Exercise Sheet #4

- 1. Consider the diagonal action of \mathbb{G}_m on \mathbb{P}^3 given by $t \to (t, t, t^{-1}, t^{-1})$. Find the invariants of the homogenous ring, semistable points, stable points and describe the quotient morphism
- 2. Let e_1, e_2 and e_3 be a basis of \mathbb{C}^3 and let $c \in \mathbb{G}_a$ acts as follows $c.e_1 = e_1, c.e_2 = 2ce_1+e_2$ and $c.e_3 = c^2e_1 + ce_2 + e_3$. Compute the ring $k[x_1, x_2, x_3]^{\mathbb{G}_a}$. Can you define a good quotient in this case.
- 3. Show that $\operatorname{Proj} R \simeq \operatorname{Proj} R^{(d)}$.
- 4. If R is finitely generated, then show that if d is large enough, then the Veronese subring $R^{(d)}$ is generated by R_d .
- 5. Assume that X is a smooth projective variety over \mathbb{C} with an very ample line bundle L. Show that $X \simeq \operatorname{Proj}(\bigoplus_{k\geq 0} H^0(X, L^{\otimes k}))$ with the property that $\mathcal{O}_{\operatorname{Proj}}(1) \simeq L$. Feel free to assume finite generation of rings and also Serre Vanishing whenever required.
- 6. Let a_0, \ldots, a_n be positive integers and $d = gcd(a_0, \ldots, a_n) > 1$. Then show that the following weighted projective spaces are isomorphic $\mathbb{P}(a_0, \ldots, a_n) \simeq \mathbb{P}(b_0, \ldots, b_n)$, where $b_i = a_i/d$.
- 7. Let S_4 act on $k[x_1, \ldots, x_4]$ by permuting the coordinates. Find X/S_4 , where $X = \mathbb{P}^3$.
- 8. Let $(s,t) \in \mathbb{G}_m^2$ act by dia $(st, s^{-1}t, s^{-1}t^{-1}, st^{-1})$ linearly on \mathbb{P}^3 . Determine the stable and the semistable sets for this action and the *G*-invariant subring of $k[x_0, \ldots, x_4]$.