are
cosets of the stabiliser G, in particular, the fibre over z is G,. A subset X' C X
is G-invariant if V2’ € X' and g € G, gz’ € X', i.e. X' contains the orbit of any
of its points. Notice that the orbit of a point z € X is by definition the minimal
G-invariant subset of X containing z. The closure of an orbit is still G-invariant
(indeed, let y € _O(_:v) and consider gy, then for any open neighbourhood I of gy,
g~ 'I is an open neighbourhood of y and g~ N O(z) # ; applying g we get
INO(z) # @, that is gy € O(x)). A morphism ¢ : X — Y of algebraic varieties
is G-invariant if it is constant on orbits (and hence is also constant — with the
same values -— on the closures of orbits).

Recall that a subset of a topological space is locally closed if it is open in its
closure or, equivalently, if it is the intersection of an open set with a closed set. A

basic result for algebraic actions is the following:
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Proposition 1.7. Let (X,G) be an algebraic action. Then:

(1) for any x € X, the orbit O(z) is locally closed (in the Zariski topology) and
O(z) — O(z) is a union of orbits of strictly lower dimension; in particular,
orbits of minimal dimension are closed;

(2) foranyz € X,

dim O(z) = dim G — dim G,.
(3) for any integer n, the set
{z € X | dimO(z) = n}
is open (i.e. dimO(zx) is a lower semicontinuous function of x).

Before proving this Proposition we recall some facts from the general theory (for
reference, see Mumford’s Red Book, [M]). Let X be a topological space and Y a
subset. We say that Y is constructible if it is a finite union of locally closed
subsets. A topological space is noetherian if every open subset is quasi-compact,
or, equivalently, if its closed subsets satisfy the descending chain condition, i.e.
every strictly descending chain of closed subsets C; D C3 D ... is finite. Notice
that the Zariski topology is noetherian.

Proposition. Let X be a noetherian topological space and Y a constructible subset
of X. Then'Y contains a dense open subset of Y.

Theorem (Chevalley). Let f : X; — X, be a morphism of algebraic varieties
(with the Zariski topology). Then f(X1) is a constructible set in Y. More generally,
f maps constructible sets in X to constructible sets in Y. (see Corollary 2 of

Theorem 3, Chapter I, in [M]) cl ) -
am!m:.-;,

Corollary. Let f : X; — X, be a deminating morphism of algebraic varieties
(with the Zariski topology), i.e. f(X1) = Xa. Then f(X1) contains a dense open
subset.

Proof of Proposition 1.7.
(1): Let z € X and consider the orbit map o, : G = X. Since O(z) = 0.(G), by
Chevalley’s theorem the orbit of z is constructible, then it contains a dense open

subset U of O(z) such that U C O(z) C O(z). Now G acts transitively on O(z)
thus we have O(z) = UycqgU, i.e. O(z) is union of open subsets of O(z). It

follows that O(z) — O(z) is closed and of strictly lower dimension; moreover, it is
clearly G-invariant, hence the thesis.

(2): Again, consider O(z) as the image of the orbit map o,. Since the fibres are
cosets of G, they all have the same dimension, equal to dim G,. Now a standard
theorem (Thm. 3, Ch. I, [M]) on fibres of a morphism yields the result.

(3): Consider the morphism

:GxX>XxX (g,z) — (gz,z)
and take the restriction to the diagonal A C X x X:

3:671(A) — A.
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Since ®~!(z,z) = G, x {z}, dim G, is an upper semicontinuous function on $~1(A)
(apply Cor. 3 of Thm. 3, Ch. I, [M] and recall that all the components of an
algebraic group have the same dimension). This means that for any integer n the
set {(g9,z) € ®7!(A)|dim G, > n} is closed in ®7'(A). Identifying X with the
closed subvariety {e} x X € $7!(A) and taking the intersection with the above set
we get that for any integer n the set {z € X|dim G, > n} is closed in X. By (2)
we obtain the result.

Remark 1.8. The boundary of an orbit may contain infinitely many orbits. In-

deed, consider the following example. Let X = C2? x C? and let G = GL(2,C) act

on C? x C? by matrix multiplication on the left, i.e., if A = (Z Z) € GL(2,0),

v = (v1,v2) and w = (w;,ws) are two vectors in C2, we set

s = (2 5 (2 )

Suppose we take v and w to be linearly independent, then the orbit O((v,w))
consists only of pairs of linearly independent vectors, but the closure also contains
pairs of type (v', Av'). Moreover, O((v', Av')) = O((v", uv"')) if and only if A = p,
that is, any A € C* determines a different orbit.

We recall that a morphism f : X — Y of algebraic varieties is affine if there
exists a cover {U;};cs of Y by affine open sets such that f~1(U;) is affine for any
iel.

Definition 1.9. Let G be an algebraic group acting on an algebraic variety X. A
good quotient of X by G is a pair (Y, ¢), where Y is an algebraic variety and
¢: X — Y is a regular morphism satisfying the following conditions:

(1) ¢ is G-invariant; ‘

(2) ¢ is surjective; e Tl AZttn
(3) ¢ is affine and for any affine open subset U C Y it is A(U) = A(¢~1(U))%;
(4) the image by ¢ of a G-invariant Zariski-closed subset in X is closed in Y;
(5) any two G-invariant Zariski-closed disjoint subsets have disjoint images in

Y.

Sometimes we will refer to the quotient of X by G writing X//G (to distinguish

it from the orbit space) and omitting the morphism ¢.
We now go through some fundamental properties of good quotients.

Proposition 1.10. Let (Y, ¢) be a good quotient for (X, G), then two points of X
are in the same fibre of ¢-if and only if the closures of their orbits intersect.

Proof. Suppose O(z;) N O(z3) # 0, then, since ¢ is constant on orbits, it takes the
same -value on z; and zs, i.e. they lie in the same fibre. To prove the converse,
suppose O(z;) N O(z2) = 0, these are two disjoint closed G-invariant subsets, then
they have disjoint images, hence z; and z5 cannot lie in the same fibre.

Proposition 1.11. Let (Y, ) be a good quotient for (X, G), then each fibre of ¢
contains a unique closed orbit of G in X (thus a good quotient parametrizes closed
orbits).
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Proof. Since ¢ is surjective and G-invariant, each fibre of ¢ contains some orbit.
Choose an orbit of minimal dimension in the fibre, then, by Prop. 1.7, (1), it is
closed. Suppose now there are two closed orbits in the same fibre, then, by Prop.

1.10, they intersect, hence they must coincide.

Definition 1.12. A good quotient is called a geometric quotient if each orbit
is closed.

Thus, by 1.11, a geometric quotient parametrizes all the orbits of a given action,
that is, the underlying set is the orbit space. The concept of good quotient is local,
indeed we have:

Proposition 1.13.

(1) Let (Y,¢) be a good quotient for (X,G) and let U be an open subset of Y,
then (U, ¢|)sis a good quotient for (¢~1(U),G).

(2) Let G act algebraically on X and let ¢ : X — Y be a G-invariant morphism.
Suppose there ezists an open cover {U;}ier of Y such that (U;, ¢|) is a good
quotient for (¢~ (U;), G) for all i € I, then (Y, ¢) is a good quotient for
(X,G).

