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CURVES
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Abstract. Let G be a semisimple complex algebraic group with a simple Lie algebra g, and let
M0

G denote the moduli stack of topologically trivial stable G-bundles on a smooth projective
curve C. Fix a theta characteristic κ on C which is even in case dim g is odd. We show that there
is a nonempty Zariski open substack Uκ ofM0

G such that Hi(C, ad(EG)⊗κ) = 0, i = 1, 2, for
all EG ∈ Uκ. It is shown that any such EG has a canonical connection. It is also shown that the
tangent bundle TUκ has a natural splitting, where Uκ is the restriction of Uκ to the semi-stable
locus. We also produce an isomorphism between two naturally occurring Ω1

Mrs
G

–torsors on the

moduli space of regularly stable Mrs
G .

1. Introduction

Let C be a smooth complex projective curve of genus g, with g ≥ 2, and let G be a complex
semisimple affine algebraic group with a simple Lie algebra g. Denote by M0

G the moduli stack
of topologically trivial stable G-bundles on C. Fix a theta characteristic κ on C. We assume
that κ is even when dim g is odd. We prove that the following (see Corollary 4.2):

Theorem 1.1. There is a nonempty Zariski open substack Uκ of M0
G such that

H0(C, ad(EG)⊗ κ) = 0 = H1(C, ad(EG)⊗ κ)

for all EG ∈ Uκ.

Using the above result (see Corollary 4.2) the following is proved (see Theorem 5.2). This
theorem generalizes earlier results of [BH], [BeBi] for G = SL(n,C):

Theorem 1.2. Any principal G–bundle EG ∈ Uκ. has a natural algebraic connection.

Let M rs
G (⊂ M0,ss

G ) denote the locus of regularly stable (respectively, semi-stable) principal
G-bundles which are topologically trivial. We note that M rs

G is the smooth locus of M rs
G except

the only case where g = 2 and G = SL(2,C).

The tangent bundle T (Uκ
⋂
M rs
G ) of Uκ

⋂
M rs
G (the intersection is happening the moduli stack

of regularly stable bundles and then projected to the moduli space) decomposes into a direct
sum of vector bundles. This raises the natural question whether distributions on Uκ

⋂
M rs
G given

by these direct summands are integrable. (See Question 7.1.)

Now we focus our attention to two natural torsors on Uκ
⋂
M rs
G for its cotangent bundle

T ∗(Uκ
⋂
M rs
G ). The first T ∗(Uκ

⋂
M rs
G )–torsor is defined by the moduli space of connections CG.

More precisely, CG is the moduli space of pairs of the form (EG, D), where EG ∈ Uκ
⋂
M rs
G and

D is an algebraic connection on EG.
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Fix an ample line bundle L on Uκ
⋂
M rs
G . The second T ∗(Uκ

⋂
M rs
G )–torsor is given by

the sheaf of connections Conn(L) on L. It is shown that these two T ∗(Uκ
⋂
M rs
G )–torsors are

isomorphic (see Section 6). This was proved earlier in [BH] for G = SL(n,C).

We end the introduction by briefly commenting on the organization of the paper. We start by
recalling the notion of conformal embeddings of semisimple Lie algebras and the branching rule
of the affine Lie algebras arising from the adjoint representations. Conformal embedding are
special as they force finiteness of the branching rules of some infinite dimensional representation
of affine Kac-Moody algebras. Next we discuss functorial maps between spaces of conformal
blocks induced by conformal embeddings and use the identifications of conformal blocks with
global sections of line bundles on MG to prove Theorem 1.1. Theorem 5.2 is established in
Section 5. Section 6 shows the above mentioned isomorphism of torsors. In Section 7 the
decomposition of the tangent bundle is constructed and Question 7.1 is posed.

2. Conformal Embedding and adjoint representations

In this section, we first recall the notion of conformal embedding for affine Lie algebra and
consider a particular case of a conformal embedding given by the adjoint representation. We
also recall the branching rule for this case.

2.1. Conformal Embedding. Let g be a simple finite dimensional Lie algebra over C. Consider
the corresponding untwisted affine Lie algebra

ĝ := g⊗ C((ξ))⊕ Cc,
where c is a central element. Fix a Cartan subalgebra of g and also a Borel subalgebra containing
the Cartan subalgebra. Let ( , ) be the normalized Killing form on g such that (θ, θ) = 2,
where θ is the highest root of g, and P+ denotes the set of dominant integral weights. For any
positive integer `, consider the set

P`(g) := {λ ∈ P+ | (λ, θ) ≤ `} ( P+. (2.1)

The set P`(g) parameterizes irreducible, integrable representation of the Lie algebra ĝ. Let
λ ∈ P`(g); then the corresponding integrable representation will be denoted by Hλ,`(g). We
will often drop ` and g from the notation of integrable highest weight modules when the context
is evident. They satisfy the following properties:

• Hλ is graded.
• The finite dimensional g module Vλ is contained in Hλ as the degree zero part.
• The scalar c acts on Hλ as multiplication by the integer `.

Now consider a orthonormal basis {J1, · · · , Jdim g} of the Lie algebra g. The Sugawara
construction

Lg
n,` :=

1

2(`+ h∨(g))

∑
m∈Z

dim g∑
a=1

◦
◦J

a(m)Ja(n−m)◦◦

gives an action of the Virasoro algebra on Hλ at level `. Here h∨(g) denotes the dual Coxeter
number of g and X(m) := X ⊗ ξm for any X ∈ g. We recall the definition of conformal
embedding from Kac-Wakimoto [KW, p. 210, Section 4.2].

