1. Let $\mathfrak{g} \subset \mathfrak{gl}(n, \mathbb{C})$ be the subset consisting of matrices of the form

$$\begin{bmatrix} A & B \\ 0 & D \end{bmatrix}$$

where A is a $k \times k$ matrix, B is a $k \times (n-k)$ matrix and D is a $(n-k) \times (n-k)$ matrix.

- (a) Show that \mathfrak{g} is a Lie algebra (algebras over this form are called parabolic subalgebras).
- (b) Compute the radical $rad(\mathfrak{g})$ of \mathfrak{g} and describe $\mathfrak{g}/rad(\mathfrak{g})$.
- 2. Let \mathfrak{g} be a real Lie algebra with a positive definite bilinear form, then $\mathfrak{g} = 0$.
- 3. Let W be a subrepresentation of a representation V for a Lie algebra \mathfrak{g} , then show that the bilinear

$$(,)_V = (,)_W + (,)_{V/W}$$

- 4. Show that the complexification $\mathfrak{sl}(2,\mathbb{C})$ considered as a real Lie algebra is isomorphic to $\mathfrak{sl}(2,\mathbb{C}) \oplus \mathfrak{sl}(2,\mathbb{C})$.
- 5. Let \mathfrak{g} be a Lie algebra and V be a an irreducible \mathfrak{g} -module. Let K be the ring of \mathfrak{g} -endomorphism of V. Show that K is a field.
- 6. Let \mathfrak{g} be a semi-simple Lie algebra and let K be the ring of the \mathfrak{g} -endomorphisms of \mathfrak{g} (with adjoint representations). Let \overline{k} be an algebraic closure of k.
 - (a) Let $k = \overline{k}$ and let $\mathfrak{g} = \bigoplus_{i=1}^{h} \mathfrak{s}_i$, where \mathfrak{s}_i are simple. Show that K is isomorphic to h copies of product of k.
 - (b) (No assumptions on k) Let h be the number of components of $\mathfrak{g} \otimes \overline{k}$, then [K:k] = h and K is a product of m-commutative fields, where m is the number of simple components of \mathfrak{g} .
 - (c) A Lie algebra \mathfrak{g} is called absolutely simple if $\mathfrak{g} \otimes \overline{k}$ is simple. Show that this is equivalent to K = k.