Proof. First notice that if U C Y is an open subset and ¢ : X — Y is a G-invariant
morphism, then ¢~!(U) is an open G-invariant subset of X, hence there is an
induced action of G on it. '

(1): Properties (1) through (4) of Definition 1.9 are easily seen to hold for (U, ¢)).
To prove (5), consider two disjoint, G-invariant, closed subsets Cy and Cy of ¢~ (U)
and suppose their images under ¢ are not disjoint. Let y € ¢(C;) N ¢(C2), then
there exist elements z; € C; and x5 € Cy such that ¢(z;) = ¢(z2) = y. By Prop.
1.10 the closures of their orbits in X intersect, on the other hand O(z;) C C; for
i =1,2, thus @ # O(z;) N O(z2) C C; NCa N~ HU) = Cy N Ca, which contradicts
the assumption of Cy and Cy being disjoint.

(2): ¢: X - Y is G-invariant by assumption and it is clearly surjective. Prop-
erty (3) of Def. 1.9 also clearly holds; to prove property (4) consider a closed G-
invariant subset C C X. For any i € I, C N ¢~ *(U;) is a closed G-invariant subset
of =1 (U;), thus ¢(C N ¢~1(U;)) = ¢(C) N U; is closed in U; for any i € I, hence
@#(C) is closed. Now we prove property (5). Let C; and C2 be two closed, disjoint,
G-invariant subsets of X, then for any i € I we get two such subsets of ¢~1(U;).
Taking the image under ¢ we still have disjoint subsets, i.e. U; N¢(C1)N@(Cs) = 0
for any 7, hence ¢(Cy) N ¢(Cs) = 0.

Proposition 1.14. A good quotient is a categorical quotient (hence, it is unique
up to isomorphisms).

Proof. Let (Y,¢) be a good quotient for (X, G), and suppose ¥ : X — Z is a
morphism constant on orbits, then it is also constant on the fibres of ¢ and it
factors through a set-theoretic map v : Y — Z. We will show that v is in fact a
regular morphism. We first assume Z is affine. In this case it is enough to prove
that for any regular function f : Z — C the composite map f o vy is regular on Y.
Consider the map foy: X — C, this is a G-invariant regular function on X, hence
it defines a regular function on the quotient Y which is just f oy. For the general
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case, consider an open affine subset U C Z, then yv~!(U) is an open subset of Y —
indeed, 7 (U) = Y — ¢(X — ¢~15~ (V) = Y ~ (X ~¢~"(U)) and X — 4~ (U)
is a closed G-invariant subset of X, hence its image under ¢ is closed. Moreover,
by Prop. 1.13, (2), (n~(U), ¢|) is a good quotient for (¢~} (U),G) and since U is
affine we can apply the previous argument.

§2. Affine case. -

Let now X be an affine variety and G an algebraic group acting on it. To take
the quotient of X by G we proceed as follows: we first show that under a certain
assumption on G the C-algebra of G-invariant regular functions on X, A(X)Y, is
finitely generated — thus its maximal spectrum is an affine algebraic variety —
then we prove that the natural map X = Spec A(X) — Spec A(X)¢ induced by
the inclusion A(X)C — A(X) is in fact a good quotient.

We need some preliminaries from representation theory.

Definition 2.1. Let G be a group and V a vector space. A representation of
G on V is a group homomorphism p:G — GL(V) from G to the group of linear
automorphisms of V. If V is finite dimensional, we say that the representation is
finite dimensional.

If we are given a representation of G on V, the map p makes G act linearly on
V, by setting gv = p(g)(v), and we also say that V is a G-module (by abuse of
language we sometimes say that V is a representation of G).

Definition 2.2. Let Vi, V3 be G-modules. A morphism of G-modules, or a G-
morphism, is a linear map ¢: V; — V5 such that ¢(gv) = gé(v) Vv € V1, g € G.

Definition 2.3. A subspace V' of a G-module V is called a G-submodule, or a
subrepresentation of G, if it is (globally) G-invariant, i.e. if GV' C V',

Remark 2.4. If ¢: V; — V5 is a G-morphism, Ker(¢) and Im(¢) are G-submodules
of V1, Va respectively.

A representation of G on V is irreducible if the only G-submodules of V are
(0) and the whole space (in this case we also say that V is a simple G-module); it
i1s completely reducible if it decomposes in a direct sum of irreducible ones (we
also say that V is a semisimple G-module). Two representations V, W of a group
G are equivalent or isomorphic if there exists a linear isomorphism f:V — W
which is a G-morphism.

Lemma 2.5 (Schur’s lemma). Let G be a group and V and W be simple G-
modules. If $:V — W is a G-morphism, then either ¢ is an isomorphism or ¢ = 0.

Proof. Consider Ker(¢) and Im(¢). Since they are G-submodules of simple G-
modules they must be either (0) or the whole space. It follows that either Ker(¢) =
(0) and Im(¢) = W, i.e. ¢ is an isomorphism, or Ker(¢) = V and Im(¢) = (0), i.e.
¢ =0. .
Remark 2.6. Note that if one only of the two representations V, W is irreducible,
we still get some weaker version of the lemma, namely:

(1) if V is irreducible, then either ¢ is injective or ¢ = 0;

(2) if W is irreducible, then either ¢ is surjective or ¢ = 0.
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Definition 2.7. Let G be an affine algebraic group. We say that G is linearly
reductive if for any finite dimensional G-module V and any G-submodule V" there
exists a G-submodule V" such that V = V' ¢ V",

Proposition 2.8. Let G be an affine algebraic group. G is linearly reductive if
and only if every finite dimensional G-module is semisimple.

Proof. Suppose G is linearly reductive, let V be a G-module and V' a maximal
semisimple G-submodule. By assumption, V' has a supplementary V". If V" # (0),
it contains a non-zero simple G-submodule, say W, and V' @ W is a semisimple
G-submodule contradicting the maximality of V’. It follows that V" = (0), i.e. V
itself is semisimple. Viceversa, suppose there exists a G-module V having some
G-submodule with no supplementary. Choose V' maximal among them. Let V =
Vi®...® V. be a decomposition of V into simple G-submodules. There exists i
such that V; ¢ V', thus V' N V; = (0). Then V' ® V; is a G-submodule of V' with
no supplementary, which contradicts the maximality of V'.

Examples. It can be shown that any finite group is linearly reductive and every
compact topological group is linearly reductive.

Proposition 2.9. Let G be an affine algebraic group. Suppose G contains a com-
pact subgroup K (in the usual topology) such that K is Zariski-dense in G. Then
G 1is linearly reductive.

Proof. Let V be a G-module and V' a G-submodule, then V is also a K-module and
V' is K-invariant. Since K is compe,ct 1tl~can be shown to be linearly reductive and
hence V' has a K-invariant su;gl‘eﬁfeﬁ'ésy say V". Let G":= {g € G]gV" Cc V"},
G' is a closed subgroup of G and contains K. Since K is Zariski-dense in G, G' = G,
i.e. V" is G-invariant.

Example. GL(n,C) is linearly reductive, indeed the unitary group U(n) is a max-
imal compact subgroup.

Let now G be a linearly reductive group and let 2 be the set of isomorphism
classes of irreducible representations of G. If V is a finite dimensional representation
of G, and vy € 2, we define V, = ZWG%ch W to be the isotypical component
of type v (note that the V,’s are G-submodules of V'), then we can write V as:
V= ®7€ﬂ V4. This is called the isotypical decomposition of V (the types and
multiplicities of factors are uniquely determined) If o denotes the class of trivial
representations of G, we write VC =V, = {v € V|gv =v Vg € G} for the trivial
isotypical component.

