Exercise Sheet #2

- 1. Show that if G/Z(G) is nilpotent, then G is nilpotent.
- 2. Show that there is no group whose commutor subgroup is S_4 .
- 3. Let G be a finite group and H be a normal subgroup of G. Let P be a Sylow p-subgroup of H. Then $G = HN_G(P)$ and |G:H| divides $|N_G(P)|$.
- 4. Let G be a finite group and $\Phi(G)$ be the intersection of all maximal subgroups of G. Show the following:
 - (a) $\Phi(G)$ is nilpotent if G is finite.
 - (b) $\Phi(G)$ is preserved by any automorphism of G.
 - (c) If N is normal in G, show that $\Phi(N) \leq \Phi(G)$.
- 5. Let G be a finite group in which every proper subgroup is nilpotent, then G is solvable.
- 6. Let V be a finite dimensional vector space over the field of p-elements and let $\varphi \in GL(V)$ be an element of order p. Prove that there is some non-zero element $v \in V$ such that $\varphi(v) = v$.
- 7. Any group of order $p^e a$ where $1 \le a < p$ is not simple. Prove that simple groups of order < 60 are of prime order.
- 8. Compute G/Z(G) where G is the Dihedral group of order 2^{n+1} .
- 9. Prove that A_n is the only subgroup of S_n of index 2.
- 10. Show that the length of the upper and the lower central series of a nilpotent group agree. Give an example to show that the upper and lower central series may not have the same terms
- 11. Show by induction of length of the upper and lower central series of a nilpotent group G that for any proper subgroup H of G, the normalizer $N_G(H)$ contains H properly.