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Tsuchiya-Ueno-Yamada construction of WZW models

Consider an affine untwisted Kac-Moody Lie algebra

ĝ := g⊗ C((t))⊕ Cc

[X ⊗ f ,Y ⊗ g ] := [X ,Y ]⊗ fg + (X ,Y )Res
t=0

gdf .

Remark

We should think of the formal parameter t as a coordinate on the

formal disk or a local parameter at a smooth point on a projective

curve
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Representations

Let ` > 0 and consider the set

P`(g) := {λ ∈ P+(g)|(λ, θ) ≤ `}.

• Each λ ∈ P`(g) gives an irreducible module Hλ of ĝ.

• Each Hλ is constructed as a quotient of a Verma module.

• Vλ ⊂ Hλ.

• Hλ are infinite dimensional.
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Conformal Blocks

Let C be a stable curve of genus g and ~p = (p1, . . . , pn) be

n-distinct smooth points on C

V~λ(C , ~p, g, `) :=
Hλ1 ⊗ · · · ⊗ Hλn(

g⊗ Γ(C\~p)Hλ1 ⊗ · · · ⊗ Hλn
) .
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Theorem(TUY-89, Tsuchimoto)

• The vector spaces V~λ(C , ~p, g, `) are finite dimensional.

• Moreover as (C , ~p) varies in Mg ,n, the spaces V~λ(C , ~p, g, `)

give a vector bundle V~λ(g, `) on Mg ,n.

• V~λ(g, `) carries a flat projective connection with logarithmic

singularities along the boundary of Mg ,n.
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Verlinde formula via 2d-CFT

The spaces of conformal blocks satisfy axioms of

Conformal-Field-Theory and motivated by this E. Verlinde

conjectured a formula for the dimension of the space of conformal

blocks V~λ(C , ~p, g, `) !!! (1987)

7 / 42



8 / 42



Factorization Theorem (TUY-89)

Consider the natural maps

1. Mg−1,n+2 →Mg ,n

2. Mg1,n+1 ×Mg2,m+1 →Mg1+g2,n+m

Globally the vector bundle V~λ(g, `) splits into the direct sum,⊕
µ∈P`(g)

V~λ,µ,µ∗(g, `),
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Fusion ring R(g, `)

Consider the

R(g, `) :=
⊕

λ∈P`(g)

Z[λ].

[λ1] ◦F [λ2] :=
∑

µ∈P`(g)

dimC Vλ1,λ2,µ(P1; 0, 1,∞; g; `)[µ∗].

The product ◦F makes R(g, `) into a commutative associative,

ring with identity 0. Moreover R(g, `) is a Frobenious algebra.

Remark: There are many other equivalent ways to define

fusion rings using tilting modules for quantum groups,

cohomology of vector bundles on affine Grassmannians,

twisted K-theory (Andersen-Stroppel, Freed-Hopkins-

Teleman, Kumar).
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Theorem (Faltings-94, Teleman-95)

The characters of the ring R(g, `) are of the form

[λ]→ TrVλ
(

exp
2π
√
−1(µ+ ρ)

(`+ h∨(g))

)
,

for µ ∈ P`(g), ρ is the sum of fundamental weights, h∨(g) is the

dual-Coxter number.
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Character Table

Consider the square matrix |P`(g)| Σ of size |P`(g)| whose

(µ, λ)-th entry

Σµ,λ := TrVλ
(

exp
2π
√
−1(µ+ ρ)

(`+ h∨(g))

)
,

ΣΣ
t

= ∆,

where ∆ is a diagonal matrix with positive entries.

Define the Kac-Moody S matrices

S := ∆−1/2Σ

Clearly S is unitary and the first column is real and positive.

Moreover they are also symmetric.
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Rewriting in terms of S-matrices

dimVλ,β,γ(P1; 0, 1,∞; g, `) =
∑

µ∈P`(g)

Sλ,µ.Sβ,µ,.Sγ,µ
S0,µ

One can write formula for S using the Weyl-Character formula.

The higher genus version is the following:

dimV~λ(C , g, `) =
∑

µ∈P`(g)

Sλ1,µ · · · Sλn,µ(
S0,µ

)n+2g−2
,
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Weak Rigidity

A monoidal category (C,⊗, 1) is said to be an weakly rigid

category if:

(i) For each X ∈ C, the functor C 3 Y 7→ Hom(1,X ⊗ Y ) is

representable by an object X ∗, i.e. we have functorial

identifications Hom(1,X ⊗ Y ) = Hom(X ∗,Y ).

