- 1. Page 9 of Forster's book: 1.4, 1.5
- 2. Page 39 of Forster's book: 5.2, 5.4
- 3. Page 59 of Forster's book: 8.1, 8.2
- 4. Consider the upper half plane \mathbb{H} and its group of holomorphic automorphisms $\operatorname{Aut}(\mathbb{H})$. We know that $\operatorname{Aut}(\mathbb{H}) = \operatorname{PSL}_2(\mathbb{R})$. Let $\gamma \in \operatorname{Aut}(\mathbb{H})$ and let $\gamma(z) = \frac{az+d}{cz+d}$. Let $c \neq 0$ and consider the discriminant (of the quadratic equation $\gamma(z) = z$) $\Delta = (d-a)^2 + 4bc$.
 - If $\Delta < 0$, then show that up to conjugates γ is a rotation. Such a γ is called elliptic. In particular γ may or may not have finite order.
 - If $\Delta > 0$, show that there are two distinct fixed points and that's in $\mathbb{R} \cup \{\infty\}$. Use this to show that such a γ is conjugate to a μ in $\mathrm{PSL}_2(\mathbb{R})$ that fixed ∞ and 0. Hence $\mu(z) = \lambda(z)$ for $\lambda > 0$ and $\lambda \neq 1$ and γ has infinite order. Such elements are called hyperbolic.
 - If $\Delta = 0$, then show that there is one fixed point and that's in $\mathbb{R} \cup \{infty\}$. Use this to show that γ is conjugate to an element μ in $\mathrm{PSL}_2(\mathbb{R})$ sending 0 and ± 1 and fixing ∞ . Such elements are called parabolic and also have infinite order.
- 5. Let p be a prime number and consider matrices of the form

$$\widetilde{\Gamma}_p = \{ \pm \begin{bmatrix} ap+1 & * \\ * & bp+1 \end{bmatrix} \} \cap \operatorname{SL}_2(\mathbb{Z}).$$

Let Γ_p be the image of $\widetilde{\Gamma}_p$ in $PSL_2(\mathbb{R})$. Show that if $p \geq 5$, then all element of Γ_p are either elliptic or parabolic. In particular there have no fixed points in \mathbb{H} . Thus \mathbb{H}/Γ_p is a Riemann surface.