Publications

1. H. Duminil-Copin, S.Goswami, P-F. Rodriguez, F. Severo and A. Teixeira. A characterization of strong percolation via disconnection. Proc. Lond. Math. Soc. (3) 129 (2024), no. 2, Paper No. e12622, 49 pp. Preprint is available at arxiv.org/abs/2308.07920.

2. H. Duminil-Copin, S.Goswami, P-F. Rodriguez, F. Severo and A. Teixeira. Finite range interlacements and couplings. To appear in Ann. Probab. Preprint is available at arxiv.org/abs/2308.07303.

3. Z. Fan and S. Goswami. Roughness of geodesics in Liouville quantum gravity. Ann. Inst. Henri Poincaré Probab. Stat. 60 (2024), no. 3, 2194-2210. Preprint is available at arxiv.org/abs/2205.00676.

4. S. Chatterjee and S. Goswami. Spatially Adaptive Online Prediction of Piecewise Regular Functions. Algorithmic Learning Theory 2023, 35 pp., Proc. Mach. Learn. Res. (PMLR), 201. Preprint is available at available at arxiv.org/abs/2203.16587.

5. H. Duminil-Copin, S. Goswami, P-F. Rodriguez and F. Severo. Equality of critical parameters for percolation of Gaussian free field level-sets. Duke Math. J. 172 (2023), no. 5, 839-913. Preprint is available at arxiv.org/abs/2002.07735.

6. S. Goswami, P-F. Rodriguez and F. Severo. On the radius of Gaussian free field excursion clusters. Ann. Probab. 50 (2022), no. 5, 1675-1724. Preprint is available at arxiv.org/abs/2101.02200.

7. S. Chatterjee and S. Goswami. New Risk Bounds for 2D Total Variation Denoising. IEEE Trans. Inf. Theory 67 (2021), no. 6, 4060-4091, doi: 10.1109/TIT.2021.3059657. Preprint is available at arxiv.org/abs/1902.01215.

8. S. Chatterjee and S. Goswami. Adaptive Estimation of Multivariate Piecewise Polynomials and Bounded Variation Functions by Optimal Decision Trees. Ann. Stat. 49 (2021), no. 5, 2531-2551. Preprint is available at arxiv.org/abs/1911.11562.

9. H. Duminil-Copin, S. Goswami, A. Raoufi, F. Severo, and A. Yadin. Existence of phase transition for percolation using the Gaussian Free Field. Duke Math. J. 169 (2020), no. 18, 3539-3563. Preprint is available at arxiv.org/abs/1806.07733.

10. H. Duminil-Copin, S. Goswami and A. Raoufi. Exponential decay of truncated correlations for the Ising model in any dimension for all but the critical temperature. Commun. Math. Phys. 374 (2020), no. 2, 891-921. Preprint is available at arxiv.org/abs/1808.00439.

11. M. Biskup, J. Ding and S. Goswami. Return probability and recurrence for the random walk driven by two-dimensional Gaussian free field. Commun. Math. Phys. 373 (2020), no. 1, 45-106. Preprint is available at arxiv.org/abs/1611.03901.

12. J. Ding and S. Goswami. Upper bounds on Liouville first passage percolation and Watabiki's prediction. Commun. Pure Appl. Math. 72 (2019), no. 11, 2331-2384. Preprint is available at arxiv.org/abs/1610.09998.

13. J. Ding and S. Goswami. First passage percolation on the exponential of two-dimensional branching random walks. Electron. Commun. Probab. 22 (2017), no. 69. Preprint is available at arxiv.org/abs/1511.06932.

14. J. Ding and S. Goswami. Percolation of averages in the stochastic mean field model: the near-supercritical regime. Electron. J. Probab. 20 (2015), no. 124. Preprint is available at arxiv.org/abs/1501.03579.

Preprints

1. H. Duminil-Copin, S.Goswami, P-F. Rodriguez, F. Severo and A. Teixeira. Phase transition for the vacant set of random walk and random interlacements. Preprint, available at arxiv.org/abs/2308.07919.

2. S. Chatterjee, P-S Dey and S. Goswami. Central Limit Theorem for Gram-Schmidt Random Walk Design. Preprint, available at arxiv.org/abs/2305.12512.

3. J. Ding and S. Goswami. Liouville first passage percolation: the weight exponent is strictly less than 1 at high temperature. Preprint, available at arxiv.org/abs/1605.08392. This article gives a different proof for a weaker bound on the exponent compared to arxiv:1610.09998.

4. S. Goswami. Finite size scaling of random XORSAT. Preprint, available at arxiv.org/abs/1610.07431.