Lemma 2.10. Let f : Vi — V, be a G-morphism. Then f(V;,) C Va ., for any
v € (1.

Proof. Let Vo = @, cq Va; be the isotypical decomposition of V3, then for any a;
we have the projection p; : V3 = V, ,,. Let W C V; be a simple G-submodule of
type 7, we obtain for any a; a G-morphism p;o f|w : W — V4 4,. By Schur’s Lemma
(see Remark 2.6) this morphism is zero if ¥ # a;, hence f preserves isotypical
components.
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Proposition and Definition 2.11. Let G be a linearly reductive group and V a
finite dimensional G-module, then there exists a unique G-morphism R:V — V©
such that R|ye =id. It is called Reynolds’ operator.

Proof. Consider the isotypical decomposition V = VE @ GB_#_YO V4. The projection
on the trivial component V€ is a G-morphism with the required property. This
proves the existence of Reynolds’ operator. Consider now any simple G-submodule
W of V which is not in the component V¢, then by Schur’s Lemma R|w = 0. It
follows that Ker R = ®‘Y¢‘Yo V4, hence R is uniquely determined.

Proposition 2.12 (Functoriality of Reynolds’ operator). Let f : Vi —» V3 be a G-
morphism and R; be the Reynolds’ operators on V; for i = 1,2. Then the following
diagram commutes:

n|  om
VlG _i_; V2G

Proof. Since f preserves isotypical components, it induces a morphism V¢ — Ve,
which we still denote f. Moreover, since Ker R; = GB_#,YO Vi,y, we have that

f(KerR;) C KerRy. It follows that Ry o flkerr, = 0 = f o Ri|Kerr, and
R2°f|v€ =0= f°R1|V1Ga i.e. Ryof and foR; coincideon V; = V1G€B@-,¢~,o Viq-

Let us now turn to our problem of constructing a quotient for an algebraic variety
acted on by an algebraic group. Let (X, G) be an algebraic action of G on X, we
recall that there is an induced action on the algebra of regular functions A(X)
given by gf(z) := f(g~'z) and for any g € G the map f — gf is a C-algebra
automorphism. In particular, A(X) becomes a G-module, in general of infinite
dimension.

Definition 2.13. Let A be a commutative C-algebra. We say that A is finitely
generated (or of finite type) if there exists a surjective homomorphism of C-

algebras

Clzi,... ,&pn] —m A — 0
for some integer n > 0, i.e., if there exist elements fi,... , fn in A such that any
f € A can be written as f = Zi5>0 ai,..i fit - fir, with a;,.;, € C.

The central result of the whole theory is the following:

Theorem 2.14. Let G be a linearly reductive group and V a finite dimensional
G-module. Let S(V*) denote the symmetric algebra over V', that is the algebra of
polynomial functions over V. Then the subalgebra of G-invariant functions S(V*)¢
ts finitely generated.

Proof. The crucial step is to define Reynolds’ operator on S(V*) (we defined it only
for finite dimensional G-modules) and to show that it is S(V*)®-linear. In order
to do this, observe that since the action of G on V is linear, the induced action
on S(V*) = @,y S*(V*) preserves the degree. Then we can regard S(V*) as

an increasing union of finite dimensional G-submodules S,,, := @, ., S¥(V*) with
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m € N. Now on each S,, we have Reynolds’ operator and using the natural inclu-
sions Sy, <+ Sy, 41, by functoriality and uniqueness we obtain an operator R on the
whole space S(V*). In general Reynolds’ operator is not an algebra homomorphism,
but we do have the identity R(fh) = fR(h) for any f € S(V*)¢ and h € S(V*)
(Reynolds’ identity). Indeed, suppose f is G-invariant and is contained in some
Sm and h € S,,/, multiplication by f defines a G-morphism S,,; = Sy/4m, then
applying Reynolds’ operator we get, by functoriality, the desiderd identity. Con-
sider the ideal I of S(V*) generated by S(V*)$ = @y S¥(V*)C, by Hilbert basis
theorem it admits a finite set of generators, say fi,...,fr which we can choose
in S(V *)f We will show that these elements do in fact generate S(V*)¢ as a
C-algebra. We use induction on the degree. In degree zero S°(V*)® = C, so there
is nothing to prove. Let d be a positive integer and suppose that any element in
S(V*)C of degree lower than d can be written as a polynomial in f,,... , f, with
coefficients in C. If b € $%(V*)€ it can be writtenas b= _._; a;f; with a; € S(V*)
and deg(a;) < d for any i = 1,...,r, since the f; have positive degree. Applying
Reynolds’ operator and Reynolds’ identity we get

b= R(b) = iR(aifi) = ZR(ai)fi.

i=1

Now foralli = 1,... ,r we have deg(R(a;)) < deg(a;) < d. By induction hypothesis
R(a;) can be written as a polynomial in the f;’s with coefficients in C. It follows
that S(V*)€ is a finitely generated C-algebra.

We shall now deal with the general case. Let X be an affine variety acted on by
an algebraic group G, as in the case just treated in Theorem 2.14, we wish to define
Reynolds’ operator on A(X), although this is in general an infinite dimensional
G-module. We have:

Lemma 2.15. Let (X,G) be an algebraic action of G on X and let W be a finite-
dimensional subspace of A(X) (as a C-vector space). Then W 1is contained in
a finite-dimensional, G-invariant subspace of A(X) on which the action of G is
algebraic.

Proof. The action ¢ : G x X — X induces a map of C-algebras: ¢* : A(X) —

A(Gx X ) such that ¢* f(g,z) = f(¢(g,z)) = f(gz). On the other hand, A(GxX) =
A(G) ® A(X), thus ¢*f is a finite sum of the form ) Hy ® Fi, with Hy € A(G)
and Fy € A(X). Let fy,..., fn be a basis for W C A(X), then Vg € G we have:

9fiz) = flg™ ) = 9" fi(g™! x) = iﬂik(g_l)Fik(w) = (Z Hix(g7") Fir)(2)
’ k=1 k=1

That is, GW is contained in the subspace generated by {Fit,... ,Fir,li=1,... ,N},
hence the subspace spanned by GW is finite-dimensional (and clearly it is G-
invariant). That the action is algebraic is clear by the above formula.

Remark 2.16. The lemma says, in particular, that any orbit of G in A(X) gen-
erates a finite-dimensional subspace of A(X).
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Suppose now the group G is linearly reductive. Any f € A(X) is contained
in some finite dimensional G-invariant subspace, on which Reynolds’ operator is
defined. By uniqueness and functoriality, it is independent of the subspace chosen
and in this way we can define Reynolds’ operator on the whole space A(X).

Theorem 2.17. Let X be an affine algebraic variety and G a linearly reductive
group acting on X. Let A(X) be the C-algebra of regular functions on X and
A(X)C the C-algebra of invariant functions. Then A(X)C is finitely generated.

