- 1. Stein-Shakarchi: 8, 10, 11, 13, 14.
- 2. Give an example of a bounded, simply connected domain contained in \mathbb{C} whose boundary is not path connected.
- 3. Suppose $h_{\nu} : \mathbb{D} \to \mathbb{D}$ are injective, holomorphic, univalent maps satisfying $h_{\nu} = 0$, $h'_{\nu}(0) > 0$, $D_{\rho_{\nu}}(0) \subset h_{\nu}(D)$, $\rho_{\nu} \to 1$. Show that for $z \in \mathbb{D}$, we have $\rho_{\nu}|z| \leq |h_{\nu}(z)| \leq |z|$. Further show that $h_{\nu}(z) \to z$ locally uniformly on D. (Hint: Use a normal family argument)
- 4. Suppose Ω is a bounded, simply connected domain and $p \in \Omega$. and $f_{\nu} : \Omega \to \mathbb{D}$ are injective holomorphic maps satisfying $f_{\nu}(p) = 0$, $f'_{\nu}(p) > 0$, $f_{\nu}(\Omega)$ contains a disc of radius ρ_{ν} such that $\rho_{\nu} \to 1$. Show that $f_{\nu} \to f$ locally uniformly on Ω , where $f : \Omega \to \mathbb{D}$ is the function given by the Riemann mapping theorem.
- 5. Let \mathbb{D} be the unit disc. Let $f: \mathbb{D} \to \mathbb{D}$ is holomorphic. Then show that

$$\frac{|f(0)| - |z|}{1 - |f(0)||z|} \le |f(z)| \le \frac{|f(0)| + |z|}{1 + |f(0)||z|}$$

- 6. (IX.1.5 in Gamelin)Let f be analytic, $|f(0)| \ge r$, then $|f(z)| \ge \frac{(r-|z|)}{(1-r|z|)}$ for |z| < r.
- 7. Let $f: \Omega \to \mathbb{D}$ is a biholomorphism, where \mathbb{D} is the unit disc and

$$\Omega = \{ z = re^{i\theta} \in \mathbb{C} \mid r > 0, \ |\theta| < \pi/100 \}.$$

Suppose also f(1) = 0 and f'(1) > 0, compute f(2)?

8. Let f be an analytic function on the unit disc \mathbb{D} such that $|f(z)| \leq 1$. Suppose that z_1, \ldots, z_n are the zeroes of f, then show that

$$|f(0)| \le \prod_{j=1}^n |z_i|,$$

where each z_i is repeated according to multiplicities on the right hand side.