Exercise Sheet $#1$

- 1. Let Z_G be the center of a group G and assume G/Z_G is cyclic, then show that G is abelian.
- 2. Let V_1 and V_2 be finite dimensional vector spaces over a field k. Consider the set $Hom_k(V_1, V_2)$ of k-linear maps between V_1 and V_2 .
	- Consider the natural right action of $GL(V_1)$ on $Hom_k(V_1, V_2)$ and give a criterion for two map $f, g \in Hom_k(V_1, V_2)$ to be in the same $GL(V_1)$ orbit.
	- If $V_2 = k$, how many $GL(V_1)$ orbits are there?
- 3. Let S be a set along with a transitive action of a group G . Let H be the stabilizer of a point $s \in S$. Show that the double cosets of H in G are in bijection with orbits of the G action on $S \times S$ given by $g * (s_1, s_2) = (g \cdot s_1, g \cdot s_2).$ Using the above show that $GL_n(\mathbb{R}) = \sqcup_{w \in S_n} BwB$, where B is the subgroup of upper

triangular matrices.

- 4. Let k be a field and V be a vector space of dimension $n > 0$ over F. Assume $|k| > 2$ and let $GL(V)$ denote k-linear isomorphisms of V.
	- \bullet Use the fact that $GL(V)$ acts transitively on the set of lines to compute the center of the group $GL(V)$.
	- Consider a decomposition $V = \bigoplus_{i=1}^{k} V_i$ into subspaces V_i of dimension $e_i > 0$. Let $H \le GL(V)$ be the subgroup that preserves this decomposition i.e. the H action sends V_i to iteself for all i. Then compute the normalizer $N_{GL(V)}(H)$ and the centralizer $Z_{GL(V)}(H)$ of H in $GL(V)$ and describe their quotient. (It might be useful to first consider the case when dim $V_i = 1$ for all i.)
	- Compute the normalizer of S_n in $GL_n(\mathbb{R})$. Here S_n is the subgroup of permutation matrices.
- 5. Let G be the group generated by x and y along with relations x^2 and y^2 . Show the following:
	- G is isomorphism to the group generated by reflection s_1 and s_2 about line ℓ_1 and ℓ_2 whose angle of intersection is not a rational multiple of 2π . Conclude that G is infinite.
	- Let N be any proper normal subgroup, then G/N is a dihedral group.
- 6. Show that any map between a final object F and an initial object I in any category $\mathcal C$ is an isomorphism.
- 7. Let G be a group and consider the category BG which has a single object ∗ and the morphisms $Hom_{BG}(*, *) := G$. Show that giving a G action on objects in a category C is equivalent to a functor from $BG \to C$.

8. Let k be a field and G be a finite group and consider the catgory $Rep(G)$ whose objects are k-vector spaces V along with a G action i.e $G \to Aut_k(V)$. Let Vec_k be the category of vector spaces over k and consider the functors:

$$
triv : \text{Vec}_k \to \text{Rep}(G), \ \ (V \to (V, G \to \{Id_V\}))
$$

 $inv : \text{Rep}(G) \to \text{Vec}_k, \ \ ((V, \rho : G \to Aut(V)) \to V^G := \{ v \in V | gv = v \ \forall g \in G \})$ $coinv : \text{Rep}(G) \to \text{Vec}_k, \ \ ((V, \rho : G \to Aut(V)) \to V_G := V/(\text{Span}\{gv - v \ \forall g \in G\}))$

Show that $(coinv, triv)$ and $(triv, inv)$ are adjoint pairs.

9. Let $T: \mathcal{C} \to \mathcal{C}$ be an endofunctor. A *coalgebra* for an endofunctor T is an object $C \in \mathcal{C}$ equipped with a map $\gamma: C \to T(C)$. A morphism $f: (C, \gamma) \to (C', \gamma')$ of coalgebras is a map $f: C \to C'$ such that $\gamma' \circ f = T(f) \circ \gamma$. Show that if (C, γ) is a final object in the category of coalgebras, then the map γ :

 $C \to T(C)$ is an isomorphism.

- 10. A category C is called skeletal if it only contains just one object for each isomorphism class. The skeleton $sk(\mathcal{C})$ of a category $\mathcal C$ is the unique upto isomorphism skeletal caegory that is equivalent to \mathcal{C} .
	- Given a category C , construct it's skeleton.
	- Consider the category Fin_{iso} whose objects are finite sets and morphisms are bijections. Construct the skeleton of the categry Fin_iso .
- 11. Let $F: \mathcal{C} \to \mathcal{D}$ be a fully faithful functor, then
	- Let f be a morphism in C such that $F(f)$ is an isomorhism, then f is an isomorphism
	- If A and B are objects in C, so that $F(A) \simeq F(B)$, then A and B are isomorphic in \mathcal{C} .
	- Show that the converse holds for any functor.
- 12. Use the Yoneda theorems to show the following:
	- Any group is isomorphic to a subgroup of the permutation group.
	- Every row operation on matrices with n rows is defined by left multiplication by some $n \times n$ matrix, namely the matrix obtained by performing the row operation on the identity matrix.
- 13. Let (L, R) be a adjoint pair of funtors between C and D. Assuming limits exists show that for a family of objects $\{A_i\}_{i\in I}$. (Hint: Use Yoneda)

$$
R(\varprojlim A_i) = \varprojlim R(A_i)
$$