Proof. We will use the special case treated in Theorem 2.14. Since A(X) is a

finitely generated C-algebra, let f,..., fm be a set of generators and let W be
the G-module spanned by them (i.e., the minimal G-invariant subspace contain-
ing the linear span of fi,... , f;,). By 2.15, W is a finite dimensional subspace of

A(X), then letting S(W) denotes the symmetric algebra over W we have a surjec-
tive homomorphism of algebras $(W) — A(X) — 0 which is also a G-morphism,
since the action of G on functions is line%r‘. Applying Reynolds’ operator we get a
commutative diagram:

S(W) —2s A(X) —— 0

gl gl

S(W)¢ —2 A(X)¢

which shows that the map S(W)¢ — A(X)C is also surjective (indeed, take f €
A(X)C C A(X) and lift it to some element h € S(W), by commutativity aR(h) =
R(a(h)) = R(f) = f). By Theorem 2.14 we know that S(W)¢ is finitely generated,
hence A(X)€ is too.

Remark 2.18. Note that the surjection S(W) = A(X) — 0 yields an embedding
of the variety X in the G-module W* = Spec.S(W), in such a way that X is
G-invariant and the induced action on X is the original one. '

We shall now prove that the maximal spectrum Spec A(X)€ with the map ¢ :
X — Spec A(X)€ induced by the inclusion A(X)¢ — A(X) is a good quotient for
the given action of G on X. Let us first state two results we will need in the proof:

Lemma 2.19. With notation as above, let B be an ideal of A(X)C and B’ the ideal
in A(X) generated by B, then B' N A(X)C = B. |

Proof. Clearly B C B' N A(X)C. Let f € B'N A(X)®, then f = 3, a;h;, with
h; € B, a; € A(X). Applying Reynolds’ operator we get: f = R(f) = >_; R(a;i)h;,
hence f € B.

Lemma 2.20. Let (X, G) be an algebraic action of a linearly reductive group G on
an affine variety X. Let Wy , Wy be two disjoint G-invariant closed subsets of X,
then there exists f € A(X)C such that f(W;) =0 and f(Wa) = 1.

Proof. The algebraic version of Urysohn lemma states that there exists a function
¢ € A(X) such that ¢(W1) = 0 and ¢(W2) = 1. Then f = R(¢) will do, since by
functoriality it still takes the value 0 on W; and 1 on Wh.
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Theorem 2.21. Let X be an affine algebraic variety and G a linearly reductive
group acting on it. Then the pair (Y, @), whereY:= Spec A(X)® and ¢: X =Y is
the map induced by the inclusion A(X)C < A(X), is a good quotient for the given
action of G on X.

Proof. We have to check properties (1) through (5) of Definition 1.9:

(1): Suppose that ¢ is not G-invariant, that is ¢(z) # ¢(gz) for some z € X
and some g € G. Since Y is affine, there exists a regular function 2 € A(Y') taking
different values at ¢(z) and ¢(gz). On the other hand, A(Y) = A(X)C, that is, h
is constant on orbits, which yields a contradiction.

: (2): Let M be a maximal ideal in A(X)® and MA(X) the ideal generated by

M in A(X), then MA(X) is a proper ideal (otherwise M would be the whole ring
A(X)C, see Lemma 2.19 above). Let M’ be a maximal ideal of A(X) containing
it. Clearly M C M’ N A(X)€ and since they are both maximal they coincide. So
that ¢ is surjective.

(3): To prove (3) it is enough to check it on the special affine open subsets
Yy :={y € Y|f(y) # 0}, f € A(Y), which form a basis for the Zariski topology.
Since functions on Y are invariant functions on X, we clearly have ¢~!(Y}) = Xy,
hence ¢ is affine. Let us now show that A(Yy) = A(X;)¢. But A(Yy) is just the
localization

A(Y); ={h/f",he A(Y),n e N} = {h/f",h € A(X)% n € N} = (A(X)%);

and (A(X)%); C (A(X)s)® = A(X;)C. On the other hand, let h/f™ € A(Xj)%,
with A € A(X), then g(h/f™) = h/f™ for any g € G, but since f is G-invariant
(and we may assume f # 0) this implies gh = h for any g € G, that is h € A(X)°.

(4) and (5): By Lemma 2.20 above, we know that for any pair of closed disjoint
G-invariant subsets Wi, Wy of X there exists a G-invariant function f such that
f(W1) =0 and f(W2) = 1. Since f can be regarded as a function on Y, we have
f(6(Wh)) = 0, f(¢(Ws)) = 1, hence ¢(W1) N ¢(W2) = 8. This proves (4). Let
now W be a closed invariant subset of X, suppose its image under ¢ is not closed

and let y € ¢(W) — ¢(W). Applying the previous argument with W; = W and
Wse = ¢71(y) we get (W) Ny = 0, hence a contradiction. This proves (5).

§3. Projective case.

Suppose G is a linearly reductive group which acts linearly on a vector space V,
then this action commutes with that of C* (acting by multiplication) and hence G
also operates on the projective space P(V). Does there exists a quotient of P(V)
under this action ? We will show that there is a G-invariant open subset of P(V)
which admits a good quotient and such a quotient is projective. The same holds
for any projective variety acted on by a linearly reductive group in such a way that
the action extends to a linear action on some ambient projective space (Thm. 3.9).

Exercise. Show that C™ — {0} with the action of C* defined by multiplication
admits a geometric quotient (which is, of course, projective space P"~1).

To start with we need a general result. Consider a finitely generated graded C-
algebra B = P, Bm with By = C and let B, be the maximal ideal €D, Bm.
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The grading allows to define a natural action of C* on B setting, for any graded
component B,,:

C* x By, » B, (A, B) = A7,
We thus obtain an action of C* on Spec B which leaves 0 invariant (0 is the point
corresponding to B ), hence it induces an action on Spec B — {0}. We have:

Proposition and Definition 3.1. With the above notation, (Spec B — {0}, C*)
admits a geometric quotient which is a projective variety called Proj B.

To prove this Proposition we need a few more preliminaries.

Recall that a morphism ¢ : X — Y of algebraic varieties is quasi finite if all
of its fibres are finite. It is finite if there exists an affine open cover {U;} of Y
such that ¢~1(U;) is affine for every i and the restricted morphism ¢~} (U;) — U;
corresponds to a ring homomorphism B — A with A a finitely generated B-module.

Lemma 3.2 (A. Ramanathan, [R]). Let G be a linearly reductive group acting on
two algebraic varieties X and Y and suppose f : X — Y is a G-morphism (i. e.
f(gz) = gf(z) for anyz € X and g € G).
(1) If f is affine and Y has a good quotient, then X also has a good quotzent
and the induced morphism f : X//G — Y/ /G is still affine.
(2) If f is finite and Y has a good quotient then X also has a good quotient and
the induced morphism f : X//G — Y//G is finite; moreover, if Y/ /G is a
geometric quotient then so is X//G.

Theorem 3.3 (R. Hartshorne, [H], Ch. 1). Let f : X — Y be a finite morphism of
algebraic varieties. If Y is projective then so is X and if L is an ample line bundle
onY then f*(L) is ample on X.

