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Moduli space

Consider the smooth intersection of two quadrics Q1 and Q2

X2,2 ⊂ P5

This is a Fano three fold of Picard number one.

Reinterpretation as moduli space

• C will denote a smooth projective curve of genus g ≥ 2.

• L be a fixed line bundle of odd degree on C .

• MC (L) will denote the moduli space of stable rank two

bundles with determinant L.
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Properties

• For any L of odd degree, the moduli spaces MC (L)’s are

isomorphic. We drop the L in the notation.

• If C is hyperelliptic, then the moduli space has a more

concrete description (Narasimhan-Ramanan, Newstead

(g = 2), Desale-Ramanan).

MC = OGrq1(g − 1, 2g + 2) ∩ OGrq2(g − 1, 2g + 2).

• MC is smooth, Fano of dimension 3(g − 1). Moreover

(Drezet-Narasimhan)

Pic(MC ) = ZΘ.

The canonical class KMC
= −2[Θ], i.e. MC is of index two.
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Properties... continued

• Deformations of MC are controlled by deformations of C .

• The spaces H0(MC ,Θ
⊗`) are known as conformal blocks

and can be constructed as quotient of representations of

ŜL(C((t))). (Beauville-Laszlo, Faltings, Laszlo-Sorger,

Kumar-Narasimhan-Ramananathan)

• As C varies in Mg , the spaces H0(MC ,Θ
⊗`) form a vector

bundle (Tsuchiya-Ueno-Yamada).
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Pants

Figure 1: Pair of Pants

Figure 2: Trinion Graph 5 / 36



Pants decomposition
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Decomposition of Hodge diamond
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Theorem: Muñoz

The quantum multiplication ?0 by c1(MC ) on quantum

cohomology ring QH∗(MC ) has the following eigen-space

decomposition:

QH∗(MC ) =

g−1⊕
m=1−g

Hm,

• The eigen-values are

8(1−g), 8(2−g)
√
−1, 8(3−g), . . . , 8(g−3), 8(g−2)

√
−1, 8(g−1).

• Hm are isomorphic as vector spaces to H∗(Symg−1−|m| C ).

Remark: This decomposition is equivariant with respect to the

natural Sp(2g) action on both sides.
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Conjectural semi-orthogonal decomposition

Theorem: Bondal-Orlov

Let C be a smooth genus two curve, then

Db(MC ) = 〈Db(pt),Db(C ),Db(pt)〉

Conjecture I: Belmans-Galkin-M; Narasimhan

Let C be a smooth curve of genus g

Db(MC ) =〈Db(pt),Db(C ), · · · ,Db(Symg−2 C ),

Db (Symg-1C),

Db(Symg−2 C ), · · · ,Db(C ),Db(pt)〉.
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Class in K0(Var)

Theorem: Belmans-Galkin-M (K-S. Lee for Chow motives)

The following identity holds in K0(Var).

[MC ] = Lg−1[Symg−1 C ] +

g−2∑
i=0

(Li + L3g−3−2i )[Symi C ] + T ,

where L = [A1] and (1 + L)T = 0.

Corollary

The following identity holds in K0(dgCat).

[Db(MC )] = [Db(Symg−1 C )] +

g−2∑
i=0

2[Db(Symi C )] + T ′,

where 2T ′ = 0.
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More motivation/evidence

Theorem: Narasimhan-2015; Fonarev-Kuznetsov-2017

Db(MC ) = 〈Db(pt),Db(pt),Db(C ),A〉

Theorem: Belmans-Mukhopadhyay-2019

Db(MC (r)) = 〈Db(pt),Db(pt),Db(C ),Db(C ),B〉,

where MC (r) is the moduli space of rank r bundles with fixed

determinant of degree one.
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Mirror Symmetry for Fano X and LG-models (Y ,w)

B-side

• The bounded derived

category Db(X ) and semi

orthogonal decompositions.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Matrix factorization category

MF(Y ,w) and their

decomposition with respect

to the critical values of w .

A-side

• Fukaya-Siedel category

FS(Y ,w) of a

Landau-Ginzburg model.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Fukaya Category Fuk(X ),

quantum cohomology ring

QH∗(X ) and decomposition

with respect to c1(X )?0.

Decompositions: Eigen Values (c1(M)?0) = Critical Values (w).
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Question on quantum periods for X = MC

Let X0,k,m denote the Kontsevich moduli space of stable maps f

from a rational curve with k marked points and deg f ∗(−KX ) = m.

Definition

The m ≥ 2-th descendent Gromov Witten number

pm =

∫
X0,1,m

ψm−2 ev−1
1 ([pt]),

where ψ is the Psi class on X0,1,m and ev1 : X0,1,m → X .

