- 1. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a homogenous function i.e. $f(tx) = t^s f(x)$ for all t > 0. Show that $\sum_{i=1}^n x_i \frac{\partial f}{\partial x_i} = sf$.
- 2. Consider the Laplace operator $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ on \mathbb{R}^3 . Express the Laplacian in the spherical polar coordinates.
- 3. Check that the spherical Laplacian $-\Delta_{S^2}$ is self adjoint and positive semidefinite with respect to the Hermitian form.
- 4. Let \mathcal{H}_k denote the space harmonic polynomials in $\mathbb{C}[x, y, z]$ of degree k. Show that SO(3) acts on \mathcal{H}_k .
- 5. Consider the special unitary group SU(2) and consider $t_{\phi} = \begin{pmatrix} e^{i\phi} & 0\\ 0 & e^{-i\phi} \end{pmatrix}$. Show that every element of SU(2) is conjugate to an element of the form t_{ϕ} .
- 6. Consider the natural action of \mathbb{C}^2 . Show the following;
 - (a) SU(2) acts on the space P_k of homogenous polynomials of degree k in $\mathbb{C}[x, y]$.
 - (b) Compute the action of t_{ϕ} on $x^k y^{n-k}$ for $0 \le k \le n$.
 - (c) Show that the representation $\pi_k : \mathrm{SU}(2) \to \mathrm{GL}_n(P_k)$ is irreducible.
- 7. Consider the Lie algebra $\mathfrak{su}(2)$ of SU(2) and construction an isomorphism of $\mathfrak{su}(2)$ with the Lie algebra $\mathfrak{so}(3)$ of SO(3, \mathbb{R}). (Hint: Construct a basis of both the Lie algebras and compute their Lie brackets.)
- 8. Show that the conjugation $X \to AXA^{-1}$ defines an action of the group SU(2) on the vector space $\mathfrak{su}(2)$. Further show the following:
 - (a) The conjugation action gives a map $\phi : \mathrm{SU}(2) \to \mathrm{GL}_3(\mathbb{R})$.
 - (b) Show that the image of ϕ is a subgroup of SO(3).
 - (c) Using Problem 7 and the exponential map, show that the map ϕ is surjects onto SO(3)
 - (d) Show that the Kernel is $\mathbb{Z}/2$.
- 9. Using Problem 7 show that π_{2k} factorizes to give an irreducible representation of SO(3).