Exercise Sheet #3

For all these problems assume that the base field is algebraically closed of arbitrary characteristics.

- 1. If G is a finite group of order not divisible by char(k), then <u>G</u> is linearly reductive over k.
- 2. Show that \mathbb{G}_a is not reductive. Hint: Consider the obvious faithful representation of \mathbb{G}_a to GL_2
- 3. Compute the X^s for the action of GL_n on Mat(n) by conjugation.
- 4. Consider the space of \mathbb{A}^3 identified as the space of degree 2 homogeneous polynomials of degree 2 in variables x and y. Consider the standard action of SL_2 on \mathbb{C}^2 with coordinates (x, y). This induces an action on \mathbb{A}^3 . Compute the ring of invariants.
- 5. Show that $k[\operatorname{Mat}_n]^{\operatorname{GL}_n}$ is $k[c_1, c_2, \ldots, c_n]$, where c_i 's are coefficients of the characteristic polynomial. Hint: Use the closed orbits description.