The exercises are all from Humphreys's book on Lie algebras.

- 1. Let $u \in \text{End}(V)$, where dim $V < \infty$ and u = s + n be its decomposition into semi-simple and nilpotent parts. Show that $ad_u = ad_s + ad_n$ is the decomposition of ad_u considered as operators in End(End(V)).
- 2. Let \mathfrak{U} is a finite dimensional algebra over a field k. Show that $\operatorname{Der}(\mathfrak{U}) \subset \operatorname{End}(\mathfrak{U})$ contains the semi-simple and nilpotent parts of all its elements
- 3. Using Cartan's criterion, show that a Lie algebra \mathfrak{g} such that $\operatorname{Tr}(ad_x ad_y) = 0$ for all $x, y \in \mathfrak{g}$ is solvable.
- 4. Let k be a field of prime characteristic p > 0. Consider the $p \times p$ matrix A such that $A_{p,1} = 1$ and $A_{i,i+1} = 1$ for $1 \le i \le p-1$ and rest of the entries 0 and $B = \text{diag}(0, 1, 2, \dots, p-1)$. Check that A and B span a two dimensional solvable Lie subalgebra $\mathfrak{gl}(p,k)$. Verify that A and B have no common eigen vector.
- 5. Let k be a field of characteristic $p \neq 0$. Show that \mathfrak{g} is semi-simplie if its Killing form is non-degenerate. Let $\mathfrak{g} = \mathfrak{sl}(3, k)$ and char(k) = 3. Show that the converse fail for $\mathfrak{g}/Z(\mathfrak{g})$
- 6. Show that (ρ, V) is a representation of a semisimple Lie algebra \mathfrak{g} , then $\rho(\mathfrak{g}) \subset \mathfrak{sl}(V)$. In particular any one dimensional \mathfrak{g} -module has trivial action.
- 7. Let $\beta(x, y)$ and $\alpha(x, y)$ be two symmetric associative bilinear forms on a simple Lie algebra \mathfrak{g} . If β and α are non-degenerate, then β and α are proportional.

For $\mathfrak{g} = \mathfrak{sl}(n, \mathbb{C})$, then show that $\kappa(x, y) = 2n \operatorname{Tr}(xy)$, for all $x, y \in \mathfrak{g}$ where κ is the Cartan-Killing form.

- 8. Define a Lie algebra \mathfrak{g} to be reductive if $Z(\mathfrak{g}) = \operatorname{rad}(\mathfrak{g})$. Show that a representation V of \mathfrak{g} is completely reducible if $Z(\mathfrak{g})$ acts on V by semi-simple endomorphisms.
- 9. (Preservation of Jordan Decomposition, Humphreys Section 6.4) It was proved in class that derivations of a semi-simple Lie algebra Der(g) = g ⊂ End(g) via the adjoint action.
 Show using Problem 2, that for any x ∈ g, there exists n, s ∈ g such that ad_x = ad_s + ad_n is the decomposition into semi-simple and nilpotent parts in End(g).
- 10. Define an abstract Jordan decomposition of x = s + n where x, s, n as in Porblem 9. However if \mathfrak{g} is a subalgebra of $\mathfrak{gl}(V)$ for some V, this presents an ambiguity. We will now show that there is no ambiguity in the next steps.
 - (a) Let $\mathfrak{g} \subset \operatorname{End}(V)$ be a semisimple Lie algebra and consider $x \in \mathfrak{g}$ and consider the usual Jordan decomposition x = s + n. Then show that $s, n \in N_{\mathfrak{gl}(V)}(\mathfrak{g})$, where N denotes the normalizer.
 - (b) Show that $\mathfrak{g} \subsetneq N_{\mathfrak{gl}(V)}(\mathfrak{g})$.
 - (c) Let W be a \mathfrak{g} submodule of V and define

$$\mathfrak{g}_W := \{ y \in \mathfrak{gl}(V) | y(W) \subset W \text{ and } Tr(y|W) = 0 \}.$$

Show that $\mathfrak{g} \subset \mathfrak{g}_W$.

- (d) Define $\mathfrak{g}' := N_{\mathfrak{gl}(V)}(\mathfrak{g}) \bigcap (\cap_W \mathfrak{g}_W)$, where the intersection is taken over all irreducible subrepresentations of W of V. Show that $s, n \in \mathfrak{g}'$.
- (e) Now using complete reduciblity show that $\mathfrak{g}' = \mathfrak{g}$.
- (f) Use this to show that the abstract and the usual Jordan decomposition coincide.
- 11. Let $\phi : \mathfrak{g} \to \operatorname{End}(V)$ be a representation of a semi-simple Lie algebra \mathfrak{g} . If x = s + n is the abstract Jordan decomposition, then show that $\phi(x) = \phi(s) + \phi(n)$ is the usual Jordan decomposition of $\phi(x)$.