Definition 2.1. An embedding ϕ : g1 −→ g2 of simple Lie algebras is conformal if the following
equality holds

dϕ dim g1

dϕ + h∨(g1)
=

dim g2

1 + h∨(g2)
, (2.2)

where dϕ is the ratio of the normalized Killing form of the embedding ϕ which is also known as
the Dynkin index.
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A key feature of conformal embedding is the equality of Virasoro operators Lg1

n,dϕ
= Lg2

n,1

as operators on level one integrable representation of ĝ2 under the obvious restriction via ϕ
(see [KW, p. 201, Corollary 3.2.1–3.2.2]). Conformal embedding of semi-simple Lie algebras
into simple Lie algebras has been classified by Schellekens–Warner [SW] and independently by
Bais–Bouwknegt [BaBo]

2.2. The adjoint representation. Let g be a simple Lie algebra. Consider the adjoint repre-
sentation

adg : g ↪→ so(g). (2.3)

We will drop in the subscript g in the notation of adjoint representation when there is no scope
for any confusion. The Dynkin index of the embedding ad is just the dual Coxeter number
h∨(g) and it is easy to check that ad satisfied the identity in (2.2). Hence the embedding ad is
conformal.

Observe that the Dynkin index of the natural embedding of so(g) −→ sl(g) is of index two
and the embedding g −→ sl(g) is not conformal since it factors through so(g). Moreover, if G is
any connected Lie group with Lie algebra g, by definition of the adjoint representation the center
Z(G) ⊂ G maps to the identity element in SLdim g. However the natural map Spindim g −→
SLdim g factors through SOdim g, hence it is not necessarily true that the center of the simply

connected group G̃ maps to identity element under the natural lifting Ãd : G̃ −→ Spindim g of

the adjoint representation. However the image of Z(G̃) under the map Ãd is contained in the
following kernel µ2:

1 −→ µ2 −→ Spindim g −→ SOdim g −→ 1. (2.4)

The embedding ad in (2.3) gives an embedding of the corresponding untwisted Lie algebra

âd : ĝ −→ ŝo(g)

X ⊗ f 7−→ ad(X)⊗ f and c 7−→ h∨(g)c.

Let us briefly recall that an element of the center Z(G̃) of the simply connected group can be
identified with the subgroup of diagram automorphisms of the affine Dynkin diagram of ĝ. This
induces a bijection of the set P`(g) of level ` weights of g.

The non-trivial central element σ ∈ µ2 acts on the level one weights of the affine Lie algebra
ŝo(g) by interchanging the zero-th fundamental weight Λ0 with the first fundamental weight Λ1.
Thus we have the following elementary fact:

Proposition 2.2. The highest weight integrable moduli Hω0,dad
(g) appears with multiplicity one

in the branching of the level one module HΛ0,1(so(g)). Let Σ be a non-trivial element in Z(G̃),

and let Ãd(Σ) ∈ µ2 be its image under the adjoint representation. Then HΣ∗ω0,dad
(g) appears

with multiplicity one in the branching of H
Ãd(Σ)•Λ0,1

(so(g)). Here ∗ (respectively, •) denotes the

action of the center on level dad (respectively, 1) weights arising from diagram automorphisms.

We refer the reader to Kac–Wakimoto [KW, p. 214, Eq. 4.2.13] for a complete description of
the branching rule for this conformal embedding.

3. Conformal blocks and adjoint representation

In this section, we first recall the notion of conformal blocks and then analyze the func-
toriality of conformal blocks under the adjoint representation. We use the identification be-
tween conformal blocks and the space of non-abelian G theta functions, i.e global section
of natural line bundles on MG to study the image of MG under the adjoint representation
Ad :MG −→MSO(dim g).



4 I. BISWAS AND S. MUKHOPADHYAY

3.1. Conformal blocks. Let π : C −→ B be a family of stable n-pointed curves satisfying
the following conditions:

• There are disjoint sections si : B −→ C , 1 ≤ i ≤ n, of the family π, marking smooth
points in the fiber Cb.
• C \ tni=1 si(B) is affine.

• There are isomorphisms ÔC /si(B)
∼= OB[[ξi]], where ξ1, · · · ξn are formal parameters.

We will denote the above family along with a choice of formal parameters by X. Let S :=
tnj=1si(B).

For any choice of n-tuple ~λ = (λ1, · · · , λn) of level ` weights of g, one can associate the
quasi-coherent sheaf of covacua

V~λ(X, g, `) :=

(
H~λ ⊗C OB

)
g⊗ π∗(OC (∗S)) ·

(
H~λ ⊗C OB

) ,
where H~λ := Hλ1,`(g)⊗· · ·⊗Hλn,`(g). Here the action of g⊗π∗(OC (∗S)) on H~λ⊗OB is given by
Laurent expansion using the formal parameters ξj . This sheaf of covacua was first constructed
in the work of Tsuchiya–Ueno–Yamada [TUY]. The dual of the sheaf of covacua is known as

the sheaf of conformal blocks and it is denoted by V†~λ(X, g, `).

We will recall some of it basic properties; the reader is referred to [TUY] for a proof.