(ii) The functor C 3 X 7→ X ∗ ∈ Cop is an equivalence of categories,

with the inverse functor being denoted by X 7→ ∗X .

(iii) 1 is an simple object.
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Braided Tensor Category

A Braided-Tensor-Category (BTC) is a monoidal category

(C,⊗, 1) along with functorial isomorphism

βi ,j : [Ai ]⊗ [Aj ] ∼= [Aj ]⊗ [Ai ]

that satisfy Braid group relations.
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Rigidity

Let C be a monoidal category and V be an object. A rigid right

dual V ∗ is a object along with morphism

eA : V ∗ ⊗ V → 1

iA : 1→ V ⊗ V ∗

such that the compositions are id on V and V ∗.

V
iV⊗idV−−−−→ V ⊗ V ∗ ⊗ V

idV⊗eV−−−−→ V

V ∗
id∗V⊗iV−−−−→ V ∗ ⊗ V ⊗ V ∗

eV⊗id∗V−−−−→ V ∗

16 / 42



Rigidity

Let C be a monoidal category and V be an object. A rigid right

dual V ∗ is a object along with morphism

eA : V ∗ ⊗ V → 1

iA : 1→ V ⊗ V ∗

such that the compositions are id on V and V ∗.

V
iV⊗idV−−−−→ V ⊗ V ∗ ⊗ V

idV⊗eV−−−−→ V

V ∗
id∗V⊗iV−−−−→ V ∗ ⊗ V ⊗ V ∗

eV⊗id∗V−−−−→ V ∗

16 / 42



S-matrix

tr(f ) : 1
iV−→ V ⊗ V ∗

f⊗id−−−→ V ⊗ V ∗
δV−→ V ∗∗ ⊗ V ∗

eV∗−−→ 1

S̃ij := tr(Ai ⊗ Aj
βi,j−−→ Aj ⊗ Ai

βj,i−−→ Ai ⊗ Aj)

Definition

A Modular-Tensor-Category (MTC) is a semisimple, rigid, BTC

such that

• Functorial isomorphism δV : V ' V ∗∗.

• The matrix S̃ = (S̃)ij is invertible.

The Grothendieck Group of C of a MTC gets a ring structure and

the matrix S̃ gives the character table.
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Crossed Modular Tensor Category

Let C :=
⊕

γ∈Γ Cγ is a Γ graded abelian category with tensor

structure

Cγ1 ⊗ Cγ2 → Cγ1γ2

and a monoidal Γ action

γ : Cη → Cγηγ−1

Further there are function crossed brading isomorphism

βM,N : M ⊗ N
∼=−→ γ(N)⊗M for γ ∈ Γ, M ∈ Cγ
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Crossed S-matrix

For each C ∈ Pγ1 , let us choose an isomorphism ψC : γ(C )
∼=−→ C .

For M ∈ Pγ ,C ∈ Pγ1 , we set

S̃γM,C := tr(C ⊗M
βC ,M−−−→ M ⊗ C

βM,C−−−→ γ(C )⊗M
ψC⊗idM−−−−−→ C ⊗M).

• Define the normalized γ-crossed S-matrix to be

Sγ :=
1√

dim C1
· S̃γ .

• The matrix Sγ is a Pγ × Pγ1 unitary matrix.
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Categorical Verlinde formula-(Deshpande-M)

Theorem: Deshpande-Mukhopadhyay

Let C =
⊕
γ∈Γ

Cγ be a Γ-crossed MTC and consider A ∈ Cγ1 ,B ∈ Cγ2

and C ∈ Cγ1γ2 be simple objects.

Then the multiplicity νCA,B of C in the tensor product A⊗ B is

given by

νCA,B =
∑

D∈P〈γ1,γ2〉
1

Sγ1

A,D · S
γ2

B,D · S
γ1γ2

C ,D

S1,D
,
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Remark

• Both crossed and uncrossed S-matrices appear in the formula.

• This generalizes the result of T. Deshpande for cyclic groups.

