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Abstract. Let G be a semisimple affine algebraic group defined over C. Consider the Liouville
symplectic structure on the total space T ∗G((t)) of the loop group G((t)), where t is a formal
parameter. We show that the Liouville symplectic structure on T ∗G((t)) induces the symplectic
structures on the moduli stack of framed Higgs G-bundles on a compact connected Riemann
surface X and also on the moduli spaces of framed G-connections on X. These symplectic
structures on the on the moduli stack of framed Higgs G-bundles and framed connections on X
were constructed earlier. Our results show that they have a common origin. Similar results for
these moduli stacks with finite order framings are also obtained.
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1. Introduction

Let X be a compact connected Riemann surface, or equivalently, an irreducible smooth pro-
jective curve defined over C. It’s canonical line bundle will be denoted by KX . Fix an effective
divisor D on X. Let G be a semisimple, simply connected, affine algebraic group defined over
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C. Take a principal G-bundle EG on the curve X, which is same as a holomorphic principal
G-bundle on the Riemann surface X. A Higgs field on X is a section

θ ∈ H0(X, ad(EG)⊗KX ⊗ OX(D)),

where ad(EG) −→ X is the adjoint bundle of EG. A Higgs bundle is a principal G-bundle
equipped with a Higgs field. A Higgs bundle (EG, θ) is called semistable (respectively, stable)
if for every pair (P, χ), where P ( G is a parabolic subgroup and χ is a strictly anti-dominant
character of P with respect to some Borel subgroup of G contained in P (this means that the line
bundle on G/P associated to χ is ample), and for every reduction of structure group EP ⊂ EG
such that

θ ∈ H0(X, ad(EP )⊗KX ⊗ OX(D)) ⊂ H0(X, ad(EG)⊗KX ⊗ OX(D)),

the inequality

degree(EP (χ)) ≥ 0 (respectively, degree(EP (χ)) > 0)

holds, where EP (χ) −→ X is the line bundle associated to the principal P -bundle EP for the
character χ of P .

One can construct the moduli space MHiggs(G) of stable Higgs bundles parametrizing the
above data. When D = 0, the moduli space MHiggs(G) has a natural symplectic structure [Hi2].
In the general case of D, the moduli space MHiggs(G) has a Poisson structure [Bot], [Ma].

A framed Higgs bundle is a Higgs bundle (EG, θ) as above equipped with an enhancement
given by a trivialization of EG over the divisor D. A framed Higgs bundle is called stable (re-
spectively, semistable) if the underlying Higgs bundle is stable (respectively, semistable). Let

M̃Higgs(G) denote the moduli space of framed Higgs bundles onX. This moduli space M̃Higgs(G)

has a natural symplectic structure [BLP1], [BLP2]. The natural projection M̃Higgs(G) −→
MHiggs(G) is a Poisson map. This result actually extends to the more general context of para-
bolic Higgs bundles [BLPS].

Let MConn(G) denote the moduli space of stable principal G-bundles EG on X equipped
with a meromorphic D connection whose pole is contained in the divisor D with an appropriate
stability condition as for the case of MHiggs(G). Similarly as in the case of meromorphic Higgs
bundles, when D = 0, this moduli space has a natural symplectic structure [AB], [Go]. For a
general D, the moduli space MConn(G) has a Poisson structure [Boa1], [Boa2].

One can enhance the structure of meromorphic connections using the notion of framed connec-
tions as in the case for frame Higgs bundles. A framed connection is a pair (EG, D) ∈ MConn(G)
together with a trivialization of EG over the divisor D. The moduli space of framed connec-

tions M̃Conn(G) has a natural symplectic structure [BIKS1], [BIKS2]. Moreover, the natural
projection to MConn(G) from the moduli space of framed connections is a Poisson map.

The nonabelian Hodge correspondence identifies the moduli space Higgs bundles with the
moduli space of principal bundles with algebraic connections (same as holomorphic connections)
[Si], [Hi1], [Do], [Co]. Similar results hold for the moduli spaces of framed connection. However,
this identification is not algebraic or holomorphic but C∞. Hence symplectic structure on
one side of the non-abelian Hodge correspondence do not automatically give rise to symplectic
structures on the other side.

The main goal of this paper is to show that all the above symplectic structures have a single
common origin. They all originate from the Liouville symplectic structure on the total space
T ∗G((t)) of the loop group LG := G((t)), where t is a formal parameter. Here we can think of
the loop group as C-valued points of a stack parametrizing G bundles on a curve with a given
trivialization on a formal disk Dp as well as on the punctured curve X\p. We can also think of
G((t)) as a Fréchet Lie group.
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Here for the rest of the paper and for the simplicity of the exposition, we will assume that the
divisor D = p, where p is a point on X. The case of a general effective divisor D follows directly
using the same methods.

Fix a point p ∈ X. Let LXG := G(X\{p}) be the space of all algebraic maps from X\{p}
to the group G. Then the double quotient

G[[t]]\LG/LXG
is identified with the space of C-valued points of the moduli stack of principal G-bundles over
X. Note that this double quotient is in the category of stacks. On the other hand, LG/LXG is
identified with the space of C-valued points of the moduli stack of principal G-bundles EG over
X equipped with a trivialization of EG over the formal completion Dp of X along p.

Let MHiggs(G) denote the moduli stack of principal Higgs G-bundles (EG, θ) on X equipped
with a trivialization of EG over the formal completion Dp; the Higgs field is allowed to have a
pole at p of arbitrary order. The right-translation of action of LXG on LG produces an action
of LXG on the total space T ∗LG of the cotangent bundle of LG. The above moduli stack
MHiggs(G) is a quotient, by the action of LX(G), of an LX(G)-invariant subbundle W of T ∗LG.

We prove the following (see Theorem 4.2):

Theorem 1.1. Restrict the Liouville symplectic form on T ∗LG to W. This restriction descends
to a 2-form on the quotient space MHiggs(G) = W/LXG. The 2-form on MHiggs(G) obtained
this way is actually a symplectic form.

Similar we consider the following version of moduli of connections. Let MConn(G) denote
the moduli stack of pairs of principal G-bundles (EG,∇) on X and a meromorphic connection
∇ such that the principal bundle EG is equipped with a trivialization of EG over the formal
completion Dp; the connection ∇ is allowed to have a pole at fixed point p on X of arbitrary
order. As before, the right-translation of action of LXG on LG produces an action of LXG on
the total space T ∗LG of the cotangent bundle of LG. The above moduli stack MConn(G) is a
quotient, by the action of LX(G), of an LX(G)-invariant subbundle U of T ∗LG.

We prove the following (see Theorem 4.2):

Theorem 1.2. Restrict the Liouville symplectic form on T ∗LG to U. This restriction descends
to a 2-form on the quotient space MConn(G) = U/LXG. The 2-form on MConn(G) obtained
this way is actually a symplectic form.

A key ingredient in the proof of Theorem 1.1 and Theorem 1.2 is Theorem 2.1.

To describe Theorem 2.1, fix finitely many distinct points {Q1, · · · , Qn} ⊂ X. Fix a formal
parameter ξi at each Qi, 1 ≤ i ≤ n. Take a principal G-bundle EG on X. Its adjoint bundle
will be denoted by ad(EG). For each 1 ≤ i ≤ n, fix a trivialization of EG on the formal

completion Q̂i of X along Qi, which, in turn, gives a trivialization of ad(EG) on Q̂i. Using these
trivializations, we have

H0(X, ad(EG)(∗
n∑
i=1

Qi)) := lim
j→∞

H0(X, V ⊗ OX(j
n∑
i=1

Qi)) ↪→
n⊕
i=1

g⊗ C((ξi)),

H0(X, ad(EG)⊗KX(∗
n∑
i=1

Qi)) := lim
j→∞

H0(X, ad(EG)⊗KX(j

n∑
i=1

Qi)) ↪→
n⊕
i=1

g⊗ C((ξi))dξi,

where g is the Lie algebra of G. There is a natural nondegenerate pairing

R : (
n⊕
i=1

g⊗ C((ξi)))⊗ (
n⊕
i=1

g⊗ C((ξi))dξi) −→ C
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defined by

((Xi ⊗ fi(ξi)i=1)
n), ((Yi ⊗ gi(ξi)dξi)ni=1) 7−→

n∑
i=1

(Xi, Yi) Resξi=0(fi(ξi)gi(ξi)dξi)

We refer the reader to equation (2.3)).