Compute ∑
m≥0

pmt
m for X = MC ; p0 = 1, p1 = 0.
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Finding mirror potentials W

• (Hori-Vafa, Givental) If X is a smooth toric Fano or Fano

complete intersection in a toric variety, then

W : (C×)dimX → C, such that

1

m!
Coefficient of Constant Term(Wm) = pm.

• (Coates-Corti-Galkin-Kasprzyk) If X is a smooth Fano three

fold, then quantum periods are known.

• Many other results due to works of

Batryrev-Ciocan-Fontanine-Kim-van-Straten, Bondal-Galkin,

Coates, Przyalkowski,...
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Trinion Potential

W+ = xyz +
x

yz
+

y

xz
+

z

xy

x y

y

Figure 3: Trinion Graph
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Colored Trinion Potential

W− =
1

xyz
+

xy

z
+

yz

x
+

zx

y

z y

x

Figure 4: Trinion Graph

Remark

Think of the coloring scheme as taking a variable and replace it by

its inverse. Changing it even number of times doesn’t change color.
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Graph potentials

Let (Γ, c) be a colored trivalent graph (loops are allowed) and

c : V (Γ)→ {±1}

Definition of graph potential

WΓ,c :=
∑

v∈V (Γ)

Wv ,c(v)
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Example g = 2

1 2

a

b

c

(abc +
a

bc
+

b

ac
+

c

ab
) + (

1

abc
+

bc

a
+

ac

b
+

ab

c
)

1 2
b a c

b2a +
2

a
+

a

b2
+ (

1

ac2
+ 2a +

c2

a
)
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Example g = 3

adf +
f

ad
+

a

df
+

d

af
+

bde +
e

bd
+

b

ed
+

b

de

+abc +
b

ac
+

c

ab
+

a

bc

+(
1

cef
+

ef

c
+

cf

e
+

ce

f
)

3

1

2 4

a f
d

b ee

c
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Periods

Definition

Let W : (C×)n → C be a Laurent polynomial. A classical period of

W is the following Laurent series.

πW (t) =

(
1

2π
√
−1

)n ∫
|x1|=···=|xn|=1

1

1− tW (x1, . . . , xn)
dlog ~x

The Laplace transform

π̂W (t) =

(
1

2π
√
−1

)n ∫
|x1|=···=|xn|=1

etW (x1,...,xn) dlog ~x
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TFT via graph potentials

W+ = xyz +
x

yz
+

y

xz
+

z

xy

Z (Y+) := etW+ ∈ L2(S1)⊗3

x z

y

W− =
1

xyz
+

xy

z
+

yz

x
+

xz

y

Z (Y−) := etW− ∈ L2(S1)⊗3

x z

y
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Remark

W− = 1
xyz + yz

x + xy
z + xz

y
W+ = xyz + x

yz + y
xz + z

xy
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WDVV equations

Theorem: Belmans-Galkin-M

Let K(i , j , k) = etW+(xi ,xj ,xk ). Define

K(i , j , k , l) := 〈K(i , j , e)⊗K(k , l , e)〉 ∈ L2(S1)⊗4

The above assignment is symmetric in i , j , k , l i.e. it satisfies the

WDVV equations.
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WDVV and Hatcher-Thurston moves

i

j l

k

(i, j); (k, l) = (i, k); (j, l) = (i, l); (j, k)
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General partition function

Let Σg ,n be an oriented surface of genus g with n boundary

components with the condition that 2g + n > 2. To every pairs of

pants decomposition of Σg ,b, with dual graph (Γ, n) assign:

KΣg,n :=
⊗
e∈Eint

〈, 〉a,b
(⊗

v∈V
K(i , j , k)

)
∈ L2(S1)⊗n

,

where Eint are internal edges of Γ, a, b are vertices adjacent to an

edge e ∈ Eint , and i , j , k are edges incident to a vertex v of Γ.

Corollary

The above is well-defined, i.e. it does depends on the graph or

equivalent on the pair of pants decomoposition.
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Periods via TFT

B(x) :=
∞∑

m=0

x2m

(m!)2
, Bessel function,

T1(x , y) :=B(t(x + y)B(t(x−1 + y−1)),

Tk+1(x , y) :=[Tk(x , z)T1(z , y)]z0

Theorem: Belmans-Galkin-M

For any trivalent colored graph Γ, c with no half edges and genus

g ≥ 2, the Laplace transform

π̂WΓ,c
(t) = [Tg−1(x , x (−1)ε)]x0 ,

where ε is the parity of the number of colored vertices.
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Example g=2

1 2

a

b

c 1 2

b

a

c

π̂WΓ,c
(t) =

∑
n≥0

(2n!)2

n!2
t2n.

Remark

The series π̂WΓ,c
(t) computes the quantum period for X2,2 ⊂ P5.
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Toric degenerations of MC

Let C̃ be a maximally degenerate nodal curve of g :

• The dual graph (Γ,V ,E ) of C̃ (V corresponds to components

and E correspond to intersection of components) is trivalent.

