1. Consider the Bessel equation

$$\frac{d^2u}{dz} + \frac{1}{z}\frac{du}{dz} + (1 - \frac{\nu^2}{z^2})u = 0$$

Show the following:

- (a) The power series $J_{\nu}(t) := \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(k+\nu+1)} \left(\frac{t}{2}\right)^{2k+\nu}$ valued for $t \in \mathbb{C} \setminus (-\infty, 0]$ solves the Bessel equation
- (b) Show that $J_{-\nu}(t)$ also solves the Bessel equation and show that if $\nu \notin \mathbb{Z}$ the solutions $J_{\nu}(t)$ and $J_{-\nu}(t)$ are linearly independent.
- (c) Show that if $n \in \mathbb{Z}$, then $J_n(t) = (-1)^n J_{-n}(t)$.
- 2. Define $(a)_0 := 1$ and $(a)_k := a(a+1)\cdots(a+k-1)$. For $b \notin \{-1, -2, -3, \cdots\}$, consider the two power series

•
$$_{1}F_{1}(a,b,z) := \sum_{k=0}^{\infty} \frac{(a)_{k}}{(b)_{k}} \frac{z^{k}}{k!}$$

•
$$_{2}F_{1}(a_{1}, a_{2}, b, z) := \sum_{k=0}^{\infty} \frac{(a_{1})_{k}(a_{2})_{k}}{(b)_{k}} \frac{z^{k}}{k!}$$

Show the following:

- (a) Find the radius of convergence of $_1F_1$ and $_2F_1$.
- (b) Show that $u = {}_{1}F_{1}(z)$ satisfies zu''(z) + (b z)u'(z) au(z) = 0.
- (c) Show that $u = {}_{2}F_{1}(z)$ satisfies $z(1-z)u''(z) + (b (a_{1} + a_{2} + 1)z)u'(z) a_{1}a_{2}u(z) = 0.$
- (d) Show that any solution to the above differential equation in part(c) has an analytic continuation to any simply connected domain in $\mathbb{C}\setminus\{0,1\}$. (no need to submit this part)
- (e) Show that ${}_{1}F_{1}(a, b, z) = \lim_{c \to \infty} {}_{2}F_{1}(a, c, b, c^{-1}z).$
- 3. Consider the Airy equation: u''(z) = zu(z), $u(0) = u_0$ and $u'(0) = u_1$.
 - (a) Show that by taking $v = (u, u')^T$ gives linear differential equation of the form $\frac{dv}{dz} = (A_0 + A_1 z)v$, where A_0 and A_1 are 2×2 matrices.
 - (b) If $v(z) = \sum_{k=0}^{\infty} v_k z^k$ is a solution, find a recusion involving v_k 's.
 - (c) Use this to directly show that v(z) converges for all $z \in \mathbb{C}$. (no need to submit this part)
- 4. Recall that we know how to solve differential equations of the form $\frac{d^2u}{dx} + k^2u = 0$ in terms of $\sin kx$ and $\cos kx$. We now consider a two variable analog of the above equation:

Let Δ be the two variable Laplacian and u is a function of two variable. Consider the equation $\Delta u + k^2 u = 0$.

- (a) Show that if v = ku, then the above equation is just $(\Delta + 1)v = 0$.
- (b) If $x = r \cos \theta$ and $y = r \sin \theta$ and let $v = w(r)e^{i\nu\theta}$. Show that v satisfies $(\Delta + 1)v = 0$ if w(r) satisfies the Bessel equation.