Theorem 2.1, which generalizes [Ue, Theorem 1.22], says the following:

Theorem 1.3. The subspace

H0(X, ad(EG)(∗
n∑
i=1

Qi)) ⊂
n⊕
i=1

g⊗ C((ξi))

and the subspace

H0(X, ad(EG)⊗KX(∗
n∑
i=1

Qi)) ⊂
n⊕
i=1

g⊗ C((ξi))dξi

are the annihilators of each other under the residue pairing R.

Theorem 1.1 also holds when then order of the pole at p of the Higgs field in bounded by
a positive integer m and also the order of the infinitesimal neighborhood of p on which EG is
trivialized is m− 1; see Theorem 4.5.

Similar results are proved for the moduli stacks of framed connections; see Theorem 5.6 and
Theorem 5.7. The proof of these theorems follow along the same line as the proof of Theorem
4.2 and Theorem 5.6 as these stacks can be expressed as a sub-quotient of the cotangent bundle
of the Lie group of G.

2. Annihilators and the residue pairing

In this section, we prove some general results about annihilators of adjoint bundle-valued
forms on a smooth complex curve under the residue pairing.

Let X be an irreducible smooth complex projective curve or, equivalently, a compact con-
nected Riemann surface. The genus of X will be denoted by g. The canonical line bundle of the
curve X will be denoted by KX .

Let G be a affine algebraic semisimple group defined over C; the Lie algebra of G will be
denoted by g. Let EG be a principal G-bundle on the curve X. The adjoint vector bundle for
EG, which is the vector bundle on X associated to the principal G-bundle EG for the adjoint
action of G on its Lie algebra g, will be denoted by ad(EG).

Fix finitely many distinct point Q1, · · · , Qn on X. For notational convenience, for a vector
bundle V on X and any integer m, the vector bundle

V ⊗ OX(m
n∑
i=1

Qi) = V ⊗ (OX(
n∑
i=1

Qi)
⊗m) −→ X

will be denoted by V (m
∑n

i=1Qi). The direct limit

lim
j→∞

H0(X, V OX(j

n∑
i=1

Qi)),

constructed using the natural inclusion maps

H0(X, V OX(j

n∑
i=1

Qi)) ↪→ H0(X, V OX((j +m)

n∑
i=1

Qi)),
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for m ≥ 0, will be denoted by H0(X, V OX(∗
∑n

i=1Qi)).

For each 1 ≤ i ≤ n, let ξi be a choice of formal parameter at the point Qi. For each

1 ≤ i ≤ n, fix a trivialization of EG on the formal completion Q̂i of X along Qi. So the

restriction of ad(EG) to Q̂i is identified with the trivial Lie algebra bundle over Q̂i with fiber g.
Using these trivializations of ad(EG)

∣∣
Q̂i

, the Laurent expansions via the formal parameters give

us the following inclusion maps:
n⊕
i=1

ιi : H0(X, ad(EG)(∗
∑n

i=1Qi)) ↪→
⊕n

i=1 g⊗ C((ξi)), (2.1)

n⊕
i=1

ηi : H0(X, ad(EG)⊗KX(∗
∑n

i=1Qi)) ↪→
⊕n

i=1 g⊗ C((ξi))dξi. (2.2)

Let (− , −) denote the normalized Cartan-Killing form on the semisimple Lie algebra g. This
form induces the following residue pairing

R : (

n⊕
i=1

g⊗ C((ξi)))⊗ (

n⊕
i=1

g⊗ C((ξi))dξi) −→ C (2.3)

((Xi ⊗ fi(ξi)i=1)
n), ((Yi ⊗ gi(ξi)dξi)ni=1) 7−→

n∑
i=1

(Xi, Yi) Resξi=0(fi(ξi)gi(ξi)dξi).

Note that Resξi=0(fi(ξi)gi(ξi)dξi) is well-defined because the coefficients of ξki in the expansions
of fi(ξi) and gi(ξi) vanish for all sufficiently negative k. Moreover the pairing R is non-degenerate.

The following theorem is a generalization of Theorem 1.22 in [Ue].

Theorem 2.1. The subspace

H0(X, ad(EG)(∗
n∑
i=1

Qi))

in (2.1) and the subspace

H0(X, ad(EG)⊗KX(∗
n∑
i=1

Qi))

in (2.2) are the annihilators of each other under the residue pairing R in (2.3).

Proof. For any pair of positive integers m and N , consider the following short exact sequence of
coherent sheaves on X:

0 −→ ad(EG)(−m
n∑
i=1

Qi) −→ ad(EG)(N
n∑
i=1

Qi) −→
n⊕
i=1

m−1⊕
k=−N

g⊗ C · ξki −→ 0; (2.4)

we have used the chosen trivializations of ad(EG) over the formal completions Q̂i, 1 ≤ i ≤ n,

to identify the quotient sheaf in (2.4) with
⊕n

i=1

⊕m−1
k=−N g ⊗ Cξki . It can be shown that for N

sufficiently large,

H1(X, ad(EG)(N

n∑
i=1

Qi)) = 0. (2.5)

For example, if we take any N such that Nn+ µmin(ad(EG)) > 2(g − 1), where µmin(ad(EG))
is the smallest one among the slopes of the successive quotients for the Harder–Narasimhan
filtration of the vector bundle ad(EG), and g = genus(X), then using Serre duality we have

H1(X, ad(EG)(N

n∑
i=1

Qi)) = H0(X, ad(EG)∗(−N
n∑
i=1

Qi)⊗KX)∗ = 0,
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because the given condition that Nn+ µmin(ad(EG)) > 2(g − 1) implies that we have

µmax(ad(EG)∗(−N
n∑
i=1

Qi)⊗KX) = µmax(ad(EG)∗)−Nn−N + 2(g − 1)

= −µmin(ad(EG))−Nn−N + 2(g − 1) < 0,

where µmax(ad(EG)∗) is the largest one among the slopes of the successive quotients for the
Harder–Narasimhan filtration of the dual vector bundle ad(EG)∗. Here we are using the obser-
vation that any locally free coherent sheaf on X, whose µmax is negative, does not admit any
nonzero section; note that this observation follows immediately from the fact that µ(OX) = 0.
(See [HL] for the construction and the properties of the Harder–Narasimhan filtration.) Hence
(2.5) holds.

We note that using the Cartan-Killing form on g, we have

ad(EG) = ad(EG)∗. (2.6)

This implies that µmax(ad(EG)) = −µmin(ad(EG)).

Next we observe that H0(X, ad(EG)(−m
∑n

i=1Qi)) = 0 for all m sufficiently large. Indeed, if
m is such that µmax(ad(EG)) < mn, then we have H0(X, ad(EG)(−m

∑n
i=1Qi)) = 0 because

µmax(ad(EG)(−m
n∑
i=1

Qi)) = µmax(ad(EG))−mn < 0.

So take N and m to be sufficiently large such that

H1(X, ad(EG)(N

n∑
i=1

Qi)) = 0 = H0(X, ad(EG)(−m
n∑
i=1

Qi)). (2.7)

Consider the following long exact sequence of cohomologies corresponding to the short exact
sequence of sheaves in (2.4):

0 H0(X, ad(EG)(−m
∑n

i=1Qi)) H0(X, ad(EG)(N
∑n

i=1Qi))
⊕n

i=1

⊕m−1
k=−N g⊗ C · ξki

H1(X, ad(EG)(−m
∑n

i=1Qi)) H1(X, ad(EG)(N
∑n

i=1Qi)) 0.