Proof of Proposition 3.1. Suppose B is generated as a C-algebra by homogeneous
elements f;,..., fi of degrees my,... ,m; respectively. The natural surjection of
algebras C[zy,... ,z¢] = B induces an embedding Spec B — SpecC|z1,... , Tk &
C* which maps the point 0 to 0, hence we get an inclusion

¢ : Spec B — {0} — C* — {0}.
Consider now on C* — {0} the following C* action, which makes ¢ a C*-morphism:
(*) C* x (Ck—{o})—)ck—{o} (A,(Zl,... 7Zk))'_)(’\m1z17"' 7’\mkzk)

We claim that this action admits a geometric quotient. To show this we will ap-
ply Lemma 3.2, so we define a morphism f : C* — {0} — C* — {0} such that

(2150-. ,28) — (Z;n/m‘,... ,z,'c“/ *) where m = I. c. m.{my,... ,m;} and make
C* operate on the second C* — {0} in such a way to make f invariant, that is
by (X, (21,... ,2;)) = (A™21,... ,A™2). Now f is finite because Clzy,... ,Zk] is
finitely generated over Clz]"/™, ... ,zp/™*]. Since a geometric quotient of the sec-

ond C* — {0} exists (it is projéctive space P*~!), by Lemma 3.2 the first C* — {0}
with the action (*) also has a geometric quotient and, by Thm. 3.3, it is projec-
tive. It is called weighted projective space. Now applying again Lemma 3.2
and Theorem 3.3 to ¢, we conclude that Spec B — {0} admits a geometric quotient
which is projective.
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Remark 3.4. Suppose A and B are graded algebras and f : B - A a homo-
morphism of degree zero. One could expect there is a corresponding map from
Proj A to Proj B, as in the case of spectra, but this is not true. Instead we can
do the following: consider the map f, : SpecA — Spec B, the action of C* on
the algebras determined by the grading also gives an action on the spectra and
f« is a C*-morphism. Now the inverse image under f, of 0 € Spec B is a closed,
C*-invariant subset of Spec A, which we call N , S0 we get a map

SpecA — N — Spec B — {0}.

Besides, N — {0} is a closed C*-invariant subset of Spec A — {0}, so that its image
in the quotient Proj A is a closed subset, say N, and we finally obtain a map

ProjA — N — Proj B.

For example, if A is the polynomial ring C[zg,... ,z,] and B is the subring of
invariants for some action of a linearly reductive group G, then the subset N of
Proj A = P™ consists of points on which every homogeneous G-invariant polynomial
of positive degree vanishes and, as we shall see, P* —N — Proj B is a good quotient.
So we cannot get a quotient of the whole projective space but just of an open subset,
which we are going to define precisely:

Definition 3.5. Let G be a linearly reductive group acting linearly on a finite
dimensional vector space V. A point z € P(V) is semistable for the induced
action of G on P(V) if there exists a homogeneous G-invariant polynomial f of
positive degree such that f(z) # 0. The subset of semistable points is denoted
P(V)ss.

Remark 3.6. Clearly P(V)** is an open subset and it is G-invariant.

More generally, if Y C P(V) is a G-invariant subvariety we can say that y € ¥
1s semistable if it is such as a point of P(V'). This definition however is not very
satisfactory because it depends on the embedding of Y in P(V). Instead, we can
give an intrinsic definition in a different setting. Let Y be a complete variety acted
on by some algebraic group G and L an ample line bundle on Y. A G-linearization
of L is a lift of the action of G on Y to L as a line bundle automorphism. Notice
that in this case G also operates on any tensor power L®" of L and on the space of
global sections H°(Y, L®") for any r € N. In this setting we put:

Definition 3.7. Let Y be a complete variety acted on by a linearly reductive
group G and L an ample line bundle on Y with a G-linearization. A point y €Y is
semistable with respect to this G-linearization if there exists an invariant section
s € H°(Y, L®") for some n > 1 such that s(y) # 0. The subset of semistable points
is denoted Y'*°,

Remark 3.8. Again, Y** is an open and G-invariant subset of Y.

It is not very hard to check that for a complete variety the two definitions of
semistability give in fact the same notion: suppose Y and L and G are as in Defini-
tion 3.7, then a suitable tensor power L®4 gives an embedding of Y in a projective
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space j : Y < P(H°(Y,L®%) in such a way that the action on H°(Y,L®?) in-
duces the original action on Y. With respect to this embedding, a point y € Y is
semistable if there exists a homogenous G-invariant polynomial of positive degree
k on P(H®(Y, L®%)) which does not vanish at y, but this gives, by restriction to Y,
a G-invariant section in H%(Y, L®). Viceversa, suppose G is a linearly reductive
group acting linearly on some finite dimensional vector space V and Y C P(V) is a
G-invariant subvariety. Let L = Op(y)(1)|y then of course L is an ample line bun-
dle on Y (in fact, very ample) and the action of G on V induces a G-linearization
of L. Now consider the exact sequence of sheaves on P(V):

0—)Iy—)0p(v) -—)Oy—)o

Tensoring by Op(y)(d) and taking cohomology we get a homomorphism of finite
dimensional vector spaces v : H(Op(v)(d)) = H®(L®?)) which is surjective for
d large enough (because H'(Zy(d)) = 0 for d >> 0 by Serre Theorem B). Since
both the vector spaces are G-modules we can apply Reynolds’ operator and by
functoriality the induced homomorphism H®(Op(v)(d))¢ — H°(L®?))C is still
surjective. Thus a G-invariant section of L®? lifts to a G-invariant homogeneous
polynomial of degree d for d >> 0. '

Suppose now again that we have a complete variety Y with an ample line bundle
L and a linearly reductive group G acting on Y with a G-linearization of L. Let
S(Y) be the homogeneous coordinate ring of Y with respect to the embedding
Y < P(H°(Y,L®")) defined by a suitable tensor power L®" of L and let S(Y)¢
be the subring of invariants. Then Y = ProjS(Y) and by Remark 3.4 we have a
morphism Proj S(Y) — N — ProjS(Y)€, where N is the set of zeroes of the ideal
of S(Y) generated by S(Y)$, that is V is the set of non semistable points of Y,
hence Proj S(Y) — N = Y=,

Theorem 3.9. With the above notation, the morphism Y** — Proj S(Y)€ induced
by the inclusion S(Y)C C S(Y) is a good quotient for the given action of G on'Y
and the given linearization.

Proof. The inclusion S(Y)¢ C S(Y) induces a morphism Spec S(Y') — Spec S(Y)¢
which is a gogd quotient (Thm. 2.21) and the restricted morphism (Remark 3.4)
Spec S(Y) — N — Spec S(Y)® — {0} is still a good quotient. Now we can make C*
act on both sides to get the corresponding Proj varieties, so we obtain a diagram
where the vertical arrows are also good quotients (Prop. 3.1):

SpecS(Y) — N — Spec S(Y)% — {0}

l l

ProjS(Y)—-N ——  ProjS(Y)¢

To conclude that ProjS(Y) — N — Proj S(Y)€ is a good quotient we just apply
the following Lemma on transitivity of good actions to the product group G x C*.
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Lemma 3.10. Let H be an affine algebraic group and K a closed normal subgroup.
Suppose that H acts on an algebraic variety X and that there exists a good quotient
X//K. Then there is a good quotient for the action of H/K on X//K if and only
if there exists a good quotient for the action of H on X (and the quotient space is
the same). )

§4. Hilbert-Mumford semistability criterion.
The problem raised by Theorem 3.9 is how to get hands on semistable points?
Hilbert-Mumford criterion answers the question in an effective way.

Proposition 4.1. Let G be a linearly reductive group acting linearly on the vector
space CN. Consider a point ¢ € PV~ and let £ € CN — 0 be a vector which

represents it. Then x is semistable if and only if 0 ¢ Gz.

