- 1. Let L_i be the dual of the diagonal matrix H_{ii} in $\mathfrak{gl}_n(\mathbb{C})$. Give a description of the root lattice and the weight lattice of $\mathfrak{sl}_n(\mathbb{C})$ in terms of L_i 's. Also express the fundamental weights of $\mathfrak{sl}_n(\mathbb{C})$ in terms of the L_i 's. What is index of the root lattice in the weight lattice?
- 2. Repeat the above exercise for $\mathfrak{sp}(2n)$ and $\mathfrak{so}(2n+1)$. (The case for roots was discussed in class).
- 3. Show that for a *n*-dimensional vector space V, the exterior powers $\wedge^i V$ are fundamental representation of $\mathfrak{sl}(V)$.
- 4. Let $\lambda = \sum_{i=1}^{n-1} a_i \omega_i$ be a dominant integral weight of $\mathfrak{sl}(V)$. Show that the irreducible highest weight moduli V_{λ} is a submodule of

$$\operatorname{Sym}^{a_1}(\wedge^1 V) \otimes \ldots \operatorname{Sym}^{a_{n-1}}(\wedge^{n-1} V)$$

5. Show that for any i, j such that $i + j \leq n$, the $\mathfrak{sl}(V)$ module V_{λ} is in the Kernel of all natural maps of $\mathfrak{sl}(V)$ modules

$$\operatorname{Sym}^{a_1}(\wedge^1 V) \otimes \dots \operatorname{Sym}^{a_{n-1}}(\wedge^{n-1} V) \to \\ \wedge^i V \otimes \wedge^j V \otimes \operatorname{Sym}^{a_1}(\wedge^1 V) \otimes \dots \otimes \operatorname{Sym}^{(a_i-1)}(\wedge^i V) \otimes \dots \otimes \operatorname{Sym}^{a_j-1}(\wedge^j V) \otimes \dots \otimes \operatorname{Sym}^{a_{n-1}}(\wedge^{n-1} V)$$

- 6. Assume dim V = 4. Describe the weights of the representations $\operatorname{Sym}^n V$ and $\operatorname{Sym}^n(\wedge^2 V)$ and deduce that they are irreducible and reducible respectively.
- 7. Let V be a 2n dimensional vector space with a non-degenerate symplectic form, show that the representation of $\mathfrak{sp}(V)$ on V is irreducible.
- 8. Show that the representation of $\mathfrak{sp}(V)$ on the vector space $\wedge^2 V$ is not irreducible.
- 9. For any $1 \leq k \leq n$ consider the map $\phi_k : \wedge^k V \to \wedge^{k-2} V$ defined by

$$\phi_k(v_1 \wedge \dots \wedge v_k) = \sum_{i < j} Q(v_i, v_j) (-1)^{i+j-1} v_1 \wedge \dots \wedge \hat{v}_i \wedge \dots \wedge \hat{v}_j \wedge \dots \wedge v_k$$

Show that the k-th fundamental representation is contained in the Kernel of ϕ_k . (It turns out that the k-th fundamental represention is the whole Kernel. (See Fulton-Harris or argue with Weyl dimension formula.)