γ

δ

(2.8)
Using (2.7), this reduces to the following short exact sequence:

H0(X, ad(EG)(N
∑n

i=1Qi))
⊕n

i=1

⊕m−1
k=−N g⊗ Cξki

H1(X, ad(EG)(−m
∑

i=1Qi)) 0.

γ

δ (2.9)

Next we observe that Serre duality, combined with the isomorphism given in (2.6), produces
a perfect pairing

B : H1(X, ad(EG)(−m
n∑
i=1

Qi))⊗H0(X, ad(EG)⊗KX(m
n∑
i=1

Qi)) −→ C. (2.10)

So this pairing B identifies the cohomology H1(X, ad(EG)(−m
∑n

i=1Qi)) with the dual of
H0(X, ad(EG)⊗KX(m

∑n
i=1Qi)).
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Take g(ξi) ∈
⊕m−1

k=−N g⊗ Cξki for every 1 ≤ i ≤ n. Consider

δ((g(xi)
n
i=1) ∈ H1(X, ad(EG)(−m

∑
i=1

Qi)),

where δ is the homomorphism in (2.9). One can show that

B(δ((g(xi))
n
i=1), τ) = R((g(xi))

n
i=1, (ηi(τ)ni=1)) (2.11)

for all τ ∈ H0(X, ad(EG)⊗KX(m
∑n

i=1Qi)), where ηi are the homomorphisms in (2.2) and R

is the pairing in (2.3). Indeed, (2.11) follows immediately by comparing the constructions of B
and R.

Since B in (2.10) is a perfect pairing, it follows immediately that we have δ((g(xi))
n
i=1) = 0

if and only if

B(δ((g(xi))
n
i=1), τ) = 0

for all τ ∈ H0(X, ad(EG) ⊗ KX(m
∑n

i=1Qi)). In view of (2.11), from this we conclude that
δ((g(xi))

n
i=1) = 0 if and only

R((g(xi))
n
i=1, ((ηi(τ)ni=1)) = 0

for every τ ∈ H0(X, ad(EG)⊗KX(m
∑n

i=1Qi)).

Now by the exactness of equation (2.9), we have ker δ = im γ. Therefore, we have proved the
following lemma:

Lemma 2.2. An element ω ∈
⊗n

j=1

⊕m−1
k=−N g⊗ Cξkj lies in the subspace

γ(H0(X, ad(EG)(N
n∑
j=1

Qj))) ⊂
n⊕
j=1

m−1⊕
k=−N

g⊗ Cξkj

(see (2.9) for γ) if and only if

R(ω, τ) = 0

for every τ ∈ H0(C, ad(EG)⊗KX(m
∑n

j=1Qj)), where R is the residue pairing in (2.3); here

H0(C, ad(EG)⊗KX(m
∑n

j=1Qj)) is considered as a subspace of
⊕n

i=1 g⊗ C((ξi))dξi using the

maps (ηi)
n
i=1 in (2.2).

Lemma 2.2 will be used in completing the proof of Theorem 2.1.

Suppose that an element

α = (α1, · · · , αn) ∈
n⊕
i=1

g⊗ C((ξi))

is annihilated by the subspace H0(X, ad(EG) ⊗KX(∗
∑n

i=1Qi)) for the pairing R in (2.3); as
before, H0(X, ad(EG)⊗KX(∗

∑n
i=1Qi)) is considered as a subspace of

⊕n
i=1 g⊗C((ξi))dξi using

the maps (ηi)
n
i=1 in (2.2). We can write

αi =

∞∑
k=−Ni

a
(i)
k ξ

k
i , (2.12)

where a
(i)
k ∈ g. Fix a positive integer N ′ sufficiently large such that we have

H1(X, ad(EG)((N ′ + j)
n∑
i=1

Qi)) = 0 (2.13)

for all j ≥ 0; it was observed earlier that it is possible to choose such an integer N ′ (see (2.5)).
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Now define

N := max{N1, · · · , Nn; N ′}, (2.14)

where Ni are as in (2.12) and N ′ is the integer in (2.13).

Recall the above condition on α that it is annihilated by H0(X, ad(EG) ⊗KX(∗
∑n

i=1Qi))
for the pairing R. For any

ω0 ∈ H0(X, ad(EG)⊗KX(∗
n∑
i=1

Qi)), (2.15)

write, using (2.2),

ω0 =
n⊕
i=1

+∞∑
j=−Mi

Xi,j ⊗ ξji · dξi, (2.16)

where Xi,j ∈ g. Then we have

R(α, ω0) =

n∑
i=1

Mi−1∑
k=−Ni

(a
(i)
k , Xi,−(k+1)). (2.17)

For any fixed m big enough, and 1 ≤ i ≤ n, we define a truncation αi,m of αi as follows:

αi,m :=
m−1∑
k=−Ni

a
(i)
k ξ

k
i (2.18)

(see (2.12)). Now consider (αi,m)ni=1. Note that for

m > max{M1, · · · , Mn}, (2.19)

the section ω0 in (2.15) lies in the following subspace

ω0 ∈ H0(X, ad(EG)⊗KX(m
n∑
i=1

Qi)) ⊂ H0(X, ad(EG)⊗KX(∗
n∑
i=1

Qi)).

Assume that m satisfies the inequality in (2.19). It can be shown that

R(α, ω0) = R(αi,m, ω0). (2.20)

To see this, first note that αi − αi,m has a zero at each Qi, 1 ≤ i ≤ n, of order at least
m. From the inequality in (2.19) and the expression in (2.16) we conclude that the pairing
(αi −αi,m, ω0) ∈ C((ξi)) does note have any pole at Qi. This immediately implies that (2.20)
holds.

Since α is annihilated by H0(X, ad(EG) ⊗KX(∗
∑n

i=1Qi)) for the pairing R, from (2.20) it
follows that (αi,m)ni=1 is also annihilated by H0(X, ad(EG) ⊗KX(m

∑n
i=1Qi)) for the pairing

R.

As (αi,m)ni=1 is annihilated by H0(X, ad(EG)⊗KX(m
∑n

i=1Qi)) for the pairing R, we observe
that Lemma 2.2 implies that there is a global section

α(m) ∈ H0(X, ad(EG)(N

n∑
i=1

Qi)) (2.21)

(see (2.14) for N) whose Laurent expansion at each Qi gives αi,m. Now further α(m) is also an
element of the space H0(X, ad(EG)(∗

∑n
i=1Qi)). So for any

ω̃ ∈ H0(X, ad(EG)⊗KX(∗
n∑
i=1

Qi)),
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the pairing (α(m), ω̃) is a meromorphic 1-form on X. Consequently, the total residue of the form

(α(m), ω̃) is zero. Therefore, α(m) in (2.21) is annihilated by any element of H0(X, ad(EG) ⊗
KX(∗

∑n
i=1Qi)) under the residue pairing.

Hence we conclude that (αi,m)ni=1 is annihilated by the entireH0(X, ad(EG)⊗KX(∗
∑n

i=1Qi))
under the pairing R.

Now for each i ∈ {1, · · · , n}, define

βi := αi −α(m). (2.22)

Observe that for all i ∈ {1, · · · , n}, this βi has a zero at Qi of order at least m (see (2.12) and
(2.18)).

To complete the proof of the theorem, it suffices to show that

βi = 0 (2.23)

for every 1 ≤ i ≤ n.

Suppose for some k, we have

βk 6= 0. (2.24)

Thus we can find s ≥ m such that

βk = bsξ
s
k + bs+1ξ

s+1
k + . . . , (2.25)

with bs 6= 0.