Proof. Suppose 0 € G& and let f be a homogeneous G-invariant polynomial of
positive degree. Then f is constant on GZ and f(0) = 0, therefore f vanishes
on GZ and hence on z. Viceversa, assume {0} N GZ = @, then by Lemma 2.20
there exists an invariant polynomial f such that f(0) = 0 and f(Gz) = 1. Write
f=fi+:--+ fm where f; is the homogeneous component of degree ¢ (notice that
we have no constant term fy since f(0) = 0). The f;’s are also G-invariant and
there exists at least one of them which does not vanish at GZ and hence at z.

 Definition 4.2. A 1-parameter subgroup of a group G is a nontrivial group
homomorphism A : C* - G of the multiplicative group C* into G.

If G acts on a projective variety X and A : C* — G is a l-parameter subgroup
then C* acts on X via A. If we think of C* C C then we can make s € C* tend to
0, meaning the zero of C.

Now we come to Hilbert-Mumford criterion:

Theorem 4.3 (Hilbert-Mumford). Let G be a linearly reductive group acting lin-
early on CN. Then a point z € PN—1 is semistable if and only if for any 1-
parameter subgroup A of G the point x is semistable for the action of C* given by
A.

Proof. The “only if” part is clear. We shall prove that if z is not semistable there
exists a l-parameter subgroup A : C* — G such that lim,_o A(s)& = 0, where as
usual £ denotes a point in CV — {0} representing z. The proof consists of two
steps. First we reduce to consider the case of a torus showing that if z is not
semistable there exists a maximal torus T C G such that 0 € T#. The crucial
result we use here is that the group G decomposes as KT K, with K a maximal
compact subgroup and T a maximal torus (i. e. every element of G can be written
as hdk with h,k € K and d € T, roughly we say that “the noncompactness of G is
contained in a maximal torus”) (reference?). The second step consists in proving
that for a given torus T we can find a 1-parameter subgroup X : C* — T such that
lim,_,q A(s)Z = 0.

Step 1. Recall that a torus is a product (C*)™ of copies of the multiplicative
group C*. Suppose by contradiction that for any maximal torus T of G we have
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0 ¢ T#. Then for any point z € G& we still have 0 ¢ Tz, indeed, writing z = g
we get o
{0} NTgz = {0} Ngg~1Tgz = g({0} NT"%) =0

since g(0) = 0 (G acts linearly on CV) and T" = g~ 'Tg is still a maximal torus.
Thus, by Lemma 2.20, for any z € G% we can find a T-invariant regular function
f: : C¥ — C such' that f,(0) = 0 and f,(Tz) = 1. Let U, be the open subset
{u | f:(u) # 0} and K a maximal compact subgroup of G such that G = KTK,
then K& is compact and we can find a finite open covering U,, U---UU,_ of Kz.
Define

$:CV SR ues [fo (W] 4o + [ fa (W),

By construction the function ¢ is strictly positive on K& and also on T'K# since the
fz;’s are T-invariant, while it vanishes on zero since the f,,’s do. In conclusion we
get that {0}Ncl(T' K &) = 0, where c/(—) denotes the closure in the usual topology. It
follows that {0}NKcl(TK#) = K({0}Ncl(TK#)) = 0. Now consider the inclusions

G# = KTK# C Kc(TK#) C Kcl(Gz) C cl(G#)

Observe that the last two inclusions are in fact equalities because Kcl(TKz) is
closed. On the other hand, recall that for a locally closed subset (in the Zariski
topology) of an algebraic variety over C the closures in the usual topology and in
the Zariski topology coincide (see [GAGA]). Since the orbit G is locally closed
(Prop. 1.7) we conclude that 0 ¢ Kcl(TKz) = cl(Gz) = G which contradicts the
hypothesis.

Step 2. Consider a torus T acting linearly on C¥ and let Hom(T, C*) be its group
of characters and X,(T) = Hom(C*,T) be the group consisting of 1-parameter
subgroups and the trivial homomorphism. Then there is a pairing

X.(T)xX(T) - Z (A x) < A x>

where < A, x > is the integer defined by the endomorphism x o A : C* — C*
such that x(A(s)) = s<»X>. Recall that a linear action of a torus on C¥ can be
diagonalized, that is there exists a basis e;,... ,exy of C" such that te; = x;(t)e;
for some character y;, so that to any ¢ € T we can associate an invertible diagonal
matrix diag(xi(t),... ,xn(t)). This defines a map p : T — D* C D, where D
denotes the set of N x N diagonal matrices and D* the subset of the invertible
ones. Let £ = )" &;e; and consider the characters x; corresponding to the nonzero
coefficients &; of &; up to renumbering assume they are xi,...,x;. Now suppose
0 € TZ, we claim that the trivial character — i. e. the constant function T’ — C*
equal to 1 — cannot be written as X7t x;n‘ with the m;’s nonnegative integers
and at least one of them positive. Indeed, if it was the case, the morphism D — C

defined by diag(ay, ... ,ay) — a™ ... a™ would be constant equal to 1 on p(T)
and hence also on its closure p(T) in D. On the other hand, 0 € T implies that
the zero matrix belongs to p(T) and of course its image under the above morphism
is zero, which yields a contradiction. Consider now the lattice X(T) ® Q. The %
condition that the trivial character cannot be written as xJ*' - ... x]* with the

m;’s nonnegative integers and at least one of them positive means that 0 does not
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belong to the convex closure of the set {x1,... ,x:} in X(T') ® Q. This in turn says
that there exists a hyperplane in X(T') ® Q such that the x;’s are all on one side
of it, in other words, there exists a linear function f with rational coefficients on
X(T) ®Q such that f(x;) >0foralli=1,...,l, or else a 1-parameter subgroup
A € X.(T) ® Q such that < X,x; > is positive for any i = 1,... ,I. Now we are
done: the action of C* on & via ) is given by

M)t = &:\(s)e; = D dixi(Ms))es = Y dis<A e,

since by construction < A,x; > is positive for any ¢ such that &; # 0 we see that
lims_0 A(s)Z = 0.

This theorem translates easily into a numerical criterion for semistability. If
A : C* = G is a 1-parameter subgroup of G and G acts linearly on CV, then C*
also acts on C¥ via A and the action can be diagonalized. Let e;,... ,en be a basis
of CV which diagonalizes this action, then for any ¢ € C* we have /\(s)ee;‘ = s™e;
for some integer r;. Let z € P¥~1 and £ = Y d;e; € CN — 0 a vector representing
it. We set:

Definition 4.4. With the above notation:
p(A, z) := maz{—r; | &; # 0}
It is clear that the definition does not depend on the vector £ representing z.

Theorem 4.5 (Numerical criterion for semistability). Let G be a linearly reductive
group acting linearly on CV. A point x € PN~1 is semistable if and only if for any
1-parameter subgroup A of G we have p(\,z) > 0.

Proof. The action of C* via A on % is given by:

As)E =D #:h(s)ei =Y &is™e;

then by definition of p(\, z) we see that u(\, z) < 0 if and only if lim,—0 A(s)Z =0
(note that if u(, 2) > 0 then either the limit does not exists in CV or it is different
from zero). Thus, by Theorem 4.3, u(),z) < 0 for some ) if and only if z is not
sernistable.

