- 1. Problems 1,2,10,11,12,14 from Humphreys Page 54-55.
- 2. Problems 1,2,3,5,7,11 from Humphreys Page 40-41. For problems 1,2,3 only do it for $\mathfrak{sl}(n)$ and $\mathfrak{sp}(2n)$.
- 3. Finish the proof of the conjugacy of BSA's as follows: Assume that $\mathfrak{t} \subsetneq \mathfrak{h}$ is strict.
 - (a) Consider the case $\mathfrak{b}' \subset C_{\mathfrak{g}}(\mathfrak{t})$. Find a Borel subalgebra \mathfrak{b}'' in $C_{\mathfrak{g}}(\mathfrak{t})$ containing \mathfrak{h} and conjugate to \mathfrak{b} to arrive at a conclusion.
 - (b) Now consider the case \mathfrak{b}' is not contained in $C_{\mathfrak{g}}(\mathfrak{t})$. Find a common eigen vector $x \in \mathfrak{b}'$ for $ad\mathfrak{t}$ and an element $t \in \mathfrak{t}$ such that [t, x] = x.
 - (c) Let $\mathfrak{s} := \mathfrak{h} \oplus_{\alpha \in \Phi_t} \mathfrak{g}_{\alpha}$, such that Φ_t is the set of roots β such that $\beta(t)$ is a positive rational number. Show that \mathfrak{s} is solvable
 - (d) Let \mathfrak{b}'' be a BSA contained \mathfrak{s} . Show that $\mathfrak{b}'' \cap \mathfrak{b}$ has strictly higher dimension that $\mathfrak{b}' \cap \mathfrak{b}$.
 - (e) Use the above and the induction hypothesis to show that \mathfrak{b}' is conjugate to \mathfrak{b} .