Recall that α and (αi,m)ni=1 are both actually annihilated by the entire H0(X, ad(EG) ⊗
KX(∗

∑n
i=1Qi)). Hence from (2.22) it follows that

R((βi)
n
i=1, ω0) = 0 (2.26)

for all ω0 ∈ H0(X, ad(EG)⊗KX(∗
∑n

i=1Qi)).

Choose m such that

m+ µmin(ad(EG)) > 0.

Since s ≥ m (see (2.25)), this implies that

s+ µmin(ad(EG)) > 0. (2.27)

Consider the following short exact sequence of coherent sheaves on X:

0 ad(EG)⊗KX ⊗ OX(sQk) ad(EG)⊗KX ⊗ OX((s+ 1)Qk)

ad(EG)Qk
⊗ (KX ⊗ OX((s+ 1)Qk))Qk

0,

where k is as in (2.25) and ad(EG)Qk
⊗ (KX ⊗OX((s+ 1)Qk)) is the fiber of ad(EG)Qk

⊗ (KX ⊗
OX((s+ 1)Qk)) over the point Qk. It gives an exact sequence of cohomologies

H0(X, ad(EG)⊗KX ⊗ OX((s+ 1)Qk)) ad(EG)⊗KX ⊗ OX((s+ 1)Qk)Qk

H1(X, ad(EG)Qk
⊗ (KX ⊗ OX((s+ 1)Qk))) .

ρ

δ

(2.28)

By Serre duality,

H1(X, ad(EG)⊗KX ⊗ OX(sQk)) = H0(X, ad(EG)∗ ⊗ OX(−sQk))∗.
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We have
µmax(ad(EG)∗ ⊗ OX(−sQk)) = −s− µmin(ad(EG)) < 0

using (2.27). This implies that we have H0(X, ad(EG)∗⊗OX(−sQk)) = 0, and hence it follows
that

H1(X, ad(EG)⊗KX ⊗ OX(sQk)) = 0.

Consequently, the homomorphism ρ in (2.28) is surjective.

Since ρ in (2.28) is surjective, there is a section

ω′ ∈ H0(X, ad(EG)⊗KX ⊗ OX((s+ 1)Qk)) ⊂ H0(X, ad(EG)⊗KX((s+ 1)

n∑
i=1

Qi))

with the following property: Let ω′s+1 be the coefficient of ξ
−(s+1)
k in the Laurent expansion of

ω′ around the point Qk (see (2.24) for k); then

(bs, ω
′
s+1) 6= 0, (2.29)

where bs is as in (2.25) (recall that bs 6= 0).

Since ω′, as a meromorphic section of ad(EG)⊗KX , has pole only at Qk, and (βi)
n
i=1 has no

pole at any Qi, we conclude that

R((βi)
n
i=1, ω

′) = (bs, ω
′
s+1) 6= 0

(see (2.29)). But this contradicts (2.26). Therefore, we conclude that (2.23) holds for every
1 ≤ i ≤ n. This completes the proof of the theorem. �

3. Symplectic Structures

3.1. Induced symplectic form. Let V1 be a complex vector space, not necessarily finite di-
mensional. Let

A : V1 ⊗ V1 −→ C
be an alternating bilinear form. The form gives an element

ω ∈
∧2

V ∗1 .

This element ω of
∧2 V ∗1 induces a linear map

ω̃ : V1 −→ V ∗1 .

Note that there are two possible choices of ω′: any v ∈ V1 is sent to the map w 7−→ A(v, w)
or to the map w 7−→ A(w, v). These two homomorphisms differ only by a sign. We say that
the form A is symplectic if the homomorphism ω̃ is injective, in which case ω̃ is also called
symplectic.

Let A be a symplectic structure on V1. Let V2 be a linear subspace of V1. We have the
following sequence of linear maps:

0 −→ V2 −→ V1
ω̃−→ V ∗1 −→ V ∗2 −→ 0. (3.1)

Let
f : V2 −→ V ∗2

be the composition maps in (3.1); let

K := Ker(f) ⊂ V2 (3.2)

be the kernel of f . Hence f induces an injective homomorphism

φ : V2/K ↪→ V ∗2 . (3.3)
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We address the question which asks whether φ induces a symplectic form on V2/K.

Consider the short exact sequence

0 −→ (V2/K)∗
α−→ V ∗2

α′−→ K∗ −→ 0, (3.4)

where α is the dual of the quotient map V −→ V2/K and the surjective homomorphism V ∗2 −→
K∗ is the dual of the inclusion map in (3.2). It is straightforward to see that we have an induced
symplectic structure on V2/K if

Im(φ) ⊆ Im(α), (3.5)

where φ and α are the homomorphisms in (3.3) and (3.4) respectively. Indeed, if (3.5) holds,
then φ factors through a homomorphism

φ̃ : V2/K ↪→ (V2/K)∗.

In other words, φ̃ is uniquely determined by the following condition:

α ◦ φ̃ = φ.

This homomorphism φ̃ is anti-symmetric because ω̃ in (3.1) is so.

To prove that (3.5) holds, take any v ∈ V2; its image in V2/K will be denoted by v̂. We have

φ(v̂)(w) = A(v, w)

for all w ∈ V2. Restrict φ(v̂) to K. For w ∈ K, we have

φ(v̂)(w) = A(v, w) = −A(w, v) = −f(w)(v) = 0

(see (3.2)). This implies that (3.5) holds.

Therefore, we have proved the following:

Proposition 3.1. Let A be a symplectic form on a vector space V1. Let V2 be a subspace, and
let K = Ker(f) be the kernel of the homomorphism f (constructed as in (3.2)). Then A induces
a symplectic structure A on the quotient vector space V2/K.

Note that we can describe the above subspace K as

LK = {v ∈ V2
∣∣ A(v, w) = 0 ∀ w ∈ V2}.

Since the form A is bilinear and anti-symmetric, LK is a vector subspace of V2 and it coincides
with the subspace

RK = {v ∈ V2
∣∣ A(w, v) = 0 ∀ w ∈ V2}.

3.2. Canonical symplectic structures. LetM be a smooth manifold. Consider the cotangent
bundle

p : T ∗M −→ M. (3.6)

We recall that there is a natural 1-form θ on T ∗M which is constructed as follows: For any
x ∈ M and any w ∈ (TxM)∗, we have θ(v) = w(dp(v)) for all v ∈ Tw(T ∗M), where dp :
T (T ∗M) −→ TM is the differential of the projection p in (3.6). This form θ is known as the
Liouville one-form. Then

ωT ∗M = dθ (3.7)

is a symplectic form on the total space of T ∗M , i.e., it is a non-degenerate closed 2-form on
T ∗M .

If M is a complex manifold, then θ and ωT ∗M are holomorphic forms. If M is a smooth
variety, then both θ and ωT ∗M are algebraic forms.
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3.3. Liouville form on groups. Let be G be a Fréchet Lie group not-necessarily finite dimen-
sional. Then the cotangent bundle T ∗G is trivial and is given by G × s∗, where s is the Lie
algebra of G . The tangent bundle of T ∗G is just (G × s∗)× (s× s∗).

Let p : T ∗G → G be the projection map. Now consider the derivative of the projection map

dp : T (T ∗(G ))→ TG .

If (α, β) ∈ s × s∗, the Liouville one-form is defined by the θ(α, β) = β(α). Similarly the
symplectic form is defined by the formula

ω((v, φ), (w,ψ)) = φ(w)− ψ(v).

3.4. Symplectic structures on the quotient. Let M be smooth manifold equipped with a
nondegenerate symmetric bilinear form ω which is nondegenerate. Here non-degeneracy means
the following: Let

ω′ : TM ↪→ T ∗M (3.8)

be the homomorphism produced by this nondegenerate symmetric bilinear form ω; it should be
clarified that non-degeneracy of ω means that the homomorphism ω′ is fiberwise injective. Note
that this condition implies that ω′ is an isomorphism if M is a finite dimensional manifold.