• In general, there are some cocycles in the formula. However in

our application, the cocycle does not appear.
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Summary so far

Crossed Modular

Categories

Modular

Categories

Weak

Ribbon

Conformal

Blocks

Categorical

Formula

Fusion Ring
Verlinde

Formula

Categorical

Γ- Formula
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Twisted Kac-Moody Lie algebras

Let γ be an automorphism of a finite dimensional simple Lie

algebra g of order |γ|. We fix a |γ|-th root of unity ε := e
2π
√
−1
|γ| of

unity.

Let γ act on C((t)) by the formula γ.t := ε−1t.

Define the twisted affine Lie algebra

L̂(g, γ) := (g⊗ C((t))⊕ Cc)γ .
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Lie algebra g Fixed point algebra gσ

• A2n−1 , • Cn ,

• A2n , • Bn ,

• Dn , • Bn−1 ,

• E6 , • F4 ,

• D4 • G2
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Twisted Affine Kac-Moody algebras X
(m)
N

• A
(2)
2n−1

• A
(2)
2n

• D
(2)
n

• E
(2)
6

• D
(3)
4
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Relation to Diagram automorphism

Let γ be an automorphism of g of order |γ|. Then there exists a

Borel subalgebra b of g containing a Cartan subalgebra h such that

γ = σ exp(ad
2π
√
−1

|γ|
h),

where σ is a diagram automorphism of g and h ∈ h.
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Representations

The irreducible, highest weights, integrable modules of L̂(g, γ) are

parametrized by a finite subset of P`(g, γ) and the corresponding

modules will be denoted by Hλ(g, γ).

There is a natural isomorphism:

φσ,γ : L̂(g, σ)→ L̂(g, γ)

The map φσ,γ induces a bijection P`(g, σ) and P`(g, γ).

Example

g1 ⊗ C((t2))⊕ g−1 ⊗ tC((t2))⊕ Cc
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Ramfied Covering

Remark

Think of “t” as a local coordinate on the top curve at branch

points.
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Moduli of Γ-covers

Let π : C̃ → C be a covering of curves such that

• π is possibly ramified Galois cover with Galois group Γ.

• p = (p1, . . . , pn) be n-distinct points on C that includes all

ramification points.

• p̃ be a choice of preimage of p in C̃ .

• Γi = 〈mi 〉 be the stabilizer of p̃i

The moduli stack of such data will be denoted by MΓ
g ,n(m) and

was studied by Jarvis-Kimura-Kauffmann and a related version by

Abramovich-Corti-Vistoli

.
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Γ-twisted conformal blocks

V~λ,Γ(C̃ , C̃ , p̃,p, g, `) :=
Hλ1(g,m1)⊗ · · · ⊗ Hλn(g,mn)

(g(A))Γ

(
Hλ1(g,m1)⊗ · · · ⊗ Hλn(g,mn)

) ,
where A is the space of functions on C̃\Γ · p̃.

Assumption

We will further assume that “Γ preserves a Borel subalgebra of g”.

30 / 42



Γ-twisted conformal blocks

V~λ,Γ(C̃ , C̃ , p̃,p, g, `) :=
Hλ1(g,m1)⊗ · · · ⊗ Hλn(g,mn)

(g(A))Γ

(
Hλ1(g,m1)⊗ · · · ⊗ Hλn(g,mn)

) ,
where A is the space of functions on C̃\Γ · p̃.

Assumption

We will further assume that “Γ preserves a Borel subalgebra of g”.

30 / 42



Properties

• The twisted conformal blocks V~λ,Γ(C̃ , C̃ , p̃,p, g, `) give a

vector bundle V~λ,Γ(g, `) on MΓ
g ,n(m).

• It further carries with a flat projective connection with log

singularties along the boundary ( Damiolini, Deshpande-M,

Kumar-Hong, Sczesny)
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Factorization

The twisted conformal blocks decomposition under the map

(Damiolini, M, Kumar-Hong)

• MΓ
g1,n+1(m, γ)×MΓ

g2,m+1(m′, γ−1)→MΓ
g1+g2,n+m(m,m′)

• MΓ
g−1,n+2(m, γ, γ−1)→MΓ

g ,n(m). Moreover the splitting is

parametrized by the P`(g, γ).
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Γ-MTC via twisted conformal blocks

Theorem: Deshpande-Mukhopadhyay

The twisted conformal blocks associated to a finite group Γ, a

simple Lie algeba g at level ` for define a Γ-crossed MTC

C =
⊕
γ∈Γ

Cγ

such that

• The simple object of Γ are parametrized by the set P`(g, `).