Theorem 3.1. The sheaf of covacua enjoys the following properties:

• (Local freeness): The sheaf V~λ(X, g, `) is locally free of finite rank. Its rank is given by
the Verlinde formula.
• If π : C −→ B is a family of smooth curves, then the sheaf V~λ(X, g, `) carries a flat

projective connection constructed out of the Segal–Sugawara action of Lg
n,` on integrable

modules.
• (Propagation of vacua): Let s be a new section for a family of nodal curve π : C −→ S

disjoint from s1, · · · , sn, and let X′ denote the new data. Then there is an isomorphism

V~λ(X, g, `) ∼= V~λ,Λ0
(X′, g, `),

where Λ0 is the vacuum representation at level `.
• (Factorization theorem): Let π : C −→ S be a family of nodal curves and

s1, . . . , sn, q1, q2

are disjoint sections of it marking smooth points, and let D −→ S be the family obtained
by gluing C along q1 and q2. Then there is an isomorphism⊕

ιµ : V~λ(X, g, `) ∼=
⊕

µ∈P`(g)

V~λ,µ,µ†(X
′, g, `),

where X (respectively, X′) is associated to the family D −→ S (respectively, C −→ S).

3.2. Functoriality for conformal blocks. Let ϕ : g1 −→ g be a homomorphism of simple
Lie algebras; this induces a homomorphism ϕ : ĝ1 −→ ĝ between the affine Lie algebras. Let
~Λ := (Λ1, · · · , Λn) be a choice of level one weights of ĝ, and let ~λ := (λ1, · · · , λn) be a choice
of level dϕ weights of g1 such that

Hλi,dϕ(g1) ↪→ HΛi,1(g).

By functoriality, we get a homomorphism of the corresponding conformal blocks

ϕ : V~λ(X, g1, dϕ) −→ V~Λ(X, g, 1), (3.1)



TORSORS ON MODULI SPACES OF PRINCIPAL G-BUNDLES 5

where X is the data associated to family of n-pointed nodal curves with a choice of n-formal
parameters. Moreover we have the following:

Proposition 3.2. ([Be1, Proposition 5.8]) Assume that the embedding ϕ is conformal (Defini-
tion 2.1), and the family X is smooth. Then the functorial map ϕ : V~λ(X, g1, dϕ) −→ V~Λ(X, g, 1)
in (3.1) is flat with respect to the projective connections. In particular, the rank of ϕ is constant.

3.3. The case of adjoint representations. We now restrict ourselves to the special case
of the adjoint representation. Using the branching rule in Proposition 2.2 together with the
functoriality described above, we get a linear map

ad : VΣ∗ω0(C, g, dad) −→ V
Ãd(Σ)•Λ0

(C, so(g), 1), (3.2)

where C is a smooth one-pointed curve of genus g. The following question is natural:

Question 3.3. Is the map ad in (3.2) non-zero?

3.3.1. The case where Σ is trivial. Henceforth, we will restrict to the case where Σ is trivial.
Therefore, (3.2) becomes

ad : Vω0(C, g, dad) −→ VΛ0(C, so(g), 1). (3.3)

Theorem 3.4. The map ad in (3.3) is non-zero for any smooth curve C of genus g.

Proof. We first note that it is enough to find a curve such that map is non-zero for that curve.
Indeed, this follows from the fact that the embedding ad is conformal and the induced map (also
denoted by ad) is flat with respect to the projective connections and hence the induced map
preserves rank (see Proposition 3.2).

We proceed by induction on the genus of the curve. In the genus zero case Vω0(P1, g, dad) ∼=
(Vω0)g, where Vω0

∼= C is the trivial representation of g. Similarly VΛ0(P1, so(g), 1) ∼= C. Since
the trivial so(g)-module restricts to the trivial g module, the result follows in genus zero by
taking invariants of the trivial representation.

Now consider a family X over C[[t]] such that for q 6= 0, the fibers are all one pointed smooth
curve of genus g and X0 is a nodal curve with exactly one node. By functoriality, we get a map
of sheaves over C[[t]]:

ad : V†Λ0
(X , so(g), 1) −→ V†ω0

(X , g, dad).

We have the following diagram:⊕
Λ∈P1(g) V

†
Λ0,Λ,Λ†

(X̃, so(g), 1) V†Λ0
(X0, so(g), 1)

V†ω0(X0, g, dad)
⊕

Λ∈Pdad
(g) V

†
ω0,µ,µ†

(X̃, g, dad).

ιΛ

adt=0

ι−1
µ

(3.4)
Let αΛ,µ be the following map obtained by restricting the composition of maps in (3.4):

αΛ,µ : V†Λ0,Λ,Λ
(X̃, so(g), 1) −→ V†

ω0,µ,µ†
(X̃, g, dad). (3.5)

Observe that the genus of X̃ is g − 1, and taking Λ = Λ0 and µ = ω0 it follows from [BP,
Proposition 4.4] (see also [Mu1, Proposition 4.3] and [Mu2]) that the above map αΛ0,µ is zero if
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µ 6= ω0. Now we have the following commutative diagram for X̃:

V†Λ0,Λ0,Λ0
(X̃, so(g), 1) V†ω0,ω0,ω0(X̃, g, dad)

V†Λ0
(X̃, so(g), 1) V†ω0(X̃, g, dad)

αΛ0,ω0

∼= ∼=

ad

(3.6)

The vertical isomorphisms in (3.6) are given by the propagation of vacua. By the induction
hypothesis the map αΛ0,ω0 is non-zero. This applied to (3.4) yields that

adt=0 : V†Λ0
(X0, so(g), 1) −→ V†ω0

(X0, g, dad)

is non-zero. Consequently, the proof is completed by using semi-continuity. �

4. Uniformization and Conformal blocks

In this section, we recall the uniformization theorems connecting conformal blocks with global
sections of line bundles on moduli stacks. We then have a reinterpretation of Theorem 3.4.