Assume that a Lie group G acts on M such that the above nondegenerate symmetric bilinear
form ω on M is preserved by the action of G . The Lie algebra of G will be denoted by g0. The
action of G on M produces a homomorphism

φ : M × g0 −→ TM (3.9)

from the trivial vector bundle M × g0 −→ M on M with fiber g0.

The action of G on M induces an action of G on the tangent bundle TM , and as well as on
the cotangent bundle T ∗M . Now consider the subsheaf FG of TM given by the G orbits; its
fiber at a point m ∈ M is Tm(G ·m). More precisely, FG is the image of the homomorphism φ
in (3.9), so we have

FG = image(φ) ⊂ TM. (3.10)

The annihilator of FG for the nondegenerate symmetric bilinear form ω on M will be denoted
by (FG )⊥. (Since ω is symmetric, FG does not depend on the two choices available to define the
annihilator.)

Let
V := ω′((FG )⊥) ⊂ T ∗M (3.11)

be the image of the annihilator (FG )⊥ under the homomorphism ω′ in (3.8), where FG is defined
in (3.10). Then V is a subsheaf of the cotangent bundle T ∗M of a manifold M . Note that V

plays the role of the annihilator of FG under the pairing ω.

Consider the action of G on T ∗M induced by the action of G on M . The following lemma
shows that the subspace V in (3.11) is preserved by this action of G .

Lemma 3.2. The action of G on T ∗M induced by the action of G on M , preserves V constructed
in (3.11).

Proof. Consider the action of G on TM induced by the action of G on M . The homomorphism
φ in (3.9) is evidently G –equivariant for the adjoint action of G on its Lie algebra g0 and the
above actions of G on M and TM . This immediately implies that the action of G on TM
preserves the subsheaf FG ⊂ TM in (3.10).

Recall the given condition that the action of G on M preserves the nondegenerate symmetric
bilinear form ω. Since the action of G on TM preserves FG , this implies that the action of G
on TM also preserves (FG )⊥.
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Consider the action of G on T ∗M induced by the action of G on M . The homomorphism
ω′ in (3.8) is G –equivariant because the nondegenerate symmetric bilinear form ω is preserved
by the action of G on M . Since the action of G preserves (FG )⊥, and ω′ is G –equivariant, we
conclude that the action of G on T ∗M preserves ω′((FG )⊥) = V. �

Consider the action of G on V obtained in Lemma 3.2. Since the natural map

p : T ∗M −→ M (3.12)

is G –equivariant, the natural projection V −→ M is also G –equivariant. Consequently, we have

VG := V/G −→ M/G . (3.13)

Now consider the Liouville one-form θM on T ∗M defined in Section 3.2. The following lemma
says that the action of G on T ∗M preserves θM .

Lemma 3.3. The action of G on T ∗M , induced by the action of G on M , preserves the Liouville
one-form θM on T ∗M defined in Section 3.2.

Proof. This a straight-forward computation using the definition of the Liouville one-form θM . �

Restrict the Liouville one-form θM to V (defined in (3.11)). Let

θ′M ∈ H0(V, T ∗V) (3.14)

be the restriction of θM to V.

Our aim is to find sufficient conditions ensuring the following:

(1) The 1-form θ′M on V (see (3.14)) descends to a 1-form ϑ on the quotient VG in (3.13).
(2) The exterior derivative dϑ on VG is non-degenerate.

The following lemma ensures the first one of the above two requirements actually holds.

Lemma 3.4. The one-form θ′M on V (defined in (3.14)) descends to the quotient VG in (3.13).

Proof. As before, g0 denotes the Lie algebra of G . The action of G on T ∗M , induced by the
action of G on M , produces a homomorphism

η̃ : (T ∗M)× g0 −→ T (T ∗M). (3.15)

Consider the projection p in (3.12). Let

dp : T (T ∗M) −→ TM (3.16)

be the differential of p. Let

η := (dp) ◦ η̃ : (T ∗M)× g0 −→ TM (3.17)

be the composition of maps, where η̃ is constructed in (3.15).

From Lemma 3.2 we know that the action of G on T ∗M preserves V. Also, Lemma 3.3 says
that G preserves θM . Consequently, it suffices to prove the following statement:

For any x ∈ M , u ∈ Vx ⊂ T ∗xM and v ∈ g0,

u(η(u, v)) = 0, (3.18)

where η is the map in (3.17). (Note that η(u, v) ∈ TxM and u(η(u, v)) ∈ C because u ∈ T ∗xM .)

To prove (3.18), first note that the maps φ (in (3.9)) and η (in (3.17)) are related as follows:
For any y ∈ M , u′ ∈ T ∗yM and v′ ∈ g0,

η(u′, v′) = φ(p(u′), v′), (3.19)
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where p is the projection in (3.12). Clearly, we have φ(p(u′), v′) ∈ FG
y , where FG is defined in

(3.10). Therefore, for any

t ∈ ((FG )⊥)y ⊂ TyM,

we have ω(y)(t, φ(p(u′), v′)) = 0, where ω is the nondegenerate symmetric bilinear form on M .
This implies that

θM (ω′(t))(φ(p(u′), v′)) = ω′(t)(φ(p(u′), v′)) = 0.

So (3.19) gives that θM (ω′(t))(η(u′, v′)) = 0. But θM (ω′(t))(η(u′, v′)) = ω′(t)(η(u′, v′)), and
hence we conclude that ω′(t)(η(u′, v′)) = 0. From this it follows immediately that (3.18) holds.
This completes the proof of the lemma. �

Let

ϑ ∈ H0(VG , T
∗VG ) (3.20)

denote the unique 1-form on the quotient VG in (3.13) whose pullback to V is θ′M ; the existence
of ϑ is ensured by Lemma 3.4. Consequently, the pullback of the 2-form dϑ to V coincides with
dθ′M .

Proposition 3.5. The exterior derivative dϑ (see (3.20) for ϑ) is a non-degenerate 2-form
on VG . In particular the total space if VG −→ M/G inherits a symplectic structure from the
symplectic structure dθM on T ∗M .

Proof. In view of Proposition 3.1, the non-degeneracy of dϑ is in fact a consequence of the
non-degeneracy of dθM . To see this, recall that V is preserved by the action of G on T ∗M (see
Lemma 3.2). Let

ϕ : V× g0 −→ TV (3.21)

be the homomorphism given by the action of G on V, where g0, as before, is the Lie algebra of
G .

Take a point

q ∈ ω′((FG )⊥) = V

(see (3.11)). The image of q in V/G = VG will be denoted by q. It can be shown that the
tangent space TqVG has a natural identification

TqVG = (TqV)/(ϕ(q, g0)), (3.22)

where ϕ is the map in (3.21). Indeed, (3.22) is an immediate consequence of the properties of a
quotient space.

The Liouville symplectic form dθM on T ∗M (see (3.7)) produces a a fiber-wise injective
homomorphism

β : T (T ∗M) ↪→ T ∗(T ∗M) (3.23)

(see (3.8)).

Using the inclusion map V ↪→ T ∗M in (3.11), we have the maps

TqV ↪→ Tq(T
∗M)

β(q)−−−−→ T ∗q (T ∗M) � T ∗q V, (3.24)

where β is the homomorphism in (3.23). Let

ρ : TqV −→ T ∗q V

be the composition of maps in (3.24). It is straightforward to check that kernel(ρ) coincides
with ϕ(q, g0). From (3.22) we know that the quotient (TqV)/(ϕ(q, g0)) coincides with TqVG .
Consequently, using Proposition 3.1 we conclude that dϑ is nondegenerate. Hence dϑ is a
symplectic form on VG . �
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4. Symplectic structure on moduli of Higgs bundles with framings

Let G be a semisimple and simply connected affine algebraic group defined over C. The Lie
algebra of G will be denoted by g. Let X be an irreducible smooth complex projective curve
equipped with a marked point p ∈ X. We first recall the uniformization of the stack of principal
G-bundles on X.