For a complete variety we have formulated an intrinsic definition of semistability
(Def. 3.7) which does not depend on a particular projective embedding, so in this
case we wish to interpret u(\, z) without referring to the ambient space. Suppose X
is a complete variety acted on by a linearly reductive group G and L is an ample line
bundle on X with a G-linearization. Let A : C* — G be a 1-parameter subgroup
of GG, so that C* acts on X via A. For a point £ € X consider the orbit map of
the C*-action o, : C* — X defined by o,(s) = A(s)z. Since X is complete, by the
valuative criterion o, can be extended to Pg (think of it as C* U {0} U.{oc}). Let
zo be the image of 0 under the extended map. Then the C*-action leaves ¢ fixed
hence C* operates on the fibre L,, which is a 1-dimensional vector space. This
means that for any v € L, and any s € C* the action is A(s)v = s#°v for some

— fa integer pg and we take p(A, z) = yo.
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§5. Stable points.

The set of semistable points of a projective variety acted on by a linearly reduc-
tive group contains a subset on which the action is closed (i. e. all the orbits of
these points are closed) so that the quotient of this subset is a geometric quotient.

As in the case of semistability we can give a definition depending on a projective
embedding or formulate an intrinsic definition and the two notions coincide. Here
we will continue to use the former approach:

Assume G is a linearly reductive group acting linearly on a vector space C and
let X ¢ P¥-! be a G-invariant subvariety of the corresponding projective space.

Definition 5.1. A point z € X is stable if there exists an invariant homogeneous

polynomial of positive degree f such that f(z) # O (i. e. z is semistable) and

moreover the isotropy group G, is finite (i. e. dim O(z) = dim G, by Prop. 1.7)

and the action of G on the affine open subset Xy = {y € X | f(y) # 0} is closed.
The subset of stable points is denoted X°.

Remark 5.3. It is not clear from the definition that X* is an open subset, but
this is in fact true. It follows from the fact that the set of points where the orbits
have maximal dimension is open by semicontinuity (Prop. 1.7).

There are several equivalent characterizations of stable points, we list them here
leaving the proof to the reader:

Proposition 5.4. A point z € X is stable if and only if there exists an invariant
homogeneous polynomial f of positive degree such that f(z) # 0 and any of the
following condition is satisfied:

(1) dimO(z) = dimG and the action of G on X is closed (this is just the

definition);

(2) dim O(z) = dim G and the orbit O(z) is closed in Xy;

(3) dimO(y) = dim G for every y € Xy,

(4) the orbit map (0z)s5 : G — Xy is proper;

(5) the orbit map o, : G — X°° is proper;

(6) dim O(z) = dim G and O(z) is closed in X*°.

To prove the equivalence of these conditions one needs the following result:

Lemma 5.5. : Let G be an algebraic group acting on X. Then the orbit map
0z : G = X is proper if and only if the orbit O(x) is closed and the stabiliser G,
1s finite.

Proof. If o, is proper then O(z) is closed because it is the image of o, and the
stabiliser G, = 07!(z) is affine and complete, hence finite. Conversely, if O(z) is
closed and G is finite then the morphism G — O(z) induced by o, has finite fibres
(i. e. it is quasi-finite). Then there exists a nonempty open subset U of O(z) such
that 1(U) — U is finite. Now we can cover O(z) with the open sets gU for g € G
so that o, is in fact finite, hence proper.

As announced, the orbits on stable points are closed: a SO .

Theorem 5.6. With the above notation, there exists a geometric quotient for the
action of G on X°. More precisely, if ¢ : X** — Y is a good quotient for the action
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of G on X, there ezists an open subset U of Y such that ¢~ (U) = X* and U is a
geometric quotient of X°.

Remark 5.7. Since Y is projective we can think of Y as a compactification of the
geometric quotient X*//G.

Again we would like to have a criterion for determining stable points. It turns
out that applying the numerical criterion for semistability one can distinguish at
once stable points among the semistable ones, indeed we have:

Theorem 5.8 (Hilbert-Mumford). A point € X is stable with respect to a G-

action if and only if u(A,x) > 0 for every I-parameter subgroup A : C* = G.

(D]
[D-C]
[F]
[H]

(K]
[K-S-Sp]

(M]
(M-F]
[N]
[R]

[s)
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HILBERT-MUMFORD CRITERION FOR TORAL ACTIONS

1. Preliminary definitions For keeping the language simple, we will work over an
algebraically closed field k, though the results suitably generalize to all fields. Let GL; =
k> be the multiplicative group of k, and let T = (GL;)™ be the n-dimensional torus over
k, regarded as a linear algebraic group. Let V be a finite dimensional k-vector space, and
let there be given a rational representation p of T on V. In concrete terms, this means the
following. There will exist some basis vy, ..., vq of V where d is the dimension of V, and an
n X d integral matrix A such that for any 7 = (¢1,...,t,) € T the matrix of p(7) € GL(V)
is the diagonal matrix with entries '
T

i=1
where j = 1,...,d. For T € T and v € V, we will denote the vector p(7)v simply by 7v.

Given such a p, we get an induced right action of T on' the ring k[X1,...,X4] of all
polynomial functions f : V — k, defined by f7(v) = f(v~'v). From the above matrix
description of p, it can be seen that a monomial X{* --- X ¢ is invariant under the action if
and only if the vector (qi,...,qq) € Z? lies in the kernel of the homomorphism 4 : Z¢4 — 2"
defined by the n x d integral matrix A.

By definition, a 1-parameter subgroup A of T is a homomorphism A : GL; — T given by

the formula,
A(t) = (81, t0m)

where the a; are integers. Note that such a A need not be injective.

Theorem 1 Let p: T — GL(V) be a rational representation of the torus T. Let v € V
such that the Zariski closure of the orbit Tv of v contains the origin 0 € V. Then there
exists a l-parameter subgroup A of T such that

lim A(£)v = 0

t—0

2. Basic Lemma
The proof will make use of the following lemma.

Lemma 2.1 Let S be a finite subset of the n-dimensional real vector space R", such that
1ts conves hull Con(S) does not contain the origin 0 € R™. Let Yi,...,Y, be the cartesian
coordinates on R™. Then there exists a linear functional ¢ = a,Y; + ... + a,¥, = 0 on
R™, where the a; are integers, such that ¢(s) > 0 for each s € S.

Proof By compactness of Con(S), there exists some point u € Con(S) such that its
euclidean norm |u| is minimum, moreover, u # 0 as Con(S) does not contain the origin
of R". By convexity of Con(S), the linear functional ¢, : R® -+ R : w + u - w (inner
product with u) takes a positive value at each point of Con(S). By finiteness of S there
exists some a > 0 such that ¢,(w) > « for each w € S. This last condition defines an
open neighbourhood U of v in R™®. Choose some v € U, all whose coordinates are rational;
such a v exists as Q is dense in R. Then the desired linear functional ¢ can be taken to

1



be a positive integral multiple of ¢, (where it is enough to multiply by the l.c.m of t}
denominators of the coordinates of v).

In pictorial terms, the above lemma. is obvious: as C = Con(S) is convex and does n¢
contain the origin, there will exist a hyperplane H C R™ passing through the orig
such that C lies on one side of H. As C is compact, we can perturb H slightly withot
intersecting C', and thereby choose H to be defined over Q.

It is possible to eliminate all references to real numbers and convexity in this article b
using systematically the following remark but the resulting treatment would be furthe
from ‘pictorial intution’.

