Publications

1. S. Chatterjee, P-S. Dey and S. Goswami. Central Limit Theorem for Gram-Schmidt Random Walk Design. To appear in Ann. Appl. Probab. (2025).

2. H. Duminil-Copin, S.Goswami, P-F. Rodriguez, F. Severo and A. Teixeira. Finite range interlacements and couplings. To appear in Ann. Probab. (2025).

3. H. Duminil-Copin, S.Goswami, P-F. Rodriguez, F. Severo and A. Teixeira. A characterization of strong percolation via disconnection. Proc. Lond. Math. Soc. (3) 129 (2024), no. 2, Paper No. e12622, 49 pp.

4. Z. Fan and S. Goswami. Roughness of geodesics in Liouville quantum gravity. Ann. Inst. Henri Poincaré Probab. Stat. 60 (2024), no. 3, 2194-2210.

5. S. Chatterjee and S. Goswami. Spatially Adaptive Online Prediction of Piecewise Regular Functions. Algorithmic Learning Theory 2023, 35 pp., Proc. Mach. Learn. Res. (PMLR), 201.

6. H. Duminil-Copin, S. Goswami, P-F. Rodriguez and F. Severo. Equality of critical parameters for percolation of Gaussian free field level-sets. Duke Math. J. 172 (2023), no. 5, 839-913.

7. S. Goswami, P-F. Rodriguez and F. Severo. On the radius of Gaussian free field excursion clusters. Ann. Probab. 50 (2022), no. 5, 1675-1724.

8. S. Chatterjee and S. Goswami. New Risk Bounds for 2D Total Variation Denoising. IEEE Trans. Inf. Theory 67 (2021), no. 6, 4060-4091, doi: 10.1109/TIT.2021.3059657.

9. S. Chatterjee and S. Goswami. Adaptive Estimation of Multivariate Piecewise Polynomials and Bounded Variation Functions by Optimal Decision Trees. Ann. Stat. 49 (2021), no. 5, 2531-2551.

10. H. Duminil-Copin, S. Goswami, A. Raoufi, F. Severo, and A. Yadin. Existence of phase transition for percolation using the Gaussian Free Field. Duke Math. J. 169 (2020), no. 18, 3539-3563.

11. H. Duminil-Copin, S. Goswami and A. Raoufi. Exponential decay of truncated correlations for the Ising model in any dimension for all but the critical temperature. Commun. Math. Phys. 374 (2020), no. 2, 891-921.

12. M. Biskup, J. Ding and S. Goswami. Return probability and recurrence for the random walk driven by two-dimensional Gaussian free field. Commun. Math. Phys. 373 (2020), no. 1, 45-106.

13. J. Ding and S. Goswami. Upper bounds on Liouville first passage percolation and Watabiki's prediction. Commun. Pure Appl. Math. 72 (2019), no. 11, 2331-2384.

14. J. Ding and S. Goswami. First passage percolation on the exponential of two-dimensional branching random walks. Electron. Commun. Probab. 22 (2017), no. 69.

15. J. Ding and S. Goswami. Percolation of averages in the stochastic mean field model: the near-supercritical regime. Electron. J. Probab. 20 (2015), no. 124.

Preprints and submitted articles

1. S. Goswami, P-F. Rodriguez and Y. Shulzhenko. Connectivity functions for the vacant set of random interlacements. Preprint, available at mathweb.tifr.res.in/~goswami/mainconn.pdf.

2. S. Goswami, P-F. Rodriguez and Y. Shulzhenko. Strong local uniqueness for the vacant set of random interlacements. Preprint, available at mathweb.tifr.res.in/~goswami/mainsl.pdf.

3. S. Chatterjee, S. Goswami and S-S. Mukherjee. LASER: A new method for locally adaptive nonparametric regression. Preprint, available at arxiv.org/abs/2412.19802.

4. H. Duminil-Copin, S. Goswami, P-F. Rodriguez, F. Severo and A. Teixeira. Phase transition for the vacant set of random walk and random interlacements. Preprint, available at arxiv.org/abs/2308.07919.

5. J. Ding and S. Goswami. Liouville first passage percolation: the weight exponent is strictly less than 1 at high temperature. Preprint, available at arxiv.org/abs/1605.08392. This article gives a different proof for a weaker bound on the exponent compared to arxiv:1610.09998.

6. S. Goswami. Finite size scaling of random XORSAT. Preprint, available at arxiv.org/abs/1610.07431.