4.1. Uniformization of principal G-bundles. Let t be a formal parameter considered as a
holomorphic coordinate at the point p ∈ X. By Harder’s theorem, any principal G-bundle on
X\{p} is trivial [Ha]. Hence by the uniformization theorem [Fa, KNR, BL], the following is
obtained:

The C-valued points of the moduli stack of principal G-bundles on the projective curve X
can be described as the double quotient

BunG(X) = G[[t]]\G((t))/G(X\{p}), (4.1)

where G(X\{p}) is the space of algebraic maps from X\{p} to the group G. For notational
conveniences, the loop group G((t)) is also denoted by LG, while the group G[[t]] of positive
loops is denoted by L+G and the subgroup G(X\{p}) is denoted by LXG. So, (4.1) can be
re-written as

BunG(X) = L+G\LG/LXG.

We can consider the elements of the loop group LG as the C-valued points of the moduli stack
of principal G-bundles on X equipped with a chosen trivialization on the complement X\{p}
and a chosen trivialization on the formal disc Dp around the point {p}. Similarly the ind-variety
L+G\LG parametrizes principal G-bundle on X equipped with a chosen trivialization on the
complement X\{p}.

Now consider the cotangent bundle T ∗LG of the loop group LG. The cotangent bundle T ∗LG
is trivial, in fact, it is identified with the trivial vector bundle

S := LG×
(
g⊗KDp((t))

)
; (4.2)

here we have identified g with its dual g∗ using the normalized Cartan-Killing form (−, −) on
g. The term KDp in (4.2) is the canonical bundle of a formal neighborhood Dp of p ∈ X. The
group LG acts on the cotangent bundle S of LG.

The loop group LG carries a natural nondegenerate symmetric bilinear form. It is defined as
follows:

〈A⊗ tm, B ⊗ tn〉 = δn+m,0 (A, B) , (4.3)

where A, B ∈ g, and (−, −) is the normalized Cartan-Killing form on g, while δi,j = 0 if
i 6= j and it is 1 if i = j (see [PS]). Note that (4.3) defines a bilinear form 〈−, −〉 on the
vector space g((t)) using bilinearity. The bilinear form on g((t)) is evidently symmetric. It is
also nondegenerate, meaning the homomorphism

g((t)) −→ g((t))∗ (4.4)

given by the pairing is injective. To see the injectivity of the homomorphism in (4.4), for
any A ⊗ tm, where A ∈ g, take any B ∈ g such that (A, B) 6= 0. Now, clearly we have
〈A⊗ tm, B ⊗ t−m〉 6= 0, and hence the bilinear form on g((t)) is nondegenerate.

So (4.3) defines a nondegenerate symmetric bilinear form on the tangent space of LG at the
identity element of LG. Now extend this to a nondegenerate symmetric bilinear form on LG
using left-translations.
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This nondegenerate symmetric bilinear form on LG given by (4.3) will be denoted by ω. As
in (3.8), let

ω′ : T (LG) ↪→ T ∗(LG) (4.5)

be the homomorphism given by ω; note that ω′ is fiber-wise injective because

• ω′ injective on the fiber Te(LG) over the identity element of LG, and
• ω′ is LG–equivariant.

From the point of view of Proposition 3.5, the role of M in that proposition will be played
by LG while the role of G will be played by LXG. In the rest of this section we will consider
various subbundles of T ∗LG to which Proposition 3.5 can be applied.

4.2. Principal bundles with meromorphic Higgs fields. Let EG be a principal G-bundle
on X. The adjoint bundle for EG will be denoted by ad(EG); we recall that ad(EG) is the Lie
algebra bundle on X associated to the principal G-bundle EG for the adjoint action of G on its
Lie algebra g. A meromorphic Higgs field on EG is a meromorphic section of the direct limit

ϕ ∈ H0(X, ad(EG)⊗KX(∗p)) = lim
i→∞

H0(X, ad(EG)⊗KXOX(ip)), (4.6)

where KX , as before, is the canonical line bundle of X; the above direct limit is constructed
using the natural inclusion maps ad(EG)⊗ OX(jp) ↪→ ad(EG)⊗ OX((j + k)p) where k ≥ 0.

A meromorphic Higgs G-bundle is a principal G-bundle on X equipped with a meromorphic
Higgs field.

We will construct a subbundle
W ⊂ T ∗LG (4.7)

of the cotangent bundle T ∗LG. To describe the fibers of W point-wise, take any point α ∈ LG.
The point α gives a principal G-bundle EG on X with a given trivialization of EG on X\{p}
and a given trivialization of EG on formal completion Dp. Now consider the adjoint vector
bundle ad(EG) on X. Note that the elements of g ⊗KDp((t)) can be considered as sections of
(ad(EG) ⊗ KX)Dp with pole of arbitrary order at p. The fiber Wα consists of all elements of
g ⊗ KDp((t)) that extend to a section of ad(EG) ⊗ KX over the complement X \ {p}. So the
only point of X where such a section can have pole is p; the order, at p, of the pole of this
meromorphic section can be arbitrary.

Recall that LXG ↪→ LG, and consequently LXG acts on LG via left-translations. This action
of LXG on LG induces actions of LXG on both TLG and T ∗LG.

Lemma 4.1. The action of LXG on T ∗LG, induced by the action of LXG on LG, preserve the
subbundle W in (4.7).

Proof. We recall that an element α of LG gives a principal G-bundle EG on X with given
trivializations of EG over X\{p} and the formal completion Dp. It is easy to see that we have
α ∈ LXG ⊂ LG if and only if the trivialization of EG over Dp extends to a trivialization of
EG over entire X. So we get two trivializations of of EG

∣∣
X\{p}: One given directly by α and

the other obtained by extending, to entire X, the trivialization of EG
∣∣
Dp

given by α. These two

trivializations of EG
∣∣
X\{p} differ by an automorphism of EG

∣∣
X\{p}.

Now take any β ∈ LG. it gives principal G-bundle FG on X with given trivializations of FG
over X\{p} and Dp. As before, take any α ∈ LXG. Then the element βα ∈ LG gives the same
principal G-bundle FG on X (the principal G-bundle given by β), and the trivialization of FG
over Dp for βα remains unchanged (it coincides with the one given by β). But the trivialization
of FG over X\{p} for βα changes by the automorphism of the trivial principal G-bundle given
by α.
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Take β ∈ LG as above. Then the fiber Wβ of W (see (4.7)) over β is canonically identified
with the space of all meromorphic Higgs fields on the principal G-bundle FG given by β.

From the above descriptions of Wβ, and the action of LXG on LG, it follows immediately
that the action of LXG on T ∗LG, induced by the action of LXG on LG, preserve the subbundle
V in (4.7). �

As mentioned before, from the point of view of Proposition 3.5 the role of G will be played
by LXG. Consider the quotient W/LXG which is a subbundle of the quotient (T ∗LG) /LXG.
Note that

W/LXG ⊂ (T ∗LG) /LXG

are vector bundles on the space LG/LXG. It may be mentioned that W/LXG is precisely the
moduli stack of principal G-bundles EG on X, equipped with

• an arbitrary order framing of EG at p (meaning a trivialization of EG over Dp), and
• a meromorphic Higgs field on EG.

We are in a position to prove the following theorem.

Theorem 4.2. Consider the moduli stack W/LXG parametrizing principal G-bundles on X
equipped with an arbitrary order framing at p and a meromorphic Higgs field. It inherits a
canonical symplectic structure constructed using the Liouville symplectic structure on T ∗LG.