4.1. Non-abelian theta functions and functoriality. Let G be a connected semi-simple
group such that the Lie algebra g is simple. Let MG be the moduli stack of principal G–
bundles on a smooth projective curve C. The connected components of the moduli stack MG

are parametrized by the fundamental group π1(G). We denote by Mδ
G the component of MG

corresponding to δ ∈ π1(G). We will mostly be interested the neutral component M0
G of the

moduli stack corresponding to the trivial element in the fundamental group (it is the connected

component ofMG containing the trivial principal G–bundle). Denote by G̃ the simply connected

cover of G. The natural map $1 : G̃ −→ G induces a map

πG : M
G̃
−→ M0

G (4.1)

The kernel of the above map $1 will be denoted by A which is just the fundamental group of
G. It is known that A is a product of finite cyclic groups; denote JA := H1(C, A). Then by
Beauville-Laszlo-Sorger [BLS, Proposition 1.5], we have a long exact sequence

0 −→ JA −→ Pic(Mδ
G) −→ Pic(Mδ

G̃
) −→ 0.

It is known that the Picard group of the moduli stackM
G̃

is infinitely cyclic [BLS, DN, KNR].

We denote the ample generator of Pic(Mδ
G̃

) by L
G̃

. The space of global sections H0(M
G̃
, L ⊗`

G̃
)

is known as the space of non-abelian theta functions.

Given any nonzero homomorphisms ϕ′ : g1 −→ g of simple Lie algebras, consider the

corresponding homomorphism ϕ′′ : G̃1 −→ G̃ between the associated simply connected groups;
note that ϕ′ is necessarily injective. This ϕ′′ induces a map of the corresponding moduli stacks
via the associated construction

ϕ : M
G̃1
−→ M

G̃
. (4.2)

It follows from [KN, p. 59, Section 5] that ϕ∗L
G̃
∼= L

⊗dϕ
G̃1

for the map in (4.2), where dϕ is the

Dynkin index of the embedding ϕ′′. This isomorphism induces a map of the global sections

ϕ∗ : H0(M
G̃
, L

G̃
) −→ H0(M

G̃1
, L

⊗dϕ
G̃1

) (4.3)

Now via the uniformization theorems of Beauville-Laszlo [BL], Kumar-Narasimhan-Ramanathan
[KNR], Faltings [Fa], Laszlo-Sorger [LS], we get an isomorphism

H0(M
G̃
, L ⊗`

G̃
) ∼= V†Λ0

(X, g, `), (4.4)
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where X is the data of a smooth curve C with one marked point along with a choice of a formal
parameter at the marked point and Λ0 is the vacuum representation at level `. The following
diagram is commutative:

H0(M
G̃
, L

G̃
) H0(M

G̃1
, L

⊗dϕ
G̃1

)

V†Λ0
(X, g, 1) V†Λ0

(X, g1, dϕ)

ϕ

∼= ∼=

ϕ

(4.5)

4.2. The adjoint representation. Recall that a square root of the canonical line bundle KC

of C is called a theta characteristic on C. The set of theta characteristics of C is a torsor over
the group of two torsion points J2(C) of the Jacobian. Now identifying J2(C) with the dual

Ĵ2(C) via the Weil pairing, we see that the space of theta characteristics is a torsor for Ĵ2(C).

For every theta characteristic κ of C, Laszlo-Sorger [LS, p. 517, Section 7.8] constructed a
natural square-root Pκ of the determinant of cohomology on MSOr — which is known as the
Pfaffian line bundle — along with a canonical Pfaffian section sκ. The divisor corresponding to
the Pfaffian section consists of the following associated bundles:

Ξκ := {E ∈ MSOr

∣∣ h0(E ⊗ κ) 6= 0} ⊆ MSOr . (4.6)

Let us recall the following results [Be2] (for M0
SOr

) and [MW, Proposition 3.5] (for M−SOr)
about these Pfaffian sections sκ being non-zero. Consider the decomposition

MSOr = M0
SOr tM

−
SOr

,

where M−SOr parametrizes bundles with non-trivial Stiefel-Whitney class. Then, we get:

(1) If r is even and κ is any theta characteristic, then H0(M0
SOr

, Pκ) is one dimensional.

(2) If r is even and κ is any theta characteristic, then H0(M−SOr , Pκ) is zero dimensional.

(3) If r is odd, then H0(M0
SOr

, Pκ) is one dimensional if and only if κ is even.

(4) If r is odd, then H0(M−SOr , Pκ) is one dimensional if and only if κ is odd.

(5) Each Pfaffian section sκ is projectively flat with respect to the Hitchin connection.
(6) The Pfaffian sections {sκ} are linearly independent and hence

• if r is even, then dimCH
0(MSpinr , LSpinr) = 22g, and

• if r is odd, then dimCH
0(MSpinr , LSpinr) = 2g−1(2g + 1).