• For m1,m2,m3 ∈ Γ3 such that m1.m2.m3 = 1

Hom(1, [λ1]⊗ [λ2]⊗ [λ3]) := V~λ,Γ(C̃ ,P1, µn, g, `)
∗,

where λi ∈ P`(g,mi ).
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Rigidity of Abstract Crossed Modular Tensor Category

How does one check for rigidity for abstract crossed modular

categories? In general there are no known examples of weakly rigid

but not rigid. The following theorem answer a question

communicated by V. Drinfeld in this direction.

Theorem: Deshpande-Mukhopadhyay

Let C be any weak Γ crossed ribbon category. Assume that C1 is

rigid, then weak rigidity of C implies that C is rigid.
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Remarks about rigidity issues

• Ridigity of weakly rigid braided tensor categories arising out of

conformal blocks in the untwisted case is a very important

and hard result. This was proved by Yi-Zhi Huang. Huang’s

works in the general set up of vertex algebras. (Related work

of M. Finkelberg in the quantum group set up)

• The proof of the Verlinde formula for twisted Kac-Moody Lie

algebras, uses the rigidity result of Deshpande-M to reduce

rigidity issues to the untwisted case.
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Verlinde Formula for twisted conformal blocks

Since the conformal blocks define a Γ crossed modular tensor

category. We have a formula to compute the dimension:

Theorem: Deshpande-Mukhopadhyay

Assume that “Γ preserves a Borel subalgebra of g”.

rankV~λ,Γ(C̃ ,C , p̃,p) =
∑

µ∈P`(g)Γ

Sm1
λ1,µ
· · · Smn

λn,µ(
S0,µ

)n+2g−2
,
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Twisted Fusion ring

Let γ be an automorphism of g and let λ1, λ2, λ3 are fixed by γ.

γ : Vλ1,λ2,λ3(P1; 0, 1,∞; g, `)→ Vλ1,λ2,λ3(P1; 0, 1,∞; g, `).

The twisted fusion ring

Rγ(g, `) :=
∑

λ∈P`(g)γ

C[λ]

[λ1] ◦γ [λ2] =
∑

λ3∈P`(g)γ

tr(γ)[λ∗3]

Remark

The crossed S-matrix Sγ is the normalized character table of

Rγ(g, `).
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Character of twisted Fusion ring

Analgous to the result of Faltings and Teleman for the untwisted

case:

Theorem: J. Hong

The characters of the twisted fusion rings are given are

parameterized by the set P`(g, γ) and are given by “traces of

representations.”

Remark

• Rγ(g, `) is defined over Z.

• The coefficients can be negative (Countering Hong’s claim).

• We can write crossed Sγ matrices in terms of the

Weyl-Character formula.
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Summary of the main steps

Crossed Modular

Categories

Modular

Categories

Weak

ribbon

Conformal

Blocks

Fusion Ring
Verlinde

Formula

Twisted Con-

formal Blocks

Twisted

Verlinde

Formula

Categorical

Γ- Formula
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Example:Étale case

• Let C be smooth curve of genus g , then

dimV0(C , sl(r), 1) = rg ,

where G is the simply connected group with Lie algebra g.

• C̃ → C be a cyclic étale-Galois cover of order m and Γ = 〈γ〉,
then

dimV0,Γ(C̃ ,C , sl(r), 1) = |P1(sl(r))γ |rg−1,

Remark

If Γ = Z/2, then the above result can be crossed verified

independent by H. Zelaci’s thesis where the result of

Beauville-Narasimhan-Ramanan is generalized for Prym varieties.
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Examples: Ramified Cases

• Consider A
(2)
2r−1 and a double cover C̃ → C ramified at 2n

points p̃ and let g be the genus of C .

dimCV†~0;Z/2
(C̃ ,C , p̃,p) = 2g rg+n−1.

• Let E → P1 be a ramified Galois cover of order three with

three ramification points, For the Lie algebra D
(3)
4 , we get

dimCV†0,0,0;Z/3(E ,P1, p̃,p) = 2.
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Thank You !!!!
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