Proof. We need to put ourselves in the set-up of Proposition 3.5 in order to apply it. As in
(3.10), construct the subsheaf

FLXG ⊂ T (LG) (4.8)

using the left-translation action of the subgroup LXG on LG. Let

(FLXG)⊥ ⊂ T (LG)

be the annihilator of FLXG in (4.8) for the nondegenerate symmetric bilinear form ω on LG (see
(4.5) and (4.3)). So we have

V := ω′(FLXG) ⊂ T ∗(LG), (4.9)

where ω′ is the homomorphism in (4.5).

To prove the theorem it is enough to show that the vector subbundle V ⊂ T ∗LG (see (4.9))
coincides with the subbundle W ⊂ T ∗LG in (4.7).

As before, t is a formal parameter considered as a holomorphic coordinate at the point p ∈ X.
Take any element α ∈ LG. The fiber Tα(LG) of the tangent bundle T (LG) over the point α is
identified with g((t)). Indeed, this follows immediately from the fact that the Lie algebra of the
loop group LG is g((t)).

Let EG denote the principal G-bundle on X given by α ∈ LG. Recall that α gives a
trivialization of the principal G-bundle EG over the formal disc Dp around the point p ∈ X.
This trivialization of the principal G-bundle EG over Dp produces a trivialization of the adjoint
vector bundle ad(EG) over Dp. More precisely, the restriction of ad(EG) to Dp is identified with
the trivial Lie algebra bundle Dp × g −→ Dp over Dp with fiber g.

Using this trivialization of ad(EG) over Dp, for any σ ∈ H0(X, ad(EG) ⊗ OX(jp)), where
j ≥ 1, by taking the Laurent expansion of σ around p we get an element of g((t)) = Tα(LG).
Therefore, we have an injective homomorphism

H0(X, ad(EG)⊗ OX(∗p)) := lim
j→∞

H0(X, ad(EG)⊗ OX(jp)) ↪→ g((t)) = Tα(LG). (4.10)

It should be mentioned that the above homomorphism H0(X, ad(EG) ⊗ OX(∗p)) ↪→ g((t)) is
Lie algebra structure preserving.
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The fiber (FLXG)α of FLXG (see (4.8)) is the Lie algebra H0(X, ad(EG)⊗OX(∗p)); it should
be clarified that H0(X, ad(EG)⊗OX(∗p)) is considered as a subspace of Tα(LG) = g((t)) using
the homomorphism in (4.10). That (FLXG)α = H0(X, ad(EG)⊗ OX(∗p)) is a straightforward
consequence of the fact that the Lie algebra of LXG is

g⊗H0(X,OX(∗p)) = g⊗ ( lim
j→∞

H0(X, OX(jp))).

Now from Theorem 2.1 it follows immediately that

(H0(X, ad(EG)(∗p)))⊥ = (H0(X, ad(EG)⊗KX(∗p))).

This proves the assertion that the vector subbundle V ⊂ T ∗LG (see (4.9)) actually coincides
with the subbundle W ⊂ T ∗LG in (4.7). As observed before, this statement completes the
proof of the theorem. �

4.3. Higgs fields with pole of bounded order. Fix a positive integer k. We will consider
Higgs fields with pole at p of order at most k. Let EG be a principal G-bundle on X. A Higgs
field on EG with a pole of order k is an element of H0(X, ad(EG)⊗KX⊗OX(kp)), where ad(EG)
is the adjoint bundle for EG.

Before we proceed further we recall the notion of framing of a principal G bundle at a point
p ∈ X.

Definition 4.3. A k-th order framing of a principal G bundle EG at a point p is a choice of a
trivialization of EG|(k+1)p.

We now consider the moduli stack of principal G-bundles on X with a k-th order framing and
a Higgs field with pole of order k. Following the strategy of Section 4.2, a symplectic structure
on it will be constructed.

Consider W constructed in (4.7). Let Wk be the subbundle of W which is described fiber-
wise as follows: Take any α ∈ LG. Denote by EG the principal G-bundle on X given by α.
Recall that the fiber Wα of W over α consists of all elements of g ⊗KDp((t)) that extend to a
meromorphic section of ad(EG) ⊗KX with allowed pole only at the fixed point p (so they are
holomorphic on the complement X \ {p}). Similarly define Wk

α be the subspace of Wα whose
elements have pole of order at most k at p.

Let Gk[[t]] be the subgroup of the group of positive loops G[[t]] consisting of elements of the
form e+

∑∞
j=0 gjt

k+j , where e is the identity element of G. Note that the group Gk[[t]]× LXG
acts on the loop group LG and hence it also acts on T ∗LG.

We have the following analog of Lemma 4.1.

Lemma 4.4. The action of the group Gk[[t]] × LXG on T ∗LG preserves the above subbundle
Wk, thus producing a vector bundle Wk

Gk[[t]]×LXG
on Gk[[t]]\LG/LXG.

Proof. The Lie algebra of Gk[[t]] is the subspace

tk · g[[t]] ⊂ g[[t]].

Consider the residue pairing R in (2.3). It can be shown that the annihilator of the above
subspace tk · g[[t]] for R is t−kg[[t]]dt. Indeed, clearly,

R(tk · g[[t]], t−kg[[t]]dt) = 0

because for any v ∈ tk · g[[t]] and w ∈ t−kg[[t]]dt, their tensor product v ⊗ w does not have a
pole. So the annihilator of tk · g[[t]] contains t−kg[[t]]dt.
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To prove that the annihilator of tk · g[[t]] is contained in t−kg[[t]]dt, take any

w ∈ g((t))dt \ t−kg[[t]]dt

lying in the complement. Let t−k−`β be the first nonzero term of w; so ` ≥ 1 and β ∈ g. Take
any β′ ∈ g such that

(β , β′) 6= 0,

where (− , −) is the normalized Cartan-Killing form on g. Now note that

R(tk+`−1β′, w) = (β , β′) 6= 0.

Consequently, the annihilator of tk · g[[t]] is contained in t−kg[[t]]dt.

In view of the above observation, the lemma follows by using the argument in the proof of
Lemma 4.1. �

Lemma 4.4 allows us to apply Proposition 3.5, and we get the following theorem.

Theorem 4.5. Consider the moduli stack parametrizing the principal G-bundles EG on X with
k-th order framing of EG at p and a meromorphic Higgs field on EG with a pole of order at
most k at p. This moduli stack has a canonical symplectic structure coming from the Liouville
symplectic structure on T ∗LG.

The proof is similar to the proof of Theorem 4.2 and we omit the details.

5. Principal bundles with framings and meromorphic connections

5.1. Meromorphic connections. As before, X is an irreducible smooth complex projective
curve. Fix a marked point p ∈ X. Let $ : EG −→ X be a principal G-bundle on X. The
Atiyah bundle At(EG) of EG is the quotient (TEG)/G −→ EG/G = X, which a vector bundle
on X. Let

0 −→ ad(EG) −→ At(EG)
d$−−−→ TX −→ 0 (5.1)

be the Atiyah exact sequence on X, where d$ is the differential of the above projection $ (see
[At]); note that ad(EG) = T$/G, where T$ ⊂ TEG is the relative tangent bundle for the
projection $.

We recall from [At] that an algebraic connection on EG is a homomorphism

D : TX −→ At(EG)

such that (d$)◦D = IdTX , where d$ is the homomorphism in (5.1). A meromorphic connection
on EG is a homomorphism

D : (TX)⊗ OX(−np) −→ At(EG),

where n is some nonnegative integer, such that (d$) ◦D = Id(TX)⊗OX(−np); note that we have

(TX)⊗ OX(−np) ⊂ TX

because it is assumed that n ≥ 0, so the composition (d$) ◦D makes sense.

If D : (TX)⊗ OX(−np) −→ At(EG) is a homomorphism such that

(d$) ◦D = Id(TX)⊗OX(−np),

then D will be a called a meromorphic connection on EG with a pole of order at most k.

