Skip to main content

Colloquium abstracts

R. Venkatesh
TIFR
July 24, 2014

Tensor product decomposition of $g$--stable Demazure modules:  Let $g$ be a finite--dimensional simple complex Lie algebra. The $g$--stable Demazure modules of the untwisted affine Lie algebra associated to $g$ naturally become finite--dimensional graded modules for the current algebra $g[t]$ by restriction. In this talk, I will discuss results on the tensor product structure of these $g[t]$--modules and its connection with several important conjectures.?? This is joint work with Vyjayanthi Chari, Peri Shereen and Jeffrey Wand.

Math Resources

Useful Information

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer