- 1. Chapter 3 Exercises 14, 15, 19, 22 (Stein and Shakarchi)
- 2. Chapter 3 Problem 1 (Stein and Shakarchi)
- 3. Suppose f_n is a sequence of holomorphic function in a connected domain Ω and $f_n \to f$ locally uniformly on Ω . Assume f_n is no where vanishing on Ω . Then f is either nowhere vanishing or identically zero.
- 4. Prove that for $\epsilon > 0$, the function $\frac{1}{z+i} + \sin z$ has infinitely many zeros in the strip $|\operatorname{Im} z| < \epsilon$.
- 5. Let f be a homomorphic function in a neighborhood of a closed disc \overline{D} . Can the image of ∂D under f be the figure 8?
- 6. If $u \in C^2(\mathbb{C})$ is bounded and harmonic, then u is a constant.
- 7. Suppose f is an analytic in neighborhood of the closed unit disk D. Assume that f has finitely many zeros z_1, \ldots, z_n in the interior of D with multiplicities m_1, \ldots, m_n . Show that

$$m_1 z_1 + \dots + m_n z_n = \int_{\partial D} \frac{z f'(z)}{f(z)} dz$$