Exercise Sheet #1

- 1. Let $\operatorname{Gr}(d, n)$ be the set of d dimensional subspaces of k^n , where k is an algebraically closed field. The following steps show that the Grassmannian $\operatorname{Gr}(d, n)$ is an algebraic variety.
 - (a) Let W be the set of $d \times n$ matrices of rank d and GL(d) acts on W by left multiplication. Show that there is a bijection between the orbits of the action and points of Gr(d, n).
 - (b) For any $J = \{1 \leq j_1 < \cdots < j_d \leq n\}$, let U_J be the set of d dimensional spaces V of k^n which are complementary to the span of n d dimensional subspaces spanned by $\{e_j\}$ where $j \notin J$. Let W_J be the set of matrices in W whose J matrix is I_d . Show that $W_J \simeq U_J \simeq \mathbb{A}^{d(n-d)}$.
 - (c) For $J \neq K$ of cardinality d, let $W_{J,K} \subset W_J$ be the set of matrices whose K-th minor is non zero. Show that there are isomorphism $\phi_{J,K} : W_{J,K} \to W_{K,J}$.
 - (d) Conclude that Gr(d, n) is an abstract variety by gluing $\phi_{J,K}$.
- 2. Let Gr(d, n) be as defined before. Consider the map

$$\varphi:\operatorname{Gr}(d,n)\to \mathbb{P}(\bigwedge^d(k^n))$$

defined by $W \to w_1 \land \cdots \land w_d$, where w_1, \ldots, w_d is a basis of W. Show the following:

- (a) Check that ϕ is a well defined, injective morphism of varities.
- (b) Let $w \in \wedge k^r$ and consider the map $\phi_w(v) := v \wedge w$ from $k^r \to \wedge^{d+1}(k^r)$. Show that the map ϕ_w has rank n - d if $w = w_1 \wedge \cdots \wedge w_d$, where w_i 's are linearly independent. (This type of w's are called totally decomposable)
- (c) Show that $[w] \in \mathbb{P}(\wedge^d(k^n))$ is in the image of φ if and only if all $(n d + 1) \times (n d + 1)$ minors of the map ϕ_w vanish. Conclude that the Grassmannian is a projective variety.
- 3. Let (M, η) be a Coarse moduli space for a moduli problem \mathcal{M} . Show that (M, η) is a fine moduli space if and only if
 - (a) There exists a family \mathcal{U} over M that corresponds to the morphism id_M .
 - (b) Two families \mathcal{F} and \mathcal{G} over S are similar over S if and only if $\eta_S(\mathcal{F}) = \eta_S(\mathcal{G})$.
- 4. Consider the naive moduli problem of classifying hypersurfaces of degree d in \mathbb{P}^n up to equivalence by PGL(n). Define a moduli functor associated to this naive moduli problem.