Exercise Sheet #4

- 1. If V is an n dimensional vector space, then show that $(\bigwedge^k V)^* \cong \bigwedge^{n-k} V$ for all $0 \le k \le n$.
- 2. Show the following in R[[t]] for any $A \in M_n(R)$ where R is a commutative ring with identity.
 - det $(I_n + tA) = \sum_{i=0}^n \operatorname{Trace}(\wedge^i A)t^i$
 - $det(I_n tA)^{-1} = \sum_{i>0} Trace(Sym^i A)t^i$
- 3. Consider the category of Abelian groups and the functor between $Ab^{opp} \to Ab$ given by $A \to Hom_{Ab}(A, \mathbb{Q}/\mathbb{Z})$. Show that this defines and equivalence between $(TorAb)^{opp}$ of the opposite category of torsion abelian groups and the category of profinite groups.
- 4. Let \mathcal{A} be a abelian category. For $A, B \in Ob(\mathcal{A})$ an extension E of A by B is a short exact squence $0 \to B \to E \to A \to 0$ in \mathcal{A} . Two extensions E and E' are equivalent if there exists an extension E'' and map $E'' \to E$ and $E'' \to E'$ such that the following commutes

- Show that this is an equivalence relation and let Ext(A, B) denote the set of equivalence class of extensions of A by B.
- Show that $Ext: \mathcal{A}^{opp} \times \mathcal{A} \to Sets$ is an bifunctor
- Show that Ext(A, B) is a group structure defines a bifunctor $Ext : \mathcal{A}^{opp} \times \mathcal{A} \to Ab$
- Show that if $F : \mathcal{A} \to \mathcal{B}$ is fully faithful, then $Ext(A, B) \to Ext(F(A), F(B))$ induced by F is injective.
- 5. Let V be a finite dimensional vector space over \mathbb{R} and let $\xi \in V$ be a non-zero vector. Consider the map $\xi \wedge : \bigwedge^p V \to \bigwedge^{p+1} V$. Extend this to a map $\xi \wedge : \bigwedge^{\bullet} V \to \bigwedge^{\bullet} V$ and let $\iota(\xi)$ denote the transpose of $\xi \wedge$. Show the following:
 - $\iota(\xi)(v_1 \wedge \cdots \wedge v_p) = \sum_{i=1}^p (-1)^{i+1} v_1 \wedge \ldots v_{i-1} \wedge \iota(\xi)(v_i) \wedge v_{i+1} \wedge \cdots \wedge v_p$
 - $\iota(\xi)(u \wedge v) = \iota(\xi)(u) \wedge v + (-1)^{deg(u)}u \wedge \iota(\xi)(v)$

 $(\iota(\xi)$ is an example of an antiderivation.)

6. Let V be a finite dimensional real inner product space with the inner product denoted by \langle , \rangle . Extend it to all of $\bigwedge^{\bullet} V$ by the formula

 $\langle w_1 \wedge \dots \wedge w_p, v_1 \wedge \dots v_p \rangle = det \langle w_i, v_j \rangle$

- (a) Find an orthonormal basis of $\bigwedge^{\bullet}(V)$ in terms of a orthonormal basis e_1, \ldots, e_n of V.
- (b) Since $\bigwedge^n(V)$ is one dimensional, then $\bigwedge^n V \setminus \{0\}$. An orientation of V is defined to be a choice of a component. Let V be an oriented vector space, then define an operator $* : \bigwedge^{\bullet} V \to \bigwedge^{\bullet} V$ which satisfy the following requirement (This is called the star operator):
 - $*(1) = e_1 \wedge \cdots \wedge e_n$ and $*(e_1 \wedge \cdots \wedge e_n) = 1$
 - $*(e_1 \wedge \cdots \wedge e_p) = \pm e_{p+1} \wedge \cdots \wedge e_n$, where \pm is determined by the component $e_1 \wedge \cdots \wedge e_n$ lies.
 - Show that on $\wedge^p V$ we have $** = (-1)^{p(n-p)}$.
 - Show that $\langle v, w \rangle = *(w \land *v) = *(v \land *w)$
- 7. Let V be a real inner product space as above let $\xi \in V$ be a non-zero vector. Consider the left exterior multiplication $\xi \wedge : \wedge^p V \to \wedge^{p+1} V$ and let γ denote its adjoint operator. Show that for any $v \in \wedge^p V$

$$\gamma(v) = (-1)^{np} * (\xi \land (*v))$$

- 8. Problem 14 Page 638 Chapter XVI and 4,11,24 Page 596-600 Chapter XV
- 9. Defining Grothendieck groups and rings:
 - (a) Let A^+ be a commutative monoid. Then show that there exists an abelian group A along with a monoid morphism $\iota: A^+ \to A$ which has the following universal property that for any abelian group B if $f: A^+ \to B$, then f extends to a unique group morphism $\tilde{f}: A \to B$. The unique upto isomorphism group is called the Grothendieck group.
 - (b) If a + b = a + c implies b = c for $a, b, c \in A^+$, then show that ι is injective.
 - (c) Repeat (a) for a commutative semi-ring R^+ and construct a ring R with above universal properties.
- 10. For any commutative ring R consider the monoid $\widehat{W}^+(R)$ of non-degenerate quadratic forms up to isomorphisms and using (a) define $\widehat{W}(R)$ to be the Grothendieck-Witt group of R. The Witt ring W(R) of R is defined to be the quotient of $\widehat{W}(R)$ by the ideal generated by hyperbolic forms. Show the following:
 - If $char(k) \neq 2$, then $\widehat{W}^+(k) \hookrightarrow \widehat{W}(k)$.
 - With the same hypothesis, show that W(k) is spanned classes of ansiotropic forms.
 - Show that two anisotropic forms are isometric if they give same elements in the Witt ring.