1 2

a

b

c a b c

• Choose 3g − 3 disjoint circles in C and cut them such that C

decomposes into a pair of pants.
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Theorem: Manon, Galkin(g=2)

Let (Γ, c) be a trivalent graph with one (zero) colored vertex of

genus g . The moduli spaces MC (M0
C -even degree determinant)

degenerates to a toric variety XΓ,c . whose moment polytope in

R|E | is given by:

If c(v) = (−1)ε,

• (−1)ε(x + y + z) ≥ −1.

• (−1)ε(x − y − z) ≥ −1.

• (−1)ε(−x − y + z) ≥ −1.

• (−1)ε(−x + y − z) ≥ −1.

with respect to a lattice LΓ in L = Z|E | of index 2g .

Remark

”Factorization of Conformal blocks” play a key role in Manon’s

theorem.
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Singularities of XΓ,c

Theorem: Belmans-Galkin-M

• The variety XΓ,c has terminal singularities if the graph Γ has

no separating edges.

• Let (Γ, c) and (Γ′, c ′) be as above with no separating edges,

then the toric varieties XΓ,c
∼= XΓ′,c ′ if and only if Γ is

isomorphic to Γ′. Moreover the class [c] ∈ H0(Γ,F2) to the

class [c ′]. (Torelli type theorem)

Conjecture II: (True for g ≤ 5)

If Γ is three-connected, then XΓ,c admits a small resolution of

singularities.
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Hatcher-Thurston elementary mutations

v1 v2

a

b

x
c

d

7→
v1 v2

a

c

x
b

d
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What about mirror potentials

Theorem: Belmans-Galkin-M

• Let TΓ,c be the torus acting on XΓ,c , then the graph potential

defines a function.

WΓ,c : ŤΓ,c → C,

where ŤΓ,c is the dual torus

• If (Γ, c) and (Γ′, c ′) are related by elementary moves ϕ, then

WΓ,c = ϕ∗WΓ′,c ′ ,

where ϕ : ŤΓ,c 99K ŤΓ′,c ′ is rational transformation.

• Moreover (TFT construction), the periods are the same

π̂WΓ,c
(t) = π̂WΓ′,c′ (t).
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Quantum periods via potentials

Combining the works of Nishinou-Nohara-Ueda, Tomkonog,

Bondal-Galkin and Conjecture II, we get

Corollary of Conjecture II

Let (Γ, c) be a any trivalent graph with odd number of colored

vertices, then

pm(MC ) = m![π̂WΓ,c
(t)]t0 = [Wm

Γ,c ]constant

Remark

Our computations on the periods are very fast and we can

compute up to high genus and degree. This can be used to

compute examples of the quantum differential equation for MC .
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Properties

• The eigen-values of c1(MC )?0 of the quantum multiplication

are also critical values i.e

Eigen Values(c1(MC )?0) ⊆ Critical Values(WΓ,c).

• The critical set with critical values 8(1− g + k)(
√
−1)ε for

0 ≤ k ≤ 2(g − 1). Here ε is the parity of k .

The critical set are at least

{0, 1, 2 . . . , g − 2, g − 1, g − 2, . . . , 2, 1, 0}- dimensional.

Remark

Usually the critical values of the mirror potential may miss some

eigen-values of the quantum multiplication.
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Landau-Ginzburg Models (Y ,w)

Let Z be a smooth projective compactification of Y whose

complement is s.n.c. and a commutative diagram

Y �
� //

w=|−KZ ||Y
��

Z

|−KZ |
��

A1 � � // P1

,

The critical set of | − KZ | restricted to A1 is contained in Y .

35 / 36



Landau-Ginzburg Models (Y ,w)

Let Z be a smooth projective compactification of Y whose

complement is s.n.c. and a commutative diagram

Y �
� //

w=|−KZ ||Y
��

Z

|−KZ |
��

A1 � � // P1

,

The critical set of | − KZ | restricted to A1 is contained in Y .

35 / 36



Landau-Ginzburg Models (Y ,w)

Let Z be a smooth projective compactification of Y whose

complement is s.n.c. and a commutative diagram

Y �
� //

w=|−KZ ||Y
��

Z

|−KZ |
��

A1 � � // P1

,

The critical set of | − KZ | restricted to A1 is contained in Y .

35 / 36



HMS Conjecture for MC

Conjecture III

For every colored trivalent graph (Γ, c) with odd number of colored

vertices,

there exists a Landau Ginzburg model (Y ,w) containing

ŤΓ,c as a dense open subset such that

• w|ŤΓ,c
= WΓ,c .

• Fuk(MC ) ∼= MF(Y ,w).

• FS(Y ,w) ∼= Db(MC ).

Question

Construct (Y ,w) as a union of tori’s ŤΓ,c for various graphs?
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ŤΓ,c as a dense open subset such that

• w|ŤΓ,c
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