A choice of a theta characteristic induces an action of J2(C) on H0(MSpinr , LSpinr) and conse-
quently there is a decomposition (see [Be2, p. 2], [MW, p. 14, Proposition 3.7])

H0(MSpinr , LSpinr) =
⊕

χ∈Ĵ2(C)

H0(M0
SOr , Pκ ⊗ Lχ), (4.7)

where Lχ is the line bundle associated to the character χ. Moreover by [BLS, Proposition 5.2],
[Be2, Proposition 2.2], [MW, Proposition 3.9] we have Pκ⊗Lχ ∼= Pκ′ , where κ′ is just the image

of κ under the action of χ ∈ Ĵ2(C).

The adjoint representation of any connected semisimple group G gives a homomorphism

AdG : G −→ SOdim g
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whose kernel is finite, and we have the following commutative diagram

G̃ Spindim g

G SOdim g,

Ãd

πG Ad
G̃ π

AdG

(4.8)

where G̃ is the simply connected cover of G. In particular, when G = G̃, we have the following
commutative diagram:

MSpindim g

M
G̃

M0
SOdim g

M0
G

π

πG

Ad
G̃

Ãd

AdG

(4.9)

The following is a consequence of Theorem 3.4.

Corollary 4.1. If dim g is odd (respectively, even), then a choice of an even (respectively, any)
theta characteristic κ gives a non-zero map

Ad
G̃

: H0(MSOdim g
, Pκ) −→ H0(M

G̃
, L dad

G̃
),

where dad is the Dynkin index of the adjoint representation of g ↪→ so(g). Moreover, this map
factors through H0(M0

G, Pχ), where Pχ is a line bundle on M0
G which is pulled back from Pκ;

in other words, there is a commutative diagram

H0(MSOdim g
, Pκ) H0(M

G̃
, L dad

G̃
)

H0(M0
G, Pχ).

Ad
G̃

We note an immediate consequence of Corollary 4.1.

Corollary 4.2. If dim g is odd (respectively, even), let κ be an even (respectively, any) theta
characteristic. Then the image of the morphism

M0
G −→ MSOdim g

,

given by AdG in (4.8), is not contained in the divisor Ξκ (see (4.6)).

Proof. Under the above assumption we know that dimH0(MSOdim g
, Pκ) = 1 [Be2, MW], and

the divisor for any nonzero section of Pκ is Ξκ. Therefore, if the image of the above morphism
M0

G −→ MSOdim g
is contained in Ξκ, then the homomorphism

H0(MSOdim g
, Pκ) −→ H0(M0

G, Pχ)

in the statement of Corollary 4.1 becomes the zero map. But Corollary 4.1 says that this map
is nonzero. In view of this contradiction we conclude that the image of the morphism

M0
G −→ MSOdim g

is not contained in the divisor Ξκ. �
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5. A natural connection

The main goal of this section is consider the non-empty Zariski open substack in M0
G given

by Corollary 4.2 as the set of algebraic principal G–bundles on C such that Ad(EG) is not in
the divisor Ξκ, and show that every element of this set admits a natural algebraic connection.

Let EG be an algebraic principal G–bundle on C. An algebraic connection on EG produces an
algebraic connection on any algebraic fiber bundle associated to EG, in particular, an algebraic
connection is induced on the adjoint vector bundle ad(EG). Let C(EG) and C(ad(EG)) be the
spaces of algebraic connections on EG and ad(EG) respectively. Let

Φ0 : C(EG) −→ C(ad(EG))

be the above map.

Lemma 5.1. There is a natural map

Φ : C(ad(EG)) −→ C(EG)

such that Φ ◦ Φ0 = IdC(EG).

Proof. Consider the adjoint homomorphism g ↪→ g ⊗ g∗ = gl(g) . We have the symmetric
bilinear form on gl(g) defined by A⊗B 7−→ trace(AB). Its restriction to g is a constant scalar
multiple of the Killing form of g. Consider the corresponding orthogonal decomposition

gl(g) = g⊕ g⊥.

Let

P : gl(g) −→ g (5.1)

be the projection constructed using the above decomposition of gl(g). The adjoint action of G
on g produces an action of G on g⊗ g∗ = gl(g). The projection P in (5.1) is a homomorphism
of G–modules.

Let EGL(g) be the principal GL(g)–bundle C corresponding to the vector bundle ad(EG). We

note that EGL(g) is the quotient of EG×GL(g) where (z, B) is identified with (zg, Ad(g−1)BAd(g))
for all g ∈ G. We have a natural map

Ψ : EG −→ EGL(g)

that sends any z ∈ EG to the equivalence class of (z, Idg).

Let ∇ be an algebraic connection on ad(EG). So ∇ is an algebraic 1–form on EGL(g), with
values in gl(g), satisfying certain conditions. Therefore, P ◦(Ψ∗∇) is a g–valued algebraic 1–form
on EG, where P is the projection in (5.1). Using the fact that P in (5.1) is a homomorphism of
G–modules it is straightforward to check that P ◦ (Ψ∗∇) satisfies the two conditions needed to
define a connection on EG. It is also evident that the map

Φ : C(ad(EG)) −→ C(EG)

constructed this way satisfies the condition Φ ◦ Φ0 = IdC(EG). �

Take a theta characteristic κ on C. We assume that if dim g is odd, then κ is an even theta
characteristic. There is no condition on κ when dim g is even.

