Published:
  1. Geometry and Topology of subcomplex complements in the 3-sphere (Ph.D. thesis).
  2. Surgery groups of knot and link complements.  (with C. S. Aravinda and F. T. Farrell). (Bull. London Math. Soc. 29 (1997) 400-406 ).
  3. Surgery groups of submanifolds of S^3.   (Topology Appl., 100/2-3 (2000) 223-227).
  4. Vanishing structure set of Haken 3-manifolds. ( MPI-preprint series, 1998 (71) ),(Math. Ann. 318 (2000) 3, 609-620 .)
  5. L-theory of 3-manifolds with non-vanishing first Betti number. (Internat. Math. Res. Notices 2000, no.3., 107-113 ).
  6. Algebraic K-theory of pure braid groups.   (with C. S. Aravinda and F. T. Farrell). (Asian J. of Math., 4 (2000), 337-344 .)
  7. The Whitehead groups of braid groups vanish.   (with F. T. Farrell)(Internat. Math. Res. Notices, no. 10., 2000, 515-526 ).
  8. Finiteness of simple homotopy types up to s-cobordism of aspherical 4-manifolds. (Internat. Math. Res. Notices, no. 3., 2001, 165-171 ).
  9. K-theory of virtually poly-surface groups. (Algebr.  Geom. Topol. 3 (2003) 103--116 ).
  10. Topology of 3-manifolds and a class of groups II .(Bol. Soc. Mat. Mexicana(3) 10 (2004), 467-485 (Special Issue) dedicated to Professor Francisco Gonzalez Acuna on occasion of his 60'th birthday).
  11. Erratum to `K-theory of virtually poly-surface groups' .(Algebr. Geom. Topol., (2004) ). (appended at the end of paper [9] in the AGT website as a provisional erratum).
  12. The Fibered isomorphism conjecture for complex manifolds. (Acta Math. Sin. (Engl. Ser.) 23 (2007), no. 4, 639--658).
  13. The Farrell-Jones isomorphism conjecture for 3-manifold groups . (J. K-Theory 1 (2008) 49-82.) (Accepted for publication in K-theory. Later shifted to the new Journal of K-theory). Click here to read the reasons for this shift.
  14. The isomorphism conjecture for 3-manifold groups and K-theory of virtually poly-surface groups. (J.  K-Theory 1 (2008), 83-93.) (Accepted for publication in K-theory. Later shifted to the new Journal of K-theory). Click here to read the reasons for this shift.
  15. Algebraic K-theory of groups wreath product with finite groups . (Topology Appl., 154 (2007), 1921-1930.).
  16. The fibered isomorphism conjecture in L-theory. (Topology Appl. 157 (2010) pp. 508-515).
  17. Surgery on $\widetilde {\Bbb {SL}}\times {\Bbb E}^n$-manifolds .(with J.A. Hillman). (Canad. Math. Bull. 54 (2011) pp. 283-287).
  18. Surgery groups of the fundamental groups of hyperplane arrangement complements .(Arch. Math. 96 (2011) pp. 491-500).
  19. Vanishing structure set of 3-manifolds .(Topology Appl. 158 (2011) pp. 810-812).
  20. The isomorphism conjecture in L-theory: graphs of groups. (Homology Homotopy Appl. 14 (2012) No 1. pp. 1-17).
  21. The isomorphism conjecture for groups with generalized free product structure (Handbook of Group Actions. Vol. II, 77-119, Adv. Lect. Math. (ALM), 32, Int. Press, Somerville, MA, 2015. Eds. L. Ji, A. Papadopoulos and S.T. Yau. ).
  22. Manifold Topology: A Prelude (Math. Student. 85 (2016), no. 3-4, 73-98. ).
  23. K-theory-Proceedings of the International Colloquium, Mumbai, 2016. Edited by V. Srinivas, S. K. Roushon, Ravi A. Rao, A. J. Parameswaran and A. Krishna. Published for the Tata Institute if Fundamental Research and distributed by the Amerian Mathematical Society. Hidustan Book Agency, New Delhi, 2018. xxii+393 pp.
  24. A sufficient condition for a 2-dimensional orbifold to be good (Math. Student. 88 (2019), no. 1-2, 165-171. ).
  25. A certain structure of Artin groups and the isomorphism conjecture (Canad. J. Math. 73 (2021), no. 4., 1153-1170. ).
  26. Erratum: A certain structure of Artin groups and the isomorphism conjecture (Canadian Journal of Mathematics 1 (2020), doi:10.4153/S0008414X20000802. ).
  27. Configuration Lie groupoids and orbifold braid groups (Bull. Sci. math. 171 (2021), doi:10.1016/j.bulsci.2021.103028.).
  28. k-almost-quasifibrations (Indian J Pure Appl Math (2022), doi:10.1007/s13226-022-00303-z.).
  29. Corrigendum: A certain structure of Artin groups and the isomorphism conjecture (Canadian Journal of Mathematics 1 (2024), doi:10.4153/S0008414X24000191. ).
  30. A four-term exact sequence of surface orbifold pure braid groups (Bull. Sci. math. 193 (2024), doi:10.1016/j.bulsci.2024.103448.).
  31. On aspherical configuration Lie groupoids ( Topol. Appl. 356 (2024), doi:10.1016/j.topol.2024.109052.

Papers appeared so far in the Math. Rev. are here and in the Zent. Math. are here.