Exercise Sheet #3

- 1. Let $\Omega \subset \mathbb{C}$ be open and connected and let f be a holomorphic function on Ω . Then $f'(a) \neq 0$ if and only if there is a neighborhood of a on which f is injective.
- 2. Prove that for each non-empty open subset $\Omega \subset \mathbb{C}$ and for all points $a, b \in \mathbb{C}\backslash\Omega$ in the same connected component of $\mathbb{C}\backslash\Omega$, there exists a complex holomorphic function $f: \Omega \to \mathbb{C}$ such that $f(z)^2 = (z - a)(z - b)$.
- 3. Let f be a meromorphic function on a simply connected open set $\Omega \subset \mathbb{C}$. Prove that f has a primitive that is meromorphic on Ω if and only if at each pole of f, the residue is zero.
- 4. Consider the meromorphic function $f(z) = \pi^2 / \sin^2 \pi z$ and consider the function $H(z) = f(z) - \sum_{n \in \mathbb{Z}} \frac{1}{(z-n)}$ $\frac{1}{(z-n)^2}$. Show that $H(z)$ is identically zero. (Exercise from class) (I also suggest looking into Problems on Page 312 Exercise 217-219 on Raghavan Narasimhan's book for your practice only.)
- 5. Let $\Omega = \bigcup_{i=1} \Omega_i$ where $\Omega_i \subset \mathbb{C}$. For each i consider functions f_i which are meromorphic on Ω_i such that on $\Omega_i \cap \Omega_j$, the function $f_i - f_j$ is holomorphic. Then show that there exists a meromorphic function $f: \Omega \to \widehat{\mathbb{C}}$ such that $f - f_i$ is holomorphic on Ω_i for all i.
- 6. Give a proof of Fundamental theorem of algebra from the argument principle.
- 7. (Conway Page 207)This exercise proves the Weierstrass Factorization theorem from Mittag-Leffler theorem.
	- (a) Let $\{a_n\}$ be a sequence of points in the complex plane such that $|a_n| \to \infty$ and ${b_n}$ be an arbitrary sequence of complex numbers. Show that if integers ${k_n}$ be choosen such that

$$
\sum_{n=1}^{\infty} \left(\frac{r}{a_n}\right)^{k_n} \frac{b_n}{a_n}
$$

converges absolutely for all $r > 0$ then $\sum_{n=1}^{\infty} \left(\frac{z}{a_n} \right)$ $(\frac{z}{a_n})^{k_n} \frac{b_n}{z-a}$ $\frac{b_n}{z-a_n}$ converges to a meromorphic function on $\mathbb C$ with poles along $z = a_n$.

- (b) Show that if $\limsup |b_n| < \infty$, then the above series converges absolutely if $k_n = n$ for all n .
- (c) Using the above show that for any sequence ${a_n} \in \mathbb{C}$ with $\lim a_n = \infty$ and $a_n \neq 0$, we can find a sequence of integers k_n such that

$$
h(z) = \sum_{n=1}^{\infty} \left(\frac{1}{z - a_n} + \frac{1}{a_n} + \frac{1}{a_n} \left(\frac{z}{a_n} \right) + \dots + \frac{1}{a_n} \left(\frac{z}{a_n} \right)^{k_n - 1} \right)
$$

is meromorphic with simple poles at a_1, \ldots, a_n, \ldots .

(d) Use the function $f(z) = \exp\left(\int_{\gamma} h\right)$ where γ is any path joining 0 and point $z \in \mathbb{C} \setminus \{a_1, \ldots, a_n\}$ and not passing through $\{a_1, \ldots, a_n, \ldots, a_n\}$ as in discussed in class to give a proof of the Weierstrass factorization theorem for the complex plane.