Remark 2.2 Let S € Z/ C R7 be a finite subset and let Con(S) C R/ be its conve
hull in R/. Then 0 € Con(S) if and only if 0 can be written as a linear combination ¢
elements of S with coefficients in N = {0,1,2,...} with atleast one coefficient nonzerc
This is because rational points are dense in any linear subspace of R? which is defined ove

Q.

3. Proof of Theorem 1

Let v = (z1,...,z4) in terms of the basis (v;). By permuting the indices if necessary
we can assume that there exists an integer m with 1 < m < d such that z; # 0 for al
l1<i<mandz;=0forallm+1<3:<d. Let W CV be the vector subspace spanne«
by v1,...,vm. Then W is Zariski closed and T-invariant, and v € W, so we can replac
V by W in the proposition, so that we can assume without loss of generality that eacl
coordinate z; of v is non-zero. Hence every monomial f = X' --- X}* in k[Xy,..., Xy
takes a nonzero value at v. As 0 € V lies in the Zariski closure of T'v, we have f(v) = f(0
for any invariant function f, which shows that there is no invariant monomial f of positive
degree. As remarked before, a monomial f = X{' --- XJ¢ is invariant if and only if the
vector (q1,...,qq4) € Z% lies in the kernel of A : Z¢ — Z™. Let e;,...,eq be the standarc
basis of Z%. As a consequence of remark 2.2, the non-existence of an invariant monomial of
positive degree implies that the convex hull of the subset S = { Aey,...,Aeq} CZ* C R"
does not contain the origin 0 € R™. Hence by lemma 2.1, there exists a homomorphism
@ : Z™ — Z such that the composite ¢ 0 A : Z¢ — Z takes a value p; > 0 on each e;
for 1 <i < d. Let o(Y1,...,Y,) = a1 Y] + ... +a,Y, where the a; are integers. Now if
A: GLy — T is defined by t + (t*1,...,t%"), then it follows that

A(t)v = (tPrzy,. .., tPexq)

From this it follows that lim,—,o A(#)v = 0, which proves the theorem 1.



4. Limit of orbits

The following theorem is more general than Theorem 1.

Theorem 4.1 Let p: T — GL(V) be a rational representation as before, and let v € V
such that the orbit Tv C V is not closed. Then there exists a 1-parameter subgroup A of

T and a point u € V — Tv of such that

}1_1;% Mt)v=u

For the proof, we need the following more general version of the combination of lemma
2.1. and remark 2.2, which immediately imply the special case m = d in what follows.
Lemma 4.2 Let A : Z° — Z" be a homomorphism, and let m be an integer with
1 <m < d, such that the following two conditions hold.

(1) If r = (r1,...,rq) € Z% lies in the intersection N® N ker(A), then r; = 0 for i < m.
(2) There exists some r = (0,...,0,7mt1,...,7a) € ker(A4), such that rm41,...,r, are
nonzero positive integers.

Then there exists a homomorphism ¢ : Z" — Z such that the composite map o A : Z¢ —
Z takes a positive value on each basis vector e; € Z% for i < m and takes the value zero

on each e; fori > m 4+ 1.

Proof of lemma 4.2 Let W C Z™ be the Z-submodule spanned by the Ae; fori > m+1,
and consider the quotient ¢ : Z™ — Z"/W. We will first show that the convex hull of the

finite subset

S ={Ae,...,Aem } CR® (Z™/W)
does not contain the origin 0 € R ® (Z"/W). Equivalently (see remark 2.2), we have

to show that a linear combinition of the elements of S with non-negative integer entries
cannot equal 0 unless all coefficients are zero.

Suppose the contrary holds, so that >, ... riAe; = 0 € Z™/W, where each r; € N and
atleast one r; is nonzero. Then by definition of the quotient Z™/W, we will have integers

Sm+1y--.,8q4 such that the element
e+ ... +7"mem + Smt1€my1 + ...+ S4€4

of Z4 lies in the kernel of A : Z¢ — Z™. Now using the hypothesis (2) of the lemma, we
can if necessary change the s; so that s; > 0 for each ¢ > m + 1. But this contradicts the
hypothesis (1). Hence we have shown that 0 € R® (Z™ /W) does not lie in the convex hull
of S.

Now it follows by lemma 2.1 that there exists a linear functional ¢ : Z* /W — Z, which
takes positive values at all elements of S. Therefore we can take the desired homomorphism
¥ to be the composite

Yp=poq:Z" = Z"/W = Z

which proves the lemma.



5. Proof of theorem 4.1 3

As in section 1, there will exist some basis vy,...,vq of V where d is the dimension of
V, and an n x d integral matrix A such that for any 7 = (¢1,...,t,) € T the matrix of
p(7) € GL(V) is the diagonal matrix with entries []i, tfl""' where 7 = 1,...,d.

Let v = (21,...,24). As in the proof of theorem 1, we can reduce to the case where all
the z; are nonzero. Hence v lies in the Zariski open subset V5 of V consisting of all points
all whose coordiantes are nonzero. Let D C GL(V') be the subgroup of diagonal matrices.
Now, the variety V; is isomorphic to D under the morphismn : D — V5 : ¢ = o(v). Under
this isomorphism, the image p(T) ¢ D C GL(V) maps isomorphically to the orbit T.
As p(T) is closed in T, it follows that Tw is closed in V5. Hence if u € V — T is a limit
point of T'v then atleast some coordinate of u must be zero. As by hypothesis such a limit
point u exists, it follows that there exists some index j with 1 < 7 < d such that for each

T-invariant monomial X" --- X% we must have ¢; = 0. _

Hence by permuting the basis of V, we can assume that there is an integer 1 < m < d
such that the variables Xi, ..., X, do not occur in any T-invariant monomial X{* --- X3¢
(that is, each T-invariant monimial lies in k[Xm+1,...,X4]), while each of the remaining
variables X; for : > m+1 occurs with a positive exponent in atleast one invariant monomial,
say f;. Let f be the product f = H;i=m+1 fi € k[ Xm+1,...,X4|. This shows the existence

of an invariant polynomial
_ Tm+41 Tq
f - *’Ym+1 ' Xd

where r; > 0 for each m + 1 < i < d. Note that by definition f = 1, in the case where
m = d.

Let the vector (q1,...,q4) € N? C Z% be associated to the monomial X{*--- X%, As T-
invariant monomials correspond to the intersection of N¢ with the kernel of A4 : Z¢ — Z™,
it now follows that the hypothesis of lemma 4.2 is satisfied. Let ¢ : Z® — Z be the
homomorphism given by the lemma, so that the integers p; = 1)(Ae;) satisfy the following:
pi>0forl<i<mandp,=0form+1<:<d Let (¥7,...,Yn) =a1¥1 +... +a.Y5,
where the a; are integers. Now if A : GL; — T is defined by t — (¢%!,...,t%"), it follows

that
Mt)v = (tPrzq, ..., tPezy)

From this it follows that

}1_1;1(1))\(1,‘)1) =(0,...,0,Tms1,...,%4)
As m > 1, the above limit point does not lie in Vp, hence lies outside Tw, which proves the

theorem.

These results are important in geometric invariant theory. The above purely exzpository

note. prepared by Nitin Nitsure, is based on a paper of David Birkes in Annals of Math.

vol 93 (1971). The only possibly novel feature of the exposition is the use of monomials.
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