Consider the map

F : M0
G −→ MSOdim g

in Corollary 4.2 that sends any EG to ad(EG) equipped with the Killing form on the fibers.
Take any principal G–bundle EG ∈ M0

G such that

F (EG) /∈ Ξκ (5.2)
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(see (4.6)); from Corollary 4.2 we know that the locus, in M0
G, of all such EG is a nonempty

Zariski open substack. From (5.2) we know that

H0(C, ad(EG)⊗ κ) = 0 = H0(C, ad(EG)⊗ κ), (5.3)

which implies that ad(EG) is semistable. This in turn implies that the principal G-bundle EG
is semistable.

Since H0(C, ad(EG) ⊗ κ) = 0 = H1(C, ad(EG) ⊗ κ), from [BeBi], [BH] we know that
ad(EG) has a canonical algebraic connection. We will now briefly recall the construction of this
connection on ad(EG).

For i = 1, 2, let pi : C × C −→ C be the natural projections. Let

∆ := {(x, x) ∈ C × C
∣∣x ∈ C} ⊂ C × C

be the reduced diagonal divisor. We will identify ∆ with C using the map x 7−→ (x, x),
where x ∈ C. The restriction of (p∗1κ) ⊗ (p∗2κ) to ∆ is evidently identified with KC . Also,
the restriction of OC×C(∆) to ∆ is identified with the tangent bundle TC using the Poincaré
adjunction formula (see [GH, p. 146]). Therefore, we have the following short exact sequence of
coherent sheaves on C × C:

0 (p∗1(ad(EG)⊗ κ)⊗ (p∗2(ad(EG))))⊗ κ)) (p∗1(ad(EG)⊗ κ))⊗ (p∗2(ad(EG)⊗ κ))⊗OC×C(∆)

ad(EG)⊗2 0

where ad(EG)⊗2 is supported on ∆ = C. Let

0 H0(C × C, (p∗1(ad(EG)⊗ κ))⊗ (p∗2(ad(EG)⊗ κ)))

H0(C × C, (p∗1(ad(EG)⊗ κ))⊗ (p∗2(ad(EG)⊗ κ))⊗OC×C(∆)) H0(C, ad(EG)⊗2)

H1(C × C, (p∗1(ad(EG)⊗ κ))⊗ (p∗2(ad(EG)⊗ κ)))

(5.4)

Since

Hm(C × C, (p∗1(ad(EG)⊗ κ))⊗ (p∗2(ad(EG)⊗ κ)))

=
m⊕
i=0

H i(C, ad(EG)⊗ κ)⊗Hm−i(C, ad(EG)⊗ κ)

from (5.3) we conclude that

Hm(C × C, (p∗1(ad(EG)⊗ κ))⊗ (p∗2(ad(EG)⊗ κ))) = 0

for all m ≥ 0. Consequently, from (5.4) it is deduced that

H0(C × C, (p∗1(ad(EG)⊗ κ))⊗ (p∗2(ad(EG)⊗ κ))⊗OC×C(∆)) = H0(C, ad(EG)⊗2). (5.5)

The isomorphism

ad(EG)
∼−→ ad(EG)∗ (5.6)

given by the fiberwise Killing form on ad(EG) produces a section

γ ∈ H0(C, ad(EG)⊗2). (5.7)
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From the construction of γ it is evident that the composition of homomorphisms

ad(EG)
∼−→ ad(EG)∗

γ−→ ad(EG) (5.8)

coincides with the identity map of ad(EG), where the first isomorphism is the one in (5.6)

Let

Γ̃ ∈ H0(C × C, (p∗1(ad(EG)⊗ κ))⊗ (p∗2(ad(EG)⊗ κ))⊗OC×C(∆)) (5.9)

be the section taken to γ (see (5.7)) by the isomorphism in (5.5). On the other hand, the
restriction of (p∗1 ⊗ κ) ⊗ (p∗2 ⊗ κ) ⊗ OC×C(∆) to the subscheme 2∆ ⊂ C × C has a canonical

trivialization [BR, p. 688, Theorem 2.2]. Restricting the section Γ̃ in (5.9) to 2∆, and invoking
the trivialization of the restriction of (p∗1⊗κ)⊗ (p∗2⊗κ)⊗OC×C(∆) to 2∆ ⊂ C ×C, we obtain
a section

Γ ∈ H0
(
2∆, ((p∗1ad(EG))⊗ (p∗2ad(EG)))

∣∣
2∆

)
. (5.10)

The restriction of Γ to ∆ ⊂ 2∆ evidently coincides with γ (see (5.7)) using the identification
of ∆ with C. Since the composition of homomorphisms in (5.8) coincides with the identity map
of ad(EG), it follows that Γ defines an algebraic connection on the vector bundle ad(EG).

Now using lemma 5.1, the above algebraic connection on ad(EG) produces an algebraic con-
nection on the principal G–bundle EG. Therefore, we have the following:

Theorem 5.2. Take a theta characteristic κ on C. We assume that if dim g is odd, then κ is
an even theta characteristic. Take any principal G–bundle EG ∈ M0

G that lies in the nonempty
Zariski open subset ofM0

G whose image under the map F in Corollary 4.2 lies in the complement
of the divisor Ξκ ⊂ MSOdim g

. Then EG has a natural algebraic connection.

6. Isomorphism of torsors

Let Y be a smooth complex variety. A torsor on Y for the cotangent bundle ψ : Ω1
Y −→ Y

is an algebraic fiber bundle p : V −→ Y together with an isomorphism

Φ : V ×Y Ω1
Y −→ V ×Y V

such that

(1) ψ ◦ p2 = p ◦ Φ, where p2 : V ×Y Ω1
Y −→ Ω1

Y is the natural projection, and
(2) Ψ defines an action of the fibers of Ω1

Y on the fibers of V.

