Exercise Sheet #1

- 1. Page 65 (Stein and Shakarchi) Problem 7
- 2. Page 66 (Stein and Shakarchi) Problem 9
- 3. Page 67 (Stein and Shakarchi) Problem 15
- 4. Page 68 (Stein and Shakarchi) Problem 3
- 5. Let $f: \Omega \to \mathbb{C}$ be an analytic function of a open connected domain. Let $z_0 \in \Omega$ be such that $f'(z_0) \neq 0$. Show that

$$\frac{1}{f'(z_0)} = \frac{1}{2\pi\sqrt{-1}} \oint_C \frac{1}{f(z) - f(z_0)} dz,$$

where C is a small circle centered at z_0 .

- 6. If $f : \mathbb{C} \to \mathbb{C}$ is a continuous function such that f is analytic off [-1, 1]. Then show that f is entire.
- 7. If f be an entire function and suppose there is a constant M and R > 0 such that $|f(z)| \le M|z|^n$ for |z| > R and for some positive n. Show that f must be a polynomial of degree $\le n$.
- 8. Let $\Omega \subset \mathbb{R}^2$ be an open disk and let $u : \Omega \to \mathbb{R}$ be a harmonic function, i.e $(\partial_x^2 + \partial_y^2)u = 0$. Show that there exists function $v : \Omega \to \mathbb{R}$ such that f = u + iv is a holomorphic function.
- 9. Recall that a linear transformation $L : \mathbb{R}^2 \to \mathbb{R}^2$ is angle preserving if there exists $\lambda > 0$ such that $L(v) \cdot L(w) = \lambda v \cdot w$ where \cdot denotes the inner product. Show that if $f : \Omega \to \mathbb{C}$ is a real differentiable function, then the following are equivalent:
 - f is holomorphic and f' is zero free in Ω
 - f preserves angle and orientation preserving.