For the trivial principal G-bundle E0
G = M ×G on any smooth complex variety M , we have

At(E0
G) = ad(E0

G) ⊕ TM . The algebraic connection on E0
G defined by the natural inclusion

map
TM ↪→ ad(EG)⊕ TM = At(E0

G)
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is called the trivial connection on E0
G.

Every principal G-bundle FG on X admits a meromorphic connection. Indeed, this follows
immediately from the fact that the restriction of FG to the complement X \ {p} is trivial; the
trivial connection on FG

∣∣
X\{p} is a meromorphic connection on FG. The space of all meromorphic

connections on FG is an affine space for the vector space H0(X, ad(FG)⊗KX ⊗OX(∗p)). Recall
that H0(X, ad(FG)⊗KX⊗OX(∗p)) is the space of all meromorphic Higgs fields on the principal
G-bundle FG.

Take any element α ∈ LG. Recall that α gives a principal G-bundle EG on X, and

• a trivialization of EG over the complement X \ {p}, and
• a trivialization of EG over the formal disc Dp around the point p ∈ X.

Consider the trivial connection on EG
∣∣
X\{p} given by the above trivialization of EG over X \{p}.

It evidently defines a meromorphic connection on EG. So for each α ∈ LG, the corresponding
principal G-bundle EG on X is equipped with a meromorphic connection given by α. This
meromorphic connection on the principal G-bundle EG on X given by α will be denoted by

Dα. (5.2)

Lemma 5.1. Take any α ∈ LG, and let EG be the principal G-bundle on X corresponding to
α. Then the space of all meromorphic connections on EG is canonically identified with the space
of all meromorphic Higgs fields on EG.

Proof. Take any meromorphic Higgs field

ϕ ∈ H0(X, ad(EG)⊗KX(∗p)) = lim
i→∞

H0(X, ad(EG)⊗KXOX(ip))

on EG (see (4.6)). Consider Dα + ϕ, where Dα is the meromorphic connection on EG given by
α (see (5.2)). It is evident that Dα + ϕ is a meromorphic connection on the principal G-bundle
EG. Conversely, if D is a meromorphic connection on the principal G-bundle EG, then D−Dα

is a meromorphic Higgs field on EG. �

From Lemma 5.1 it follows immediately that for any element α ∈ LG, the fiber Wα of W

(see (4.7)) over the point α is identified with the space of all meromorphic connections on the
principal G-bundle EG given by α.

Let U denote the space of all pairs of the form (α, D), where α ∈ LG and D is a meromorphic
connection on the principal G-bundle EG on X given by α. We have the natural projection

Φ : U −→ LG (5.3)

that sends any (α, D) ∈ U to α. So the fiber Uα = Φ−1(α), where α ∈ LG, is the space of
meromorphic connection on the principal G-bundle on X given by α.

Lemma 5.1 has the following corollary:

Corollary 5.2. The fiber bundle U −→ LG in (5.3) is canonically identified with the fiber
bundle W in (4.7). In particular, U is sub-vector bundle of the cotangent bundle T ∗LG (because
W is so).

We recall that the action of LXG on T ∗LG, induced by the action of LXG on LG, preserves
the subbundle W (see Lemma 4.1). Using the identification of U with W given by Corollary
5.2, the action of LXG on W produces an action of LXG on U. Clearly, the map Φ in (5.3) is
equivariant for the actions of LXG on U and LG. However, U has a different action of LXG
which also satisfies the condition that the map Φ is equivariant. This action of LXG on U is
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actually constructed using a different action of LXG on T ∗LG. We will now describe the new
action of LXG on T ∗LG.

Take any (α, θ) ∈ LG× (KDp ⊗ g((ξ))) and g ∈ LXG. Then define the action

(α, θ) · g = (αg, g−1Dα(g) + Ad(g)(θ)), (5.4)

where Dα is the meromorphic connection in (5.2). It is straight-forward to check that (5.4)
defines an action of LXG on T ∗LG. The natural projection T ∗LG −→ LG remains LXG-
equivariant for this new action of LXG.

Lemma 5.3. The action of LXG on T ∗LG in (5.4) preserves the subbundle W ⊂ T ∗LG in in
(4.7).

Proof. Let EG denote the principal G-bundle on X given by α. In (5.4), assume that θ extends
to a section of ad(EG)⊗KX over the entire complement X \ {p}. Since g ∈ LXG, this implies
that g−1Dα(g) is defined on entire X \ {p}; recall that Dα in (5.2) is a regular connection on
EG
∣∣
X\{p} −→ X \ {p}. Also, Ad(g)(θ) in (5.4) is evidently defined over entire X \ {p}, because

both g and θ are defined over X \ {p}. From these it follows immediately that the action of
LXG on T ∗LG in (5.4) preserves the subbundle W. �

From Lemma 5.3 we conclude that the action of LXG on T ∗LG in (5.4) induces an action on
the subbundle W in in (4.7). Therefore, using Corollary 5.2, we have the following:

Corollary 5.4. Consider the action of LXG on W induced by the action of LXG on T ∗LG
in (5.4). Using the identification of W with U in Corollary 5.2, this action of LXG on T ∗LG
produces an action of LXG on U.

Lemma 5.5. The action of LXG on T ∗LG in (5.4) preserves the Liouville symplectic form on
T ∗LG.

Proof. This is a straight-forward computation. It should be clarified that the Liouville 1-form
(see Section 3.3) is not preserved by the action of LXG, but its exterior derivative, namely the
Liouville symplectic form on T ∗LG, is preserved by the action of LXG. This follows using the fact
that any connection on a principal bundle on a smooth complex curve is automatically integrable.
(Any connection on a principal bundle on X is integrable because

∧2 Ω1
X =

∧2KX = 0.) �

Consider the action of LXG on U obtained in Corollary 5.4. The corresponding quotient

M := U/LXG (5.5)

is the moduli stack of principal G-bundles FG on X equipped with

• a trivialization of FG
∣∣
Dp
−→ Dp on the formal disc Dp around the point p ∈ X, and

• a meromorphic connection on FG.

The following theorem is an analog of Theorem 4.2 for the moduli stack M defined (5.5).

Theorem 5.6. The moduli stack MConn(G) in (5.5), which parametrizes the principal G-bundles
on X with a meromorphic connection and a trivialization over Dp, has a canonical symplectic
structure coming from Liouville symplectic structure on the total space of the cotangent bundle
T ∗LG.

Proof. Just like Theorem 4.2, this theorem will also be proved using Proposition 3.5. To get
into the set-up of Proposition 3.5, set G in Proposition 3.5 to be LXG. Also, set M = LG in
Proposition 3.5. Set ω in Proposition 3.5 to be the nondegenerate symmetric bilinear form ω on
LG constructed in (4.3).
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Define FG as in (3.10), and then define V as (3.11). Then W coincides with V, which follow
using Theorem 2.1. Therefore, U is identified with V, because U is identified with W. Now the
theorem follows from Proposition 3.5. �

5.2. Singular connections with pole of bounded order. As in Section 4.3, let k be a
positive integer and consider principal G bundles EG on X which is equipped with

• a framing of order k (see Definition 4.3) at the point p ∈ X, and
• a meromorphic connection with a pole of order at most k at the point p.

Recall the fiber bundle Φ : U −→ LG constructed in (5.3). Let

Uk ⊂ U

be the subbundle whose fiber over any point α ∈ LG consists of all principal G-bundle EG on
X equipped with a regular connection on EG

∣∣
X\{p} whose pole at p has order at most k.

As in Section 4.2, the group Gk[[t]] × LXG acts on the loop group LG and hence also on
T ∗LG. Thus applying Proposition 3.5, we get the following:

Theorem 5.7. Let Mk
Conn(G) denote the moduli stack parametrizing the principal G-bundles

on X equipped with a k-th order framing at the point p and a meromorphic connection with pole
of order at most k at p. Then Mk

Conn(G) inherits a canonical symplectic structure coming from
the symplectic structure on T ∗LG.
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