Let M rs
G denote the moduli space of regularly stable topologically trivial principal G-bundles

on C. Recall that the a G bundle is regularly stable if it is stable and it’s automorphism group is
the center Z(G) of the group G. It is known that M rs

G is the smooth locus [BiHo] of the moduli
space of semistable topologically trivial principal G-bundles on C except in the only one case
where G = SL(2,C) and genus(C) = 2.

On M rs
G , there are two natural torsors for the cotangent bundle Ω1

Mrs
G

which we will now

describe. Note that any EG ∈ M rs
G admits an algebraic connection [Ra], [AB].

The first torsor. Let CG denotes the moduli space G-connections such that the underlying
principal bundle is in M rs

G . In other words, CG parametrizes pairs of the (EG, D), where EG ∈
M rs
G and D is an algebraic connection on EG. Let

Φ : CG −→ M rs
G

be the natural projection that sends any (EG, D) to EG. If a principal G-bundle FG admits
an algebraic connection, then the space of all algebraic connections on FG is an affine space for
H0(C, ad(EG)⊗KC). Therefore, for the projection Φ, the moduli space CG is a torsor over M rs

G

for the cotangent bundle Ω1
Mrs
G

.
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The second torsor. To describe the second torsor over M rs
G for the cotangent bundle Ω1

Mrs
G

,

first recall that

Pic(M rs
G ) = Z⊕ Tor, (6.1)

where Tor is a finite abelian group [BLS, p. 184, Theorem (a)]. Any line bundle ξ of finite order
has a canonical integrable algebraic connection. In fact, if ξ⊗n is the trivial line bundle, then
there is a unique connection on ξ which induces the trivial connection on the trivial line bundle

Take a line bundle L on M rs
G . Let Conn(L) denote the sheaf of algebraic connections on L,

meaning the space of sections of Conn(L) over any open subset U ⊂ M rs
G is the space of all

algebraic connections on L
∣∣
U

. To describe Conn(L) explicitly, let

0 −→ OMrs
G
−→ At(L) −→ TM rs

G −→ 0

be the Atiyah exact sequence for L [At]. Tensoring it with Ω1
Mrs
G

we get the exact sequence

0 −→ Ω1
Mrs
G
−→ At(L)⊗ Ω1

Mrs
G

Ψ−→ (TM rs
G )⊗ Ω1

Mrs
G

= End(TM rs
G ) −→ 0. (6.2)

Let Ψ−1(IdTMrs
G

) ⊂ At(L)⊗Ω1
Mrs
G

be the inverse image, under the map Ψ in (6.2), of the image

of the section M rs
G −→ End(TM rs

G ) given by the identity map of TM rs
G . From (6.2) it follows

immediately that Ψ−1(IdTMrs
G

) is a torsor over TM rs
G for Ω1

Mrs
G

.

This Ω1
Mrs
G

-torsor Ψ−1(IdTMrs
G

) is identified with the Ω1
Mrs
G

-torsor Conn(L).

From the above observation that any line bundle ξ of finite order has a canonical integrable
algebraic connection it follows immediately that

Conn(L) = Conn(L⊗ ξ).

Now let L be such that c1(L) 6= 0 (equivalently, L is not of finite order because of (6.1)). We
have the following theorem, that was originally shown in [BH] for the group G = SL(r,C).

Theorem 6.1. The above two Ω1
Mrs
G

-torsors CG and Conn(L) over M rs
G are isomorphic up to a

constant rescaling of the action. This means that there is an algebraic isomorphic

I : Conn(L) −→ CG (6.3)

of fiber bundles over M rs
G , and a nonzero number c ∈ R, such that

I(z + v) = I(z) + cv

for all z ∈ Conn(L)y, y ∈ M rs
G , and v ∈ (Ω1

Mrs
G

)y.

Proof. In view of Corollary 4.2 and Theorem 5.2, the proof of [BH] works for any semisimple G
whose Lie algebra is simple. Therefore, the above result of [BH] holds for any such G. However,
from the above result on SL(r,C) it is possible to deduce the same result for all semistable G
whose Lie algebra g is simple; this will be described below.

Take any semisimple G whose Lie algebra g is simple. The dimension of g is denoted by r.
Let

P : M rs
G −→ MSL(r,C) (6.4)

be the finite morphism that sends any EG to the vector bundle ad(EG). Let

P ∗I : P ∗Conn(L) −→ P ∗CSL(r,C) (6.5)

be the pullback of the isomorphism in (6.3) by P in (6.4). Note that both P ∗Conn(L) and
P ∗CSL(r,C) are torsors over M rs

G for the pulled back vector bundle P ∗Ω1
MSL(r,C)

.

Next we will describe a subbundle of P ∗Ω1
MSL(r,C)

.
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Consider the injective homomorphism

g −→ sl(g) = sl(r,C)

given by the adjoint action of G on g. The image of g in sl(g) will also be denoted by g. The
Killing form on sl(g) restricts to a nonzero constant multiple of the Killing form on g. Let

sl(g) = g⊕ g⊥ (6.6)

be the orthogonal decomposition with respect to the Killing form on sl(g).

The decomposition of sl(g) in (6.6) is a decomposition of G-modules. Therefore, for any
principal G-bundle EG on C, the decomposition in (6.6) produces a decomposition

End0(ad(EG)) = ad(EG)⊕ V(EG), (6.7)

where End0(ad(EG)) ⊂ End(ad(EG)) is the subbundle of co-rank one defined by the endomor-
phisms of trace zero and

V(EG) := EG(g⊥)

is the vector bundle on C associated to EG for the G-module g⊥ in (6.6). Let

H0(C, End0(ad(EG))⊗KC) = H0(C, ad(EG)⊗KC)⊕H0(C, V(EG)⊗KC) (6.8)

be the decomposition corresponding to the decomposition in (6.7). Note that for any EG ∈ M rs
G ,

the fiber of P ∗ΩMSL(r,C)
(see (6.4)) over EG is H0(C, End0(ad(EG))⊗KC).

Let V denote the vector bundle over M rs
G whose fiber over any EG ∈ M rs

G is H0(C, V(EG)⊗
KC). From (6.8) we conclude that V is a direct summand of P ∗ΩMSL(r,C)

.

Consider the isomorphism P ∗I in (6.5) between the two P ∗Ω1
MSL(r,C)

-torsors P ∗Conn(L) and

P ∗CSL(r,C). Quotienting both P ∗Ω1
MSL(r,C)

-torsors P ∗Conn(L) and P ∗CSL(r,C) by the subbundle

V ⊂ P ∗Ω1
MSL(r,C)

we obtain a generalization of the isomorphism I in (6.3) for any semisimple G

whose Lie algebra is simple. �

7. A decomposition of the tangent bundle

Take a theta characteristic κ on C. We assume that if dim g is odd, then κ is an even theta
characteristic. We further assume that κ has a section (there is always such a κ). Take any

m∑
i=1

µi.ci ∈
∣∣κ∣∣; (7.1)

so the line bundle OC(
∑m

i=1 µi.ci), where {ci}mi=1 are distinct points of C and µi are positive
integers, is holomorphically isomorphic to κ. Note that

m∑
i=1

µi = g − 1,

where g = genus(C). Let

U ⊂ M rs
G (7.2)

denote the nonempty Zariski open subset that parametrizes all EG ∈ M rs
G such that

H0(C, ad(EG)⊗ κ) = 0 = H0(C, ad(EG)⊗ κ); (7.3)

from Corollary 4.2 we know that U is nonempty. (Since χ(ad(EG) ⊗ κ) = 0, there is only one
condition in (7.3).)
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For any EG ∈ U (see (7.2)), the vector bundle ad(EG) ⊗ OC(
∑m

i=1 µi.ci) will be denoted

by ãd(EG) for notational convenience. Consider the natural short exact sequence of coherent
sheaves on C

0 −→ ad(EG) −→ ãd(EG) −→
m∑
i=1

ãd(EG)
∣∣
µici
−→ 0. (7.4)

Let

H0(C, ãd(EG))
∑m

i=1 ãd(EG)
∣∣
µici

H1(C, ad(EG))

H1(C, ãd(EG))

Φ

(7.5)

be the long exact sequence of cohomologies associated to the short exact sequence of sheaves in
(7.4). From (7.3) it follows immediately that the homomorphism Φ in (7.5) is an isomorphism.
Note that H1(C, ad(EG)) is the fiber of the tangent bundle TM rs

G at the point EG ∈ M rs
G .

For 1 ≤ i ≤ m, let

Wi −→ U (7.6)

be the vector bundle whose fiber over any EG ∈ M rs
G is ãd(EG)

∣∣
µici

. Note that there is a unique

universal adjoint bundle

A −→ C ×M rs
G . (7.7)

It should be clarified that there may not be a universal principal G-bundle over C ×M rs
G . The

vector bundle Wi in (7.6) is the restriction of A⊗ p∗1OC(
∑m

i=1 µi.ci) to (µici)× U ⊂ C ×M rs
G ,

where p1 : C ×M rs
G −→ C is the natural projection and A is the vector bundle in (7.7). Since

Φ in (7.5) is an isomorphism, we have the following decomposition:

TU =

m⊕
i=1

Wi. (7.8)

We have the following natural question:

Question 7.1. Take any 1 ≤ i ≤ m. Is the holomorphic distribution

Wi ⊂ TU
on U (in (7.8)) integrable?

Next assume that all mi = 1 for all 1 ≤ i ≤ m (see (7.1)). So we have m = g − 1.

Note that the Poincaré adjunction formula says that the fiber of OC(c1 + · · ·+ cg−1) over any
ci, 1 ≤ i ≤ g − 1, is identified with the fiber TciC of the tangent bundle over the point ci (see
[GH, p. 146]). For 1 ≤ i ≤ g − 1, let

Li := U × (TciC)⊗2 −→ U (7.9)

be the trivializable line bundle over U with fiber (TciC)⊗2. The Killing form on g produces a
fiberwise nondegenerate symmetric pairing

A⊗A −→ OC×Mrs
G
,

where A is the vector bundle in (7.7). Using it we have a homomorphism

ϕi : Wi ⊗Wi −→ Li, (7.10)

where Wi and Li are the vector bundles constructed in (7.6) and (7.9) respectively. The homo-
morphism ϕi in (7.10) is evidently symmetric and fiberwise nondegenerate. Now using (7.8) we
get a holomorphic symmetric fiberwise nondegenerate bilinear form on TU .
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